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The full-span log-linear (FSLL) model introduced in this letter is con-
sidered an nth order Boltzmann machine, where n is the number of all
variables in the target system. Let X = (X0, . . . , Xn−1) be finite discrete
random variables that can take |X| = |X0| . . . |Xn−1| different values. The
FSLL model has |X| − 1 parameters and can represent arbitrary positive
distributions of X. The FSLL model is a highest-order Boltzmann ma-
chine; nevertheless, we can compute the dual parameter of the model
distribution, which plays important roles in exponential families in
O(|X| log |X|) time. Furthermore, using properties of the dual parameters
of the FSLL model, we can construct an efficient learning algorithm. The
FSLL model is limited to small probabilistic models up to |X| ≈ 225; how-
ever, in this problem domain, the FSLL model flexibly fits various true
distributions underlying the training data without any hyperparameter
tuning. The experiments showed that the FSLL successfully learned six
training data sets such that |X| = 220 within 1 minute with a laptop PC.

1 Introduction

The main purpose of this letter is as follows:

• To introduce the full-span log-linear (FSLL) model and a fast learning
algorithm

• To demonstrate the performance of the FSLL model with experiments

Boltzmann machines (Ackley, Hinton, & Sejnowski, 1985) are multi-
variate probabilistic models that are widely used in the field of machine
learning. Here, we consider a Boltzmann machine with n binary variables
X = (X0, . . . , Xn−1)(Xi = 0, 1). We address fully connected Boltzmann ma-
chines with no hidden variables and no temperature parameter. A Boltz-
mann machine represents the following distribution pθ , which we refer to
as the model distribution:
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Full-Span Log-Linear Model and Fast Learning Algorithm 1399

pθ (x) = Z(θ )−1elθ (x), xi ∈ {0, 1}, Z(θ ) =
∑
x∈X

elθ (x),

lθ (x) =
∑

0≤i< j<n

θi jxix j +
∑

0≤i<n

θinxi. (1.1)

In Boltzmann machines, learning is achieved by minimizing KL(pd‖pθ ),
where KL(∗‖∗) is the Kullback-Leibler(KL-) divergence and pd is the empir-
ical distribution of the training data. One straightforward method to mini-
mize KL(pd‖pθ ) is to use a gradient vector whose components are

∂KL(pd‖pθ )
∂θi j

= 〈
XiXj

〉
pθ

− 〈
XiXj

〉
pd

(1.2)

(Ackley et al., 1985) and to apply the gradient descent method or quasi-
Newton method (Dennis & Moré, 1977). In evaluating equation 1.2, the
computational cost to evaluate the term

〈
XiXj

〉
pθ

is significant because we
need to evaluate this term every time θ is modified.

One disadvantage of the Boltzmann machine is its insufficient ability
to represent distributions. The Boltzmann machine has only n(n + 1)/2 pa-
rameters, while the dimension of the function space spanned by the possible
distributions of X is |X| − 1 (−1 comes from the constraint

∑
x∈X p(x) = 1).

One way to reduce this disadvantage is to introduce higher-order terms
into the function lθ (X ). For example, third-order Boltzmann machines rep-
resent the following distribution pθ (Sejnowski, 1986):

pθ (x) = Z(θ )−1elθ (x), xi ∈ {0, 1}, Z(θ ) =
∑
x∈X

elθ (x),

lθ (x) =
∑

0≤i< j<k<n

θi jkxix jxk +
∑

0≤i< j<n

θi jnxix j +
∑

0≤i<n

θinnxi.

Here, “order” means the number of variables on which a function depends.
This definition of order is not limited to binary variables. For example, if
f (x0, x1, x2) ignores x2, that is, x2 does not affect the value f (x0, x1, x2), the
order of f is two. The kth-order Boltzmann machine has up to kth-order
terms in lθ . Since the nth-order Boltzmann machine has arbitrary order of
terms, it can represent arbitrary positive distributions1 of X.

However, introducing higher-order terms leads to an enormous in-
crease in computational cost because the kth-order Boltzmann machine has∑k

i=1

(n
i

)
parameters.

1
Distributions such that ∀x, p(x) > 0.
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1400 K. Takabatake and S. Akaho

The FSLL model introduced in this letter can be considered an nth order
Boltzmann machine,2 where n is the number of all variables in the target
system. The FSLL model has |X| − 1 parameters and can represent arbitrary
positive distributions. Since the FSLL model is a highest-order Boltzmann
machine, the learning of FSLL is expected to be very slow. However, we
propose a fast learning algorithm. For example, this algorithm can learn a
joint distribution of 20 binary variables within 1 minute with a laptop PC.

Since the FSLL model has full degrees of freedom, a regularization mech-
anism to avoid overfitting is essential. For this purpose, we used a regu-
larization mechanism based on the minimum description length principle
(Rissanen, 2007).

The remainder of this letter is organized as follows. In section 2, we
present the FSLL model and its fast learning algorithm. In section 3, we
demonstrate the performance of the FSLL model by experiment. In section
4, we discuss the advantages and disadvantages of the FSLL model. In sec-
tion 5, we present the conclusions and extensions of the letter.

2 Full-Span Log-Linear Model

Before introducing the FSLL model, we define the notations used in this let-
ter. A random variable is denoted by a capital letter, such as X, and the value
that X takes is indicated by a lowercase letter, such as x. X also denotes the
set of values that the variable X can take; thus, |X| denotes the number of
values that X can take. 〈 f 〉p denotes the expectation of f (X ) with distribu-
tion p(X ), that is, 〈 f 〉p = ∑

x∈X p(x) f (x). The differential operator ∂/∂θy is
abbreviated as ∂y. P denotes the set of all distributions of X, and P+ de-
notes all positive distributions of X.

2.1 Model Distribution. The FSLL model is a multivariate probabilistic
model designed for a system that has n discrete finite variables X0, . . . , Xn−1,
where Xi takes an integer value in [0, |Xi|). The FSLL model has parameters
θ = {θy}, where y = (y0, . . . , yn−1) is a vector such that yi ∈ Xi. The model
distribution of the FSLL model is the following pθ :

pθ (x) = Z(θ )−1elθ (x), xi ∈ Xi, Z(θ ) =
∑
x∈X

elθ (x),

lθ (x) =
∑
y∈X

θy�y(x), �y(x) =
n−1∏
i=0

φi
yi

(xi). (2.1)

In equation 2.1, {φi
yi
}(yi ∈ Xi) are |Xi| linearly independent functions of Xi,

which we refer to as the local basis functions, and {�y}(y ∈ X ) are |X| func-
tions of X = (X0, . . . , Xn−1), which we refer to as the (global) basis functions.

2
Furthermore, the FSLL model is not limited to binary variables.
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Full-Span Log-Linear Model and Fast Learning Algorithm 1401

Using the following theorem recursively, we can prove that the global basis
functions are linearly independent functions of X.

Theorem 1. If { fi}(i ∈ I) are linearly independent functions of X0, and {g j}( j ∈
J) are linearly independent functions of X1, then { fi(X0)g j(X1)}(i ∈ I, j ∈ J) are
linearly independent functions of (X0, X1).

The proof is provided in the appendix.
In the FSLL model, we determine the local basis functions as follows:

Case |Xi| = 2k:

H1 = (1), H2k+1 =
(

H2k H2k

H2k −H2k

)
, (2.2)

⎛
⎜⎜⎝

φi
0(0) . . . φi

0(|Xi| − 1)
...

...

φi
|Xi|−1(0) . . . φi

|Xi|−1(|Xi| − 1)

⎞
⎟⎟⎠ = H2k

H2k above is referred to as the Walsh–Hadamard matrix (Pratt, Andrews, &
Kane, 1969).

Else:

φi
0 ≡ 1, φi

j(l) =
{

1 (0 < j = l)

−1 (0 < j �= l)

}
(2.3)

Since �0 ≡ 1, an arbitrary θ0 gives the same model distribution. There-
fore, we determine as θ0 ≡ 0.

2.2 Learning Algorithm. Algorithm 1 presents the outline of the learn-
ing algorithm of the FSLL model. This algorithm is a greedy search to find
a local minimum point of cost(θ ), which monotonically decreases as the it-
eration progresses.

In line 7 of the algorithm, candidate denotes θ ′ derived from θ by applying
one of the following modifications on the yth component:

Candidate derived by appending θy: If θy = 0, then let θ ′
y = arg minθy

cost(θ ).
Candidate derived by adjusting θy: If θy �= 0, then let θ ′

y = arg minθy

cost(θ ).
Candidate derived by removing θy: If θy �= 0, then let θ ′

y = 0.

2.2.1 Cost Function. We use a cost function based on the minimum
description length principle (Rissanen, 2007). Suppose that we send the
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1402 K. Takabatake and S. Akaho

training data to a receiver by transmitting the parameters and compressed
data. Since θ is a sparse vector, we transmit only indexes y, such that θy �= 0,
and the value of θy. Moreover, the index y = (y0, . . . , yn−1) is a sparse vector
because higher-order basis functions are rarely used in the model distribu-
tion due to their expensive cost. Therefore, we transmit only indexes i, such
that yi �= 0, and the values of yi ∈ [1, |Xi|) to transmit the sparse vector y.
Then the description length3 to transmit the sparse vector y becomes

∑
i:yi �=0

ln n︸︷︷︸
to send i∈[0,n)

+ ln(|Xi| − 1)︸ ︷︷ ︸
to send yi∈[1,|Xi|)

=
∑

i:yi �=0

ln n(|Xi| − 1),

and the description length to transmit all index vectors y, such that θy �= 0,
becomes∑

y:θy �=0

∑
i:yi �=0

ln n(|Xi| − 1).

The minimum description length to transmit k parameters and the com-
pressed data is estimated as (Rissanen, 2007)

3
We use “nat” as the description length unit; thus, we use “ln” instead of “log.”
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Full-Span Log-Linear Model and Fast Learning Algorithm 1403

−N
〈
ln pθ

〉
pd

+ k
2

ln N,

where k is the number of nonzero parameters and N is the number of sam-
ples in the training data. The total description length to transmit y, θy and
the compressed data becomes

−N
〈
ln pθ

〉
pd

+ k
2

ln N +
∑

y:θy �=0

∑
i:yi �=0

ln n(|Xi| − 1)

= −N
〈
ln pθ

〉
pd

+
∑

y:θy �=0

⎛
⎝ ln N

2
+

∑
i:yi �=0

ln n(|Xi| − 1)

⎞
⎠ . (2.4)

We divide equation 2.4 by N and add
〈
ln pd

〉
pd

to create information-
geometric quantity and obtain the following cost function:

cost(θ, N) = KL(pd‖pθ ) + r(θ, N), r(θ, N) =
∑

y:θy �=0

ry(N),

ry(N) = 1
N

⎛
⎝ ln N

2
+

∑
i:yi �=0

ln n(|Xi| − 1)

⎞
⎠ . (2.5)

2.2.2 Fast Algorithm to Compute θ̄ . The following vector θ̄ , referred to as
the dual parameter of θ , plays important roles in the exponential families
(Amari, 2016):

θ̄y(θ ) = ∂y ln Z(θ )

= 〈
�y

〉
pθ

(see appendix for derivation). (2.6)

We identified an algorithm to compute θ̄ from pθ in O(|X| log |X|) time.
This algorithm borrowed ideas from the multidimensional discrete Fourier
transform (DFT) (Smith, 2010). Here, we consider a two-dimensional
(2D-)DFT4 for |X0| × |X1| pixels of data. The 2D-DFT transforms f into F
by the following equation:

F(y0, y1) =
∑
x0,x1

f (x0, x1)�y0y1 (x0, x1),

�y0y1 (x0, x1) = exp
(

2π i
|X0|y0x0

)
exp

(
2π i
|X1|y1x1

)
.

4
Not 2D-FFT but 2D-DFT.
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1404 K. Takabatake and S. Akaho

To derive the value of F(y0, y1) for a specific (y0, y1), O(|X0||X1|) time is re-
quired; therefore, it appears that O(|X0|2|X1|2) time is required to derive
F(y0, y1) for all y0, y1. However, 2D-DFT is usually realized in the follow-
ing dimension-by-dimension manner:

F(y0, y1) =
∑

x1

(∑
x0

f (x0, x1) exp
(

2π i
|X0|y0x0

))
︸ ︷︷ ︸

DFT by X0

exp
(

2π i
|X1|y1x1

)

︸ ︷︷ ︸
DFT by X1

. (2.7)

In equation 2.7, the DFT by X0 for all (y0, x1) ∈ X0 × X1 requires O(|X0||X1|)
time, and the DFT by X1 for all y0 ∈ X0, y1 ∈ X1 requires O(|X0||X1|2)
time. Therefore, the entire 2D DFT requires O(|X0||X1|(|X0| + |X1|)) time
that is smaller than O(|X0|2|X1|2). The key here is that the basis function
�y0y1 (x0, x1) is a product of two univariate functions as follows:

�y0y1 (x0, x1) = φ0
y0

(x0)φ1
y1

(x1),

φ0
y0

(x0) = exp
(

2π i
|X0|y0x0

)
, φ1

y1
(x1) = exp

(
2π i
|X1|y1x1

)
.

We apply this principle to compute θ̄ .
Here, we consider how to derive θ̄ from pθ by the following equation:

〈
�y

〉
pθ

=
∑

x

pθ (x)�y(x)

=
∑

x

pθ (x)
∏

i

φi
yi

(xi)

=
∑
xn−1

(
. . .

(∑
x1

(∑
x0

pθ (x)φ0
y0

(x0)

)
φ1

y1
(x1)

)
. . .

)
φn−1

yn−1
(xn−1). (2.8)

We evaluate the right side of equation 2.8 from the innermost parenthesis
to the outermost parenthesis; that is, we determine the following function,
gi : X → R by the following recurrence sequence:

g0(x) = pθ (x),

gi+1(y0, . . . , yi−1, yi, xi+1, . . . , xn−1)

=
∑

xi

gi(y0, . . . , yi−1, xi, xi+1, . . . , xn−1)φi
yi

(xi). (2.9)
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Full-Span Log-Linear Model and Fast Learning Algorithm 1405

Then the equation θ̄y = gn(y) holds. Since O(|X||Xi|) time is required to ob-
tain gi+1 from gi, we can obtain gn from g0 in O(|X|∑i |Xi|) time. In the
case where |Xi| = k, the computational cost to derive gn from g0 becomes
O(|X|kn). Moreover, considering k as a constant, we obtain the computa-
tional cost as O(|X|n) = O(|X| log |X|).

We can use the same algorithm to obtain the vector d̄ from pd. In this
case, let g0 = pd.

2.2.3 Acceleration by Walsh-Hadamard Transform. In cases where |Xi| is
large, we can accelerate the computation of θ̄ by using Walsh-Hadamard
transform (WHT) (Fino & Algazi, 1976).

Let us recall the 2D-DFT in section 2.2.2. If |X0|, |X1| are powers of two,
we can use the fast Fourier transform (FFT) (Smith, 2010) for DFT by X0

and DFT by X1 in equation 2.7 and can reduce the computational cost to
O(|X0||X1| log |X0||X1|). We can apply this principle to computing θ̄ .

Here, we fix the values of y0, . . . , yi−1, xi+1, . . . , x|Xi|−1(only the ith com-
ponent is omitted) in equation 2.9. Then we obtain

gi+1(. . . , yi
i
, . . .) =

∑
xi

gi(. . . , xi
i
, . . .)φi

yi
(xi).

Using matrix notation, we obtain

⎛
⎜⎜⎜⎝

gi+1(. . . , 0
i
, . . .)

...
gi+1(. . . , |Xi| − 1

i
, . . .)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎝

φi
0(0) . . . φi

0(|Xi| − 1)
...

...
φi

|Xi|−1(0) . . . φi
|Xi|−1(|Xi| − 1)

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

gi(. . . , 0
i
, . . .)

...
gi(. . . , |Xi| − 1

i
, . . .)

⎞
⎟⎟⎟⎠ . (2.10)

We refer to this transform R
|Xi| → R

|Xi| as the local transform. The local trans-
form usually requires O(|Xi|2) time; however, if the matrix in equation 2.10
is a Walsh-Hadamard matrix (see equation 2.2), using Walsh-Hadamard
transform (WHT) (Fino & Algazi, 1976), we can perform the local transform
in O(|Xi| log |Xi|) time.5

Since the number of all combinations of y0, . . . , yi−1, xi+1, . . . , xn−1

(the ith component is omitted) is |X|/|Xi|, we can obtain the function

5
For k ≤ 4, directly multiplying the Hadamard matrix is faster than the WHT in our

environment; therefore, we use the WHT only in cases where k ≥ 5.
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1406 K. Takabatake and S. Akaho

gi+1 from gi in O(|X| log |Xi|) time. Moreover, gn is obtained from g0 in
O(

∑
i |X| log |Xi|) = O(|X| log |X|) time.

2.2.4 O(1) Algorithm to Evaluate Candidate. In line 7 of algorithm 1, all
three types of candidates—appending, adjusting, and removing—are eval-
uated for all y ∈ X. Here, we consider the following equation:

∂yθ̄y = 〈
�2

y

〉
pθ

− θ̄2
y (see the appendix for the derivation) (2.11)

= 1 − θ̄2
y (∵ �2

y ≡ 1). (2.12)

Considering θ̄y as a univariate function of θy and equation 2.12 as an ordi-
nary differential equation, we obtain the following general solution:

θ̄y(θy) = tanh(θy − c) (see the appendix for the derivation), (2.13)

where c is a constant determined by a boundary condition. For example, if
θ̄y(θ0

y ) = θ̄0
y , then c is given by c = θ0

y − tanh−1
θ̄0

y and equation 2.13 becomes

θ̄y(θy) = tanh(θy − θ0
y + tanh−1

θ̄0
y ). (2.14)

Here, we define the follwing line Ay(θ0) in P :

Ay(θ0) = {θ |∀y′ �= y, θy = θ0
y }. (2.15)

Equation 2.14 demonstrates that if θ̄0
y is known, we can derive any θ̄y at a

point on the line Ay(θ0) in O(1) time.
Here, the gradient vector of KL(pd‖pθ ) is given by

∂yKL(pd‖pθ ) = θ̄y − d̄y,

d̄y = 〈
�y

〉
pd

(see the appendix for the derivation). (2.16)

Therefore, for θ ∈ Ay(θ0), we can obtain KL(pd‖pθ ) − KL(pd‖pθ0 ) by inte-
grating equation 2.16 as follows:

KL(pd‖pθ ) − KL(pd‖pθ0 ) =
∫ θy

θ0
y

θ̄y(u) − d̄y du

= 1 + d̄y

2
ln

1 + θ̄0
y

1 + θ̄y
+ 1 − d̄y

2
ln

1 − θ̄0
y

1 − θ̄y
(2.17)

(see the appendix for the derivation).
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Full-Span Log-Linear Model and Fast Learning Algorithm 1407

Then we can evaluate �(θ ′) = cost(θ ′) − cost(θ0) for three types of candi-
dates θ ′ as follows:

Appending θy: By equation 2.16, KL(pd‖pθ ) is minimized when θ̄y = d̄y.
Therefore,

� = 1 + d̄y

2
ln

1 + θ̄0
y

1 + d̄y
+ 1 − d̄y

2
ln

1 − θ̄0
y

1 − d̄y
+ ry. (2.18)

Adjusting θy: By equation 2.16, KL(pd‖pθ ) is minimized when θ̄y = d̄y.
Therefore,

� = 1 + d̄y

2
ln

1 + θ̄0
y

1 + d̄y
+ 1 − d̄y

2
ln

1 − θ̄0
y

1 − d̄y
.

Removing θy: θy becomes 0. Therefore,

� = 1 + d̄y

2
ln

1 + θ̄0
y

1 + θ̄y(0)
+ 1 − d̄y

2
ln

1 − θ̄0
y

1 − θ̄y(0)
− ry.

Among the three types of candidates—appending, adjusting, and
removing—the group of candidates by appending θy has almost |X| candi-
dates because θy is a very sparse vector. Therefore, it is important to reduce
the computational cost to evaluate candidates by appending. Evaluating �

in equation 2.18 is an expensive task for a central processing unit (CPU)
because it involves logarithm computation.6

� in equation 2.18 has the following lower bound �:

� ≥ �

= − (θ̄0
y − d̄y)2

1 − (θ̄0
y )2 + ry (see the appendix for the derivation). (2.19)

Evaluating � is much faster than evaluating �. In the candidate evaluation,
the candidate with the lower cost is the “winner.” If a candidate’s lower
bound is greater than the champion’s cost—the lowest cost ever found—
the candidate has no chance to win; therefore, we can discard the candidate
without precise evaluation of �.

Algorithm 2 presents the details of line 7 of algorithm 1. In line 5, if
�(θ ′

y) ≥ �θ1 , the candidate θ ′ is discarded and the evaluation of �(θ ′
y) is

6
Logarithm computation is 30 times slower than addition or multiplication in our

environment.
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1408 K. Takabatake and S. Akaho

skipped. This skipping effectively reduces the computational cost of evalu-
ating candidates.7

2.2.5 Updating θ and pθ . Let θ0 denote θ before updating and θ1 denote
θ after updating in line 10 of algorithm 1. The θ1 differs from θ0 only at the
y′th component. Therefore,

lθ1 (x) = lθ0 (x) + (θ1
y′ − θ0

y′ )�y′ (x)

and

pθ1 (x) = Z(θ1)−1 exp lθ1 (x)

= Z(θ1)−1 exp
(
lθ0 (x) + (θ1

y′ − θ0
y′ )�y′ (x)

)
= Z(θ0)

Z(θ1)
pθ0 (x) exp

(
(θ1

y′ − θ0
y′ )�y′ (x)

)
. (2.20)

Summing equation 2.20 for all x ∈ X, we obtain

1 = Z(θ0)
Z(θ1)

∑
x

pθ0 (x) exp
(
(θ1

y′ − θ0
y′ )�y′ (x)

)
.

7
In our environment, this skipping makes the evaluation of candidates more than 10

times faster.
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Full-Span Log-Linear Model and Fast Learning Algorithm 1409

Therefore,

pθ1 (x) = Z(θ0)
Z(θ1)

pθ0 (x) exp
(
(θ1

y′ − θ0
y′ )�y′ (x)

)
,

Z(θ0)
Z(θ1)

=
(∑

x

pθ0 (x) exp
(
(θ1

y′ − θ0
y′ )�y′ (x)

))−1

. (2.21)

Algorithm 3 presents the details of lines 10 and 11 in algorithm 1. This
algorithm requires O(|X|) time. It should be noted that the expensive expo-

nential computation exp
(

(θ1
y′ − θ0

y′ )�y′ (x)
)

is not used in the for-loop.

2.2.6 Memory Requirements. In the FSLL model, most of the memory con-
sumption is dominated by four large tables for pθ , θ̄ , d̄, and r, and each stores
|X| floating point numbers. However, θ does not require a large amount of
memory because it is a sparse vector.

For example, if the FSLL model is allowed to use 4 GB of memory, it can
handle up to 26 binary variables, 16 three-valued variables(|Xi| = 3), and 13
four-valued variables.

2.3 Convergence to Target Distribution. One major point of interest
about algorithm 1 is whether the model distribution converges to a target
distribution at the limit of N → ∞ or not, where N is the number of samples
in the training data. As a result, we can guarantee this convergence.

Let us define the following symbols:

A(θ t ) = ∪yAy(θ t ) // Ay is defined by equation 2.15,

my(θ t, N) = min
θ∈Ay(θ t )

fN(θ ) // minimum in line Ay

m(θ t, N) = min
θ∈A(θ t )

fN(θ ) // minimum in all lines Ay

= min
y

my(θ t, N), (2.22)
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1410 K. Takabatake and S. Akaho

Ymin = {y|my(θ t, N) = m(θ, N)},
arg my(θ t, N) = {θ |θ ∈ Ay(θ t ), fN(θ ) = my(θ t, N)},
arg m(θ t, N) = {θ |θ ∈ A(θ t ), fN(θ ) = m(θ t, N)},

= ∪y∈Ymin arg my(θ t, N). (2.23)

Then, algorithm 1 iteratively selects θ t+1 from arg m(θ t, N).
We first consider the case where the cost function is a continuous

function of θ with no regularization term. Here, if and only if f (θ ) =
minθ ′∈A(θ ) f (θ ′), we say that θ is an axis minimum of f . Then the following
theorem holds (Beck, 2015):

Theorem 2. Let f : R|X| → R be a continuous cost function such that B =
{θ | f (θ ) ≤ f (θ0)} is a bounded close set. Then any accumulation point of {θ t}(t ∈
[0,∞)) is an axis minimum of f .

The proof is provided in the appendix. Here, if f (θ ) has an unique axis
minimum at θ = a, the following corollary is derived from theorem 2:

Corollary 1. Let f be a function satisfying the condition in theorem 2. If f has
a unique axis minimum at θ = θmin, then θmin is also the global minimum and
limt→∞ θ t = θmin.

The proof is provided in the appendix.
Let q be a positive distribution. By corollary 1, in the case where the cost

function is f (θ ) = KL(q‖pθ ), where q is a positive distribution,8 the equation
limt→∞ KL(q‖pθ t ) = 0 holds.

Then we extend the cost function to fN(θ ) = f (θ ) + r(θ, N), where f :
R

|X| → R is a continuous function having the unique global minimum at
θ = θmin, and r(θ, N) is a regularization term in equation 2.5. The following
theorem holds:
Theorem 3. Let f be a function satisfying the conition in theorem 2. Then

lim
N→∞

lim
t→∞

f (θ t (N)) = min
θ

f (θ )

holds.

Here, do not confuse limN→∞ limt→∞ f (θ t (N)) with limt→∞ limN→∞
f (θ t (N)).

lim
t→∞

lim
N→∞

f (θ t (N)) = min
θ

f (θ )

8
Positivity is needed to keep B bounded.
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Full-Span Log-Linear Model and Fast Learning Algorithm 1411

is trivial by corollary 1, while

lim
N→∞

lim
t→∞

f (θ t (N)) = min
θ

f (θ )

needs a proof. The proof is provided in the appendix. In the case where
pd is a positive distribution for sufficiently large N and f (θ ) = KL(pd|pθ ),
theorem 3 guarantees

lim
N→∞

lim
t→∞

KL(pd‖pθ t (N) ) = 0.

3 Experiments

In this section, to demonstrate the performance of the FSLL model, we com-
pare a full-span log-linear model that we refer to as FL with two Boltzmann
machines that we refer to as BM-DI and BM-PCD.

3.1 Full-Span Log-Linear Model FL. FL is a full-span log-linear model
that has been described in section 2. The model distribution of FL is given
by equation 2.1. The cost function is given by equation 2.5. The learning
algorithm is algorithm 1 described in section 2.2. The threshold to finish the
cost minimization is determined as ε = 10−4.

3.2 Boltzmann Machine BM-DI. BM-DI (Boltzmann machine with di-
rect integration) is a fully connected Boltzmann machine having no hidden
variables and no temperature parameter. To examine the ideal performance
of the Boltzmann machine, we do not use the Monte Carlo approximation
in BM-DI to evaluate equation 1.2. The model distribution of BM-DI is given
by equation 1.1. The cost function of BM-DI is KL(pd‖pθ ) and has no regu-
larization term.

To minimize the cost function with fewer evaluations of the gradient
vector, we used a pseudo-Newton method, the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm (Nocedal & Wright, 2006), implemented in the
Java statistical analysis tool (JSAT; Raff, 2017).

3.3 Boltzmann Machine BM-PCD. BM-PCD (Boltzman machine with
persistent contrastive divergence method) is similar to BM-DI; however,
BM-PCD uses the persistent contrastive divergence method (Tieleman,
2008), a popular Monte Carlo method in Boltzmann machine learning. BM-
PCD has some hyperparameters. We tested various combinations of these
hyperparameters and determined them as learning rate = 0.01, number of
Markov chains = 100, and length of Markov chains = 10,000.

3.4 Training Data. We prepared six training data sets. These data sets
are artificial; therefore, their true distributions p∗(X ) are known. Each is an
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1412 K. Takabatake and S. Akaho

Figure 1: Graphical structure of Ising5 × 4S/L.

Figure 2: Graphical structure of BN20-37S/L.

independent and identically distributed (i.i.d.) data set drawn from its true
distribution.

3.4.1 Ising5 × 4S, Ising5 × 4L. These data sets were drawn from the dis-
tribution represented by the 2D Ising model (Newman & Barkema, 1999)
with 5 × 4 nodes (see Figure 1).

Every Xi takes the value 0 or 1. Ising5 × 4S has 1000 samples, while
Ising5 × 4L has 100,000 samples. The true distribution is represented as

p∗(x) = Z−1 exp

⎛
⎝1

2

∑
〈i, j〉

sis j

⎞
⎠ , Z =

∑
x

exp

⎛
⎝1

2

∑
〈i, j〉

sis j

⎞
⎠ ,

si =
{

1 xi = 1

−1 xi = 0

}
,

where 〈i, j〉 denotes the adjacent variables in Figure 1. Boltzmann machines
can represent p∗.

3.4.2 BN20-37S, BN20-37L. These data sets were drawn from the distri-
bution represented by the Bayesian network with 20 nodes and 37 edges
(see Figure 2).

X0 has no parents, X1 has X0 as a parent, and the other Xi(i ≥ 2) individ-
ually has two parents Yi0,Yi1 ∈ {X0, . . . , Xi−1}. The graphical structure and
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Full-Span Log-Linear Model and Fast Learning Algorithm 1413

contents of the conditional distribution table of each node are determined
randomly. Every Xi takes the value 0 or 1. BN20-37S has 1000 samples, while
BN20-37L has 100,000 samples. The true distribution is represented as

p∗(x) =
∏

i

p∗(xi|yi0, yi1)

= exp

(∑
i

ln p∗(xi|yi0, yi1)

)
.

Since ln p∗(xi|yi0, yi1) are third-order terms, third-order Boltzmann ma-
chines can represent p∗.

3.4.3 BN20-54S, BN20-54L. These data sets were drawn from the distri-
bution represented by the following Bayesian network with 20 nodes and
54 edges. X0 has no parents, X1 has X0 as a parent, X2 has X0, X1 has par-
ents, and the other Xi(i ≥ 3) individually has three parents: Yi0,Yi1,Yi2 ∈
{X0, . . . , Xi−1}. The graphical structure and contents of the conditional dis-
tribution table of each node are determined randomly. Every Xi takes the
value zero or one. BN20-54S has 1000 samples, and BN20-54L has 100,000
samples. The true distribution is represented as

p∗(x) =
∏

i

p∗(xi|yi0, yi1, yi2)

= exp

(∑
i

ln p∗(xi|yi0, yi1, yi2)

)
.

Since ln p∗(xi|yi0, yi1, yi2) are fourth-order terms, fourth-order Boltzmann
machines can represent p∗.

3.5 Experimental Platform. All experiments were conducted on a lap-
top PC (CPU: Intel Core i7-6700K @4 GHz; memory: 64 GB; operating
system: Windows 10 Pro). All programs were written in and executed on
Java 8.

3.6 Results. Table 1 represents performance comparisons between FL
BM-DI and BM-PCD. We evaluated the accuracy of the learned distribution
by KL(p∗‖pθ ). Figure 3 illustrates the comparison of KL(p∗‖pθ ).

For Ising5 × 4S/L, a performance difference between FL and BMs (BM-
DI and BM-PCD) was not remarkable because both FL and BMs could rep-
resent the true distribution p∗. The fact that KL(pd‖pθ ) � KL(p∗‖pθ ) implies
that overfitting to pd was successfully suppressed. FL used fewer basis func-
tions than BMs used, which implies that some basis functions of BM were
useless to represent p∗. Regarding the accuracy of the model distribution,
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1414 K. Takabatake and S. Akaho

Table 1: Performance Comparison between FL and BM.

Data Model KL(pd‖pθ ) KL(p∗‖pθ ) #Basis Time

Ising5 × 4S FL 2.501 nat 0.012 nat 31 5 sec
BM-DI 2.424 0.087 210 13
BM-PCD 2.504 0.094 210 3

Ising5 × 4L FL 0.476 0.004 37 9
BM-DI 0.473 0.002 210 12
BM-PCD 0.528 0.053 210 3

BN20-37S FL 4.355 0.317 39 5
BM-DI 4.746 0.863 210 17
BM-PCD 4.803 0.903 210 3

BN20-37L FL 0.697 0.026 105 12
BM-DI 1.422 0.750 210 19
BM-PCD 1.477 0.806 210 3

BN20-54S FL 3.288 0.697 41 5
BM-DI 3.743 1.301 210 23
BM-PCD 3.826 1.338 210 3

BN20-54L FL 0.430 0.057 192 23
BM-DI 1.545 1.166 210 21
BM-PCD 1.620 1.242 210 3

Notes: pd : empirical distribution of training data. p∗: true distribution.
#Basis: number of used (θy �= 0) basis functions. Time: CPU time for
learning(median of three trials).

BM-PCD is less accurate than FL and BM-DI. This disadvantage becomes
noticeable when the model distribution is close to the true distribution.
Even when large training data are given, some error remains in the model
distribution of BM-PCD (e.g., Ising5 × 4L).

For BN20-37S/L and BN20-54S/L, FL outperformed BMs because only
FL could represent p∗. To fit p∗, FL adaptively selected 39 basis functions for
BN20-37S and 105 basis functions for BN20-37L from |X| − 1 = 220 − 1 basis
functions. This fact implies that FL constructed a more complex model to fit
p∗ as the training data increased. Furthermore, a comparison of KL(p∗‖pθ )
revealed that the accuracy of the model distribution was remarkably im-
proved as the size of training data increased in FL. In contrast, BMs could
not fit p∗ even if a large training data set was supplied.

Figure 4 illustrates the CPU time to learn the training data sets. BM-PCD
was the fastest, and FL was faster than BM-DI for five out of six training
data sets. The learning time of BM-PCD is constant because we used a fixed
length (10,000) of Markov chains. FL had |X| − 1 = 220 − 1 basis functions,
while BM-DI had n(n + 1)/2 = 210 basis functions. Nevertheless, FL was
faster than BM-DI.

For BN20-54L, FL takes a long time to learn because it uses 192 basis func-
tions to construct the model distribution. Using the 192 basis functions, FL
successfully constructed a model distribution that fit p∗, while BMs failed.
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Full-Span Log-Linear Model and Fast Learning Algorithm 1415

Figure 3: Comparing accuracy of model by KL(p∗‖pθ ) (lower is better).

Figure 4: Comparing CPU time to learn (lower is better).

4 Discussion

The major disadvantage of the FSLL model is that it is not feasible for large
problems due to memory consumption and learning speed. If we use a typ-
ical personal computer, the problem size should be limited as |X| � 225.
However, as far as we use the FSLL model in this problem domain, the
model has the following theoretical and practical advantages.

The first advantage is that the FSLL model can represent arbitrary dis-
tributions of X. Furthermore, it is guaranteed that the model distribution
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1416 K. Takabatake and S. Akaho

converges to any target distribution as the limit of the training data size is
infinity.

Here, we view learning machines from an information geometry per-
spective. The dimension of the distribution space P+ (all positive distribu-
tions of X) is |X| − 1, and a learning machine having M parameters spans
an M-dimensional manifold in P+ to represent its model distribution (we
refer to this manifold as the model manifold).

A learning machine with M < |X| − 1 parameters cannot represent ar-
bitrary distributions in P . Moreover, if M < |X| − 1, there is no guarantee
that the true distribution is close to the model manifold, and if the model
manifold is remote from the true distribution, the machine’s performance
will be poor. This poor performance is not improved even if infinite training
data are given.

The FSLL model extends the manifold’s dimension to |X| − 1 by intro-
ducing higher-order factors. The model manifold becomes P itself; thus,
there is no more expansion. Therefore, we refer to the model as the full-Span
log-linear model. The main interest of this letter is that as far as the problem
size is |X| � 225, the FSLL model becomes a feasible and practical model.

For example, suppose that we construct a full-span model by adding hid-
den nodes into a Boltzmann machine having 20 visible nodes. The number
of parameters of the Boltzmann machine is E + n, where E is the number of
edges and n is the number of nodes. Therefore, it is not practical to construct
the full-span model for 20 visible nodes because it requires ≈220 edges.

The second advantage is that the FSLL model has no hyperparameters;
therefore, no hyperparameter tuning is needed. For example, if we use a
Boltzmann machine with hidden nodes that learns the true distribution
with contrastive divergence methods, we need to determine hyperparam-
eters such as the learning rate, mini-batch size, and the number of hidden
and graphical structure of nodes. The FSLL model, however, automatically
learns the training data without human participation.

5 Conclusion and Extension

Suppose that we let the FSLL model learn training data consisting of 20
binary variables. The dimension of the function space spanned by possi-
ble positive distributions is 220 − 1. The FSLL model has 220 − 1 parameters
and can fit arbitrary positive distributions. The basis functions of the FSLL
model have the following properties:

• Each basis function is a product of univariate functions.
• The basis functions take values 1 or −1.

The proposed learning algorithm exploited these properties and realized
fast learning.

Our experiments demonstrated the following:
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Full-Span Log-Linear Model and Fast Learning Algorithm 1417

• The FSLL model could learn the training data with 20 binary variables
within 1 minute with a laptop PC.

• The FSLL model successfully learned the true distribution underlying
the training data; even higher-order terms that depend on three or
more variables existed.

• The FSLL model constructed a more complex model to fit the true
distribution as the training data increased; however, the learning time
became longer.

In this letter, we have presented a basic version of the FSLL model; how-
ever, we can extend it as follows (Takabatake & Akaho, 2014, 2015):

• Introducing L1 regularization (Andrew & Gao, 2007)
• Introducing hidden variables

Appendix: Proofs and Derivations of Equations

A.1 Proof of Theorem 1. For brevity and clarity of expression, we use
predicate logic notation here. The statement “{ fi(X0)g j(X1)}(i ∈ I, j ∈ J) are
linearly independent functions of (X0, X1)” is equivalent to the following
proposition:

∀x0∀x1

⎡
⎣∑

i, j

ai j fi(x0)g j(x1) = 0

⎤
⎦ ⇒ ∀i∀ j

[
ai j = 0

]
.

This proposition is proved as follows:

∀x0∀x1

⎡
⎣∑

i, j

ai j fi(x0)g j(x1) = 0

⎤
⎦

⇒ ∀x0

⎡
⎣∀x1

⎡
⎣∑

j

(∑
i

ai j fi(x0)

)
g j(x1) = 0

⎤
⎦
⎤
⎦

⇒ ∀x0

[
∀ j

[∑
i

ai j fi(x0) = 0

]]
∵ {g j} are linearly independent

⇒ ∀i∀ j
[
ai j = 0

]
. ∵ { fi} are linearly independent. �

A.2 Derivation of Equation 2.6.

θ̄y(θ ) = ∂y ln Z

= 1
Z

∂yZ
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1418 K. Takabatake and S. Akaho

= 1
Z

∑
x

∂yelθ (x)

= 1
Z

∑
x

�y(x)elθ (x)

=
∑

x

pθ (x)�y(x)

= 〈
�y

〉
pθ

.

A.3 Derivation of Equation 2.11.

∂yθ̄y = ∂y
〈
�y

〉
pθ

=
∑

x

�y(x)∂y pθ (x)

=
∑

x

�y(x)pθ (x)∂y ln pθ (x)

=
∑

x

�y(x)pθ (x)∂y(lθ (x) − ln Z)

=
∑

x

�y(x)pθ (x)(�y(x) − ∂y ln Z)

=
∑

x

pθ (x)�y(x)2 − θ̄y

∑
x

pθ (x)�y(x)

= 〈
�2

y

〉
pθ

− θ̄2
y .

A.4 Derivation of Equation 2.13.

1 = ∂θ̄y

1 − θ̄2
y

(by equation 2.12)

= 1
2

(
∂yθ̄y

1 + θ̄y
+ ∂yθ̄y

1 − θ̄y

)

= 1
2

(
∂y ln(1 + θ̄y) − ∂y ln(1 − θ̄y)

)
. (A.1)

Integrating equation A.1, we obtain

1
2

ln
1 + θ̄y

1 − θ̄y
=

∫
1dθy

= θy − c, (A.2)
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where c is a constant of integration. Since the left side of equation A.2 equals
tanh−1(θ̄y), we obtain the equation θ̄y = tanh(θy − c).

A.5 Derivation of Equation 2.16.

∂yKL(pd‖pθ ) = ∂y

(〈
ln pd

〉
pd

− 〈
ln pθ

〉
pd

)
= −∂y

〈
ln pθ

〉
pd

= −∂y
〈
lθ − ln Z

〉
pd

= − 〈
∂ylθ

〉
pd

+ ∂y ln Z

= − 〈
�y

〉
pd

+ θ̄

= θ̄y − d̄.

A.6 Derivation of Equation 2.17.

∫ θy

θ0
y

θ̄y(u) − d̄ydu =
∫ θy

θ0
y

tanh(u − c)du − d̄y(θy − θ0
y ) (by equation 2.13)

= [ln cosh(u − c)]
θy

u=θ0
y
− d̄y(tanh−1

θ̄y − tanh−1
θ̄0

y )

=
[

1
2

ln cosh2(u − c)
]θy

u=θ0
y

− d̄y

(
1
2

ln
1 + θ̄y

1 − θ̄y
− 1

2
ln

1 + θ̄0
y

1 − θ̄0
y

)

=
[

1
2

ln
1

1 − tanh2(u − c)

]θy

u=θ0
y

− d̄y

2
ln

1 + θ̄y

1 − θ̄y

1 − θ̄0
y

1 + θ̄0
y

= 1
2

(
ln

1
1 − θ̄2

y
− ln

1
1 − (θ̄0

y )2

)
− d̄y

2
ln

1 + θ̄y

1 − θ̄y

1 − θ̄0
y

1 + θ̄0
y

= 1
2

ln
1 + θ̄0

y

1 + θ̄y

1 − θ̄0
y

1 − θ̄y
− d̄y

2
ln

1 + θ̄y

1 − θ̄y

1 − θ̄0
y

1 + θ̄0
y

= −1 + d̄y

2
ln(1 + θ̄y) − 1 − d̄y

2
ln(1 − θ̄y)

+ 1 + d̄y

2
ln(1 + θ̄0

y ) + 1 − d̄y

2
ln(1 − θ̄0

y )

= 1 + d̄y

2
ln

1 + θ̄0
y

1 + θ̄y
+ 1 − d̄y

2
ln

1 − θ̄0
y

1 − θ̄y
.
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A.7 Derivation of Equation 2.19.

� = 1 + d̄y

2
ln

1 + θ̄0
y

1 + d̄y
+ 1 − d̄y

2
ln

1 − θ̄0
y

1 − d̄y
+ ry

= 1 + d̄y

2

(
− ln

1 + d̄y

1 + θ̄0
y

)
+ 1 − d̄y

2

(
− ln

1 − d̄y

1 − θ̄0
y

)
+ ry

≥ 1 + d̄y

2

(
1 − 1 + d̄y

1 + θ̄0
y

)
+ 1 − d̄y

2

(
1 − 1 − d̄y

1 − θ̄0
y

)
+ ry

∵
1 + d̄y

2
≥ 0,

1 − d̄y

2
≥ 0, − ln x ≥ 1 − x

= 1 + d̄y

2

θ̄0
y − d̄y

1 + θ̄0
y

− 1 − d̄y

2

θ̄0
y − d̄y

1 − θ̄0
y

+ ry

= θ̄0
y − d̄y

2

(
1 + d̄y

1 + θ̄0
y

− 1 − d̄y

1 − θ̄0
y

)
+ ry

= θ̄0
y − d̄y

2

(1 + d̄y)(1 − θ̄0
y ) − (1 − d̄y)(1 + θ̄0

y )

(1 + θ̄0
y )(1 − θ̄0

y )
+ ry

= θ̄0
y − d̄y

2

2d̄y − 2θ̄0
y

1 − (θ̄0
y )2 + ry

= − (θ̄0
y − d̄y)2

1 − (θ̄0
y )2 + ry

= �.

A.8 Proof of Theorem 2. Since B is a bounded closed set, {θ t} has one
or more accumulation point(s) in B.

As an assumption of a proof by contradiction, assume that a is an accu-
mulation point of {θ t} and the proposition

∃y∃b ∈ Ay(a), f (b) < f (a)

holds. Let η j ∈ Ay(θ j ) be the point such that η
j
y = by. Since f (a) − f (b) >

0, f (θ ) is continuous at θ = b, and a is an accumulation point of {θ t}, the
proposition

∃θ j, f (η j ) < f (a)

holds (∵ in Figure 5, f (η j ) < f (a) for sufficiently small δ).
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Figure 5: Existence of θ j such that f (η j ) < f (a).

Here, η j ∈ Ay(θ j ), and the inequality

f (θ j+1) = min
θ∈∪yAy (θ j )

f (θ ) ≤ f (η j )

holds. Therefore, the inequality

f (θ j+1) ≤ f (η j ) < f (a)

holds. Since f (θ t ) monotonically decreases as t increases, the proposition

∀t ≥ j + 1, f (θ t ) ≤ f (η j ) < f (a)

holds. Since f (θ ) is continuous at θ = a, no sub-sequence of {θ t} can con-
verge to a, that is, a is not an accumulation point of {θ t}. This fact contradicts
the assumption we made at the beginning of this proof. �

A.9 Proof of Corollary 1. By theorem 2, any accumulation point of {θ t}
is an axis minimum of f ; however, the axis minimum of f is unique; there-
fore, θ = a is a unique accumulation point of {θ t}, and θ t → a(t → ∞). �

A.10 Proof of Theorem 3. Let us define the following symbols:

my(θ t,∞) = min
θ∈Ay(θ t )

f (θ ),

arg my(θ t,∞) = {θ |θ ∈ Ay(θ t ), f (θ ) = my(θ t,∞)}.

Figure 6 illustrates the sectional view of fN(θ ) along the line Ay(θ t ). As
shown in the figure, fN(θ ) has a gap with depth ry (see equation 2.5) at
θy = 0. Here, we can ignore the gap at θy = 0 for sufficiently large N, that is,
the proposition

∃N′∀N, N > N′ �⇒ arg my(θ t, N) = arg my(θ t,∞)

holds. Moreover, the proposition

∃N′∀N∀y, N > N′ �⇒ arg my(θ t, N) = arg my(θ t,∞) (A.3)
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Figure 6: View of fN(θ ).

holds. By equation 2.23, the proposition

∃N′∀N, N > N′ �⇒ arg m(θ t, N) = arg m(θ t,∞)

holds. Here, we compare a sequence {θ t (N)} with the cost function fN

and a sequence {θ t (∞)} with the cost function f (= f∞). By corollary 1,
limt→∞ f (θ t (∞)) = minθ f (θ ), that is,

∀ε > 0∃t′∀t, t ≥ t′ �⇒ f (θ t (∞)) < min
θ

f (θ ) + ε (A.4)

holds. Here, let T(N) be the smallest t such that m(θ t+1, N) �= m(θ t+1,∞).
Then limN→∞ T(N) = ∞, that is,

∀t′∃N, T(N) ≥ t′ (A.5)

holds. By equations A.4 and A.5, the proposition

∀ε > 0∃N,∀t, t ≥ T(N) �⇒ f (θ t (∞)) < min
θ

f (θ ) + ε (A.6)

holds, and therefore the proposition

∀ε > 0∃N, f (θT(N)(∞)) < min
θ

f (θ ) + ε (A.7)

also holds. Here, by the definition of T(N), θT(N)(∞) = θT(N)(N). Therefore,
we can modify equation A.7 as

∀ε > 0∃N, f (θT(N)(N)) < min
θ

f (θ ) + ε. (A.8)
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Since f (θ t (N)) monotonically decreases as t grows,

∀ε > 0∃N∀t, t ≥ T(N) �⇒ f (θ t (N)) < min
θ

f (θ ) + ε.

Using the notation of lim, we obtain

lim
N→∞

lim
t→∞

f (θ t (N)) = min
θ

f (θ ). �
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