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We present a review of predictive coding, from theoretical neuroscience,
and variational autoencoders, from machine learning, identifying the
common origin and mathematical framework underlying both areas. As
each area is prominent within its respective field, more firmly connect-
ing these areas could prove useful in the dialogue between neuroscience
and machine learning. After reviewing each area, we discuss two possi-
ble correspondences implied by this perspective: cortical pyramidal den-
drites as analogous to (nonlinear) deep networks and lateral inhibition
as analogous to normalizing flows. These connections may provide new
directions for further investigations in each field.

1 Introduction

1.1 Cybernetics. Machine learning and theoretical neuroscience once
overlapped under the field of cybernetics (Wiener, 1948; Ashby, 1956).
Within this field, perception and control, in both biological and nonbi-
ological systems, were formulated in terms of negative feedback and
feedforward processes. Negative feedback attempts to minimize error
signals by feeding the errors back into the system, whereas feedforward
processing attempts to preemptively reduce error through prediction.
Cybernetics formalized these techniques using probabilistic models, which
estimate the likelihood of random outcomes, and variational calculus, a
technique for estimating functions, particularly probability distributions
(Wiener, 1948). This resulted in the first computational models of neuron
function and learning (McCulloch & Pitts, 1943; Rosenblatt, 1958; Widrow
& Hoff, 1960), a formal definition of information (Wiener, 1942; Shannon,
1948) (with connections to neural systems Barlow, 1961b), and algorithms
for negative feedback perception and control (MacKay, 1956; Kalman,
1960). Yet with advances in these directions (see Prieto et al., 2016) the
cohesion of cybernetics diminished, with the new ideas taking root in, for
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2 J. Marino

Figure 1: Concept overview. Cybernetics influenced the areas that became the-
oretical neuroscience and machine learning, resulting in shared mathematical
concepts. This review explores the connections between predictive coding, from
theoretical neuroscience, and variational autoencoders, from machine learning.

example, theoretical neuroscience, machine learning, and control theory.
The transfer of ideas is shown in Figure 1.

1.2 Neuroscience and Machine Learning: Convergence and Diver-
gence. A renewed dialogue between neuroscience and machine learning
formed in the 1980s and 1990s. Neuroscientists, bolstered by new physi-
ological and functional analyses, began making traction in studying neu-
ral systems in probabilistic and information-theoretic terms (Laughlin,
1981; Srinivasan, Laughlin, & Dubs, 1982; Barlow, 1989; Bialek, Rieke,
Van Steveninck, & Warland, 1991). In machine learning, improvements in
probabilistic modeling (Pearl, 1986) and artificial neural networks (Rumel-
hart, Hinton, & Williams, 1986) combined with ideas from statistical me-
chanics (Hopfield, 1982; Ackley, Hinton, & Sejnowski, 1985) to yield new
classes of models and training techniques. This convergence of ideas,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/1/1/2007789/neco_a_01458.pdf by guest on 07 Septem
ber 2023



Predictive Coding, Variational Autoencoders, and Biological Connections 3

primarily centered around perception, resulted in new theories of neural
processing and improvements in their mathematical underpinnings.

In particular, the notion of predictive coding emerged within neuro-
science (Srinivasan et al., 1982; Rao & Ballard, 1999). In its most general
form, predictive coding postulates that neural circuits are engaged in es-
timating probabilistic models of other neural activity and sensory inputs,
with feedback and feedforward processes playing a central role. These
models were initially formulated in early sensory areas, for example, in
the retina (Srinivasan et al., 1982) and thalamus (Dong & Atick, 1995), us-
ing feedforward processes to predict future neural activity. Similar notions
were extended to higher-level sensory processing in neocortex by David
Mumford (1991, 1992). Top-down neural projections (from higher-level to
lower-level sensory areas) were hypothesized to convey sensory predic-
tions, whereas bottom-up neural projections were hypothesized to convey
prediction errors. Through negative feedback, these errors then updated
state estimates. These ideas were formalized by Rao and Ballard (1999), for-
mulating a simplified artificial neural network model of images, reminis-
cent of a Kalman filter (Kalman, 1960).

Feedback and feedforward processes also featured prominently in ma-
chine learning. Indeed, the primary training algorithm for artificial neural
networks, backpropagation (Rumelhart et al., 1986), literally feeds (prop-
agates) the output prediction errors back through the network—negative
feedback. During this period, the technique of variational inference was
rediscovered within machine learning (Hinton & Van Camp, 1993; Neal
& Hinton, 1998), recasting probabilistic inference using variational calcu-
lus. This technique proved essential in formulating the Helmholtz machine
(Dayan et al., 1995; Dayan & Hinton, 1996), a hierarchical unsupervised
probabilistic model parameterized by artificial neural networks. Similar ad-
vances were made in autoregressive probabilistic models (Frey, Hinton, &
Dayan, 1996; Bengio & Bengio, 2000), using artificial neural networks to
form sequential feedforward predictions, as well as new classes of invertible
probabilistic models (Comon, 1994; Parra, Deco, & Miesbach, 1995; Deco &
Brauer, 1995; Bell & Sejnowski, 1997).

These new ideas regarding variational inference and probabilistic mod-
els, particularly the Helmholtz machine (Dayan, Hinton, Neal, & Zemel,
1995), influenced predictive coding. Specifically, Karl Friston utilized vari-
ational inference to formulate hierarchical dynamical models of neocortex
(Friston, 2005, 2008a). In line with Mumford (1992), these models contain
multiple levels, with each level attempting to predict its future activity
(feedforward) as well as lower-level activity, closer to the input data. Predic-
tion errors across levels facilitate updating higher-level estimates (negative
feedback). Such models have incorporated many biological aspects, includ-
ing local learning rules (Friston, 2005) and attention (Spratling, 2008; Feld-
man & Friston, 2010; Kanai, Komura, Shipp, & Friston, 2015), and have been
compared with neural circuits (Bastos et al., 2012; Keller & Mrsic-Flogel,
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4 J. Marino

2018; Walsh, McGovern, Clark, and O’Connell, 2020). While predictive cod-
ing and other Bayesian brain theories are increasingly popular (Doya, Ishii,
Pouget, & Rao, 2007; Friston, 2009; Clark, 2013), validating these models
is hampered by the difficulty of distinguishing between specific design
choices and general theoretical claims (Gershman, 2019). Further, a large
gap remains between the simplified implementations of these models and
the complexity of neural systems.

Progress in machine learning picked up in the early 2010s, with ad-
vances in parallel computing as well as standardized data sets (Deng
et al., 2009). In this era of deep learning (LeCun, Bengio, & Hinton, 2015;
Schmidhuber, 2015), that is, artificial neural networks with multiple layers,
a flourishing of ideas emerged around probabilistic modeling. Building off
previous work, more expressive classes of deep hierarchical (Gregor, Dani-
helka, Mnih, Blundell, & Wierstra, 2014; Mnih & Gregor, 2014; Kingma &
Welling, 2014; Rezende, Mohamed, & Wierstra, 2014), autoregressive (Uria,
Murray, & Larochelle, 2014; van den Oord, Kalchbrenner, & Kavukcuoglu,
2016), and invertible (Dinh, Krueger, & Bengio, 2015; Dinh, Sohl-Dickstein,
& Bengio, 2017) probabilistic models were developed. Of particular impor-
tance is a model class known as variational autoencoders (VAEs; Kingma
& Welling, 2014; Rezende et al., 2014), a relative of the Helmholtz machine,
which closely resembles hierarchical predictive coding. Unfortunately, de-
spite this similarity, the machine learning community remains largely obliv-
ious to the progress in predictive coding and vice versa.

1.3 Connecting Predictive Coding and VAEs. This review aims to
bridge the divide between predictive coding and VAEs. While this work
provides unique contributions, it is inspired by previous work at this in-
tersection. In particular, van den Broeke (2016) outlines hierarchical proba-
bilistic models in predictive coding and machine learning. Likewise, Lotter,
Kreiman, and Cox (2017, 2018) implement predictive coding techniques in
deep probabilistic models, comparing these models with neural phenom-
ena.

After reviewing background mathematical concepts in section 2, we dis-
cuss the basic formulations of predictive coding in section 3 and variational
autoencoders in section 4, and we identify commonalities in their model
formulations and inference techniques in section 5. Based on these connec-
tions, in section 6, we discuss two possible correspondences between ma-
chine learning and neuroscience seemingly suggested by this perspective:

• Dendrites of pyramidal neurons and deep artificial networks, af-
firming a more nuanced perspective over the analogy of biological
and artificial neurons

• Lateral inhibition and normalizing flows, providing a more general
framework for normalization.
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Predictive Coding, Variational Autoencoders, and Biological Connections 5

Like the work of van den Broeke (2016) and Lotter et al. (2017, 2018), we
hope that these connections will inspire future research in exploring this
promising direction.

2 Background

2.1 Maximum Log Likelihood. Consider a random variable, x ∈ R
M,

with a corresponding distribution, pdata(x), defining the probability of ob-
serving each possible value. This distribution is the result of an underly-
ing data-generating process, for example, the emission and scattering of
photons. While we do not have direct access to pdata, we can sample obser-
vations, x ∼ pdata(x), yielding an empirical distribution, p̂data(x). Often we
wish to model pdata, for example, for prediction or compression. We refer
to this model as pθ (x), with parameters θ . Estimating the model parameters
involves maximizing the log likelihood of data samples under the model’s
distribution:

θ∗ ← arg max
θ

Ex∼pdata (x)
[
log pθ (x)

]
. (2.1)

This is the maximum log-likelihood objective, which is found throughout
machine learning and probabilistic modeling (Murphy, 2012). In practice,
we do not have access to pdata(x) and instead approximate the objective us-
ing data samples, that is, using p̂data(x).

2.2 Probabilistic Models.

2.2.1 Dependency Structure. A probabilistic model includes the depen-
dency structure (see section 2.2.1) and the parameterization of these depen-
dencies (see section 2.2.2). The dependency structure is the set of conditional
dependencies between variables (see Figure 2). One common form is given
by autoregressive models (Frey et al., 1996; Bengio & Bengio, 2000), which
use the chain rule of probability:

pθ (x) =
M∏
j=1

pθ (x j|x< j ). (2.2)

By inducing an ordering over the M dimensions of x, we can factor the joint
distribution, pθ (x), into a product of M conditional distributions, each con-
ditioned on the previous dimensions, x< j. A natural use case arises in mod-
eling sequential data, where time provides an ordering over a sequence of
T variables, x1:T :

pθ (x1:T ) =
T∏

t=1

pθ (xt |x<t ). (2.3)
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6 J. Marino

Figure 2: Dependency structures. Each diagram shows a directed graphical
model. Nodes represent random variables, and arrows represent dependencies.
The main forms of dependency structure are autoregressive (see equation 2.2)
and latent variable models (see equation 2.4). These structures can be combined
in various ways (see equations 2.7 and 2.8).

Autoregressive models are “fully visible” models (Frey et al., 1996), as
dependencies are only modeled between observed variables. However, we
can also introduce latent variables, z. Formally, a latent variable model is
defined by the joint distribution

pθ (x, z) = pθ (x|z)pθ (z), (2.4)

where pθ (x|z) is the conditional likelihood and pθ (z) is the prior. Introduc-
ing latent variables is one of, if not, the primary technique for increasing the
flexibility of a model, as evaluating the likelihood now requires marginal-
izing over the latent variables:

pθ (x) = Ez∼pθ (z)
[
pθ (x|z)

]
. (2.5)

Thus, pθ (x) is a mixture distribution, with each component, pθ (x|z),
weighted according to pθ (z). Even when pθ (x|z) takes a simple distribu-
tion form, such as gaussian, pθ (x) can take on flexible forms. In this way, z
can capture complex dependencies in x.

However, increased flexibility comes with increased computational cost.
In general, marginalizing over z is not tractable. This requires us to adopt
approximations, discussed in section 2.3, or restrict the model to ensure
tractable evaluation of pθ (x) (see equation 2.5). The latter approach is taken
by flow-based latent variable models (Tabak & Turner, 2013; Rippel &
Adams, 2013; Dinh et al., 2015), defining the dependency between x and
z via an invertible transform, x = fθ (z) and z = f −1

θ (x). With a prior or
base distribution, pθ (z), we can express pθ (x) using the change of variables
formula,
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Predictive Coding, Variational Autoencoders, and Biological Connections 7

pθ (x) = pθ (z)
∣∣∣∣det

(
∂x
∂z

)∣∣∣∣−1

, (2.6)

where ∂x
∂z is the Jacobian of the transform and det(·) denotes matrix deter-

minant. The term
∣∣det

(
∂x
∂z

)∣∣−1 is the local scaling of space when moving
from z to x, conserving probability mass. Flow-based models, also referred
to as normalizing flows (Rezende & Mohamed, 2015), are the basis of inde-
pendent components analysis (ICA) (Comon, 1994; Bell & Sejnowski, 1997;
Hyvärinen & Oja, 2000) and nonlinear generalizations (Chen & Gopinath,
2001; Laparra, Camps-Valls, & Malo, 2011). These models provide a general-
purpose mechanism for adding and removing dependencies between
variables (i.e., normalization).1 Yet while flow-based models avoid
marginalization, their requirement of invertibility can be overly restrictive
(Cornish, Caterini, Deligiannidis, & Doucet, 2020).

We have presented autoregression and latent variables separately; how-
ever, these techniques can be combined. For instance, hierarchical latent
variable models (Dayan et al., 1995) incorporate autoregressive dependen-
cies between latent variables. Considering L levels of latent variables, z1:L =[
z1, . . . , zL

]
, we can express the joint distribution as

pθ (x, z1:L) = pθ (x|z1:L)
L∏

�=1

pθ (z�|z�+1:L). (2.7)

We can also incorporate latent variables within sequential (autoregressive)
models, giving rise to sequential latent variable models. Considering a sin-
gle level of latent variables in a corresponding sequence, z1:T , we have the
following joint distribution:

pθ (x1:T , z1:T ) =
T∏

t=1

pθ (xt |x<t, z≤t )pθ (zt |x<t, z<t ). (2.8)

This encompasses special cases, such as hidden Markov models or linear
state-space models (Murphy, 2012). There are a variety of other ways to
combine autoregression and latent variables (Gulrajani et al., 2017; Razavi,
van den Oord, & Vinyals, 2019). In some cases, autoregressive and flow-
based latent variable models are even equivalent (Kingma et al., 2016).

1
Formally, we refer to normalization as one or more steps of a process transforming the

data density into a standard gaussian (i.e., Normal), which is equivalent to ICA (Hyväri-
nen & Oja, 2000). This is a form of redundancy reduction, removing statistical dependen-
cies between data dimensions.
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8 J. Marino

2.2.2 Parameterizing the Model. The distributions defining probabilistic
dependencies are functions. In this section, we discuss forms that these
functions may take. The canonical example is the gaussian (or Normal) dis-
tribution, N (x;μ, σ 2), which is defined by a mean, μ, and variance, σ 2. This
can be extended to the multivariate setting, where x ∈ R

M is modeled with
a mean vector, μ, and covariance matrix, �, with the probability density
written as

N (x;μ,�) = 1
(2π )M/2 det(�)1/2 exp

(−1
2

(x − μ)ᵀ�−1(x − μ)
)

. (2.9)

To simplify calculations, we may consider diagonal covariance matrices,
� = diag(σ2). In particular, the special case where � = IM, the M × M iden-
tity matrix, the log-density becomes the mean squared error:

logN (x;μ, I) = −1
2
||x − μ||22 + const. (2.10)

Conditional dependencies are mediated by the distribution parame-
ters, which are functions of the conditioning variables. For example, we
can express an autoregressive gaussian distribution (see equation 2.2)
through pθ (x j|x< j ) = N (x j;μθ (x< j ), σ 2

θ (x< j )), where μθ and σ 2
θ are

functions taking x< j as input. A similar form applies to autoregressive
models on sequences of vector inputs (see equation 2.3), with pθ (xt |x<t ) =
N (xt;μθ (x<t ),�θ (x<t )). Likewise, in a latent variable model (see equa-
tion 2.4), we can express a gaussian conditional likelihood as pθ (x|z) =
N (x;μθ (z),�θ (z)). In the above examples, we have used a subscript θ for
all functions; however, these may be separate functions in practice.

The functions supplying each of the distribution parameters can range
in complexity, from constant to highly nonlinear. Classical modeling tech-
niques often employ linear functions. For instance, in a latent variable
model, we could parameterize the mean as

μθ (z) = Wz + b, (2.11)

where W is a matrix of weights and b is a bias vector. Models of this form
underlie factor analysis, probabilistic principal components analysis (Tip-
ping & Bishop, 1999), independent components analysis (Bell & Sejnowski,
1997; Hyvärinen & Oja, 2000), and sparse coding (Olshausen & Field, 1996).
While linear models are computationally efficient, they are often too limited
to accurately model complex data distributions, such as those found in nat-
ural images or audio.

Deep learning (Goodfellow, Bengio, & Courville, 2016) provides prob-
abilistic models with expressive nonlinear functions, improving their ca-
pacity. In these models, the distribution parameters are parameterized
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Predictive Coding, Variational Autoencoders, and Biological Connections 9

Figure 3: Autoregressive computation graph. The graph contains the (gaus-
sian) conditional likelihoods (green), data (gray), and terms in the objective (red
dots). Gradients (red dotted lines) backpropagate through the networks param-
eterizing the distributions.

with deep networks, which are then trained by backpropagating (Rumel-
hart et al., 1986) the gradient of the log-likelihood, ∇θEx∼p̂data

[
log pθ (x)

]
,

through the network. Deep probabilistic models have enabled recent ad-
vances in speech (Graves, 2013; van den Oord et al., 2016), natural language
(Sutskever, Vinyals, & Le, 2014; Radford et al., 2019), images (Razavi et al.,
2019), video (Kumar et al., 2020), reinforcement learning (Chua, Calandra,
McAllister, & Levine, 2018; Ha & Schmidhuber, 2018) and other areas.

In Figure 3, we visualize a computation graph for a deep autoregres-
sive model, breaking the variables into their distributions and terms in
the objective. Green circles denote the (gaussian) conditional likelihoods at
each step, which are parameterized by deep networks. The log likelihood,
log pθ (xt |x<t ), evaluated at the data observation, xt ∼ pdata(xt |x<t ) (gray),
provides the objective (red dot). The gradient of this objective with regard to
the network parameters is calculated through backpropagation (red dotted
line).

Autoregressive models have proven useful in many domains. However,
there are reasons to prefer latent variable models in some contexts. First,
autoregressive sampling is inherently sequential, becoming costly in high-
dimensional domains. Second, latent variables provide a representation for
downstream tasks, compression, and overall data analysis. Finally, latent
variables increase flexibility, which is useful for modeling complex dis-
tributions with relatively simple (e.g., gaussian) conditional distributions.
While flow-based latent variable models offer one option, their invertibility
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10 J. Marino

requirement limits the types of functions that can be used. For these reasons,
we require methods for handling the latent marginalization in equation 2.5.
Variational inference is one such method.

2.3 Variational Inference. Training latent variable models through
maximum likelihood requires evaluating log pθ (x). However, evaluat-
ing pθ (x) = ∫

pθ (x, z)dz is generally intractable. Thus, we require some
technique for approximating log pθ (x). Variational inference (Hinton &
Van Camp, 1993; Jordan, Ghahramani, Jaakkola, & Saul, 1998) approaches
this problem by introducing an approximate posterior distribution, q(z|x),
which provides a lower bound, L(x; q, θ ) ≤ log pθ (x). This lower bound is
referred to as the evidence (or variational) lower bound (ELBO), as well as
the (negative) free energy. By tightening and maximizing the ELBO with re-
gard to the model parameters, θ , we can approximate maximum likelihood
training.

Variational inference converts probabilistic inference into an optimiza-
tion problem. Given a family of distributions, Q (e.g., gaussian), varia-
tional inference attempts to find the distribution, q ∈ Q, that minimizes
DKL(q(z|x)||pθ (z|x)), where pθ (z|x) is the posterior distribution, pθ (z|x) =
pθ (x,z)
pθ (x) . Because pθ (z|x) includes the intractable pθ (x), we cannot minimize

this KL divergence directly. Instead, we can rewrite this as

DKL(q(z|x)||pθ (z|x)) = log pθ (x) − L(x; q, θ ), (2.12)

where, in equation 2.12 (see appendix A), we have defined L(x; q, θ ), as

L(x; q, θ ) ≡ Ez∼q(z|x)
[
log pθ (x, z) − log q(z|x)

]
(2.13)

= Ez∼q(z|x)
[
log pθ (x|z)

] − DKL(q(z|x)||pθ (z)). (2.14)

Rearranging terms in equation 2.12, we have

log pθ (x) = L(x; q, θ ) + DKL(q(z|x)||pθ (z|x)). (2.15)

Because KL divergence is nonnegative, L(x; q, θ ) ≤ log pθ (x), with equality
when q(z|x) = pθ (z|x). As the left-hand side of equation 2.15 does not de-
pend on q(z|x), maximizing L(x; q, θ ) with regard to q implicitly minimizes
DKL(q(z|x)||pθ (z|x)) with regard to q. Thus, maximizing L(x; q, θ ) with re-
gard to q tightens the lower bound on log pθ (x). With this tightened lower
bound, we can then maximize L(x; q, θ ) with regard to θ . This alternating
optimization process is the variational expectation maximization (EM) al-
gorithm (Dempster, Laird, & Rubin, 1977; Neal & Hinton, 1998), consisting
of approximate inference (E-step) and learning (M-step).
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Predictive Coding, Variational Autoencoders, and Biological Connections 11

Figure 4: ELBO computation graphs. (a) Basic computation graph for varia-
tional inference. Outlined circles denote distributions, smaller red circles denote
terms in the ELBO, and arrows denote conditional dependencies. This notation
can be used to express (b) hierarchical and (c) sequential models with various
dependencies.

We can also represent the ELBO in latent variable models as a compu-
tation graph (see Figure 4). Each variable contains a red circle, denoting a
term in the ELBO. As compared with the log-likelihood objective, we now
have an additional objective term corresponding to the KL divergence for
the latent variable. We visualize the variational objective for more complex
hierarchical and sequential models in Figures 4b and 4c.

3 Predictive Coding

Predictive coding can be divided into two settings, spatiotemporal and hi-
erarchical, roughly corresponding to the two main forms of probabilistic
dependencies. In this section, we review these settings, discussing existing
hypothesized correspondences with neural anatomy. We then outline the
empirical support for predictive coding, highlighting the need for large-
scale, testable models.

3.1 Spatiotemporal Predictive Coding. Spatiotemporal predictive cod-
ing (Srinivasan et al., 1982) forms predictions across spatial dimensions and
temporal sequences. These predictions produce the resulting “code” as the
prediction error. In the temporal setting, we can consider a gaussian autore-
gressive model defined over observation sequences, x1:T . The conditional
probability at time t is

pθ (xt |x<t ) = N (xt;μθ (x<t ), diag(σ2
θ (x<t ))).
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12 J. Marino

Figure 5: Spatiotemporal predictive coding. (a) Spatial predictive coding re-
moves spatial dependencies, using center-surround filters (left) to extract edges
(right). (b) Temporal predictive coding removes temporal dependencies, ex-
tracting motion from video. Video frames are from BAIR Robot Pushing (Ebert,
Finn, Lee, & Levine, 2017).

Using auxiliary variables, yt ∼ N (0, I), we can express xt = μθ (x<t ) +
σθ (x<t ) 	 yt , where 	 denotes element-wise multiplication. Conversely, we
can express the inverse, normalization or whitening transform as

yt = xt − μθ (x<t )
σθ (x<t )

, (3.1)

which is a weighted prediction error.2 A video example is shown in Fig-
ure 5b. The normalization transform removes temporal redundancy in the
input, enabling the resulting sequence, y1:T , to be compressed more effi-
ciently (Shannon, 1948; Harrison, 1952; Oliver, 1952). This technique forms
the basis of modern video (Wiegand, Sullivan, Bjontegaard, & Luthra, 2003)
and audio (Atal & Schroeder, 1979) compression. Note that one special
case of this transform is μθ (x<t ) = xt−1 and σθ (x<t ) = 1, in which case, yt =
xt − xt−1 = �xt , that is, temporal changes. For slowly changing sequences,
this is a reasonable choice.

Normalization can also be applied within xt to remove spatial dependen-
cies. For instance, we can apply another autoregressive transform over spa-
tial dimensions, predicting the ith dimension, xi,t , as a function of previous

2
Note that other forms of probabilistic models will result in other forms of whitening

transforms.
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Predictive Coding, Variational Autoencoders, and Biological Connections 13

dimensions, x1:i,t (see equation 2.2). With linear functions, this corresponds
to Cholesky whitening (Pourahmadi, 2011; Kingma et al., 2016). How-
ever, this imposes an ordering over dimensions. Zero-phase components
analysis (ZCA) whitening instead learns symmetric spatial dependencies
(Kessy, Lewin, & Strimmer, 2018). Modeling these dependencies with a
constant covariance matrix, �θ , and mean, μθ , the whitening transform is
y = �

−1/2
θ (x − μθ ). With natural images, this results in center-surround fil-

ters in the rows of �−1
θ , thereby extracting edges (see Figure 5a).

Srinivasan et al. (1982) investigated spatiotemporal predictive coding
in the retina, where compression is essential for transmission through
the optic nerve. Estimating the (linear) autocorrelation of input sensory
signals, they showed that spatiotemporal predictive coding models retinal
ganglion cell responses in flies. This scheme allows these neurons to more
fully utilize their dynamic range. It is generally accepted that retina, in part,
performs stages of spatiotemporal normalization through center-surround
receptive fields and on-off responses (Hosoya, Baccus, & Meister, 2005;
Graham, Chandler, & Field, 2006; Pitkow & Meister, 2012; Palmer, Marre,
Berry, & Bialek, 2015). Dong and Atick (1995) applied similar ideas to
the thalamus, proposing an additional stage of temporal normalization.
This also relates to the notion of generalized coordinates (Friston, 2008a),
that is, modeling temporal derivatives, which can be approximated using
finite differences (prediction errors). That is, dx

dt ≈ �xt ≡ xt − xt−1. Thus,
spatiotemporal predictive coding may be utilized at multiple stages of
sensory processing to remove redundancy (Huang & Rao, 2011).

In neural circuits, normalization often involves inhibitory interneurons
(Carandini & Heeger, 2012), performing operations similar to those in equa-
tion 3.1. For instance, inhibition occurs in retina between photoreceptors,
via horizontal cells, and between bipolar cells, via amacrine cells. This can
extract unpredicted motion, e.g., an object moving relative to the back-
ground (Ölveczky, Baccus, & Meister, 2003; Baccus, Ölveczky, Manu, &
Meister, 2008). A similar scheme is present in the lateral geniculate nucleus
(LGN) in thalamus, with interneurons inhibiting relay cells from retina
(Sherman & Guillery, 2002). As mentioned above, this is thought to per-
form temporal normalization (Dong and Atick, 1995; Dan, Atick, & Reid,
1996). Lateral inhibition is also prominent in neocortex, with distinct classes
of interneurons shaping the responses of pyramidal neurons (Isaacson &
Scanziani, 2011). Part of their computational role appears to be spatiotem-
poral normalization (Carandini & Heeger, 2012).

3.2 Hierarchical Predictive Coding. Hierarchical predictive coding has
been postulated as a model of hierarchical processing in neocortex (Rao &
Ballard, 1999; Friston, 2005), the outer sheet-like structure involved in sen-
sory and motor processing (see Figure 6). Neocortex is composed of six lay-
ers (I–VI), with neurons arranged into columns, each engaged in related
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14 J. Marino

Figure 6: Brain anatomy and cortical circuitry. Sensory inputs enter the thala-
mus, forming reciprocal connections with the neocortex, which is composed of
six layers, with columns across layers and hierarchies of columns. Black and
red circles represent excitatory and inhibitory neurons, respectively, with ar-
rows denoting connections. This circuit is repeated with variations throughout
neocortex.

computations (Mountcastle, Berman, & Davies, 1955). Columns interact
locally via inhibitory interneurons, while also forming longer-range hier-
archies via pyramidal neurons. Such hierarchies characterize multiple per-
ceptual (and motor) processing pathways (Van Essen & Maunsell, 1983).
Longer-range connections are split into forward (up the hierarchy) and
backward (down) directions. Forward connections are driving, evoking
neural activity (Girard & Bullier, 1989; Girard, Salin, & Bullier, 1991). Back-
ward connections can be modulatory or driving (Covic & Sherman, 2011;
De Pasquale & Sherman, 2011), which can be inverted through inhibition
(Meyer et al., 2011). These connections, repeated with variations throughout
neocortex, constitute a canonical neocortical microcircuit (Douglas, Martin,
& Whitteridge, 1989), suggesting a single algorithm (Hawkins & Blakeslee,
2004), capable of adapting to various inputs (Sharma, Angelucci, & Sur,
2000).

Formulating a theory of neocortex, Mumford (1992) described the tha-
lamus as an “active blackboard,” with the neocortex attempting to recon-
struct the activity in the thalamus and lower hierarchical areas. Under this
theory, backward projections convey predictions, while forward projections
use prediction errors to update estimates. Through a dynamic process, the
system settles to an activity pattern, minimizing prediction error. Over time,
the parameters are also adjusted to improve predictions. In this way, nega-
tive feedback is used, both in inference and learning, to construct a gen-
erative model of sensory inputs. Generative state estimation dates back
(at least) to Helmholtz (Von Helmholtz, 1867), and error-based updating
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Predictive Coding, Variational Autoencoders, and Biological Connections 15

is in line with cybernetics (Wiener, 1948; MacKay, 1956), which influenced
Kalman filtering (Kalman, 1960), a ubiquitous Bayesian filtering algorithm.

A mathematical formulation of Mumford’s model, with ties to Kalman
filtering (Rao, 1998), was provided by Rao and Ballard (1999), with the gen-
eralization to variational inference provided by Friston (2005). To illustrate
this setup, consider a model consisting of a single level of continuous latent
variables, z, modeling continuous data observations, x. We will use gaus-
sian densities for each distribution and assume we have

pθ (x|z) = N (x; f (Wz), diag(σ2
x)), (3.2)

pθ (z) = N (z;μz, diag(σ2
z)), (3.3)

where f is an element-wise function (e.g., logistic sigmoid, tanh, or the iden-
tity), W is a weight matrix, μz is the prior mean, and σ2

x and σ2
z are vectors

of variances.
In the simplest approach to inference, we can find the maximum a poste-

riori (MAP) estimate, that is, estimate the z∗ that maximizes pθ (z|x). While
we cannot tractably evaluate pθ (z|x) = pθ (x,z)

pθ (x) directly, we can write

z∗ = arg max
z

pθ (x, z)
pθ (x)

= arg max
z

pθ (x, z).

Thus, we can perform inference using the joint distribution, pθ (x, z) =
pθ (x|z)pθ (z), which we can tractably evaluate. We can also replace the op-
timization over the probability distribution with an optimization over the
log probability, since log(·) is a monotonically increasing function and does
not affect the optimization. We then have

z∗ = arg max
z

[
log pθ (x|z) + log pθ (z)

]
.

= arg max
z

[
logN (x; f (Wz), diag(σ2

x)) + logN (z;μz, diag(σ2
z))

]
.

Each of the terms in this objective is a weighted squared error. For in-
stance, the first term is the weighted squared error in reconstructing the data
observation:

logN (x; f (Wz), diag(σ2
x)) = −M

2
log(2π ) − 1

2
log det

(
diag(σ2

x)
)

− 1
2

∣∣∣∣∣∣∣∣x − f (Wz)
σx

∣∣∣∣∣∣∣∣2

2
,
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16 J. Marino

Figure 7: Hierarchical predictive coding. The diagram shows the basic compu-
tation graph for a gaussian latent variable model with MAP inference. The in-
sets show the weighted error calculation for the latent (left) and observed (right)
variables.

where M is the dimensionality of x and || · ||22 denotes the squared L2 norm.
Plugging these terms into the objective and dropping terms that do not de-
pend on z yields

z∗ = arg max
z

[
−1
2

∣∣∣∣∣∣∣∣x − f (Wz)
σx

∣∣∣∣∣∣∣∣2

2
− 1

2

∣∣∣∣∣∣∣∣z − μz

σz

∣∣∣∣∣∣∣∣2

2

]
︸ ︷︷ ︸

L (z;θ )

, (3.4)

where we have defined the objective as L (z; θ ). For purposes of illustration,
let us assume that f (·) is the identity function, f (Wz) = Wz. We can then
evaluate the gradient of L (z; θ ) with regard to z, yielding

∇zL (z; θ ) = Wᵀ
(

x − Wz
σx

)
︸ ︷︷ ︸

ξx

− z − μz

σz︸ ︷︷ ︸
ξz

. (3.5)

The transposed weight matrix, Wᵀ, results from differentiating Wz, trans-
lating the reconstruction error into an update in z. We have also defined
the weighted errors, ξx and ξz. From equation 3.5, we see that if we want
to perform inference using gradient-based optimization, such as z ← z +
α∇zL (z; θ ), we need (1) the weighted errors, ξx and ξz, and (2) the trans-
posed weights, Wᵀ, or more generally, the Jacobian of the conditional like-
lihood mean. This overall scheme is depicted in Figure 7.
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Table 1: Neural Correspondences of Hierarchical Predictive Coding.

Neuroscience Predictive Coding

Top-down cortical projections Generative model conditional mapping
Bottom-up cortical projections Inference updating
Lateral inhibition Covariance matrices
(Pyramidal) neuron activity Latent variable estimates & errors
Cortical column Corresponding estimate & error

To learn the weight parameters, we can differentiate L (z; θ ) (see 3.4 with
regard to) W:

∇WL (z; θ ) = ξxzᵀ.

This gradient is the product of a local error, ξx, and the latent variable, z, sug-
gesting the possibility of a biologically plausible learning rule (Whittington
& Bogacz, 2017).

Predictive coding identifies the conditional likelihood (equation 3.2)
with backward (top-down) cortical projections, whereas inference (equa-
tion 3.5) is identified with forward (bottom-up) projections (Friston, 2005).
Each is thought to be mediated by pyramidal neurons. Under this model,
each cortical column predicts and estimates a stochastic continuous latent
variable, possibly represented via a (pyramidal) firing rate or membrane
potential (Friston, 2005). Interneurons within columns calculate errors (ξx

and ξz). Although we have only discussed diagonal covariance (σ2
x and σ2

z),
lateral inhibitory interneurons could parameterize full covariance matrices,
�x and �z, as a form of spatial predictive coding (see section 3.1). These fac-
tors weight ξx and ξz, modulating the gain of each error as a form of “atten-
tion” (Feldman & Friston, 2010). Neural correspondences are summarized
in Table 1.

We have presented a simplified model of hierarchical predictive cod-
ing, without multiple latent levels and dynamics. A full hierarchical
predictive coding model would include these aspects and others. In
particular, Friston has explored various design choices (Friston, Mattout,
Trujillo-Barreto, Ashburner, & Penny, 2007; Friston, 2008a, 2008b), yet the
core aspects of probabilistic generative modeling and variational inference
remain the same. Elaborating and comparing these choices will be essential
for empirically validating hierarchical predictive coding.

3.3 Empirical Support. While there is considerable evidence in support
of predictions and errors in neural systems, disentangling these general as-
pects of predictive coding from the particular algorithmic choices remains
challenging (Gershman, 2019). Here, we outline relevant work, but we
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18 J. Marino

refer to Huang and Rao (2011), Bastos et al. (2012), Clark (2013), Keller and
Mrsic-Flogel (2018), and Walsh, McGovern, Clark, and O’Connell (2020) for
a more in-depth overview.

3.3.1 Spatiotemporal. Various works have investigated predictive coding
in early sensory areas such as the retina (Srinivasan et al., 1982; Atick &
Redlich, 1992). This involves fitting retinal ganglion cell responses to a spa-
tial whitening (or decorrelation) process (Graham et al., 2006; Pitkow &
Meister, 2012), which can be dynamically adjusted (Hosoya et al., 2005).
Similar analyses suggest that retina also employs temporal predictive cod-
ing (Srinivasan et al., 1982; Palmer et al., 2015). Such models typically
contain linear whitening filters (center-surround) followed by nonlinear-
ities. These nonlinearities have been shown to be essential for modeling
responses (Pitkow & Meister, 2012), possibly by inducing added sparsity
(Graham et al., 2006). Spatiotemporal predictive coding also appears to be
found in the thalamus (Dong & Atick, 1995; Dan et al., 1996) and cortex;
however, such analyses are complicated by backward, modulatory inputs.

3.3.2 Hierarchical. Early work toward empirically validating hierarchical
predictive coding came from explaining extraclassical receptive field effects
(Rao & Ballard, 1999; Rao & Sejnowski, 2002), whereby top-down signals in
the cortex alter classical visual receptive fields, suggesting that top-down
influences play a key role in sensory processing (Gilbert & Sigman, 2007).
Note that such effects support a cortical generative model generally (Ol-
shausen & Field, 1997), not predictive coding specifically.

Temporal influences have been demonstrated through repetition sup-
pression (Summerfield et al., 2006), in which activity diminishes in response
to repeated (i.e., predictable) stimuli. This may reflect error suppression
from improved predictions. Predictive coding has also been used to ex-
plain biphasic responses in LGN (Jehee & Ballard, 2009), in which reversing
the visual input with an anticorrelated image results in a large response,
presumably due to prediction errors. Predictive signals have been docu-
mented in auditory (Wacongne et al., 2011) and visual (Meyer & Olson,
2011) processing. Activity seemingly corresponding to prediction errors has
also been observed in a variety of areas and contexts, including visual cortex
in mice (Keller, Bonhoeffer, & Hübener, 2012; Zmarz & Keller, 2016; Gillon
et al., 2021), auditory cortex in monkeys (Eliades & Wang, 2008) and ro-
dents (Parras et al., 2017), and visual cortex in humans (Murray, Kersten,
Olshausen, Schrater, & Woods, 2002; Alink, Schwiedrzik, Kohler, Singer, &
Muckli, 2010; Egner, Monti, & Summerfield, 2010). Thus, sensory cortex ap-
pears to be engaged in hierarchical and temporal prediction, with predic-
tion errors playing a key role.

Empirical evidence for predictive coding aside, given the complexity of
neural systems, the theory is undoubtedly incomplete or incorrect. With-
out the low-level details such as connectivity and potentials, it is difficult
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Predictive Coding, Variational Autoencoders, and Biological Connections 19

to determine the computational form of the circuit. Further, these models
are typically oversimplified, with few trained parameters, detached from
natural stimuli. While new tools enable us to test predictive coding in neu-
ral circuits (Gillon et al., 2021), machine learning, particularly VAEs, can
advance from the other direction. Training large-scale models on natural
stimuli may improve empirical predictions for biological systems (Rao &
Ballard, 1999; Lotter et al., 2018).

4 Variational Autoencoders

Variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al.,
2014) are latent variable models parameterized by deep networks. As in hi-
erarchical predictive coding, these models typically contain gaussian latent
variables and are trained using variational inference. However, rather than
performing inference optimization directly, VAEs amortize inference (Ger-
shman & Goodman, 2014).

4.1 Amortized Variational Inference. Amortization refers to spread-
ing out costs. In amortized inference, these are the computational costs
of inference. With q(z|x) = N (z;μq, diag(σ2

q )) and λ ≡ [
μq, σq

]
, rather than

separately optimizing λ for each data example, we amortize this opti-
mization using a learned optimizer or inference model. By using meta-
optimization, we can perform inference optimization far more efficiently.
Inference models are linked with deep latent variable models, popularized
by the Helmholtz machine (Dayan et al., 1995), a form of autoencoder (Bal-
lard, 1987). Here, the inference model is a direct mapping from x to λ,

λ ← fφ (x), (4.1)

where fφ is a function (deep network) with parameters φ. We then denote
the approximate posterior as qφ (z|x) to denote the parameterization by φ.
Now, rather than optimizing λ using gradient-based techniques, we update
φ using ∇φL = ∂L

∂λ
∂λ
∂φ

, thereby letting fφ learn to optimize λ. This procedure
is simple, as we only need to tune the learning rate for φ, and efficient, as
we have an estimate of λ after one forward pass through fφ . Amortization
is also widely applicable: if we can estimate ∇λL, we can continue differen-
tiating through the chain φ → λ → z → L.

To differentiate through z ∼ qφ (z|x), we can use the pathwise deriva-
tive estimator, also referred to as the reparameterization estimator (Kingma
& Welling, 2014). This is accomplished by expressing z in terms of an
auxiliary random variable. The most common example expresses z ∼
N (z;μq, diag(σ2

q )) as z = μq + ε 	 σq, where ε ∼ N (ε; 0, I) and 	 denotes
element-wise multiplication. We can then estimate ∇μqL and ∇σqL, allow-
ing us to calculate the inference model gradients, ∇φL.
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20 J. Marino

Figure 8: Variational autoencoder. VAEs use direct amortization (see equa-
tion 4.1) to train deep latent variable models. The inference model (left) is an
encoder, and the conditional likelihood (right) is a decoder. Each is parameter-
ized by deep networks.

When direct amortization is combined with the pathwise derivative es-
timator in deep latent variable models, the resulting setup is a variational
autoencoder (Kingma & Welling, 2014; Rezende et al., 2014). In this inter-
pretation, qφ (z|x) is an encoder, z is the latent code, and pθ (x|z) is a decoder
(see Figure 8). This direct encoding scheme is intuitive: in the same way
that pθ (x|z) directly maps z to a distribution over x, qφ (z|x) directly maps
x to a distribution over z. Indeed, with perfect knowledge of pθ (x, z), fφ
could act as a lookup table, mapping each x to the corresponding optimal
λ. However, in practice, direct amortization of this form tends to result in
suboptimal estimates of λ (Cremer, Li, & Duvenaud, 2018), motivating more
powerful amortized inference techniques.

4.1.1 Iterative Amortized Inference. One method for improving direct
amortization involves incorporating iterative updates (Hjelm et al., 2016;
Krishnan et al., 2018; Kim, Wiseman, Miller, Sontag, & Rush, 2018; Marino,
Yue, & Mandt, 2018), replacing a one-step inference procedure with a mul-
tistep procedure. Iterative amortized inference (Marino, Yue, et al., 2018)
maintains an inference model, but uses it to perform iterative updates on
the approximate posterior. Following the previous notation, the basic form
of an iterative amortized inference model is given as

λ ← fφ (λ,∇λL). (4.2)
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Iterative inference models take in the current estimate, λ, as well as the gra-
dient, ∇λL, and output an updated estimate of λ. As before, inference model
parameters are updated using estimates of ∇φL. Note that equation 4.2 gen-
eralizes stochastic gradient-based optimization. For instance, a special case
is λ ← λ + α∇λL, where α is a step-size; however, equation 4.2 also includes
nonlinear updates (Andrychowicz et al., 2016).

In latent gaussian models, ∇λ is defined by the weighted errors, ξx and
ξz, and the Jacobian of the conditional likelihood, J (W in the linear model
in section 3.2). Thus, in latent gaussian models, we can consider inference
models of the special form

λ ← fφ (λ, ξx, ξz). (4.3)

This is a learned, nonlinear mapping from errors to updated estimates of
the approximate posterior, that is, learned negative feedback. (The distinc-
tion between direct and iterative amortization is shown in Figures 10b and
10c.) Iterative amortization can be readily extended to sequential models
(Marino, Cvitkovic, & Yue, 2018), resulting in a general predict-update in-
ference scheme, highly reminiscent of Kalman filtering (Kalman, 1960).

4.2 Extensions of VAEs.

4.2.1 Additional Dependencies and Representation Learning. VAEs have
been extended to a variety of architectures, incorporating hierarchical and
temporal dependencies. Sønderby et al. (2016) proposed a hierarchical VAE,
in which the conditional prior at each level, �, that is, pθ (z�|z�+1:L), is param-
eterized by a deep network (see equation 2.7). Follow-up works have scaled
this approach with impressive results (Kingma et al., 2016; Vahdat & Kautz,
2020; Child, 2020), extracting increasingly abstract features at higher levels
(Maaløe, Fraccaro, Lievin, & Winther, 2019). Another line of work has in-
corporated temporal dependencies within VAEs, parameterizing dynamics
in the prior and conditional likelihood with deep networks (Chung et al.,
2015; Fraccaro, Sønderby, Paquet, & Winther, 2016). Such models can also
provide representations and predictions for reinforcement learning (Ha &
Schmidhuber, 2018; Hafner et al., 2019).

Other work has investigated representation learning within VAEs. One
approach, the β-VAE (Higgins et al., 2017), modifies the ELBO (see equa-
tion 2.14) by adjusting a weighting, β, on DKL(q(z|x)||pθ (z)). This tends to
yield more disentangled (i.e., independent) latent variables. Indeed, β con-
trols the rate-distortion trade-off between latent complexity and reconstruc-
tion (Alemi et al., 2018), highlighting VAEs’ ability to extract latent structure
at multiple resolutions (Rezende & Viola, 2018). A separate line of work has
focused on identifiability: the ability to uniquely recover the original latent
variables within a model (or their posterior). While this is true in linear ICA
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(Comon, 1994), it is not generally the case with nonlinear ICA and nonin-
vertible models (VAEs) (Khemakhem, Kingma, Monti, & Hyvarinen, 2020;
Gresele, Fissore, Javaloy, Schölkopf, & Hyvarinen, 2020), requiring special
considerations.

4.2.2 Normalizing Flows. Another direction within VAEs is the use of nor-
malizing flows (Rezende & Mohamed, 2015). Flow-based distributions use
invertible transforms to add and remove dependencies (see section 2.2.1).
While such models can operate as generative models (Dinh et al., 2015,
2017; Papamakarios, Pavlakou, & Murray, 2017), they can also define dis-
tributions in VAEs. This includes the approximate posterior (Rezende &
Mohamed, 2015), prior (Huang et al., 2017), and conditional likelihood
(Agrawal & Dukkipati, 2016). In each case, a deep network outputs the pa-
rameters (e.g., mean and variance) of a base distribution over a normalized
variable. Separate deep networks parameterize the transforms, which map
between the normalized and unnormalized variables.

4.2.3 Example. Consider a normalized variable, u, defined by the dis-
tribution pθ (u|·) = N (u;μθ (·), diag(σ2

θ (·))), where μθ and σθ are output by
deep networks, with · denoting conditioning input variables. We consider
an affine transform (Dinh et al., 2017), defined by a shift vector, α = αθ (u),
and a scale matrix, B = Bθ (u), each of which may be parameterized by deep
networks. This defines a new, unnormalized variable v,

v = α + Bu, (4.4)

which can now contain affine dependencies between dimensions. For equa-
tion 4.4 to be invertible, we require B itself that is, to be invertible, that is,
nonzero determinant. Thus, B is a square matrix, and u and v are the same
dimensionality. If instead we are given v, we can calculate its log probability
by applying the normalizing inverse transform to get u:

u = B−1(v − α), (4.5)

then use the change-of-variables formula, equation 2.6. This converts the
log-probability calculation from the structured space of v to the normal-
ized space of u. Note that the multivariate gaussian density, equation 2.9,
is a special case of this transform, taking a standard gaussian variable,
u ∼ N (u; 0, I), and adding linear dependencies to yield a multivariate gaus-
sian variable, v ∼ N (v;α, BᵀB). In this case, where α and B are constant, the
inverse transform removes linear dependencies between dimensions in v.
We depict this scheme in Figure 9, along with the more general nonlinear
version provided by normalizing flows, in which αθ and Bθ are functions.
Thus, normalizing flows provides a powerful, more general approach for
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Figure 9: Normalizing flows. Normalizing flows is a framework for adding or
removing dependencies. Using affine parameter functions, αθ and Bθ , one can
model nonlinear dependencies, generalizing constant transforms, e.g., a covari-
ance matrix.

augmenting the distributions in latent variable models, applicable across
both space (Rezende & Mohamed, 2015; Kingma et al., 2016) and time (van
den Oord et al., 2018; Marino, Chen, He, & Mandt, 2020).

5 Connections and Comparisons

Predictive coding and VAEs (and deep generative models generally), are
highly related in both their model formulations and inference approaches
(see Figure 10). Specifically,

• Model formulation: Both areas consider hierarchical latent gaussian
models with nonlinear dependencies between latent levels, as well as
dependencies within levels via covariance matrices (predictive cod-
ing) or normalizing flows (VAEs).

• Inference: Both areas use variational inference, often with gaussian
approximate posteriors. While predictive coding and VAEs employ
differing optimization techniques, these are design choices in solving
the same inference problem.

These similarities reflect a common mathematical foundation inherited
from cybernetics and descendant fields. We now discuss these two points
in more detail.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/1/1/2007789/neco_a_01458.pdf by guest on 07 Septem
ber 2023



24 J. Marino

Figure 10: Hierarchical predictive coding and VAEs. Computation diagrams for
(a) hierarchical predictive coding, (b) VAE with direct amortized inference, and
(c) VAE with iterative amortized inference (Marino, Yue, et al., 2018). Jᵀ denotes
the transposed Jacobian matrix of the conditional likelihood. Red dotted lines
denote gradients, and black dashed lines denote amortized inference.

5.1 Model Formulation. The primary distinction in model formula-
tion is the form of the (non-linear) functions parameterizing dependen-
cies. Rao and Ballard (1999) parameterize the conditional likelihood as a
linear function followed by an element-wise nonlinearity. Friston has con-
sidered a wider range of functions, such as polynomial (Friston, 2008a);
however, such functions are rarely learned. VAEs instead parameterize
these functions using deep networks with multiple layers. The deep net-
work weights are trained through backpropagation, enabling the wide ap-
plication of VAEs to various data domains.

Predictive coding and VAEs also consider dependencies within each
level. Friston (2005) uses full-covariance gaussian densities, with the in-
verse of the covariance matrix (precision) parameterizing linear depen-
dencies within a level. Rao and Ballard (1999) normalize the observations,
modeling linear dependencies within the conditional likelihood. These are
linear special cases of the more general technique of normalizing flows
(Rezende & Mohamed, 2015): a covariance matrix is an affine normaliz-
ing flow with linear dependencies (Kingma et al., 2016). Normalizing flows
have been applied throughout each of the distributions within VAEs (see
section 4.2.2), modeling nonlinear dependencies across both spatial and
temporal dimensions. These flows are also parameterized by deep net-
works, providing a flexible yet general modeling approach.

Related to normalization, there are proposals within predictive coding
that the precision of the prior could mediate a form of attention (Feldman
& Friston, 2010). Increasing the precision of a variable serves as a form of
gain modulation, up-weighting the error in the objective function, thereby
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enforcing more accurate inference estimates. This concept is absent from
VAEs. However, as VAEs become more prevalent in interactive settings
(Ha & Schmidhuber, 2018), that is, beyond pure generative modeling, this
may become crucial in steering models toward task-relevant perceptual
inferences.

Finally, predictive coding and VAEs have both been extended to sequen-
tial settings. In predictive coding, sequential dependencies may be param-
eterized by linear functions (Srinivasan et al., 1982) or so-called generalized
coordinates (Friston, 2008a), modeling multiple orders of motion. In exten-
sions of VAEs, sequential dependencies are again parameterized by deep
networks, in many cases using recurrent networks (Chung et al., 2015; Frac-
caro et al., 2016). Thus, while the specific implementations vary, in either
case, sequential dependencies are ultimately functions, which are subject
to design choices.

5.2 Inference. Although both predictive coding and VAEs typically use
variational inference with gaussian approximate posteriors, sections 3 and 4
illustrate key differences (see Figure 10). Predictive coding generally relies
on gradient-based optimization to perform inference, whereas VAEs em-
ploy amortized optimization. While these approaches may at first appear
radically different, hybrid error-encoding inference approaches (see equa-
tion 4.3), such as PredNet (Lotter et al., 2017) and iterative amortization
(Marino, Yue, et al., 2018), provide a link. Such approaches receive errors
as input, as in predictive coding; however, they have learnable parameters
(i.e., amortization). In fact, amortization may provide a crucial element for
implementing predictive coding in biological neural networks.

Though rarely discussed, hierarchical predictive coding assumes that the
inference gradients, supplied by forward connections, can be readily calcu-
lated. But as seen in section 3.2, the weights of these forward connections
are the transposed Jacobian matrix of the backward connections (Rao & Bal-
lard, 1999). This is an example of the weight transport problem (Grossberg,
1987), in which the weights of one set of connections (forward) depend on
the weights of another set of connections (backward). This is generally re-
garded as not being biologically plausible.

Amortization provides a solution to this problem: learn to perform in-
ference. Rather than transporting the generative weights to the inference
connections, amortization learns a separate set of inference weights, poten-
tially using local learning rules (Bengio, 2014; Lee, Zhang, Fischer, & Ben-
gio, 2015). Thus, despite criticism from Friston (2018), amortization may
offer a more biologically plausible inference approach. Further, amortized
inference yields accurate estimates with exceedingly few iterations: even a
single iteration may yield reasonable estimates (Marino, Yue, et al., 2018).
These computational efficiency benefits provide another argument in favor
of amortization.
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Figure 11: Pyramidal neurons and deep networks. Connecting VAEs with pre-
dictive coding places deep networks (bottom) in correspondence with the den-
drites of pyramidal neurons (top), for both generation (right) and (amortized)
inference (left).

Finally, although predictive coding and VAEs typically assume gaussian
approximate posteriors, there is one additional difference in the ways in
which these parameters are conventionally calculated. Friston often uses
the Laplace approximation3 (Friston et al., 2007), solving directly for the
optimal gaussian variance, whereas VAEs treat this as another output of the
inference model (Kingma & Welling, 2014; Rezende, Mohamed, & Wierstra,
2014). These approaches can be applied in either setting (Park, Kim, & Kim,
2019).

6 Correspondences

Having connected VAEs and predictive coding, we now discuss possible
correspondences between machine learning and neuroscience. In Table 1,
top-down and bottom-up cortical projections, each mediated by pyrami-
dal neurons, respectively parameterize the generative model and infer-
ence updates. Mapping this onto VAEs suggests that deep (artificial) neural
networks are in correspondence with pyramidal neuron dendrites (see
Figure 11, right), or, more specifically, a deep network corresponds to a

3
This is not to be confused with a Laplace distribution. The approximate posterior is

still gaussian.
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collection of pyramidal dendrites operating in parallel. Predictive cod-
ing also postulates that lateral interneurons parameterize dependencies
within variables as inverse covariance matrices. VAEs parameterize these
dependencies using more general normalizing flows, suggesting that
normalizing flows are in correspondence with lateral interneurons. While
normalizing flows also use deep networks, the effect that they have on com-
putation tends to be restricted and simple (e.g., affine). We now briefly dis-
cuss these correspondences.

6.1 Pyramidal Neurons and Deep Networks.

6.1.1 Nonlinear Dendritic Computation. Placing deep networks in cor-
respondence with pyramidal dendrites suggests that (some) biological
neurons may be better computationally described as nonlinear functions.
Evidence from neuroscience supports this claim. Early simulations showed
that individual pyramidal neurons, through dendritic processing, could op-
erate as multilayer artificial networks (Zador, Claiborne, & Brown, 1992;
Mel, 1992). This was later supported by empirical findings that pyrami-
dal dendrites act as computational “subunits,” yielding the equivalent of
a two-layer artificial network (Poirazi, Brannon, & Mel, 2003; Polsky, Mel,
& Schiller, 2004). More recently, Gidon et al. (2020) demonstrated that indi-
vidual pyramidal neurons can compute the XOR operation, which requires
nonlinear processing. This is supported by further modeling work (Jones
& Kording, 2020; Beniaguev, Segev, & London, 2021). Positing a more sub-
stantial role for dendritic computation (London & Häusser, 2005) moves
beyond the simplistic comparison of biological and artificial neurons that
currently dominates. Instead, neural computation depends on morphology
and circuits.

6.1.2 Amortization. Pyramidal neurons mediate both top-down and
bottom-up cortical projections. Under predictive coding, this suggests
that inference relies on learned, nonlinear functions: amortization. One
such implementation is through pyramidal neurons with separate apical
and basal dendrites, which, respectively, receive top-down and bottom-
up inputs (Bekkers, 2011; Guergiuev, Lillicrap, & Richards, 2016). Recent
evidence from Gillon et al. (2021) suggests that these are top-down predic-
tions and bottom-up errors. These neurons may implement iterative amor-
tized inference (Marino, Yue, et al., 2018), separately processing top-down
and bottom-up error signals to update inference estimates (see Figure 11,
left). While some empirical support for amortization exists (Yildirim, Kulka-
rni, Freiwald, & Tenenbaum, 2015; Dasgupta, Schulz, Goodman, & Gersh-
man, 2018), further investigation is needed. Finally, this perspective implies
separate computational processing for prediction and inference, with dis-
tinct (but linked) frequencies. While some evidence supports this conjecture
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Figure 12: Backpropagation within neurons. If deep networks are in correspon-
dence with pyramidal neurons, this implies that backpropagation (left) is analo-
gous to learning within neurons, perhaps via backpropagating action potentials
(right).

(Bastos et al., 2015), it is unclear how this could be implemented in biologi-
cal neurons.

6.1.3 Backpropagation. The biological plausibility of backpropagation is
an open question (Lillicrap, Santoro, Marris, Akerman, & Hinton, 2020).
Critics argue that backpropagation requires nonlocal learning signals
(Grossberg, 1987; Crick, 1989), whereas the brain relies largely on local
learning rules (Hebb, 1949; Markram, Lübke, Frotscher, & Sakmann, 1997; Bi
& Poo, 1998). Biologically plausible formulations of backpropagation have
been proposed (Stork, 1989; Körding & König, 2001; Xie & Seung, 2003;
Hinton, 2007; Lillicrap, Cownden, Tweed, & Akerman, 2016), attempting to
reconcile this disparity. Yet consensus is still lacking. From another perspec-
tive, the apparent biological implausibility of backpropagation may instead
be the result of incorrectly assuming a one-to-one correspondence between
biological and artificial neurons.

Placing deep networks in correspondence with pyramidal neurons
suggests a different perspective on the biological plausibility debate. In
hierarchical latent variable models, prediction errors at each level pro-
vide a local learning signal (Friston, 2005; Bengio, 2014; Lee et al., 2015;
Whittington & Bogacz, 2017). Thus, learning within each latent level is
performed through optimization of local errors. This is exemplified by hi-
erarchical VAEs (Sønderby, Raiko, Maaløe, Sønderby, & Winther, 2016),
which utilize backpropagation within each latent level but not across levels.
This suggests that learning within pyramidal neurons may be more analo-
gous to backpropagation (see Figure 12). One possible candidate is back-
propagating action potentials (Stuart & Sakmann, 1994; Williams & Stuart,
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2000), which propagate a signal of neural activity back to synaptic inputs
(Stuart, Spruston, Sakmann, & Häusser, 1997; Brunner & Szabadics, 2016),
resulting in a variety of synaptic changes throughout the dendrites (Johen-
ning et al., 2015). While computational models from Schiess, Urbanczik, and
Senn (2016) support this conjecture, further investigation is needed.

6.2 Lateral Inhibition and Normalizing Flows.

6.2.1 Sensory Input Normalization. One of the key computational roles of
early sensory areas appears to be reducing spatiotemporal redundancies—
normalization. In retina, this is performed through lateral inhibition via
horizontal and amacrine cells, removing correlations (Graham et al., 2006;
Pitkow & Meister, 2012). Normalization and prediction are inseparable,
and, accordingly, previous work has framed early sensory processing in
terms of spatiotemporal predictive coding (Srinivasan et al., 1982; Hosoya
et al., 2005; Palmer et al., 2015). This is often motivated in terms of increased
sensitivity or efficiency (Srinivasan et al., 1982; Atick & Redlich, 1990)
due to redundancy reduction (Barlow, 1961a; Barlow et al., 1989), that is,
compression.

If we consider cortex as a hierarchical latent variable model, then early
sensory areas are implicated in parameterizing the conditional likelihood.
The ubiquity of normalization in these areas is suggestive of normaliza-
tion in a flow-based model, implementing the inference direction of a flow-
based conditional likelihood (Agrawal & Dukkipati, 2016; Winkler et al.,
2019). In addition to the sensitivity and efficiency benefits cited above, this
learned, normalized space simplifies downstream generative modeling and
improves generalization (Marino et al., 2020).

6.2.2 Normalization in Thalamus. Normalization also appears to occur in
first-order thalamic relays, such as the lateral geniculate nucleus (LGN).
Dong and Atick (1995) framed LGN in terms of temporal normalization,
with supporting evidence provided by Dan et al. (1996). This has the ef-
fect of removing predictable temporal structure (e.g., static backgrounds).
Under the interpretation above, this is an additional inference stage of a
flow-based conditional likelihood (Marino et al., 2020).

6.2.3 Normalization in Cortex. Normalization, via local lateral inhibition,
is also found throughout cortex (King et al., 2013). Friston (2005) suggested
that this plays the role of inverse covariance (precision) matrices, modeling
dependencies between dimensions within the same latent level of the
hierarchy. This corresponds to parameterizing approximate posteriors
(Rezende & Mohamed, 2015; Kingma et al., 2016) and/or conditional
priors (Huang et al., 2017) with affine normalizing flows with linear
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Figure 13: Visual pathway. The retina and LGN are interpreted as implement-
ing normalizing flows, that is, spatiotemporal predictive coding, reducing spa-
tial and temporal redundancy in the visual input (dashed arrows between gray
circles). LGN is also the lowest level for hierarchical predictions from cortex.
Using prediction errors throughout the hierarchy, forward cortical connections
update latent estimates.

dependencies.4 Normalizing flows offers a more general framework for
describing these computations. Further, Friston (2005) assumes that these
dependencies are modeled using symmetric weights, whereas normalizing
flows permits non-symmetric schemes, e.g., using autoregressive models
(Kingma et al., 2016) or ensembles (Uria et al., 2014). These weights can also
be restricted to local spatial regions (Vahdat & Kautz, 2020). Similar nor-
malization operations can also parameterize temporal dynamics (Marino
et al., 2020), akin to Friston’s generalized coordinates (Friston, 2008a). The
overall computational scheme is shown in Figure 13.

7 Discussion

We have reviewed predictive coding and VAEs, identifying their shared
history and formulations. These connections provide an invaluable link
between leading areas of theoretical neuroscience and machine learning,
hopefully facilitating the transfer of ideas across fields. We have initiated

4
Specifically, Friston (2005) employs zero-phase component analysis (ZCA) whitening,

whereas Kingma et al. (2016) explored Cholesky whitening.
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this process by proposing two novel correspondences suggested by this
perspective: (1) dendrites of pyramidal neurons and deep networks and
(2) lateral inhibition and normalizing flows. Placing pyramidal neurons in
correspondence with deep networks departs from the traditional one-to-
one analogy of biological and artificial neurons, raising questions regard-
ing dendritic computation and backpropagation. Normalizing flows offers
a more general framework for normalization via lateral inhibition. Connect-
ing these areas may provide new insights for both machine learning and
neuroscience, helping us move beyond overly simplistic comparisons.

7.1 Predictive Coding → VAEs. Although considerable independent
progress has recently occurred in VAEs, such models are often still trained
on relatively simple, standardized data sets of static images. Thus, predic-
tive coding and neuroscience may still hold insights for improving these
models for real-world settings. For instance, the correspondences outlined
above may offer new architectural insights in designing deep networks and
normalizing flows, for example, drawing on dendritic morphology, short-
term plasticity, and connectivity. Predictive coding has also used prediction
precision as a form of attention (Feldman & Friston, 2010). More broadly,
neuroscience may provide insights into interfacing VAEs with other com-
putations, as well as within embodied agents.

7.2 VAEs → Predictive Coding. Another motivating factor in connect-
ing these areas stems from a desire for large-scale, testable models of pre-
dictive coding. While predictive coding offers general considerations for
neural activity, e.g., predictions, prediction errors, and extra-classical recep-
tive fields (Rao & Ballard, 1999), it is difficult to align such hypotheses with
real data due to the many possible design choices (Gershman, 2019). Cur-
rent models are often implemented in simplified settings, with few, if any,
learned parameters. VAEs, in contrast, offer a large-scale test-bed for im-
plementing models and evaluating them on natural stimuli. This may offer
a more nuanced perspective over current efforts to compare biological and
artificial neural activity (Yamins et al., 2014).

While we have reviewed many topics across neuroscience and machine
learning, for brevity, we have focused exclusively on passive perceptual set-
tings. However, separate, growing bodies of work are incorporating predic-
tive coding (Adams, Shipp, & Friston, 2013) and VAEs (Ha & Schmidhuber,
2018) within active settings such as reinforcement learning. We are hopeful
that the connections in this paper will inspire further insight in such areas.

Appendix A: Variational Bound Derivation

We can express the KL divergence between q(z|x) and pθ (z|x) as

DKL(q(z|x)||pθ (z|x)) = Ez∼q(z|x)
[
log q(z|x) − log pθ (z|x)

]
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= Ez∼q(z|x)

[
log q(z|x) − log

(
pθ (x, z)
pθ (x)

)]
= Ez∼q(z|x)

[
log q(z|x) − log pθ (x, z)

]︸ ︷︷ ︸
−L(x;q,θ )

+ log pθ (x). (A.1)
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