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Artificial neural networks (ANNSs) have experienced a rapid advancement
for their success in various application domains, including autonomous
driving and drone vision. Researchers have been improving the perfor-
mance efficiency and computational requirement of ANNSs inspired by
the mechanisms of the biological brain. Spiking neural networks (SNNs)
provide a power-efficient and brain-inspired computing paradigm for
machine learning applications. However, evaluating large-scale SNNs on
classical von Neumann architectures (central processing units/graphics
processing units) demands a high amount of power and time. Therefore,
hardware designers have developed neuromorphic platforms to execute
SNNs in and approach that combines fast processing and low power con-
sumption. Recently, field-programmable gate arrays (FPGAs) have been
considered promising candidates for implementing neuromorphic solu-
tions due to their varied advantages, such as higher flexibility, shorter de-
sign, and excellent stability. This review aims to describe recent advances
in SNNs and the neuromorphic hardware platforms (digital, analog, hy-
brid, and FPGA based) suitable for their implementation. We present
that biological background of SNN learning, such as neuron models and
information encoding techniques, followed by a categorization of SNN
training. In addition, we describe state-of-the-art SNN simulators. Fur-
thermore, we review and present FPGA-based hardware implementation
of SNNs. Finally, we discuss some future directions for research in this
field.
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1 Introduction

In recent years, artificial neural networks (ANNs) have become the best-
known approach in artificial intelligence (Al) and have achieved superb
performance in various domains, such as computer vision (Abiodun et al.,
2018), automotive control (Kuutti, Fallah, & Bowden, 2020), flight control
(Gu, Valavanis, Rutherford, & Rizzo, 2019), and medical systems (Shahid,
Rappon, & Berta, 2019). Taking inspiration from the brain, the third gener-
ation of neural networks, known as spiking neural networks (SNNs), has
been developed to bridge the gap between machine learning and neuro-
science (Maass, 1997). Unlike ANNSs that process data values, SNNs use dis-
crete events (or spikes) to encode and process data, which makes them more
energy efficient and more computationally powerful than ANNs (Jang,
Simeone, Gardner, & Gruning, 2019).

SNNs and ANNSs are different in terms of their neuron models. ANNs
typically use computation units, such as sigmoid, rectified linear unit
(ReLU), or tanh and have no memory, whereas SNNs use a nondifferen-
tiable neuron model and have memory, such as leaky integrate-and-fire
(LIF). However, simulation of large-scale SNN models on classical von
Neumann architectures (central processing units (CPUs)/graphics process-
ing units (GPUs)) demands a large amount of time and power. Therefore,
high-speed and low-power hardware implementation of SNNs is essential.
Neuromorphic platforms, which are based on event-driven computation,
provide an attractive solution to these problems. Thanks to neuromorphic
hardware benefits, SNNs have become applicable to emerging domains,
such as the Internet of Things and edge computing (Mead, 1990; Calimera,
Macii, & Poncino, 2013).

Neuromorphic hardware can be divided into analog, digital, and mixed-
mode (analog/digital) design. Although analog implementation offers
small area and low power consumption, digital implementation is more
flexible and less costly for processing large-scale SNN models (Indiveri
et al. 2011; Seo & Seok, 2015). Field-programmable gate arrays (FPGAs)
have been considered a suitable candidate for implementing digital neu-
romorphic platforms. Compared to ASICs, FPGAs offer shorter design and
implementation time and excellent stability (Perez-Pefia, Cifredo-Chacon,
& Quiros-Olozabal, 2020). There have been several attempts to implement
SNNs on single FPGA devices, which demonstrate promising speed-up
compared to CPU implementation and lower power consumption com-
pared to GPU implementation (Ju, Fang, Yan, R., Xu, & Tang, 2020; Zhang
et al. 2020).

In this review, we introduce recent progress in spiking neural net-
works and neuromorphic hardware platforms suitable for their implemen-
tation. Section 2 introduces the SNNs’ operation and typical spiking neuron
and encoding schemes. Section 3 discusses the learning algorithms for
SNNs, including unsupervised, supervised, and conversion approaches.
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Figure 1: Schematic of a biological neural network, spiking neural network,
artificial neural network, and behavior of a leaky-integrate-and-fire spiking
neuron.

Performance comparison of the hardware and software implementations of
SNNs is given in section 5. In section 6, major challenges and future perspec-
tives of spiking neural networks and their neuromorphic implementations
are given. Section 7 concludes.

2 Spiking Neural Networks

Spiking neural networks, considered the third generation of neural net-
works (Maass, 1997), communicate by sequences of spikes, discrete events
that take place at points in time, as depicted in Figure 1. SNNs have been
widely used in numerous applications, including the brain-machine inter-
face (Mashford, Yepes, Kiral-Kornek, Tang, & Harrer, 2017), machine con-
trol and navigation systems (Tang & Michmizos, 2018), speech recognition
(Dominguez-Morales et al. 2018), event detection (Osswald, Ieng, Benos-
man, & Indiveri, 2017), forecasting (Lisitsa & Zhilenkov, 2017), fast signal
processing (Simeone, 2018), decision making (Wei, Bu, & Dai, 2017), and
classification problems (Dora, Subramanian, Suresh, & Sundararajan, 2016).
They have increasingly received attention as powerful computational plat-
forms that can be implemented in software or hardware. Table 1 shows the
differences between SNNs and ANNSs in terms of neuron, topology, and
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Table 1: Comparison between SNNs and ANNS.

Spiking Neural Network Artificial Neural Network
Neuron Spiking neuron (e.g., integrate and Artificial neuron (sigmoid,
fire, Hodgkin-Huxley, Izhikevich) ReLU, tanh)
Information Spike trains Scalars
representation
Computation Differential equations Activation function
mode
Topology LSM, Hopfield Network, RSNN, RNN, CNN, LSTM, DBN,
SCNN DNC
Features Real-time, low power, online Online learning,
learning, hardware friendly, computation intensive,
biological close, fast and moderate parallelization
massively parallel data processing of computations

their features. A spiking neuron has a similar structure as an ANN neuron
but different behavior. There are various spiking neuron models.

2.1 Spiking Neuron Model. A spiking neuron has a similar structure
to that of an ANN neuron but shows different behavior. Over time, many
different neuron models have developed in the literature, such as Hodgkin-
Huxley (HH), Izhikevich, leaky integrate-and-fire (LIF), and spike response
models. These models differ not only on which biological characteristics of
real neurons they can reproduce but also based on their computational com-
plexity. In this section, we review four popular and representative neuron
models that are widely used in the literature in terms of their biological
plausibility, the neuronal properties or behaviors that can be exhibited by
each model and computational efficiency, and the number of floating-point
operations needed to accomplish 1 millisecond (ms) of model simulation.

2.1.1 Hodgkin-Huxley Model. The HH model is the first biological model
of a spiking neuron that describes how action potentials in the neuron are
initiated and propagated (Hodgkin & Huxley, 1952). It shows the math-
ematical description of electric current through the membrane potential,
which can be calculated as

dv

I=Co

+ Gna’h(V = Vig) + Gen*(V = Vi) + GL(V — V), 2.1)

where I is the external current, C is the capacitance of the circuit; Vy,, Vk and
V1, are called reverse potentials; and Gy, Gk, and Gy, are parameters model-
ing conductance of sodium, potassium, and leakage channels, respectively.
Gating parameters 1 controls the potassium channel, while m and h control
the sodium channel. These parameters are determined by equations 2.2,2.3,
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and 2.4, respectively:
T — V)1 =)~ Bu(om @2)
W — V)= m) — Bulon (23)
% = o, (V)1 —h) — Bu(v)h. (2.4)

The HH model, the most biologically plausible spiking neuron model,
accurately capture the dynamics of many real neurons (Gerstner & Kistler
2002). However, it is too computationally expensive due to the feedback
loop initiated and the differential equations for n, m, and h to be calcu-
lated continuously. Moreover, the Hodgkin-Huxley model requires about
1200 floating-point computations (FLOPS) per 1 ms of simulation (Paugam-
Moisy & Bohte, 2012). Therefore, this model is less suitable for com-
putational intelligence applications, such as large-scale neural network
simulations.

2.1.2 Izhikevich Model. This biologically plausible spiking neuron model
was proposed by Izhikevich (2003). This two-dimensional model can repro-
duce a large variety of spiking dynamics (Izhikevich, 2004). The model can
be described mathematically as

dl;f) — 0.0402 + 50 + 140 — u + I(t), (2.5)
du(t)

— = a(bv —u), 2.6)

v(v>uvyy)=cand u(v > vy) =u+d. (2.7)

Izhikevich is a 2D spiking neural model that offers a good trade-off be-
tween biological plausibility and computational efficiency. It can produce
various spiking dynamics and requires 13 FLOPS per 1 ms of simulation
(Paugam-Moisy & Bohte, 2012). Izhikevich is a suitable model for simula-
tion or implementation of spiking neural networks, such as hippocampus
simulation and engineering problems.

2.1.3 Integrate-and-Fire Model. Integrate-and-fire (IF), one of the simple
models, integrates input spikes to membrane potential; if it reaches the
defined threshold, an output spike is generated, and membrane potential
changes to a resting state. (Gerstner, Kistler, Naud, & Paninski, 2014; Gerst-
ner & Kistler, 2002). This model can be determined by
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d
Cm?? =1(t), v < pst When v > vy, (2.8)

where C,, is the membrane capacitance, v, is the threshold, v is the mem-
brane potential, and v, is the resting potential. This model is the lowest one
in terms of computational power consumption. In a machine learning con-
text, spiking neurons are most often based on this simple model, which is
prevalent for digital hardware implementations (Nitzsche, Pachideh, Luhn,
& Becker, 2021). The leaky integrate-and-fire model, an important type of IF
neuron model, adds a leak to the membrane potential. This model is defined
by the following equation,

do
TleakE = [U(t) = Urest] + 1l (t), v <= Vpest When v > vy, (2.9)

where Ty = ¢ 1s the membrane time constant and 7, is the membrane
resistance. The LIF model is one of the widely used spiking neuron mod-
els because of its very low computational cost (it requires only five FLOPS;
Izhikevich, 2004), its accuracy in terms of replicating the spiking behavior
of biological neurons, and its speed in simulating (Brette et al., 2007; Maass,
1997). Therefore, it is particularly attractive for large-scale network simu-
lation (Aamir et al., 2018; Benjamin et al., 2014; Merolla et al., 2014). The
LIF model is very popular for analog hardware implementations since the
neuron’s integration and decay dynamics can easily be modeled by the be-
havior of subthreshold transistors and capacitors (Aamir et al., 2018).

There are also more complex types of IF model such as exponential
integrate-and-fire, quadratic integrate-and-fire, and adaptive exponential
integrate-and-fire (Borst & Theunissen, 1999).

2.1.4 Spike Response Model. The spike response model (SRM) is a bio-
inspired spiking neuron that describes more precisely the effect of input
spikes on the membrane potential. Similar to the LIF model, an SRM neu-
ron generates spikes whenever its internal membrane potential reaches the
threshold (Gerstner & Kistler, 2002). However, in contrast to LIF, it includes
a function dependent on reset and refractory periods. Moreover, unlike the
LIF model that uses differential equations for the voltage potential, the SRM
is formulated using response kernels (filters). The SRM model mathemati-
cal formulation is expressed as

+00

u(t):n(t—f)+/ k(t —F,8)I(t —s)ds, (2.10)

—00

where v(t) is the neuron’s internal potential, f is the emission time of the
last neuron output spike, n describes the state of the action potential, « is
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a linear response to an input spike, and I(t) represents the stimulating or
external current.

The 1D spike response model is simpler than other models on the level
of the spike generation mechanism. It offers low computational cost, as it
requires 50 computations (FLOPS) per 1 ms simulation. However, it pro-
vides poor biological plausibility compared with the Hodgkin and Hux-
ley model (Paugam-Moisy, 2006). This model is computationally complex
when used in digital systems. However, the equations that define it can be
modeled by analog circuits since the postsynaptic potential function can be
seen as charging and discharging RC circuits (lakymchuk, Rosado-Mufioz,
Guerrero-Martinez, Bataller-Mompedn, & Francés-Villora, 2015).

3 Information Coding

Neural coding is still a high-impact research domain for both neuroscien-
tists and computational artificial intelligence researchers (Borst & Theunis-
sen, 1999) Neurons use spikes to communicate with each other in SNN
architectures. Therefore, frame-based images and feature vectors need to be
encoded to spike trains, a process called an encoding scheme. This scheme
has a significant influence on the performance of the network. Choosing
the optimal coding approaches is related to the choice of the neuron model,
application target, and hardware constraints (Thiele, 2019). Rate encod-
ing and temporal encoding are the two main encoding schemes (Kiselev,
2016).

Rate coding or frequency coding is one of the most used approaches
to encode information in SNNs where information is conveyed in the fir-
ing rate. Temporal coding is another efficient coding approach for SNNs,
where information is conveyed in the exact timing of spikes (Brette, 2015).
Temporal coding is normally used for time series processing. Various ap-
proaches are used to generate spikes based on temporal coding, such as
latency code, rank-order coding (ROC), phase coding, and population cod-
ing. In latency coding, information is encoded in the timing of response
related to the encoding window (Fontaine & Peremans, 2009). Rank-order
coding strategies depend on the order of spike arrivals rather than on the
exact timing (Thorpe, Delorme, & Van Rullen, 2001). Compared to rate cod-
ing, ROC is able to bring more information with fewer spikes. However,
it is sensitive to noise. The phase coding strategy encodes information in
the phase of a pulse according to the background oscillations. This method
has been used in robotic navigation and olfactory systems (Kayser, Mon-
temurro, Logothetis, & Panzeri, 2009). In the population coding method,
several neurons are used to encode one value. Sparse code is one of the ex-
amples of the population coding scheme (Wu, Amari, & Nakahara, 2002;
Tkacik, Prentice, Balasubramanian, & Schneidman, 2010). An example of
spike-based information coding strategies is presented in Figure 2.
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Figure 2: Spike-based information coding strategies, rate coding, latency cod-
ing, rank coding, phase coding, and population coding. 1, ..., ny are labels of
neurons; At is the relative timing of spikes; and the numbers in the circles shows
the order of spike arrival.

4 Algorithms for SNNs

Learning in a spiking neural network is an arduous task. Backpropagation-
based gradient descent learning is a very successful method in traditional
artificial neural networks; however, training SNNs is difficult due to the
nondifferentiable nature of spike events. As a result, considerable research
effort has been mobilized to develop suitable learning algorithms that can
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be applied to multilayer SNNs, which are thus interesting for deep learning.
There are four main strategies for training SNNs: unsupervised learning,
supervised learning, conversion from trained ANNSs, and evolutionary al-
gorithm. These strategies are briefly reviewed in the following subsections.

4.1 Unsupervised Learning. Unsupervised learning is the process of
learning without preexisting labels. Unsupervised learning of SNNs is
based on the Hebbian rule that consists of adapting the network’s synaptic
connections to the data received by the neurons (Caporale & Dan, 2008). The
spike-timing-dependent plasticity (STDP) algorithm is an implementation
of Hebb’s rule. STDP is a phenomenon observed in the brain and describes
how the efficacy of a synapse changes as a function of the relative timing
of presynaptic and postsynaptic spikes. A presynaptic spike in this context
is the spike arriving at the synapse of the neuron. The postsynaptic spike
is the spike emitted by the neuron itself (Markram, Gerstner, & Sjostrom,
2011). The mechanism of STDP is based on the concept that the synapses
that are likely to have contributed to the firing of the neuron should be re-
inforced. Similarly, the synapses that did not contribute or contributed in a
negative way should be weakened (Dan & Poo, 2006).

STDP is frequently used as part of the learning technique in unsuper-
vised learning in SNNs. According to STDP, a synaptic weight is strength-
ened if a presynaptic neuron fires shortly before the postsynaptic neuron.
Similar to that, the synaptic weight is weakened if the presynaptic spike
comes briefly after the postsynaptic neuron (Xu et al. 2020). The most ob-
served STDP rule is described by equation 4.1:

+Arexp (=) if At >0
Aw = (4.1)
—A_exp () if At <0

T

At = tpost - tpre7 (42)

where w is the synaptic weights, 7 is the time constant, and A, and A_ are
constant parameters indicating the strength of potentiation and depression.

In recent years, significant research efforts have been focused on train-
ing SNNs using STDP. Qu, Zhao, Wang, and Wang (2020) developed
two novel hardware-friendly methods, lateral inhibition and homeostasis,
which reduce the number of inhibitory connections thatlead to lowering the
hardware overhead. An STDP rule was used to adapt the synapse weight
between input and the learning layer and achieved 92% recognition
accuracy on the MNIST data set. Xu et al. (2020) proposed a hybrid learn-
ing framework, named deep CovDenseSNN, that combines the biological
plausibility of SNNs and feature extraction of CNNs. An unsupervised
STDP learning rule was used to update the parameters of their proposed
deep CovDenseSNN model, which is suitable for neuromorphic hard-
ware implementation. Supervised learning and reinforcement learning are
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other types of STDP methods for learning (Mozafari, Ganjtabesh, Nowzari-
Dalini, Thorpe, & Masquelier, 2018; Mozafari, Kheradpisheh, Masquelier,
Nowzari-Dalini, & Ganjtabesh, 2018).

Lee, Panda, Srinivasan, and Roy (2018) proposed a semisupervised
strategy to train a convolutional SNN with multiple hidden layers. The
training scheme had two steps: initializing the weights of the network
by unsupervised learning (namely, SSTDP), and then employing the su-
pervised gradient descent backpropagation (BP) algorithm to fine-tune
the synaptic weight. Pretraining approaches led to better generalization,
faster training time, and 99.28% accuracy on the MNIST database. Tavanaei,
Kirby, and Maida (2018) developed a novel method to train multilayer spik-
ing convolutional neural networks (SCNNs). The training process includes
unsupervised (a novel STDP learning scheme for feature extraction) and su-
pervised (a supervised learning scheme to train spiking CNNs (ConvNets))
components.

4.2 Supervised Learning. One of the first algorithms to train SNNs
using backpropagation errors is SpikeProp, proposed by Bohte, Kok,
and La Poutre (2002). This model is applied successfully to classification
problems using a three-layer architecture. A later advanced version of
SpikeProp called spike train SpikeProp (ST-SpikeProp) used the weight up-
dating rule of the output layer to train the single-layer SNNs (Xu, Zeng,
Han, & Yang, 2013). In order to solve the nondifferentiable problem of
SNNs, Wu et al. (2018). Proposed the spatiotemporal backpropagation
(STBP) algorithm, which combines the timing-dependent temporal domain
and the layer-by-layer spatial domain. Supervised learning using tempo-
ral coding has shown a significant decrease in the energy consumption of
SNNs. Mostafa (2017) developed a direct training approach via backpropa-
gation error with the temporal coding scheme. His network has no convolu-
tional layers, and the preprocessing method is not general. Zhou, Chen, Ye,
and Li (2019) improved on Mostafa’s work by incorporating convolutional
layers into the SNN, developing a new kernel operation, and proposing a
new way to preprocess the input data. Their SCNN achieved high recog-
nition accuracy with less trainable parameters. Stromatias, Soto, Serrano-
Gotarredona, and Linares-Barranco (2017) presented a supervised method
for training a classifier by using the stochastic gradient descent (SGD) al-
gorithm and then converting it to an SNN. In other work, Zheng and
Mazumder (2018a) proposed backpropagation-based learning for training
SNNs. Their proposed learning algorithm is suitable for implementation in
neuromorphic hardware.

4.3 Conversion from Trained ANN. In the third technique, an offline-
trained ANN is converted to an SNN so that the transformed network
can take advantage of a well-established, fully trained ANN model. This
approach is often called “spike transcoding” or “spike conversion.”
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Converting an ANN to SNN offers several benefits. First, a simulation of the
exact spike dynamics in a large network can be computationally expensive,
particularly if high firing rates and precise spike times are required. There-
fore, this approach allows applying SNNs to complex benchmark tasks that
require large networks, such as ImageNet or CIFAR-10, and the accuracy
loss compared to their formal ANNSs is small (Sengupta, Ye, Wang, Liu,
& Roy, 2018; Hu, Tang, & Pan, 2018). Second, we can leverage highly ef-
ficient training techniques developed for ANNs and many state-of-the-art
deep networks for classification tasks for conversion to SNNs. Moreover,
the optimization process can be performed on ANNSs. This permits the use
of state-of-the-art optimization procedures and GPUs for training (Diehl
et al., 2015). The main disadvantage is that the conversion technique fails
to provide on-chip learning capability. Furthermore, some particularities of
SNNs, which do not exist in the corresponding ANNSs, cannot be considered
during training. For this reason, the inference performance of the SNNs is
typically lower than that of the original ANNs (Pfeiffer & Pfeil, 2018).

Significant research has been carried out to convert an ANN to an SNN
with successful performance on the MNIST data set. Diehl et al. (2015) pro-
posed a technique for converting an ANN into an SNN that has the min-
imum performance loss in the conversion process, and a recognition rate
of 98.64% was achieved on the MNIST database. In another work, Rueck-
auer, Lungu, Hu, Pfeiffer, and Liu (2017) converted continuous-valued deep
CNN to accurate spiking equivalent. This network, which includes com-
mon operations such as softmax, max-pooling, batch normalization, bi-
ases, and inception modules, demonstrates a recognition rate of 99.44% on
the MNIST data set. Xu, Tang, Xing, and Li (2017) proposed a conversion
method that is suitable for mapping on neuromorphic hardware. They pre-
sented a threshold rescaling method to reduce the loss and achieved a maxi-
mum accuracy of 99.17% on the MNIST data set. Xu et al. (2020) established
an efficient and hardware-friendly conversion rule to convert CNNs into
spiking CNNs. They proposed an “n-scaling” weight mapping method that
achieves high accuracy and low-latency classification on the MNIST data
set. Wang, Xu, Yan, and Tang (2020) proposed a weights-thresholds balance
conversion technique that needs fewer memory resources and achieves
high recognition accuracy on the MNIST data set. In contrast to the exist-
ing conversion techniques, which focus on the approximation between the
artificial neurons’ activation values and the spiking neurons’ firing rates,
they focused on the relationship between weights and thresholds of spik-
ing neurons during the conversion process.

4.4 Evolutionary Spiking Neural Networks. Evolutionary algorithms
(EAs) are population-based metaheuristics. Historically, their design was
motivated by observations about natural evolution in biological popula-
tions. Such algorithms can be used to directly optimize the network topol-
ogy and model hyperparameters or optimize synaptic weights and delays
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(Saleh, Hameed, Najib, & Salleh, 2014; Schaffer, 2015). Currently, evolution-
ary algorithms such as differential evolution (DE), grammatical evolution
(GE), harmony search algorithm (HSA), and particle swarm optimization
(PSO) are used to learn the synaptic weights of SNNs. Vazquez (2010),
Lopez-Vazquez et al. (2019), and Yusuf et al. (2017) have shown how the
synaptic weights of a spiking neuron, including integrate-and-fire, Izhike-
vich, and spike response model (SRM) models can be trained by using al-
gorithms such as DE, GE, and HSA to perform classification tasks. Vazquez
and Garro (2011) applied the PSO algorithm to train the synaptic weights of
a spiking neuron in linear and nonlinear classification problems. They dis-
covered that input patterns of the same class produce equal firing rates.
The parallel differential evolution approach was introduced by Pavlidis,
Tasoulis, Plagianakos, Nikiforidis, and Vrahatis (2005) for training super-
vised feedforward SNNs. Their approach is tested on exclusive-OR, which
does not represent its benefits. Evolutionary algorithms can be an alter-
native to exhaustive search. However, they are very time-consuming, no-
tably because the fitness function is computationally expensive (Gavrilov
& Panchenko, 2016).

Table 2 shows the models for developing SNNs—their architectures and
learning type along with their accuracy rates on the MNIST data set. This
comparison provides an insight into different SNN architectures and learn-
ing mechanisms to choose the right tool for the right purpose in future
investigations.

The new concepts and architectures are still frequently tested on MNIST.
However, we argue that the MNIST data set does not include temporal
information and does not provide spike events generated from sensors.
Compared to a static data set, a dynamic data set contains richer tem-
poral features and therefore is more suitable to exploit an SNN’s po-
tential ability. The event-based benchmark data sets include N-MNIST
(Orchard, Jayawant, Cohen, & Thakor, 2015), CIFAR10-DVS (Hongmin Li,
Liu, Ji, Li, & Shi, 2017), N-CARS (Sironi, Brambilla, Bourdis, Lagorce, &
Benosman, 2018), DVS-Gesture (Amir et al., 2017), and SHD (Cramer, Strad-
mann, Schemmel, & Zenke, 2020). Table 3 shows the models for developing
SNNs—their architectures and learning type along with their accuracy rates
on the neuromorphic data sets.

5 Available Hardware and Software/Frameworks

Different methods can be used for neural network implementation. Com-
putational cost, speed, and configurability are the main concerns for the
implementations. Although CPU-based simulations offer a relatively high-
speed execution, they are designed to be used for general-purpose and
everyday applications. They also offer a serial implementation that lim-
its the number of neurons that can be implemented at the same time.
Hardware implementations instead can provide a platform for parallel

d-ajo11B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

0 & 008U/8LEET0T/B8TL/I/VENP

€20z Jequieideg g0 uo isenb Aq jpd 667 |



Downloaded from http://direct.mit.edu/neco/article-pdf/34/6/1289/2023318/neco_a_01499.pdf by guest on 08 September 2023

i
o
S
(£102)
TH'86  000°01/000°09 ao duseyR0lg pastazadng 411 VN Surpoo jerodway, NND Supyidg [e 39 sepewong
1166 000'0¢ [N UOISIOAUOD pasiazadng dI O0L-J¥201-S-52F9-S-697€-8T X 8T Surpoddjey  39NAu0D Bupyidg (£102) Te 1@ nx
uonjeSedordyoeq
PI46 000°0T/000°09 Tesoduwiay, pasiaradng g1 AyeaquoN 01-007-007-%84  Surpod pezoduuay, NNS (£102) eyeIsON
dd1s-dd pue (8100)
09'86 _000°01/000°09 Surures| -dar Jq.1s yog 411 D401-D400S1-de-6DF9  Surpod ferodway, NND Supyidg [& 39 1orURAR],
(8102) Preyp10
9€'66  000°01/000°09 uopededordyoeg pastazadng A1 001-eZ-92%9-87-6O71-87 X8 Surpod ferodway, NNS doog pue eygsaIyg
uoneSedordydeq
+ wzqzmwbw.um NNSasus(JaA0D
8766 000°01/000°09 poseq-dals  pesiaradnsiuag AIT  D401-D4002-dT-$D0S-dZ-S002-82% 8T Surpod ajey deag (8107) 'Te 19 2977
JU2s9p (8102)
ayewrxoxdde uerpuafey
n L1'86 000°01/000°0S POZI[RULION] pastazadng 11 01-CLI8-¥8L VN NNS pue ey
4 (e8102)
o do dnseypols Idpwnzejn
m 826 000°0T/000°09 Surues] auUQ pastazadng Eigl 01-00T-00€-F8 Surpod ajey NNS pue Suayz
] uoneSedordyoeq
m 0586 000°01/000°09 Tezoduag, pasiatadng g1 AyeaquoN VN Surpod [erodwsay, NND Suppids —— (6102) ‘T2 12 noyz
m UOISIDAUO0D ddueeq
w €766 000°01/000°09 PIOYsa1y1-S1ySIoMm pasiazadng Al 01-D4821-dINT-€D¥9-CIIN-EDF9 Surpod ajey NNS oo (0z07) '[e 312 Suemy
Z 6066 00002 [N UOISIOAUOD postazadng Eii Dd01-dZ-SO¥9-de-508 Surpod ajey NND 3upjidg (0202) T2 39 nx
50 JALS “Sururesy NNSesua(JA0D)
k= ¥16  000°0L/000°09 paseq-ay1ds pugdy pastaradnsun Eigl d-§D¥T-60T1-82 % 8T@9D9 Surpod ajey deag (0202) Te 32 nx
=4 76 000°01/000°09 4ais pasiazadnsun 1 £yeajuoN 01-007-007-%84  Surpod [ezoduray, NNS (0202) T2 1 ND
(=9 airs
Qnu £T66  000°01/00009  + PIoYsoIy) a[qerre pastaradnsun 11 VN 8urpoo 1apio syuey NND8upiids — (1z0¢) Suoq % njg
= (1202)
m %6 000°01/000°09 dg-1aus pasiatadng ARG Teaury 01-005-%84  Surpood [eroduuay, NNS  [e32 ySepesiy
m (%) VD ordureg o[y Sururea| odAp Sururea]  adAL uomasn uonem3yuo)) 2InpPNng poylaN Surpoouy adA1-y10MIBN QouLIJAY
o ¥s3L/Surure,
Q
&
2 *(ISIN) 39S ere(q s3I uaprImpue]] uo AoeInddy Iy ], pue s[ePoJA Surures] NN U209y Jo Arewrwng :g a[qel,
<



1302 A. Javanshir, T. Nguyen, M. Mahmud, and A. Kouzani

Table 3: Summary of Recent SNN Learning Models and Their Accuracy on
Event-Based Data Set.

Network Learning Rule and Structure
Reference Type Configuration DataSet  CA%
Kugele etal. SNN ANN-to-SNN conversion N-MNIST 95.54
(2020) CIFAR-DVS = 66.61
DvsGesture  96.97
N-Cars 94.07
Wu et al. Spiking  Spatiotemporal backpropagation N_MNIST 98.78
(2018) MLP (STBP) 34 x 34 x 2-800-10
Wu et al. SNN Spatiotemporal backpropagation (STBP) N-MNIST 99.53
(2019) 128C3(Encoding)-128C3-AP2-384C3- CIFAR-DVS  60.5
384C3-AP2-1024FC-512FC-Voting
Zheng etal. ResNetl7 Threshold-dependent batch CIFAR-DVS  67.80
(2020) SNN normalization method based on DvsGesture  96.87
spatiotemporal backpropagation
(STBP-tdBN)
Lee et al. SNN Supervised backpropagation N-MNIST 98.66
(2016) (34 x 34 x 2)-800-10
Yao et al. Spiking ~ Temporal-wise attention SNN DvsGesture  98.61
(2021) CNN (TA-SNN)

(1) Input-MP4-64C3-128C3-AP2-128C3- CIFAR-DVS 72
AP2-256FC-11

(2) Input-32C3-AP2-64C3-AP2-128C3- SHD 91.08
AP2-256C3-AP2-512C3-AP4-256FC-
10
(3) Input-128FC-128FC-20
Neil and Liu Spiking ~ ANN-to-SNN conversion N-MNIST 95.72

(2016) CNN

implementations. Although analog implementation is relatively efficient,
it suffers from an expensive and long design and implementation process.
FPGA instead offers a configurable platform that offers parallel processing,
which makes it a suitable candidate for SNN implementations.

5.1 Available Software. There are many different SNN simulators—for
example, BindsNET, Nengo, NeMo, Brian2GeNN, Nest, and CARLsim. Ex-
isting simulators have different levels of biological models, computational
speed, and support for hardware platforms. They are classified into three
main groups depending on how the neural model dynamic evaluation is
computed: event driven (asynchronous), where the membrane potential
is modified only when a spike arrives; clock-driven (synchronous), where
the neural state is updated at every tick of a clock; and hybrid strategies
(asynchronous and synchronous) (Rudolph-Lilith, Dubois, & Destexhe,
2012).
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Advancements in Spiking Neural Networks 1303

Event-driven simulators are not as widely used as clock-driven simula-
tors due to their implementation complexity. Moreover, they are difficult
to parallelize due to their sequential nature. Their main advantage is their
higher operation speed because they do not calculate small update steps for
a neuron. Another benefit of event-driven simulators is that the timing of
spikes can be represented with high precision. These simulators are more
suitable for neural network layers with low and sparse activity (Naveros,
Garrido, Carrillo, Ros, & Luque, 2017).

The majority of SNN simulators are clock-driven. Because of high par-
allelism, clock-driven simulators take full advantage of parallel computing
resources in CPU and GPU platforms. Their platforms perform better for
small and medium-size groups of neurons with a low to medium math-
ematical complexity, whereas GPU clock-driven platforms perform better
for large-size groups of neurons with high mathematical complexity. The
main advantage of clock-driven simulators is that they are suitable for sim-
ulating large networks when a large number of events is triggered. Many of
these simulators are built on top of the existing deep learning frameworks
because they are structurally similar to simulating an ANN. Their main
disadvantages are that spike timings are aligned to ticks of the clock and
threshold conditions are checked only at the ticks of the clock (Brette et al.,
2007). Selecting the most appropriate technique requires a trade-off among
three elements: (1) neural network architecture (e.g., number of neurons,
neural model complexity, number of input and output synapses, mean fir-
ing rates), (2) hardware resources (number of CPU and GPU cores, RAM
size), and (3) simulation requirements and targets.

Among the SNN simulators that have been reported in the literature are
BindsNET (Hazan et al., 2018), Nengo (Bekolay et al., 2014), NeMo (Fid-
jeland, Roesch, Shanahan, & Luk, 2009), GeNN (Yavuz et al., 2016), Brain
2 (Stimberg, Brette, & Goodman, 2019), Brian2GeNN (Stimberg, Good-
man, & Nowotny, 2020), NEST (Gewaltig & Diesmann, 2007), CARLsim
(Beyeler, Carlson, Chou, Dutt, & Krichmar, 2015; Chou et al., 2018), Neu-
Cube (Kasabov, 2014), PyNN (Davison, 2009), ANNarchy (Vitay, Dinkel-
bach, & Hamker, 2015), and NEURON (Hines & Carnevale 1997). There are
some major criteria for choosing an SNN simulator. It should be open ac-
cess; easy to debug and run; and support various hardware such as ASIC
and FPGA to execute the simulation and support the level of biological com-
plexity. We describe the main features of prominent existing SNNs simula-
tors in Table 3.

BindsNET is an open-source Python package for rapid building and sim-
ulation of SNNs, which developed on top of the PyTorch deep learning li-
brary for its matrix computation. BindsNET allows researchers to test the
software prototypes on CPUs or GPUs and then deploy the model to dedi-
cated hardware (Hazan et al., 2018).

Nengo is a neural simulator based on the neural engineering framework
for simulating both large-scale spiking and nonspiking neural models. It
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1304 A. Javanshir, T. Nguyen, M. Mahmud, and A. Kouzani

is written in Python and supports the TensorFlow back end. This Python
library allows users to define neuron types, learning rules, and optimization
methods (Bekolay et al., 2014).

NeMo, a C++ class library for simulating SNNs, can simulate tens of
thousands of neurons on a single workstation. It has bindings for Matlab
and Python and one of the supported back ends for the PyNN simulator
interface (Fidjeland et al. 2009).

GeNN is an open-source library for accelerating SNN simulations on
CPUs or GPUs via code generation technology (Yavuz, Turner, & Nowotny,
2016).

Brain is a popular open-source simulator for SNNs written in Python. It
is highly flexible, easily extensible, and commonly used in computational
neuroscience. Version 2 of Brain allows scientists to efficiently simulate
SNN models (Stimberg et al., 2019). In a newly developed software pack-
age, Brian2GeNN, the GPU-enhanced neural network simulator (GeNN)
can be used to accelerate simulation in the Brain simulator (Stimberg et al.,
2020).

Another popular and open-source simulator for SNNs is NEST, focus-
ing on the dynamics, size, and structure of neural network. It is suitable
for large networks of spiking neurons (Gewaltig et al. 2007). CARLsim is a
user-friendly and GPU-accelerated SNN library written in C++ that sup-
ports CPU-GPU co-execution (Beyeler et al., 2015). Version 4 of CARLsim
has been improved to simulate large-scale SNN models in with real-time
constraints (Chou et al. 2018). Table 4 shows the features of the most SNNs
simulation software.

5.2 Available Hardware. Spiking neuromorphic hardware can be sub-
divided into analog and digital or mixed-mode (analog/digital) design.
Analog hardware uses physical processes to model certain computational
functions of artificial neurons. The advantage of this approach is that
operations that might be costly to implement as an explicit mathematical
operation can be realized very efficiently by the natural dynamics of the sys-
tem (Neil & Liu, 2016). Additionally, real-valued physical variables could
have almost infinite precision. Analog hardware implementations differ on
the degree to which analog elements are used. Many implementations per-
form only the computation in the neuron with analog elements, keeping
the communication of spike signals digital (Camufias, Linares-Barranco, &
Serrano-Gotarredona, 2019).

Digital hardware represents all variables of the neurons by bits, just
like a classical computer. This means that the precision of variables
depends on the number of bits used to represent the variables. This pre-
cision also strongly influences the energy consumption of the basic op-
erations and the memory requirements for variable storage. The great
advantage of digital designs compared to analog hardware is that the preci-
sion of variables is controllable and guaranteed. Additionally, digital hard-
ware can be designed with established state-of-the-art techniques for chip
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Advancements in Spiking Neural Networks 1307

design and manufacturing. The digital solutions could be implemented on
either FPGAs or application-specific integrated circuits (ASICs) (Schuman
etal., 2017). Alternatively, due to the high production costs of ASICs, other
research groups have focused on implementing SNNs on FPGAs.

5.2.1 Learning with Neuromorphic Hardware. Learning mechanisms are
crucial for the ability of neuromorphic systems to adapt to specific applica-
tions. Various types of learning can be performed depending on the number
of hyperparameters included in the learning, and the learning time can be
greatly varied. When such learning is performed in a neuromorphic chip,
the learning is referred to as on-chip training (Lee, Lee, Kim, Lee, & Seo,
2020). In order to perform on-chip training, the neuromorphic chip should
have almost all of the functions required for learning (Walter, Rohrbein,
& Knoll, 2015). Off-chip training is a method of implementing learning
outside a neuromorphic chip using, for example, software. After external
learning is completed, the weights are postprocessed according to the neu-
romorphic system, or the neuromorphic system is fabricated using the post-
processed weights.

Whether to implement on-chip or off-chip training depends on the
application under consideration. If the objective is to design a general ac-
celerator for machine learning, obviously the chip should allow on-chip
training (Burr et al., 2015). If the purpose is to perform a unique machine
learning task on embedded low-power hardware, off-chip learning, which
potentially is power consuming, can be realized only once, after which the
resulting network is programmed on-chip. At that point, one could argue
that in some cases, the system should need to adapt to its sensing environ-
ment while operating, which is referred to as online learning. One solution
is to enable off-chip training between operation times and update or fine-
tune the SNNs during inactive or loading time. However, this approach
still brings some drawbacks; for example, it requires adding a memory that
would store the input data acquired during operation. In addition, online
learning is still being researched because machine learning currently has
the major drawback of forgetting, which means that a trained network can-
not learn a new task without losing accuracy on its previously learned task
(Zheng & Mazumder, 2018b).

For many years, STDP has been the algorithm of choice for implement-
ing machine learning tasks in spiking neuromorphic systems (Diehl &
Cook, 2014). It is popular in the neuromorphic community for several rea-
sons. First, the field of neuromorphic computing has traditionally been in-
spired by biology. This is the reason that early approaches for learning in
neuromorphic hardware have been inspired by mechanisms observed in
the brain. In addition, STDP is straightforward to implement in analog
neuromorphic hardware. Its time dependence is often modeled by an ex-
ponential decay, which can simply be calculated by analog electronic ele-
ments. Finally, if we want to apply supervised learning, these algorithms
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1308 A. Javanshir, T. Nguyen, M. Mahmud, and A. Kouzani

require either complex neurons and synaptic models or floating-point val-
ues communication of gradients between layers, and thus between neuro-
cores, which makes their hardware implementation impractical. Moreover,
if weight update is performed online (i.e., during inference), feedforward
operation must be paused for learning, which adds an operational delay to
the system.

5.2.2 Large-Scale Neuromorphic Hardware. Appraisal of large-scale neu-
ral networks requires dedicated hardware to be highly configurable. The
well-known neuromorphic architectures TrueNorth (Merolla et al., 2014),
Neurogrid (Benjamin et al., 2014), BrainScaleS (Schemmel et al., 2010), Loihi
(Davies et al., 2018), and SpiNNaker (Furber, Galluppi, Temple, & Plana,
2014) pursue various characteristics to emulate networks of spiking neu-
rons. (Note that this review addresses the well-known fully digital and
mixed digital-analog neuromorphic hardware.)

The IBM TrueNorth chip is a neuromorphic platform implemented in
digital electronics. This chip is designed for large-scale networks evaluation
and closer to human brain structure rather than von Neumann architecture
used in conventional computers. A single TrueNorth chip contains 5.4 bil-
lion transistors and 4096 neurosynaptic cores. Each core includes 12.75 KB
of local static random-access memory (SRAM), 256 neurons, 265 axons, and
a 265 x 265 synapse crossbar. This chip can simulate up to 1 million neurons
and 265 million synapses. A TrueNorth chip is programmable via Corelet
programming language (Merolla et al., 2014).

Neurogrid is a mixed digital-analog neuromorphic device that targets
real-time simulation of biological brains. The Neurogrid board is com-
posed of 16 complementary metal-oxide-semiconductor (CMOS) Neuro-
Core chips, each of which has 256 x 256 analog neurons fabricated in a
180 nm CMOS technology. This board is able to perform real-time biological
simulations of the brain with billions of synaptic connections and 1 million
neurons (Benjamin et al., 2014).

BrainScaleS is a mixed-mode analog/digital neuromorphic hardware
system, based on physical emulations of neuron, synapse, and plasticity
models, that targets the emulation of brain-size neural networks. The sys-
tem is composed of 8-inch silicon wafers capable of simulation up to 50 x
106 plastic synapses and 200,000 neurons. Adaptive exponential IF neuron
models and synapses in an analog network core structure have been imple-
mented in the BrainScaleS system. The communication units in the system
are digital, while the pro-cessing units are analog circuits (Schemmel et al.,
2010).

A fully digital neuromorphic research chip known as Loihi has been de-
signed by Intel labs to implement SNNs. The chip is fabricated in Intel’s
14 nm process technology and contains 128 cores, along with three manag-
ing Lakemont cores. The Loihi chip can implement up to 130,000 neurons
and 130 million synapses. Moreover, a learning engine embedded in each
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core enables on-chip learning, with various learning rules, which makes
Loihi more flexible for supervisor/nonsupervisor and reinforcing models.
It can process information faster and more efficiently than conventional pro-
cessors up to 1000 and 10,000, respectively, which makes it an ideal candi-
date for solving specific types of optimization problems (Davies et al., 2018).

SpiNNaker is a large, digital neuromorphic system designed to simu-
late large-scale neural computational models in real time. The SpiNNaker
board consists of 48 chips, each one containing 18 ARM microprocessors
and a network on chip (NoC). Each core contains an ARM968 and a di-
rect memory Access (DMA) controller to implement almost 1000 spiking
neurons in real time. One of the advantages of the SpiNNaker is using an
asynchronous scheme of communication. The PyNN interface makes the
SpiNNaker board programmable. PyNN is a Python library that provides
various spiking neuron model and synaptic plasticity rules. This neuromor-
phic platform has been used in neuroscience applications, such as the sim-
ulation of the visual cortex or the cerebellum (Furber, 2016).

The main features of these neuromorphic systems are shown in Table 5.
Note that for the execution of the network, only the learning approaches
that are implemented on-chip to run online are reviewed in this table.

5.2.3 FPGA-Based Implementation of SNN. SNN algorithms have parallel
and distributed nature. Today’s computer architecture and software are not
suitable for SNN execution. An alternative approach is to accelerate SNN
applications through dedicated hardware. Neuromorphic hardware is de-
signed to minimize energy and cost while keeping maximum accuracy. It
presents promising speed-ups compared with software programs running
on CPUs, with lower power consumption than GPU.

Several neuromorphic accelerators have been used for implementing
SNNs. However, they encounter some limitations, such as maximum fan-
in/fan-out of aneuron and synaptic precision, and are not suited for embed-
ded systems due to their high cost (Jiet al., 2016). FPGAs as a programmable
and low-cost device can address this issue: they exhibit high performance
and reconfiguration capability and are more energy efficient than current
CPUs and GPUs. Furthermore, they support parallel processing and con-
tain enough local memory to restore weights, which make them a suitable
candidate for implementing SNNs (Guo, Yantir, Fouda, Eltawil, & Salama,
2021). Rahman (2017) demonstrated that with a single CPU, the process-
ing time is slow (around 1 minute per image). However, with the success-
ful FPGA hardware acceleration and the use of a more complex network
with a higher number of filters and convolutional layers, it will be pos-
sible to use SNNs in real-time scenarios (1 second per image). Compared
to application-specific integrated circuits (ASICs), FPGAs are suitable can-
didates for implementing digital neuromorphic platforms. They provide
rapid design and fabrication time, low cost, high flexibility, more straight-
forward computer interface, and excellent stability. While the improvement
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Advancements in Spiking Neural Networks 1311

potential using FPGAs is high, there are still many open research questions
that limit the current mainstream appeal of FPGAs.

Implementation of neural networks on FPGAs is time-consuming com-
pared to CPUs and GPUs. An important reason that FPGAs are still not as
widely used as general-purpose hardware platforms like CPUs and GPUs
in neural network computing is their relatively low programmability (Hof-
mann, 2019). Software frameworks such as Caffe and TensorFlow support
only hardware units like CPUs and GPUs and can be executed on such
operating systems. Although high-level synthesis (HLS) improves devel-
opment cycle on FPGAs, efficient HLS system designs still require a deep
understanding of hardware details, which can be a problem for general neu-
ral network developers (Zhang & Kouzani, 2020). There is still a need for
FPGA-based frameworks that support the mainstream software neural net-
work libraries like TensorFlow and Caffe.

Several studies have reported different approaches for implementing
SNNs on FPGAs for various applications. FPGA-based implementation of
SNNs has been presented for classifying musical notes (Cerezuela-Escudero
et al., 2015), electrocardiogram (ECG), edge detection (Qi et al., 2014), real-
time image dewarping (Molin et al., 2015), locomotion systems (Guerra-
Hernandez et al., 2017), biomimetic pattern generation (Ambroise, Levi,
Joucla, Yvert, & Saighi, 2013), and event-driven vision processing (Youse-
fzadeh, Serrano-Gotarredona, & Linares-Barranco, 2015).

Note that we focus here on recent FPGA-based implementation of SNNs
for image classification domain, currently a significant field of machine
learning. Many research groups are now concentrating their efforts on
developing reservoir computing for solving various classification and
recognition problems. Tanaka et al. (2019) summarized recent advance in
physical reservoir computing, such as analog circuits, and FPGA. Yi et al.
(2016) developed a real-time, hardware-based FPGA architecture of the
reservoir computing method of recurrent neural network (RNN) training.
Numerous studies have been focusing on designing a suitable neuromor-
phic architecture for liquid state machines (LSMs) on FPGAs (Liu, Jin, & Li,
2018; Wang, Jin, & Li, 2015; Jin, Liu, & Li, 2016).

There have been several attempts to implement SNNs on FPGAs for
pattern recognition. Ju et al. (2020) proposed an FPGA-based deep SNN
implementation. They applied a hardware-friendly, spiking, max-pooling
operation and two parallel methods, shift register and coarse-grained par-
allel, to improve the data reuse rate. The FPGA implementation obtained
22 times lower power consumption than a GPU implementation and 41
times speed-up compared to a CPU implementation. Abderrahmane and
Miramond (2019) explored a spike-based neural network for embedded ar-
tificial intelligence applications. They implemented two architectures, time-
multiplexed and fully parallel, on an FPGA platform. However, the FPGA
on-chip memory is not sufficient for deeper networks with these two ar-
chitectures. Efficient memory access is essential to store the parameters
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1312 A. Javanshir, T. Nguyen, M. Mahmud, and A. Kouzani

and evaluation of a SNN. On-chip memory has a limitation, and off-chip
memory consumes more energy than on-chip memory. Thus, designing a
suitable architecture can reduce memory access. Nallathambi and Chandra-
choodan (2020) proposed a novel probabilistic spike propagation method
that reduces the number of off-chip memory accesses required to evaluate
a SNN, thus saving time and energy.

To take advantage of both event-based and frame-based process-
ing, Yousefzadeh, Orchard, Stromatias, Serrano-Gotarredona, and Linares-
Barranco (2018) proposed a hybrid neural network that combines SNN and
ANN features. Their implementation on an FPGA consumes 7 u] per frame
and obtains 97% accuracy on the MNIST database. In similar work, Losh
and Llamocca (2019) designed spiking hybrid network (SHiNe), FPGA-
based hardware that achieved reasonable accuracy (90%) for the MNIST
data set. The SHiNe design has significantly lower FPGA resource utiliza-
tion (about 35% less) due to two factors: the neural network (the SHiNe
network is significantly simpler than the standard neural network, requir-
ing only 1 bit per signal) and neuron implementation (each SHiNe neuron
includes only a counter and a set of comparators). They have also imple-
mented an approach named thrifting, which limits the number of allowed
connections from neurons in one layer to a neuron in the next layer. Their
FPGA designs on the Zynq XC7Z010 PSoC board consume far less power
than the GPU or CPU implementations. Zhang et al. (2020) developed an
FPGA-based SNN implementation that provides 908,578 times speed-up
compared with software implementation. They reduced the consumption
of hardware resources by using arithmetic shift instead of multiplication
operations, which can speed up the training efficiency.

Han, Li, Zheng, and Zhang (2020) proposed an FPGA-based SNN hard-
ware implementation that supports up to 16.384 neurons and 16.8 million
synapses with 0.477 W power consumption. They used a hybrid updating
algorithm that included a time-stepped and event-driven algorithm. In ad-
dition to on-chip block random access memory (RAM), they used an exter-
nal DDR memory to optimize the latency of memory access.

Kuang et al. (2019) introduced a real-time FPGA-based implementation
of SNNs that significantly reduces the cost of hardware resources with
multiplier-less approximation. Their proposed systems are suitable for bio-
inspired neuromorphic platform and online applications. An FPGA-based
parallel neuromorphic processor for SNNs presented in Wang, Li, Shao,
Dey, and Li (2017) successfully tackled several critical problems related to
memory organization and parallel processing. A 59.4 times training speed-
up was achieved by the 32-way parallel design and reduced up to 20%
energy consumption by using the approximate multipliers in their proces-
sor design. An FPGA-based SNN hardware implementation with biolog-
ically realistic neuron and synapse proposed by Fang, Shrestha, Zhao, Li,
and Qiu (2019) applied a population encoding scheme to convert a con-
tinuous value into spike events. The FPGA implementation achieves 196
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times lower power consumption and 10.1 times speed-up compared to a
GPU implementation. Their experiments demonstrate that temporal SNN
is 8.43 times speed-up compared with rate SNN on FPGA platform.

Table 6 presents the performance of recent FPGA-based implementations
of SNNs in terms of network configuration, system performance, and target
device.

6 Challenges and Future Research Directions

Spiking neural networks are capable of modeling information processing in
the brain, such as pattern recognition. They offer promising event-driven
processing, fast inferences, and low power consumption. Spiking CNNs
offer a high potential for classification tasks in low-power neuromorphic
hardware, as they combine both spike-based computing of SNNs and high
CNN accuracy s (Diehl etal., 2015). Additionally, deep SNN offers a promis-
ing computational paradigm for improving energy efficiency and reducing
classification latency. However, training spiking CNNs and deep SNNs re-
mains challenging because of nondifferentiable spiking dynamics. To tackle
this problem, we provided an overview of the state-of-the-art learning
rules for SNNs in the section 3. One solution is direct supervised learning,
which takes advantage of reducing power consumption and a straightfor-
ward technique. This strategy is based on the backpropagation-like tech-
nique (Lee et al., 2016) and conventional gradient descent. However, direct
training-based strategies still provide less efficiency and stability in cop-
ing with a complex database. An alternative technique to direct supervised
learning is converting a trained CNN to a SNN by transferring the CNN
operations directly into a SNN equivalent. Various approaches have been
employed to convert CNNs to SNNs, such as threshold rescaling (Xu et al.,
2017), n-scaling weight mapping (Yang et al., 2020), and weights-thresholds
balance (Wang, Xu, Yan, & Tang, 2020).

The conversion rule has solved the learning issue for deep SNNs. How-
ever, it is not apparent that the conversion method can scale to deeper ar-
chitectures and address the complex task. Furthermore, there is a possibility
of accuracy loss during the conversion of CNNs to SNNs. Other hardware-
friendly approaches are local learning rules, such as STDP (Kheradpisheh,
Ganjtabesh, Thorpe, & Masquelier, 2018).

This method can be a suitable option design and a biologically plausi-
ble learning algorithm for hardware implementation. Additionally, STDP
is a good choice for online learning, which allows a fast real-time learning
process and reduces the computational complexity.

Spiking neural networks are poorly served by classical von Neumann
computing architectures due to the dynamic nature of neurons; in addi-
tion, the classic computing architecture requires an extreme amount of time
and power. Thus, neuromorphic platforms are ideally suited for execut-
ing SNNs. These platforms offer better parallel implementation than that
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Advancements in Spiking Neural Networks 1317

provided by CPUs and less power consumption than GPUs. FPGA offers a
programmable and very flexible platform for SNN implementation. Com-
pare to ASICs, FPGAs provide better stability, rapid design time, faster fab-
rication time, and higher flexibility. The FPGA implementation of SNNs
achieves significantly lower power consumption than GPU implementation
and better speed-up compared to the CPU implementation (Abderrahmane
& Miramond, 2019; Nallathambi & Chandrachoodan, 2020).

In the case of the hardware implementation of deep SNNs, the number of
neurons, connections, and weights can be very large, leading to an increase
in the size of memory. FPGAs’ on-chip memory is not sufficient to store all
parameters of the network. Therefore, an external memory like SRAM is
required next to the on-chip memory to store the parameters and data flow
into the architecture. Thus, choosing a suitable information coding method
and designing an effective architecture can reduce memory fetches. Differ-
ent architectures have been used for FPGA-based implementation of SNNs
such as fully parallel and time-multiplexed. Designing an FPGA architec-
ture depends on the application target.

Focusing on the advancement of SNNs and their neuromorphic imple-
mentations, the following research aspects need to be considered, and more
work is required to resolve the remaining challenges and limitations:

*+ One of the key challenges in developing SNNs is to deploy suitable
training and learning algorithms, which profoundly affect applica-
tion accuracy and execution cost.

» Another unsolved challenge is how information is encoded with
spikes. Although neural coding has a remarkable effect on the fulfill-
ment of SNNSs, the questions remain as to what the best encoding ap-
proach is and how to develop a learning algorithm to be well matched
by the encoding scheme. Designing a learning algorithm that is capa-
ble of training hidden neurons in an interconnected SNN has become
a major challenge.

Neuromorphic computing is at an early stage, and much progress is
needed in both algorithm and hardware that are capable of exhibiting
human-like intelligence.

7 Conclusion

Spiking neural networks have been considered the third generation of neu-
ral network, offering a high-speed real-time implementation of a complex
problem in a bio-inspired, power-efficient manner. This review offers an
overview of recent strategies to train SNNs and highlights two popular
deep learning methods: spiking CNNs and deep, fully connected SNNs,
in terms of their learning rule, network architecture, and experiment and
recognition accuracy. This review also discussed current SNN simulators,
comparing three main approaches: clock-driven, event driven, and hybrid;
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1318 A. Javanshir, T. Nguyen, M. Mahmud, and A. Kouzani

it presented a survey of the work done on hardware implementation of
SNNs; and demonstrated that FPGAs are a promising candidate for acceler-
ation of SNNs and can achieve better speed-up than CPUs and less energy
consumption than GPUs.
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