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Neural networks are versatile tools for computation, having the ability
to approximate a broad range of functions. An important problem in
the theory of deep neural networks is expressivity; that is, we want to
understand the functions that are computable by a given network. We
study real, infinitely differentiable (smooth) hierarchical functions im-
plemented by feedforward neural networks via composing simpler func-
tions in two cases: (1) each constituent function of the composition has
fewer inputs than the resulting function and (2) constituent functions are
in the more specific yet prevalent form of a nonlinear univariate function
(e.g., tanh) applied to a linear multivariate function. We establish that
in each of these regimes, there exist nontrivial algebraic partial differen-
tial equations (PDEs) that are satisfied by the computed functions. These
PDEs are purely in terms of the partial derivatives and are dependent
only on the topology of the network. Conversely, we conjecture that such
PDE constraints, once accompanied by appropriate nonsingularity condi-
tions and perhaps certain inequalities involving partial derivatives, guar-
antee that the smooth function under consideration can be represented by
the network. The conjecture is verified in numerous examples, including
the case of tree architectures, which are of neuroscientific interest. Our
approach is a step toward formulating an algebraic description of func-
tional spaces associated with specific neural networks, and may provide
useful new tools for constructing neural networks.
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PDE Characterization of Functions Computed by Neural Networks 3205

1 Introduction

1.1 Motivation. A central problem in the theory of deep neural net-
works is to understand the functions that can be computed by a partic-
ular architecture (Raghu, Poole, Kleinberg, Ganguli, & Dickstein, 2017;
Poggio, Banburski, & Liao, 2019). Such functions are typically superposi-
tions of simpler functions, that is, compositions of functions of fewer vari-
ables. This article aims to study superpositions of real smooth (i.e., infinitely
differentiable or C*°) functions that are constructed hierarchically (see Fig-
ure 3). Our core thesis is that such functions (also referred to as hierarchical
or compositional interchangeably) are constrained in the sense that they sat-
isfy certain partial differential equations (PDEs). These PDEs are dependent
only on the topology of the network and could be employed to characterize
smooth functions computable by a given network.

1.1.1 Example1. One of the simplest examples of a superposition is when
a trivariate function is obtained from composing two bivariate functions; for
instance, let us consider the composition

F(x,y.z) = g(f(x,y). 2) (1.1)

of functions f = f(x,y)and g = g(u, z) that can be computed by the network
in Figure 1. Assuming that all functions appearing here are twice continu-
ously differentiable (or C?), the chain rule yields

Fx:gufm Fy:gufy~

If either F or F, — say the former — is nonzero, the equations above imply
that the ratio between F, and F, is independent of z:

F,o_ fy
gl 1.2)

Therefore, its derivative with respect to z must be identically zero:

<ﬁ> s ki Y (1.3)
E/, (F)

This amounts to

FyzFx = szFy, (14)
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3206 K. Filom, R. Farhoodi, and K. Kording

g(u, 2) g(wsu + waz + ba)
f(z,y) flwrz + way + by)
z z z
x Y x Y r Y

Figure 1: The architecture on the left (studied in example 1) can compute func-
tions of the form g(f(x, ), z) as in the middle. They involve the smaller class of
functions of the form g(ws f(w1x + way + b1) + waz + by) on the right.

an equation that always holds for functions of form 1.1. Notice that one may
readily exhibit functions that do not satisfy the necessary PDE constraint
Fi.F, = F.F; and so cannot be brought into form 1.1, for example,

xyz+x+y+z. (1.5)

Conversely, if the constraint F.F, = F.F, is satisfied and F. (or F,) is
nonzero, we can reverse this processes to obtain a local expression of the
form 1.1 for F(x, y, z). By interpreting the constraint as the independence of
% of z, one can devise a function f = f(x, y) whose ratio of partial deriva-

tives coincides with % (thisis a calculus fact; see theorem 5). Now that equa-
Yy
tion 1.2 is satisfied, the gradient of F may be written as

Fx E fx 0
VF=|F :7" fy | +E| 0],
E, 1o 1

that is, as a linear combination of gradients of f(x,y) and z. This guaran-
tees that F(x, y, z) is (at least locally) a function of the latter two (see the
discussion at the beginning of section 3). So there exists a bivariate function
g defined on a suitable domain with F(x, y, z) = g(f(x, y), z). Later in the ar-
ticle, we generalize this toy example to a characterization of superpositions
computed by tree architectures (see theorem 3).

Functions appearing in the context of neural networks are more spe-
cific than a general superposition such as equation 1.1; they are predomi-
nantly constructed by composing univariate nonlinear activation functions
and multivariate linear functions defined by weights and biases. In the
case of a trivariate function F(x, y, z), we should replace the representation
g(f(x,y), z) studied so far with

F(x,y,z) = g(ws f(w1x + way + b1) + wyz + by). (1.6)
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Figure 2: Implementations of superpositions of the form F(x, y, z) = g(f(x, y),
h(x, z)) (studied in examples 2 and 7) by three-layer neural networks.

Assuming that activation functions f and gare differentiable Now new con-
straints of the form 1.3 are imposed. The ratio - £ is equal to 2, hence it is

not only independent of z as equation 1.3 suggests, but indeed a constant
function. So we arrive at

(8).=(7),~ ().~

or, equivalently,
FyF =FuF, FyF=FyF, F.F =F.F,.

Again, these equations characterize differentiable functions of the form 1.6;
this is a special case of theorem 7 below.

1.1.2 Example2. The preceding example dealt with compositions of func-
tions with disjoint sets of variables and this facilitated our calculations. But
this is not the case for compositions constructed by most neural networks,
for example, networks may be fully connected or may have repeated inputs.
For instance, let us consider a superposition of the form

F(x,y.z) = g(f(x, y), h(x, 2)) (1.7)

of functions f(x,y), h(x, z), and g(u, v) as implemented in Figure 2. Apply-
ing the chain rule tends to be more complicated than the case of equation
1.1 and results in identities

Fx :gufx +guhfm Fy :gufy’ Fz :gnhz- (18)

Nevertheless, it is not hard to see that there are again (perhaps cumber-
some) nontrivial PDE constraints imposed on the hierarchical function F, a
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3208 K. Filom, R. Farhoodi, and K. Kording

fact that will be established generally in theorem 1. To elaborate, notice that
identities in equation 1.8 together imply

F, = A(x, y)F, + B(x, 2)F., (1.9)

where A := ;‘ and B := h‘ are independent of z and y, respectively. Repeat-

edly differentiating this identity (if possible) with respect to y, z results in
linear dependence relations between partial derivatives of F (and hence
PDEs) since the number of partial derivatives of F, of order at most n with
respect to y, z grows quadratically with 7, while on the right-hand side,
the number of possibilities for coefficients (partial derivatives of A and B
with respect to y and z, respectively) grows only linearly. Such dependen-
cies could be encoded by the vanishing of determinants of suitable matrices
formed by partial derivatives of F. In example 7, by pursuing the strategy
just mentioned, we complete this treatment of superpositions 1.7 by deriv-
ing the corresponding characteristic PDEs that are necessary and (in a sense)
sufficient conditions on F that it be in the form of equation 1.7. Moreover,
in order to be able to differentiate several times, we shall assume that all
functions are smooth (or C*) hereafter.

1.2 Statements of Main Results. Fixing a neural network hierarchy for
composing functions, we shall prove that once the constituent functions
of corresponding superpositions have fewer inputs (lower arity), there ex-
ist universal algebraic partial differential equations (algebraic PDEs) that
have these superpositions as their solutions. A conjecture, which we ver-
ify in several cases, states that such PDE constraints characterize a generic
smooth superposition computable by the network. Here, genericity means
a nonvanishing condition imposed on an algebraic expression of partial
derivatives. Such a condition has already occurred in example 1 where in
the proof of the sufficiency of equation 1.4 for the existence of a represen-
tation of the form 1.1 for a function F(x, y, z), we assumed either F, or F,
is nonzero. Before proceeding with the statements of main results, we for-
mally define some of the terms that have appeared so far.

Terminology

+ We take all neural networks to be feedforward. A feedforward neural
network is an acyclic hierarchical layer to layer scheme of computa-
tion. We also include residual networks (ResNets) in this category: an
identity function in a layer could be interpreted as a jump in layers.
Tree architectures are recurring examples of this kind. We shall al-
ways assume that in the first layer, the inputs are labeled by (not nec-
essarily distinct) labels chosen from coordinate functions xi, ..., x,,
and there is only one node in the output layer. Assigning functions to
nodes in layers above the input layer implements a real scalar-valued

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/yEEYL6L/Y0TE/CLIEE/P!

£20¢ Jequaydes /0 uo jsenb Aq ypd- L L0



PDE Characterization of Functions Computed by Neural Networks 3209

ry T2 X3 21 Ty T T3 T1

Figure 3: The neural network on the left can compute the hierarchical function

F(x1,x2,x3) = 1(3)< 1(2)< fl)(xlsXZ)s fz(l)(XZ,X3)), fza)(fz(l)(xz,xs)s fg(l)(x3,x1)>)

once appropriate functions are assigned to its nodes as on the right.

function F = F(xy, ..., x,) as the superposition of functions appear-
ing at nodes (see Figure 3).

¢ In our setting, an algebraic PDE is a nontrivial polynomial relation
such as

® (Fxl, N N N O (1.10)

among the partial derivatives (up to a certain order) of a smooth

function F = F(x, ..., x,). Here, for a tuple « := (1, .. ., o) of non-

negative integers, the partial derivative gaifimuf (which is of order

X0

lee| := a1 + - - - + a,) is denoted by Fy. For instance, asking for a poly-
nomial expression of partial derivatives of F to be constant amounts
to n algebraic PDEs given by setting the first-order partial derivatives
of that expression with respect to x1, ..., X, to be zero.

* A nonvanishing condition imposed on smooth functions F =
F(xq, ..., x,) is asking for these functions not to satisfy a particular
algebraic PDE, namely,

v (F e By Fo Fysy. o o ) £0, (1.11)

for a nonconstant polynomial W. Such a condition could be deemed
pointwise since if it holds at a point p € R", it persists throughout a
small enough neighborhood. Moreover, equation 1.11 determines an
open dense subset of the functional space; so, it is satisfied generically.

Theorem 1. Let N be a feedforward neural network in which the number of in-
puts to each node is less than the total number of distinct inputs to the network.
Superpositions of smooth functions computed by this network satisfy nontrivial
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3210 K. Filom, R. Farhoodi, and K. Kording

constraints in the form of certain algebraic PDEs that are dependent only on the
topology of N.

In the context of deep learning, the functions applied at each node are in
the form of

y o ((w,y): (1.12)

that is, they are obtained by applying an activation function o to a linear
functional y  (w,y). Here, as usual, the bias term is absorbed into the
weight vector. The bias term could also be excluded via composing o with
a translation since throughout our discussion, the only requirement for a
function o to be the activation function of a node is smoothness, and acti-
vation functions are allowed to vary from a node to another. In our setting,
o in equation 1.12 could be a polynomial or a sigmoidal function such as
hyperbolic tangent or logistic functions, but not ReLU or maxout activa-
tion functions. We shall study functions computable by neural networks as
either superpositions of arbitrary smooth functions or as superpositions of
functions of the form 1.12, which is a more limited regime. Indeed, the ques-
tion of how well arbitrary compositional functions, which are the subject of
theorem 1, may be approximated by a deep network has been studied in
the literature (Mhaskar, Liao, & Poggio, 2017; Poggio, Mhaskar, Rosasco,
Miranda, & Liao, 2017).

In order to guarantee the existence of PDE constraints for superpositions,
theorem 1 assumes a condition on the topology of the network. However,
theorem 2 states that by restricting the functions that can appear in the su-
perposition, one can still obtain PDE constraints even for a fully connected
multilayer perceptron:

Theorem 2. Let N be an arbitrary feedforward neural network with at least two
distinct inputs, with smooth functions of the form 1.12 applied at its nodes. Any
function computed by this network satisfies nontrivial constraints in the form of
certain algebraic PDEs that are dependent only on the topology of N

1.2.1 Example 3. As the simplest example of PDE constraints imposed on
compositions of functions of the form 1.12, recall that d’Alembert’s solution
to the wave equation,

Uy = CCllyy, (1.13)

is famously given by superpositions of the form f(x + ct) + g(x — ct). This
function can be implemented by a network with two inputs x, t and with
one hidden layer in which the activation functions f, g are applied (see Fig-
ure 4). Since we wish for a PDE that works for this architecture universally,
we should get rid of c. The PDE 1.13 may be written as ;’i = ¢2; that is
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o(a"u+bv"v)

flax + bt) gla'z +0't)

x t x t

Figure 4: The neural network on the left can compute the function F(x,t) =
o(a” f(ax +bt) + b"g(a’x + U't)) once, as on the right, the activation functions
o, f.g and appropriate weights are assigned to the nodes. Such functions are
the subject of examples 3 and 11.

the ratio ;- must be constant. Hence, for our purposes, the wave equation
should be written as (;‘i) = (%) =0, or equivalently,
xx X XX t

UnppUyy — Upllygy = 0, Upgplly — Upliyyy = 0.

A crucial point to notice is that the constant 2 is nonnegative; thus an in-
equality of the form % > 0 or Uy uy > 0is imposed as well. In example 11,
we visit this network again and study functions of the form

F(x,t) =o(a" f(ax + bt) + b'g(a'x + b't)) (1.14)

via a number of equalities and inequalities involving partial derivatives
of F.

The preceding example suggests that smooth functions implemented by
a neural network may be required to obey a nontrivial algebraic partial
differential inequality (algebraic PDI). So it is convenient to have the fol-
lowing setup of terminology.

Terminology

* An algebraic PDI is an inequality of the form
O (Fus o By B By o B ) >0 (1.15)
involving partial derivatives (up to a certain order) where © is a real

polynomial.

Remark 1. Withoutany loss of generality, we assume that the PDIs are strict
since a nonstrict one such as ® > 0 could be written as the union of ® > 0
and the algebraic PDE © = 0.
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3212 K. Filom, R. Farhoodi, and K. Kording

Theorem 1 and example 1 deal with superpositions of arbitrary smooth
functions while theorem 2 and example 3 are concerned with superposi-
tions of a specific class of smooth functions, functions of the form 1.12.
In view of the necessary PDE constraints in both situations, the following
question then arises: Are there sufficient conditions in the form of algebraic
PDEs and PDIs that guarantee a smooth function can be represented, at least
locally, by the neural network in question?

Conjecture 1. Let N be a feedforward neural network whose inputs are labeled by
the coordinate functions x1, . .., X,. Suppose we are working in the setting of one
of theorems 1 or 2. Then there exist

« finitely many nonvanishing conditions {W; ((Fe) <) # 0}
« finitely many algebraic PDEs {®; ((Fe ) g/<,) = 0}],
« finitely many algebraic PDIs {© ((Be)yo=r) > O}k

i

with the following property: For any arbitrary point p € R", the space of smooth
functions F = F(x1, ..., x,) defined in a vicinity' of p that satisfy W; # 0 at p and
are computable by N (in the sense of the regime under consideration) is nonvacuous
and is characterized by PDEs ®; = 0 and PDIs O > 0.

To motivate the conjecture, notice that it claims the existence of
functionals

{F = W ((FX“)Ia\sr)}i’ {F = @ ((FX“)Ia\sr)}j’ {F = O ((FX“)\a\sr)}k’

which are polynomial expressions of partial derivatives, and hence con-
tinuous in the C"-norm,? such that in the space of functions computable
by N, the open dense® subset given by {¥; # 0}; can be described in
terms of finitely many equations and inequalities as the locally closed sub-
set {®; = O}j U {®k > 0};. (Also see corollary 1.) The usage of C'-norm
here is novel. For instance, with respect to LP-norms, the space of func-
tions computable by N lacks such a description and often has unde-
sirable properties like nonclosedness (Petersen, Raslan, & Voigtlaender,
2020). Besides, describing the functional space associated with a neural

"To be mathematically precise, the open neighborhood of p on which F admits a com-
positional representation in the desired form may be dependent on F and p. So conjecture
11is local in nature and must be understood as a statement about function germs.

Convergence in the C'-norm is defined as the uniform convergence of the function
and its partial derivatives up to order r.

In conjecture 1, the subset cut off by equations W¥; = 0 is meager: It is a closed and
(due to the term nonvacuous appearing in the conjecture) proper subset of the space of
functions computable by A/, and a function implemented by N at which a W; vanishes
could be perturbed to another computable function at which all of ¥;’s are nonzero.
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PDE Characterization of Functions Computed by Neural Networks 3213

network N with finitely many equations and inequalities also has an alge-
braic motivation: it is reminiscent of the notion of a semialgebraic set from
real algebraic geometry. To elaborate, take the activation functions to be
polynomials. Such neural networks have been studied in the literature (Du
& Lee, 2018; Soltanolkotabi, Javanmard, & Lee, 2018; Venturi, Bandeira, &
Bruna, 2018; Kileel, Trager, & Bruna, 2019). By bounding the degrees of
constituent functions of superpositions computed by a polynomial neural
network, the functional space formed by these superpositions sits inside a
finite-dimensional ambient space of real polynomials and is hence finite-
dimensional and amenable to techniques of algebraic geometry. One can,
for instance, in each degree associate a functional variety to a neural net-
work N whose dimension could be interpreted as a measure of expressive
power (Kileel et al., 2019). Our approach to describing real functions com-
putable by neural networks via PDEs and PDIs has ramifications to the
study of polynomial neural networks as well. Indeed, if F = F(x1, ..., xy)
is a polynomial, an algebraic PDE of the form 1.10 translates to a polyno-
mial equation of the coefficients of F, and the condition that an algebraic
PDI such as equation 1.15 is valid throughout R" can again be described
via equations and inequalities involving the coefficients of F (see examples
12 and 13). A notable feature here is the claim of the existence of a universal
characterization dependent only on the architecture from which a descrip-
tion as a semialgebraic set could be read off in any degree.

Conjecture 1 is settled in (Farhoodi, Filom, Jones, and Kording, 2019) for
trees (a particular type of architectures) with distinct inputs, a situation in
which no PDI is required, and the inequalities should be taken to be trivial.
Throughout the article, the conjecture above will be established for a num-
ber of architectures; in particular, we shall characterize tree functions (cf.
theorems 3 and 4 below).

1.3 Related Work. There is an extensive literature on the expressive
power of neural networks. Although shallow networks with sigmoidal ac-
tivation functions can approximate any continuous function on compact
sets (Cybenko, 1989; Hornik, Stinchcombe, & White, 1989; Hornik, 1991;
Mhaskar, 1996), this cannot be achieved without the hidden layer getting
exponentially large (Eldan & Shamir, 2016; Telgarsky, 2016; Mhaskar et al.,
2017; Poggio et al., 2017). Many articles thus try to demonstrate how the
expressive power is affected by depth. This line of research draws on a
number of different scientific fields including algebraic topology (Bian-
chini & Scarselli, 2014), algebraic geometry (Kileel et al., 2019), dynam-
ical systems (Chatziafratis, Nagarajan, Panageas, & Wang, 2019), tensor
analysis (Cohen, Sharir, & Shashua, 2016), Vapnik—-Chervonenkis theory
(Bartlett, Maiorov, & Meir, 1999), and statistical physics (Lin, Tegmark, &
Rolnick, 2017). One approach is to argue that deeper networks are able
to approximate or represent functions of higher complexity after defining
a “complexity measure” (Bianchini & Scarselli, 2014; Montufar, Pascanu,
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Cho, & Bengio, 2014; Poole, Lahiri, Raghu, Sohl-Dickstein, & Ganguli, 2016;
Telgarsky, 2016; Raghu et al., 2017). Another approach more in line with this
article is to use the “size” of an associated functional space as a measure of
representation power. This point of view is adapted in Farhoodi et al. (2019)
by enumerating Boolean functions, and in Kileel et al. (2019) by regarding
dimensions of functional varieties as such a measure.

A central result in the mathematical study of superpositions of func-
tions is the celebrated Kolmogorov-Arnold representation theorem (Kol-
mogorov, 1957), which resolves (in the context of continuous functions)
the thirteenth problem on Hilbert’s famous list of 23 major mathematical
problems (Hilbert, 1902). The theorem states that every continuous func-

tion F(x1, ..., x,) on the closed unit cube may be written as
2n+1
F(xp,..., %) = Zﬁ Zas,,(x, (1.16)

for suitable continuous univariate functions f;, ¢; ; defined on the unit in-
terval. (See Vituskin and Henkin, 1967, chap. 1, or Vituskin, 2004, for a his-
torical account.) In more refined versions of this theorem (Sprecher, 1965;
Lorentz, 1966), the outer functions f; are arranged to be the same, and the
inner ones ¢; ; are be taken to be in the form of 1;¢; with A;’s and ¢;’s
independent of F. Based on the existence of such an improved represen-
tation, Hecht-Nielsen argued that any continuous function F can be im-
plemented by a three-layer neural network whose weights and activation
functions are determined by the representation (Hecht-Nielsen, 1987). On
the other hand, it is well known that even when F is smooth, one cannot
arrange for functions appearing in representation 1.16 to be smooth (Vi-
tuskin, 1964). As a matter of fact, there exist continuously differentiable
functions of three variables that cannot be represented as sums of super-
positions of the form g (f(x,y), z) with f and g being continuously differ-
entiable as well (Vituskin, 1954) whereas in the continuous category, one
can write any trivariate continuous functions as a sum of nine superpo-
sitions of the form g (f(x,y), z) (Arnold, 2009b). Due to this emergence of
nondifferentiable functions, it has been argued that Kolmogorov-Arnold’s
theorem is not useful for obtaining exact representations of functions via
networks (Girosi & Poggio, 1989), although it may be used for approxima-
tion (Ktarkova, 1991, 1992). More on algorithmic aspects of the theorem and
its applications to the network theory can be found in Brattka (2007).
Focusing on a superposition

F= f1<L>(f1<L—1>( (L-2)( _),...),._.,f;L-” (f;]L*Z)(...),...),...,
AP (FE200.00)) (1.17)
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PDE Characterization of Functions Computed by Neural Networks 3215

of smooth functions (which can be computed by a neural network as in
Figure 3), the chain rule provides descriptions for partial derivatives of F

in terms of partial derivatives of functions f]@ that constitute the super-

position. The key insight behind the proof of theorem 1 is that when the
former functions have fewer variables compared to F, one may eliminate
the derivatives of f;’)’s to obtain relations among partial derivatives of F.
This idea of elimination has been utilized in Buck (1981b) and Rubel (1981)
to prove the existence of universal algebraic differential equations whose
C> solutions are dense in the space of continuous functions. The fact that
there will be constraints imposed on derivatives of a function F that is writ-
ten as a superposition of differentiable functions was employed by Hilbert
himself to argue that certain analytic functions of three variables are not
superpositions of analytic functions of two variables (Arnold, 2009a, p. 28),
and by Ostrowski to exhibit an analytic bivariate function that cannot be
represented as a superposition of univariate smooth functions and multi-
variate algebraic functions due to the fact that it does not satisfy any non-
trivial algebraic PDE (Vituskin, 2004, p. 14; Ostrowski, 1920). The novelty
of our approach is to adapt this point of view to demonstrate theoretical
limitations of smooth functions that neural networks compute either as a
superposition as in theorem 1 or as compositions of functions of the form
1.12 as in theorem 2, and to try to characterize these functions via calculat-
ing PDE constraints that are sufficient too (cf. conjecture 1). Furthermore,
necessary PDE constraints enable us to easily exhibit functions that cannot
be computed by a particular architecture; see example 1. This is reminiscent
of the famous Minsky XOR Theorem (Minsky & Papert, 2017). An interest-
ing nonexample from the literature is F(x, y, z) = xy + yz + zx which cannot
be written as a superposition of the form 1.7 even in the continuous cate-
gory (Pélya & Szego, 1945; Buck, 1979, 1981a; von Golitschek, 1980; Arnold,
2009a).

To the best of our knowledge, the closest mentions of a characterization
of a class of superpositions by necessary and sufficient PDE constraints in
the literature are papers (Buck, 1979, 1981a) by R. C. Buck. The first one
(along with its earlier version, Buck, 1976) characterizes superpositions of
the form g(f(x,y), z) in a similar fashion as example 1. Also in those pa-
pers, superpositions such as g( f(x, y), h(x, z)) (which appeared in example
2) are discussed although only the existence of necessary PDE constraints
is shown; see (Buck, 1979, lemma 7), and (Buck, 1981a, p. 141). We exhibit
a PDE characterization for superpositions of this form in example 7. These
papers also characterize sufficiently differentiable nomographic functions of
the form o (f(x) + g(y)) and & (f(x) + §(y) + h(z)).

A special class of neural network architectures is provided by rooted
trees where any output of a layer is passed to exactly one node from one of
the layers above (see Figure 8). Investigating functions computable by trees
is of neuroscientific interest because the morphology of the dendrites of a
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X; T

Figure5: Theorems 3 and 4 impose constraints 1.18 and 1.19 for any three leaves
X;, xj, and xx. In the former theorem, the constraint should hold whenever (as
on the left) there exists a rooted full subtree separating x; and x; from x;, while
in the latter theorem, the constraint is imposed for certain other triples as well
(as on the right).

neuron processes information through a tree that is often binary (Kollins
& Davenport, 2005; Gillette & Ascoli, 2015). Assuming that the inputs to
a tree are distinct, in our previous work (Farhoodi et al., 2019), we have
completely characterized the corresponding superpositions through for-
mulating necessary and sufficient PDE constraints; a result that answers
conjecture 1 in positive for such architectures.

Remark 2. The characterization suggested by the theorem below is a gen-
eralization of example 1 which was concerned with smooth superpositions
of the form 1.1. The characterization of such superpositions as solutions of
PDE 1.4 has also appeared in a paper (Buck, 1979) that we were not aware
of while writing (Farhoodi et al., 2019).

Theorem 3 (Farhoodi et al., 2019). Let T be a rooted tree with n leaves that are
labeled by the coordinate functions x1, ..., x,. Let F = F(x1, ..., x,) be a smooth
function implemented on this tree. Then for any three leaves of T corresponding to
variables x;, x;, xx of F with the property that there is a (rooted full) subtree of T
containing the leaves x;, xj while missing the leaf xy (see Figure 5), F must satisfy

Fx,»xkFx/ = inxkFx,~ (1.18)

Conversely, a smooth function F defined in a neighborhood of a point p € R" can
be implemented by the tree T provided that equation 1.18 holds for any triple
(xi, x i xi) of its variables with the above property; and moreover, the non-vanishing
conditions below are satisfied:

* For any leaf x; with siblings either F, (p) # O or there is a sibling leaf x; with
F, (p) #0.

This theorem was formulated in Farhoodi et al. (2019) for binary trees
and in the context of analytic functions (and also that of Boolean functions).
Nevertheless, the proof carries over to the more general setting above. Be-
low, we formulate the analogous characterization of functions that trees
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Ti Tir Ty &€

Figure 6: Theorem 4 imposes constraint 1.20 for any four leaves x;, x; and x j Xj
that belong to two different rooted full subtrees emanating from a node.

compute via composing functions of the form 1.12. Proofs of theorems 3
and 4 are presented in section 4.

Theorem 4. Let T be a rooted tree admitting n leaves that are labeled by the co-
ordinate functions x1, ..., x,. We formulate the following constraints on smooth
functions F = F(xq, ..., X,):

* For any two leaves x; and x; of T, we have
Fx;xkij = Fx/xkFx,- (1.19)

for any other leaf xi of T that is not a leaf of a (rooted full) subtree that has
exactly one of x; or x; (see Figure 5). In particular, equation 1.19 holds for
any xy. if the leaves x; and x; are siblings, and for any x; and x; if the leaf xi
is adjacent to the root of T.

* For any two (rooted full) subtrees Ty and T, that emanate from a node of T
(see Figure 6), we have

FuFo, [Bunens By Fon ey, = ey Py = FoFn, |

]

= (Fx,x,-/l:‘xj - inijxi/) (Fx,-x/rPx] +inFx/x/-/) (120)

if x;, xy are leaves of Ty and x;, xj are leaves of T.

These constraints are satisfied if F(x1, ..., x,) is a superposition of functions of
the form'y — o ((w,y)) according to the hierarchy provided by T. Conversely, a
smooth function F defined on an open box-like region* B C R" can be written as
such a superposition on B provided that the constraints 1.19 and 1.20 formulated
above hold and, moreover, the nonvanishing conditions below are satisfied through-
out B:

*An open box-like region in R" is a product I; x --- x I, of open intervals.
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3218 K. Filom, R. Farhoodi, and K. Kording

* For any leaf x; with siblings either Fy, # 0 or there is a sibling leaf x; with
inr #0;
* For any leaf x; without siblings Fy, # 0.

The constraints that appeared in theorems 3 and 4 may seem tedious, but
they can be rewritten more conveniently once the intuition behind them is
explained. Assuming that partial derivatives do not vanish (a nonvanish-
ing condition) so that division is allowed, equations 1.18 and 1.19 may be
written as

F, F. F,
ukii 3 =0 p== ( X ) = (—7) s (1.21)
1:3(]' X E‘Ck X ka X;

i

while equation 1.20 is
- % =0. (1.22)

Equation 1.21 simply states that the ratio % isindependent of x;. Notice that
in comparison with theorem 3, theorem 7], requires the equation F; xkFx/ =
Fy .y Fy to hold in a greater generality and for more triples (x;, x;, x) of leaves
(see Figure 5).° The second simplified equation 1.22, holds once the function
ﬁi of (x1, ..., x,) may be split into a product such as

“

E]l(...,xi,...,xi/,...)E]z(...,x]',...,Xjr,...).

Lemma 4 discusses the necessity and sufficiency of these equations for the
existence of such a splitting.

Remark 3. A significant feature of theorem 7 is that once the appropriate
conditions are satisfied on a box-like domain, the smooth function under
consideration may be written as a superposition of the desired form on the
entirety of that domain. On the contrary, theorem 3 is local in nature.

Aside from neuroscientific interest, studying tree architectures is impor-
tant also because any neural network can be expanded into a tree network

A piece of terminology introduced in Farhoodi et al. (2019) may be illuminating here.
A member of a triple (x;, x;, xx) of (not necessarily distinct) leaves of 7 is called the out-
sider of the triple if there is a (rooted full) subtree of 7 that misses it but has the other
two members. Theorem 3 imposes inxkFXj = Fx,'xksz whenever x; is the outsider, while
theorem 4 imposes the constraint whenever x; and x; are not outsiders.
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Neural Network Tree

Tree Expansion of the
Neural Network

NN

—
Figure 7: A multilayer neural network can be expanded to a tree. The figure is
adapted from Farhoodi et al. (2019).

with repeated inputs through a procedure called TENN (the Tree
Expansion of the Neural Network; see Figure 7). Tree architectures with
repeated inputs are relevant in the context of neuroscience too because the
inputs to neurons may be repeated (Schneider-Mizell et al., 2016; Gerhard,
Andrade, Fetter, Cardona, & Schneider-Mizell, 2017). We have already seen
an example of a network along with its TENN in Figure 2. Both networks
implement functions of the form F(x, y, z) = g(f(x, y), h(x, z)). Even for this
simplest example of a tree architecture with repeated inputs, the derivation
of characteristic PDEs is computationally involved and will be done in ex-
ample 7. This verifies conjecture 1 for the tree that appeared in Figure 2.

1.4 Outline of the Article. Theorems 1 and 2 are proven in section 2
where it is established that in each setting, there are necessary PDE condi-
tions for expressibility of smooth functions by a neural network. In section
3 we verify conjecture 1 in several examples by characterizing computable
functions via PDE constraints that are necessary and (given certain nonva-
nishing conditions) sufficient. This starts by studying tree architectures in
section 3.1. In example 7, we finish our treatment of a tree function with
repeated inputs initiated in example 2; and, moreover, we present a num-
ber of examples to exhibit the key ideas of the proofs of theorems 3 and
4, which are concerned with tree functions with distinct inputs. The sec-
tion then proceeds with switching from trees to other neural networks in
section 3.2 where, building on example 3, example 11 demonstrates why
the characterization claimed by conjecture 1 involves inequalities. We end
section 3 with a brief subsection on PDE constraints for polynomial neural
networks. Examples in section 3.1 are generalized in the next section to a
number of results establishing conjecture 1 for certain families of tree ar-
chitectures: Proofs of theorems 3 and 4 are presented in section 4. The last
section is devoted to few concluding remarks. There are two appendices
discussing technical proofs of propositions and lemmas (appendix A), and
the basic mathematical background on differential forms (appendix B).
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2 Existence of PDE Constraints

The goal of the section is to prove theorems 1 and 2. Lemma 1 below is our
main tool for establishing the existence of constraints:

Lemma 1. Any collection pi(t1,....tw), ..., pi(t1, . .., tw) of polynomials on m
indeterminates are algebraically dependent provided that | > m. In other words, if
I > m, there exists a nonconstant polynomial & = ®(sy, ..., s;) dependent only
on the coefficients of p;’s for which

S (p1(ts oo stm)s o it oo tn)) = 0.

Proof. For a positive integer a, there are precisely (”IH) monomials such
as pi'...p)" with their total degree a;+---+a; not greater than a. But
each of them is a polynomial of ¢, ..., t, of total degree at most ad where
d := max{degp1, ..., degp}. Fora large enough, (“) is greater than (“ ")
because the degree of the former as a polynomial of a is I, while the de-
gree of the latter is m. For such an 4, the number of monomials p“ll, el p‘,”
is larger than the dimension of the space of polynomials of t1, ..., t, of to-
tal degree at most ad. Therefore, there exists a linear dependency among
these monomials that amounts to a nontrivial polynomial relation among

P1s---s PI- O
Proof of Theorem 1. Let F = F(xy, ..., x,) be a superposition of smooth
functions
1 1 i L)
A R AP 2.1)

according to the hierarchy provided by A" where £, ..., f© are the func-
tions appearing at the neurons of the ith layer above the 1nput layer (in
the last layer, f]i,LL ):1 appears at the output neuron). The total number of
these functions is N := Ny + - - - + N, namely, the number of the neurons
of the network. By the chain rule, any partial derivative Fw. of the super-
position may be described as a polynomial of partial derivatives of order
not greater than |«| of functions that appeared in equation 2.1. These poly-
nomials are determined solely by how neurons in consecutive layers are
connected to each other, that is, the architecture. The function F of n vari-
ables admits ("7") — 1 partial derivatives (excluding the function itself) of
order at most 7, whereas the same number for any of the functions listed in
equation 2.1 is at most ("7 1) — 1because by the hypothesis, each of them is

n—1
dependent on less than n variables. Denote the partial derivatives of order

atmost r of functions f]@ (evaluated at appropriate points as required by the
chain rule) by indeterminates t;, ..., t,,. Following the previous discussion,
one has m < N ((”" 1) 1) Hence, the chain rule describes the partial
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PDE Characterization of Functions Computed by Neural Networks 3221

derivatives of order not greater than r of F as polynomials (dependent only
on the architecture of N) of t1, . . ., t,,. Invoking lemma 1, the partial deriva-
tives of F are algebraically dependent once

(r:”>—1>N((r:’:1>—1>. 2.2)

Indeed, the inequality holds for r large enough since the left-hand side is a
polynomial of degree 1 of r, while the similar degree for the right-hand side
isn—1. O

Proof of Theorem 2. In this case F = F(xy, ..., x;,) is a superposition of
functions of the form

o (Wi, ). oo (twil )i o (w0 o (W)

LoD (w®, ) (2.3)

appearing at neurons. The jth neuron of the ith layer above the input layer
(1<i<N,1<j<N;) corresponds to the function o(l)((wi), .)) where a

univariate smooth activation function (T ) is applied to the inner product

of the weight vector w i ) with the vector formed by the outputs of neurons

in the previous layer which are connected to the neuron of the ith layer. We
proceed as in the proof of theorem 1. The chain rule describes each partial
derivative F« as a polynomial dependent only on the architecture of com-

ponents of vectors w i along with derivatives of functions o i up to order

at most || (each evaluated at an appropriate point). The total number of
components of all weight vectors coincides with the total number of con-
nections (edges of the underlying graph), and the number of the derivatives
of activation functions is the number of neurons times |«|. We denote the to-
tal number of connections and neurons by C and N, respectively. There are
("*") — 1 partial derivatives F of order at most r (i.e., la| <) of F and, by
the previous discussion, each of them may be written as a polynomial of
C + Nr quantities given by components of weight vectors and derivatives
of activation functions. Lemma 1 implies that these partial derivatives of F
are algebraically dependent provided that

(r:”) “1>Nr+G, (2.4)

an inequality that holds for sufficiently large r as the degree of the left-hand
side with respect toris n > 1. d
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Corollary 1. Let N be a feedforward neural network whose inputs are labeled by
the coordinate functions x1, . . ., x, and satisfies the hypothesis of either of theorems
1 or 2. Define the positive integer r as

» r=n (#neurons — 1) in the case of theorem 1
* ¥ =max (Ln (#neurons)ﬁj , #connections) + 2 in the case of theorem 2,

where #connections and #neurons are, respectively, the number of edges of the un-
derlying graph of N and the number of its vertices above the input layer. Then the
smooth functions F = F(x1, ..., x,) computable by N satisfy nontrivial algebraic
partial differential equations of order r. In particular, the subspace formed by these
functions lies in a subset of positive codimension, which is closed with respect to
the C"-norm.

Proof. One only needs to verify that for the values of r provided by the
corollary the inequalities 2.2 and 2.4 are valid. The former holds if

() _rtn
G

is not smaller than N, that is, if r > n(N — 1). As for equation 2.4, notice that

n n—1
ren —1—err——Nr:r d —NJ);
n n! n!

hence, it suffices to have r ( %1 - N ) > C.Thisholdsif r > Cand ":; — N>
1. The latter inequality is valid once r > n.N 1 + 2, since then:
1 o\ ry\n-1 o2\t
= T > <7> > <Nm + 7>
n! (n!)t T \n - n
2n—1 0=
>N+ 27D s N
O

Remark 4. Itindeed follows from the arguments above that there is a mul-
titude of algebraically independent PDE constraints. By a simple dimension

count, this number is (("*") = 1) = N ((rtﬁl) — 1) in the first case of corol-

lary 1 and (("7") — 1) — Nr in the second case.

n

Remark 5. The approach here merely establishes the existence of nontrivial
algebraic PDEs satisfied by the superpositions. These are not the simplest
PDEs of this kind and hence are not the best candidates for the purpose of
characterizing superpositions. For instance, for superpositions 1.7, which
networks in Figure 2 implement, one has n = 3 and #neurons = 3. Corollary
1 thus guarantees that these superpositions satisfy a sixth-order PDE. Butin
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PDE Characterization of Functions Computed by Neural Networks 3223

example 7, we shall characterize them via two fourth-order PDEs (compare
with Buck, 1979, lemma 7).

Remark 6. Prevalent smooth activation functions such as the logistic func-

tion —— or tangent hyperbolic g’;g:} satisfy certain autonomous algebraic

14+e—*
ODEs. Corollary 1 could be improved in such a setting. If each activation
function o = o (x) appearing in equation 2.3 satisfies a differential equation

of the form

do _ ( do  d
o TP\ @ a

where pis a polynomial, one can change equation 2.4 to ("7") — 1 > Nkmax +
C where kp.x is the maximum order of ODEs that activation functions in
equation 2.3 satisfy.

3 Toy Examples

This section examines several elementary examples demonstrating how
one can derive a set of necessary or sufficient PDE constraints for an ar-
chitecture. The desired PDEs should be universal, that is, purely in terms
of the derivatives of the function F that is to be implemented and not de-
pendent on any weight vector, activation function, or a function of lower
dimensionality that has appeared at a node. In this process, it is often nec-
essary to express a smooth function in terms of other functions. If k < n
and f(x1,...,x,) is written as g(£1, ..., &) throughout an open neighbor-
hood of a point p € R* where each & = &(xy,...,x,) is a smooth func-
tion, the gradient of f must be a linear combination of those of &, ..., &
due to the chain rule. Conversely, if V f € Span{Vé, ..., V&]} near p, by
the inverse function theorem, one can extend (&1, ..., &) to a coordinate
system (&1, ..., &; &k+1, - - -, £») on a small enough neighborhood of p pro-
vided that V& (p), ..., V&(p) are linearly independent; a coordinate system
in which the partial derivative f; vanishes for k < i < n; the fact that im-
plies f can be expressed in terms of &, ..., & near p. Subtle mathematical
issues arise if one wants to write f as g(&1, ..., &) on a larger domain con-
taining p:

* A k-tuple (&, ..., &) of smooth functions defined on an open sub-
set U of R" whose gradient vector fields are linearly independent
at all points cannot necessarily be extended to a coordinate system
(&1, ..., & &ky1, - .., &) for the whole U. As an example, consider
r = /22 + 12 whose gradient is nonzero at any point of R? — {(0, 0)},
but there is no smooth function & : R — {(0,0)} — R with Vi }f Vr
throughout R? — {(0, 0)}. The level set r = 1 is compact, and so the
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restriction of h to it achieves its absolute extrema, and at such points
Vh = AV f (A is the Lagrange multiplier).

* Even if one has a coordinate system (&i,...,&:; &41,...,&,) on
a connected open subset U of R”, a smooth function f:U — R
with f.,,..., fe, = 0 cannot necessarily be written globally as f =
g(&1, ..., &). One example is the function

0 ifx<0

flx,y) = e+ ifx>0,y>0
—e+ ifx>0,y<0

defined on the open subset R? — [0, c0) C R? for which f, = 0. It may
only locally be written as f(x, y) = g(x); thereisno functiong: R — R
with f(x,y) = g(x) for all (x,y) € R? — [0, o). Defining g(xo) as the
value of f on the intersection of its domain with the vertical line
x = xp does not work because, due to the shape of the domain, such
intersections may be disconnected. Finally, notice that f, although
smooth, is not analytic (C”); indeed, examples of this kind do not exist
in the analytic category.

This difficulty of needing a representation f = g(£1, ..., &) that remains
valid not just near a point but over a larger domain comes up only in the
proof of theorem 4 (see remark 3); the representations we work with in the
rest of this section are all local. The assumption about the shape of the do-
main and the special form of functions 1.12 allows us to circumvent the
difficulties just mentioned in the proof of theorem 4. Below we have two
related lemmas that we use later.

Lemma 2. Let B and T be a box-like region in R" and a rooted tree with the coor-
dinate functions x1, . .., x, labeling its leaves as in theorem 7. Suppose a smooth
function F = F(x1,...,x,) on B is implemented on T via assigning activation
functions and weights to the nodes of T. If F satisfies the nonvanishing conditions
described at the end of theorem 7, then the level sets of F are connected and F can
be extended to a coordinate system (F, F,, ..., F,) for B.

Lemma 3. Asmooth function F(x1, ..., x,) of the form o (a1x1 + - - - + a,x,) sat-
isfies Fyx Py, = Fyj By, for any 1 < i, j, k < n. Conversely, if F has a first-order
partial derivative F; which is nonzero throughout an open box-like region B in

its domain, each identity Fyy, F., = F, ., Fy, could be written as (%)xk = 0; that is,
%

for any 1 < i <n, the ratio If—’ should be constant on B, and such requirements
i

guarantee that F admits a representation of the form o (a1x1 + - - - + a,x,) on B.

In view of the discussion so far, it is important to know when a smooth
vector field,

V0, ..., x) = [Vala, .o %) oo Vil oo x5 (3.1)
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onan opensubset U C R" islocally given by a gradient. Clearly, a necessary
condition is to have

Vi, = (V) Vi, je{l,....n). 3.2)

It is well known that if U is simply connected, this condition is sufficient too
and guarantees the existence of a smooth potential function £ on U satisfy-
ing V& =V (Pugh, 2002). A succinct way of writing equation 3.2 is dw = 0
where w is defined as the differential form:

w:=Vidx; +---+V,dx,. (3.3)

Here is a more subtle question also pertinent to our discussion: When may
V be rescaled to a gradient vector field? As the reader may recall from the
elementary theory of differential equations, for a planer vector field, such
a rescaling amounts to finding an integration factor for the corresponding
first order ODE (Boyce & DiPrima, 2012). It turns out that the answer could
again be encoded in terms of differential forms:

Theorem 5. A smooth vector field V is parallel to a gradient vector field near
each point only if the corresponding differential 1-form w satisfies w A dw = 0.
Conversely, if V is nonzero at a point p € R" in the vicinity of which w A dw =0
holds, there exists a smooth function & defined on a suitable open neighborhood of
p that satisfies V || V& # 0. In particular, in dimension 2, a nowhere vanishing
vector field V is locally parallel to a nowhere vanishing gradient vector field, while
in dimension 3, that is the case if and only if V. curlV = 0.

A proof and background on differential forms are provided in ap-
pendix B.

3.1 Trees with Four Inputs. We begin with officially defining the terms
related to tree architectures (see Figure 8).

Terminology

Atree is a connected acyclic graph. Singling out a vertex as its root turns
it into a directed acyclic graph in which each vertex has a unique pre-
decessor/parent. We take all trees to be rooted. The following notions
come up frequently:

e Leaf: a vertex with no successor/child.

* Node: a vertex that is not a leaf, that is, has children.

» Sibling leaves: leaves with the same parent.

* Subtree: all descendants of a vertex along with the vertex itself.
Hence in our convention, all subtrees are full and rooted.
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root

ffffffffffffffff

sibling
leaves

,,,,,,,,,,,,,,,,,

A rooted sub-tree

Figure 8: A tree architecture and the relevant terminology.

T Yy r Yz w

Figure 9: Two tree architectures with four distinct inputs. Examples 4, 5, and 6
characterize functions computable by them.

To implement a function, the leaves pass the inputs to the functions
assigned to the nodes. The final output is received from the root.

The first example of the section elucidates theorem 3.

3.1.1 Example 4. Let us characterize superpositions

F(X, y’z’ U)) :g(f(x7 y),z, 11))

of smooth functions f, g, which correspond to the first tree architecture in
Figure 9. Necessary PDE constraints are more convenient to write for certain
ratios. So to derive them, we assume for a moment that first-order partial
derivatives of F are nonzero, although by a simple continuity argument, the
constraints will hold regardless. Computing the numerator and the denom-
inator of % via the chain rule indicates that this ratio coincides with % and

Yy
is, hence, independent of z, w. One thus obtains
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F F,

Y Y

2 =o, 2) =o,
<Fx>z (F,()w

or, equivalently,
FeFe=FeFy. FuFe = FuF,.

Assuming F, # 0, the preceding constraints are sufficient. The gradient VF
is parallel with

Sl e =

g

where the second entry ? is dependent only on x and y and thus may be

written as F = f ¥ for an appropriate bivariate function f = f(x, y) defined
throughout a small enough neighborhood of the point under consideration
(at which F; is assumed to be nonzero). Such a function exists due to theo-
rem 5. Now we have

0 0

L1 Elo| E |0
VE|| & |+2 + = €Span{Vf, Vz, Vul,
IR TE o] €% {vf }

0 0 1

which guarantees that F(x,y,z, w) may be written as a function of
fx, ), z, w.

The next two examples serve as an invitation to the proof of theorem 4
in section 4 and are concerned with trees illustrated in Figure 9.

3.1.2 Example 5. Let us study the example above in the regime of
activation functions. The goal is to characterize functions of the form
i

F(x,y,z, w) = o(t(ax + by) + cz + dw). The ratios £ must be constant

while IF; and £ are dependent merely on x,y as they are equal to
27/ (ax + by) and o 77'(ax + by), respectively. Equating the corresponding par-
tlal derivatives w1th zero, we obtain the following PDEs:
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3228 K. Filom, R. Farhoodi, and K. Kording

nyFx:FxxFy, Fnyx:nyFyv FyzFx:szFy» waFx:waFy;

F.Fy = FE, F Fo = Fyu)F E.F, = EuE, EuF, = FouEs

F.F = F;F, FwE=FE.F;  FFy=FEu.F.  FwF = Fouob.
One can easily verify that they always hold for functions of the form above.

We claim that under the assumptions of F, # 0 and F,, # 0, these conditions
guarantee the existence of a local representation of the form o (r(ax +by)+

cz +dw) of F. Denoting F‘ by B(x,y) and the constant functions ” *and £ F =
by c1 and ¢, respectively, we have

Ee
Fx ?U ﬂ(x’ y)
F = a1 B(x,
VE=| (] "™ |= ey | V(fx.y) + oz + w),
Fz 1{;2 Co
F, 1 1
where Vf = P& ) . Such a potential function f for pix.y) =
cap(x,y) apBx,y)
Fx
F, . .
exists since
Lin
F,

Fy F, F,
(?) —(F “\g) =Y
y X w
L

and it must be in the form of t(ax + by) as =0 is constant (see lemma
3). Thus, F is a function of t(ax + by) + c2z + w because the gradients are
parallel.

The next example is concerned with the symmetric tree in Figure 9. We
shall need the following lemma:

Lemma 4. Suppose a smooth function q=q (yﬁl), . .,ynl ; ygz), .. .,yﬁ,?) is
written as a product

T (ygl), e, %(111)) 92 (ygz), o yﬁfz)) (3.4)

of smooth functions q1, qo. Then 9,00 = 4,0 4,0 foranyl<a<mnyand1 <
b < ny. Conversely, for a smooth function q defined on an open box-like region
By x By € R™ x IR™, once q is nonzero, these identities guarantee the existence of
such a product representation on By x By.
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PDE Characterization of Functions Computed by Neural Networks 3229

3.1.3 Example 6. We aim for characterizing smooth functions of four vari-
ables of the form F(x, y, z, w) = o (t1(ax + by) + ©2(cz + dw)). Assuming for

amoment that all first-order partial derivatives are nonzero, the ratios f;” f

at; (ax+by)

must be constant while * is equal to G m)

constant multiples & i IFE , 5 ) splits into a product of bivariate functions of

x,y and z, w, a requirement that by lemma 4 is equivalent to the following

and hence (along with its

1. deI lti ties:
llu }u) Xz lw X }u) Z, llu }H) Xw lw x 111) w’
w l w/yz I w/y l w ’ 1 w l w/ yw l w/y 1 w /) w

After expanding and cross-multiplying, the identities above result in PDEs
of the form 1.20 imposed on F that hold for any smooth function of the
form F(x, y, z, w) = o (t1(ax + by) + ©2(cz + dw)). Conversely, we claim that
if F, # 0 and F,, # 0, then the constraints we have noted guarantee that F

locally admits a representation of this form Denoting the constants ? and
By)

£ £ by ¢ and ¢, respectively, and writing £ 7 # 0 in the split form 7275,

obtam

we

E B(x.y)
Px F, y(z,w) ﬂ('xv y)
F,
E v Bx.y)
v |5y 7 o 228 H apx,y)
Ellle . 2y (2, w)
F, 1 1 vz w)

We desire functions f = f(x,y) and g = g(z, w) with V f = |: Bx,y) :| and

capx,y)
oy (z, w)
Vg = w) | because then, VF || V(f(x,y) + £(z, w)) and hence F =
y(z, w
o (f(x,y)+ g(z, w)) for an appropriate o. Notice that f(x, y) and g(z, w) are

automatically in the forms of 7;(ax + by) and 12(cz + dw) because }f(” =0

and }( = ¢, are constants (see lemma 3). To establish the existence of f and
g one should verify the integrability conditions 8, = ¢, and Czyw =y,
We only verify the first one; the second one is similar. Notice that

constant, and F* 5(” L implies that B, = B (FL ). while 8, = (F,U

Fu Fr

F—”_clls
),

. So the

question is whether
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3230 K. Filom, R. Farhoodi, and K. Kording

Fe)=(20) = (7)
E\E /), \EE /), \R )/,

d (& ide, which is th Ly - (E b itt
an (&)l coincide, which is the case since (F) ( )y can be rewritten

K,
as (F—/) =0.
w
Remark 7. Examples 5 and 6 demonstrate an interesting phenomenon: one

can deduce nontrivial facts about the weights once a formula for the im-
plemented function is available. In example 5, for a function F(x, y, z, w) =

o(t(ax + by) + cz+ dw), we have F’ = and + = 5. Thesame identities are
valid for functions of the form F(x v, z w) = o(rl ax + by) + n(cz + dw))
in example 6.° This seems to be a direction worthy of study. In fact, there
are papers discussing how a neural network may be “reverse-engineered”
in the sense that the architecture of the network is determined from the
knowledge of its outputs, or the weights and biases are recovered without
the ordinary training process involving gradient descent algorithms (Fef-
ferman & Markel, 1994; Dehmamy, Rohani, & Katsaggelos, 2019; Rolnick &
Kording, 2019). In our approach, the weights appearing in a composition of
functions of the form y — o ((w, y)) could be described (up to scaling) in
terms of partial derivatives of the resulting superposition.

3.1.4 Example 7. Let us go back to example 2. In (Farhoodi et al., 2019,
¢, 7.2), a PDE constraint on functions of the form 1.7 is obtained via differ-
entiating equation 1.9 several times and forming a matrix equation, which
implies that a certain determinant of partial derivatives must vanish. The
paper then raises the question of existence of PDE constraints that are both
necessary and sufficient. The goal of this example is to derive such a char-
acterization. Applying differentiation operators 9, d,, and 9,, to equation
1.9 results in

EEE 0 07[A E,
Fy F. F 0 ||B Fy
F. E. 0 E||A]| |E
Fue Fee Fe Fel LB.]  LEy

*Notice that this is the best one can hope to recover because through scaling the
weights and inversely scaling the inputs of activation functions, the function F could also
be written as o (T(Aax + Aby) + cz 4+ dw) or o (7} (Aax + Aby) + 1o(cz + dw)) where 7(y) :=

v (%) and 7 (y) := 71 (). Thus, the other ratios 2 and } 7 are completely arbitrary.
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PDE Characterization of Functions Computed by Neural Networks 3231

If this matrix is nonsingular, a nonvanishing condition, Cramer’s rule pro-
vides descriptions of A, B in terms of partial derivatives of F, and then
A, = B, = 0yield PDE constraints. Reversing this procedure, we show that
these conditions are sufficient too. Let us assume that

F,F, E 0 0
F, F. F 0
U= vy 2 Y
Eyz E. 0 E,
F Z FyZZ FZ FyZ
= (F) yzz - (F )szz 2z — b (F )2 yyz + (P )2 Yz yy #0. (35)

Notice that this condition is nonvacuous for functions F(x, v, z) of the form
1.7 since they include all functions of the form g(y,z). Then the linear
system

E F, E 0 07TA
F,, F F FE, 0 B
Xy _ Yy yz Y @a. 6)
Fy, F Yz E. 0 E C
F xXyz F yyz F yzz F Yz F Yz D

may be solved as

EE E 0 0
F, F. F 0
F. E 0 E
Py B B Fp
FF, E 0 0
F, F. F 0
F. F. 0 E
Fye Pz Rz By

1
G[ F( )Znyz+FPszPyz+FFFF/zz

— EFF.E.. + (E.)*FyFy. — BE(F.)*) (3.7)
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3232 K. Filom, R. Farhoodi, and K. Kording

and
F FE 0 0
Fy Fy F O
F. F: 0 E
B — Fye Fyz B Fe
F E 0 0
Fy, F: F 0
F. E. 0 E
Fye Fpz R Ry

1
= E[(Fy)ZPZnyz - (Py)zszFyz - PsznyPyz
— FF/EF,y. + FFy(Fz)* + FEFy Fl. (3.8)
Denote the numerators of 3.7 and 3.8 by W; and W, respectively:

Wy = —F/(E.)*Fy: + F)E.F.F. + B EL,..
— FFF.F.. + (E)*FyFy. — FE(F)%,
V2 = (F))’EFy: — (F)*FeFz — FEFyFy
— EF,EF,,. + FFy(F.)* + FEFyFpe. (3.9)

Requiring A = % and B = % to be independent of z and y, respectively,
amounts to

Oy = (W), ¥ —W¥, =0, O:=(¥),¥ — WY, =0. (3.10)

Asimple continuity argument demonstrates that the constraints ®; = 0 and
®, = 0 above are necessary even if the determinant 3.5 vanishes: if ¥ is
identically zero on a neighborhood of a point p € R%, the identities 3.10
obviously hold throughout that neighborhood. Another possibility is that
Y(p) = 0, but there is a sequence {p,}, of nearby points with p, — p and
W(py,) # 0. Then the polynomial expressions ®;, ®, of partial derivatives
vanish at any p, and hence at p by continuity.

To finish the verification of conjecture 1 for superpositions of the form
1.7, one should establish that PDEs ®; = 0, ®, = 0 from equation 3.10 are
sufficient for the existence of such a representation provided that the nonva-
nishing condition ¥ # 0 from equation 3.5 holds. In that case, the functions
A and B from equations 3.7 and 3.8 satisfy equation 1.9. According to theo-

rem 5, there exist smooth locally defined f(x, y) and h(x, z) with % =A(x,y)
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r Yy

Figure 10: An asymmetric tree architecture that computes the superpositions
of the form F(x, y, z) = g(x, f(h(x,y), z)). These are characterized in example 8.

and };Tz = B(x, z). We have:
A(x, y)F, + B(x, 2)F; Alx,y) B(x, z)
VFE = F, =F, 1 +F, 0
F, 0 1
h
F, fe E|
=—=|fy|+—1| 0 | €Span{Vf, Vh};
fy h.

h,

hence, F can be written as a function g(f(x,y), h(x, z)) of f and h for an
appropriate g.

3.1.5 Example 8. We now turn to the asymmetric tree with four repeated
inputs in Figure 10 with the corresponding superpositions,

F(x,y,z) = g(x, f(h(x,y),2)). (3.11)

In our treatment here, the steps are reversible, and we hence derive PDE
constraints that are simultaneously necessary and sufficient. The existence
of arepresentation of the form 3.11 for F(x, y, z) is equivalent to the existence
of a locally defined coordinate system,

(& :=x,¢,m),

with respect to which F, = 0; moreover, ¢ = ¢ (x, y, z) must be in the form of

f(h(x,y), z), which, according to example 1, is the case if and only if <§J> =
z

0. Here, we assume that ¢y, ¢, # 0 so that ?/ is well defined and V&, V¢

are linearly independent. We denote the preceding ratio by g = B(x, y) # 0.
Conversely, theorem 5 guarantees that there exists ¢ with Z = B for any
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3234 K. Filom, R. Farhoodi, and K. Kording

smooth B(x, y). The function F could be locally written as a function of £ = x
and ¢ if and only if

Fy Ix
VF = | F, | eSpan{Vx, Vi =| ¢ = B(x, y)x
E e

Clearly, this occurs if and only if % coincides with %y Therefore, one only
needs to arrange for B(x, y) so that the vector field

1 1
%VC _|e|=]| pxw)
' & Bl y)F

x

is parallel to a gradient vector field V¢. That is, we want the vector field to
be perpendicular to its curl (see theorem 5). We have:

(3 ( )3 ( )an 1<3 ( )8 ( E 0o
a'#ﬂ X,y 37}/—1—/8 X,y Fy32> .cur a"‘ﬂ X,y @‘f‘ﬁ X,]/)Fyaz)
_ F, F, 2 F,
—ﬁyz@,”(@);ﬂ (%),

The vanishing of the expression above results in a description of ( %) as
v/ x

the linear combination

E E 1/(E
(555500
FJ, BE B\L/,
whose coefficients % =— (%) and % are independent of z. Thus, we are
y

in a situation similar to that of examples 2 and 7, where we encountered
identity 1.9. The same idea used there could be applied again to obtain PDE
constraints: Differentiating equation 3.12 with respect to z results in a linear
system:
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Assuming the matrix above is nonsingular, Cramer’s rule implies

E E E E
<F.‘/>x (F.'/)y fy (FT/).(
B (8] 1) ¢
B (1> ). (©), L=k b). . (3.13)
Y PV F!/ y Fy FV Y
(E‘/)}/z (E‘/)z <F‘/>yz
We now arrive at the desired PDE characterization of superpositions 3.11.
In each of the ratios of determinants appearing in equation 3.13, the numer-

ator and denominator are in the form of polynomials of partial derivatives
divided by (F,)*. So we introduce the following polynomial expressions:

_ 4
V3 = (F) (&) (&) . (3.14)
F, Xz F, vz
Then in view of equation 3.13,
&=l &=_<1) (3.15)
lljl /3 ' \I’Il :3 y .
Hence ( i—f)y + :f—f = 0; furthermore, ( %)Z = 0 since g is independent of z:

[OFES qll(\llz)y — (\Ill)y‘ll2 +WW3 =0, &)= \111(\112)2 — (\Ill)zqu =0.
(3.16)

Again as in example 7, a continuity argument implies that the algebraic
PDEs above are necessary even when the denominator in equation 3.13 (i.e.,

W) is zero. As for the nonvanishing conditions, in view of equations 3.14
and 3.15, we require F, to be nonzero as well as ¥; and ¥, (recall that g # 0):

Wy # 0, # 0, F, # 0. (3.17)

d-ajo1B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

B 008U/yEEYL6L/Y0TE/CLIEE/P!

£20¢ Jequaydes /0 uo jsenb Aq ypd- L L0



3236 K. Filom, R. Farhoodi, and K. Kording

g g
hl h2 hl h2
fi fo
/
z w ¥ w
xr Y rYyx y

Figure 11: The space of functions computed by the neural network on the left
is strictly smaller than that of its TENN on the right. See example 9.

It is easy to see that these conditions are not vacuous for functions of the
form 3.11. If F(x, y, z) = (xy)*z + z°, neither F, nor the expression W; or ¥,
is identically zero.

In summary, a special case of conjecture 1 has been verified in this exam-
ple. A function F = F(x, y, z) of the form 3.11 satisfies the constraints 3.16;
conversely, a smooth function satisfying them along with the nonvanishing
conditions 3.17 admits a local representation of that form.

3.2 Examples of Functions Computed by Neural Networks. We now
switch from trees to examples of PDE constraints for neural networks. The
first two examples are concerned with the network illustrated on the left of
Figure 11; this is a ResNet with two hidden layers that has x, y, z, w as its
inputs. The functions it implements are in the form of

F(x9 y9 z, w) = g(hl(f(xv y)’ Z)v hZ(f(x7 y)7 w))’ (318)
where f and /1, h, are the functions appearing in the hidden layers.

3.2.1 Example 9. On the right of Figure 11, the tree architecture corre-
sponding to the neural network discussed above is illustrated. The func-
tions implemented by this tree are in the form of

F(x,y.z, w) = gl (fi(x, y). 2), ha(fa(x, ), w)), (3.19)

which is a form more general than the form 3.18 of functions computable
by the network. In fact, there are PDEs satisfied by the latter class that
functions in the former class, equation 3.19, do not necessarily satisfy. To
see this, observe that for a function F(x, y, z, w) of the form 3.18, the ra-

tio F% coincides with J{/ and is thus independent of z and w—hence the

PDEs F..F, = F,.F, and Fy, F, = F;,, F. Neither of them holds for the function
F(x,y,z, w) = xyz + (x + y)w, which is of the form 3.19. We deduce that the
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PDE Characterization of Functions Computed by Neural Networks 3237

set of PDE constraints for a network may be strictly larger than that of the
corresponding TENN.

3.2.2 Example 10. Here we briefly argue that conjecture 1 holds for
the network in Figure 11 (which has two hidden layers). The goal is to
obtain PDEs that, given suitable nonvacuous, nonvanishing conditions,
characterize smooth functions F(x,y, z, w) of the form 3.18. We seek a
description of the form g(Fi(x,y, z), F2(x,y, w)) of F(x,y, z, w) where the
trivariate functions F (x, y, z) and F,(x, y, w) are superpositions I (f(x, y), z)
and hp(f(x, y), w) with the same bivariate function f appearing in both of
them. Invokmg the logic that has been used repeatedly in section 3.1, VF
must be a linear combination of VF; and VF,. Following example 1, the only
restriction on the latter two gradients is

1 1
By fy By _ fy
VE ” R — f o |- VE, ” B — f ;
a(x,y,z) = (F: 0
0 plx.y. w) =

and as observed in example 9, the ratio )fg coincides w1th E . Thus, the exis-

tence of a representation of the form 3.18 is equivalent to the existence of a
linear relation such as

F, 1 1
EI_El 7 | R| F
F, 1 alry, z) 0
Fy 0 (x.y, w)

This amounts to the equation

1 1
Fz <a> +Fu) <E> = Fx~

Now the idea of examples 2 and 7 applies. As (1) '=0and (%) =0, ap-
z
plying the operators 9., 9,,, and 9,,, to the last equation results in a linear
7 ﬂ 4
nonsingular (a nonvanishing condition), the system may be solved to ob-
tain expressions purely in terms of partial derivatives of F for the aforemen-

system with four equations and four unknowns: 1, 1, (1)_, and (%) CIf

tioned unknowns. Now (%)w =0and (%) = 0, along with the equations
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Fe.F, = F.F, FwF, = F, Fy from example 9, yield four algebraic PDEs char-
acterizing superpositions 3.18.

The final example of this section finishes example 3 from the section 1.
3.2.3 Example 11. We go back to example 3 to study PDEs and PDlIs sat-

isfied by functions of the form 1.14. Absorbing a”, b” into inner functions,
we can focus on the simpler form:

F(x.t) = o (f(ax + bt) + g(a'x + b't)). (3.20)

Let us for the time being forget about the outer activation function o. Con-
sider functions such as

G(x,t) = flax + bt) + g(a'x + b't).

Smooth functions of this form constitute solutions of a second-order linear
homogeneous PDE with constant coefficients

UGy +VGu + WGy =0, (3.21)
where (a, b) and (', V') satisfy
UA? + VAB +WB? = 0. (3.22)

The reason is that when (4, b) and (', V') satisfy equation 3.22, the differen-
tial operator Udy, + V9 + Wy can be factorized as

(bdx — ady)(b'9, — a'dy)

to a composition of operators that annihilate the linear forms ax + bt and
a'x+b't.If (a,b) and (a', I') are not multiples of each other, they constitute a
new coordinate system (ax + bt, a'x + b't) in which the mixed partial deriva-
tives of F all vanish; so, at least locally, F must be a sum of univariate func-
tions of ax + bt and a'x + b't.” We conclude that assuming V2 — 4UW > 0,
functions of the form G(x,t) = f(ax + bt) + g(a’x + b't) may be identified
with solutions of PDEs of the form 3.21. As in example 1, we desire alge-
braic PDEs purely in terms of F and without constants U, V, and W. One
way to do so is to differentiate equation 3.21 further, for instance:

UGxxx + VGxxt + WGxtt =0. (323)

7Compare with the proof of lemma 4 in appendix A.
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PDE Characterization of Functions Computed by Neural Networks 3239

Notice that equations 3.21 and 3.23 could be interpreted as (U, V, W) be-
ing perpendicular to (Gyy, Gy, Gi) and (Gyyx, Guxt, Gut). Thus, the cross-
product

(Gxt Gxtt - GttGth! Gtthxx - GXXGXffv GxxGxxt - Gxt Gxxx)

of the latter two vectors must be parallel to a constant vector. Under the
nonvanishing condition that one of the entries of the cross-product, say
the last one, is nonzero, the constancy may be thought of as ratios of
the other two components to the last one being constants. The result is
a characterization (in the vein of conjecture 1) of functions G of the form
f(ax + bt) + g(a'x + U't), which are subjected t0 GGyt — GxtGyxr # 0 and

Gxthtt - Gtthxt and Gtthxx - GxxGxtt are constants
GxxGxxt - Gxt Gxxx GxxGxxt - Gxt Gxxx '

(Gtthxx - GxxGxtt )2 > 4(Gxthtt - Gtthxt)(GxxGxxt - Gxthxx)- (324)

Notice that the PDI is not redundant here. For a solution G = G(x, t) of
Laplace’s equation, the fractions from the first line of equation 3.24 are con-
stants, while on the second line, the left-hand side of the inequality is zero
but its right-hand side is 4(Gy Gy — GGyt )? > 0.

Composing G with o makes the derivation of PDEs and PDIs imposed
on functions of the form 3.20 even more cumbersome. We provide only a
sketch. Under the assumption that the gradient of F = o o G is nonzero, the
univariate function o admits a local inverse 7. Applying the chain rule to
G =t o F yields

Gax T//(P)(Fx)z =+ T/(F)Fxm
G T”(F)Fth + v'(F)Fy,
Gy = t"(F)(R)* + 7' (F)Fy.

Plugging them in the PDE 3.21 that G satisfies results in
t"(F) (U(E)* + VEE + W(E)?) + T/ (F) (UEw + VE¢ + WE;) = 0,

or, equivalently,

Ukt VEe+Wh _ _TUF) __ (T> (F). (3.25)

UE2+VEE+WE?  oF) v

: : UF+VFEs+WFE;
It suffices for the ratio TEPTVEL TWER

since then © may be recovered as t = [e~/". Following the discussion at
the beginning of section 3, this is equivalent to

to be a function of F such as v(F)
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UFxx+VFxt +WFtt || VE
U(F)? + VEE +W(R)? '

This amounts to an identity of the form
D1 (F)U? + Dy (F)V? + D3(F)W? + Dy (F)UV + O5(F)VW + O (F)UW = 0,

where ®;(F)’s are complicated nonconstant polynomial expressions of par-
tial derivatives of F. In the same way that the parameters U, V, and W in
PDE 3.21 were eliminated to arrive at equation 3.24, one may solve the ho-
mogeneous linear system consisting of the identity above and its deriva-
tives in order to derive a six-dimensional vector,

(E1(F), B2(F), Es(F), Ea(F), Es(F), E6(F)) (3.26)

of rational expressions of partial derivatives of F parallel to the constant
vector

(U2, v2, W2, Uuv, VW, Uw). (3.27)

The parallelism amounts to a number of PDEs, for example, E1(F) E»(F) =
E4(F)?, and the ratios E’((i)) must be constant because they coincide with
by

the ratios of components of equation 3.27. Moreover, V2 — 4UW > 0 implies

(LYTZV - 4) L‘I/—;V > 0. Replacing with the corresponding ratios of components

of equation 3.26, we obtain the PDI
(22(F) — 4 E¢(F)) E2(F) B6(F) = 0,
which must be satisfied by any function of the form 3.20.

3.3 Examples of Polynomial Neural Networks. The superpositions we
study in this section are constructed out of polynomials. Again, there are
two different regimes to discuss: composing general polynomial functions
of low dimensionality or composing polynomials of arbitrary dimension-
ality but in the simpler form of y = o ((w, y)) where the activation func-
tion o is a polynomial of a single variable. The latter regime deals with
polynomial neural networks. Different aspects of such networks have been
studied in the literature (Du & Lee, 2018; Soltanolkotabi et al., 2018; Venturi
etal., 2018; Kileel et al., 2019). In the spirit of this article, we are interested in
the spaces formed by such polynomial superpositions. Bounding the total
degree of polynomials from the above, these functional spaces are subsets
of an ambient polynomial space, say, the space Poly, , of real polynomials
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P(x1, ..., x,) of total degree at most d, which is an affine space of dimension
(™). By writing a polynomial P(xi, ..., x,) of degree d as
P(x1,x0,...,%,) = Z Cay oy X1 X3 o X, (3.28)

ay.ap,....an=0
ay+ag+-+an<d

the coefficients ¢, 4,,...4, provide a natural coordinate system on Polydyn. As-
sociated with a neural network N thatreceives x1, . .., x, as its inputs, there
are polynomial functional spaces for any degree d that lie in the ambient
space Poly, :

1. The subset F;(\) of Poly, , consisting of polynomials P(x1, ..., x,)
of total degree at most d that can be computed by N via assigning
real polynomial functions to its neurons

2. The smaller subset Fi“(N) of Poly,, consisting of polynomials
P(xy, ..., x,) of total degree at most d that can be computed by N via
assigning real polynomials of the form y — o ({(w, y)) to the neurons
where o is a polynomial activation function

In general, subsets F;(\') and F{(\) of Poly, , are not closed in the al-
gebraic sense (see remark 8). Therefore, one may consider their Zariski clo-
sures V;(N) and V3 (N), that is, the smallest subsets defined as zero loci of
polynomial equations that contain them. We shall call V4(\) and Vi*(N)
the functional varieties associated with A. Each of the subsets V4(N) and
Vi(N) of Poly, , could be described with finitely many polynomial equa-
tions in terms of ¢4, 4,..._4,’s. The PDE constraints from section 2 provide non-
trivial examples of equations satisfied on the functional varieties: In any de-
gree d, substituting equation 3.28 in an algebraic PDE that smooth functions
computed by A/ must obey results in equations in terms of the coefficients
that are satisfied at any point of F;(\) or F3*(AV) and hence at the points of
Vi(N) or V3*(N). This will be demonstrated in example 12 and results in
the following corollary to theorems 1 and 2.

Corollary 2. Let N be a neural network whose inputs are labeled by the coordi-
nate functions x1, . .., x,. Then there exist nontrivial polynomials on affine spaces
Poly, , that are dependent only on the topology of N and become zero on func-
tional varieties V' (N') C Poly, ,,. The same holds for functional varieties V4 (\)
provided that the number of inputs to each neuron of N is less than n.

Proof. The proof immediately follows from theorem 2 (in the case of
V3(N)) and from theorem 1 (in the case of V;(N)). Substituting a poly-
nomial P(x1, ..., x,) in a PDE constraint

@(ppppp) -0
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that these theorems suggest for A" and equating the coefficient of a mono-
mial x7'x5* ... x4 with zero results in a polynomial equation in ambient
polynomial spaces that must be satisfied on the associated functional

varieties. O

3.3.1 Example 12. Let N be arooted tree 7 with distinct inputs x1, . . ., X,.
Constraints of the form Fx,.xkij = FxkaPx,- are not only necessary conditions
for a smooth function F = F(xy,...,x,) to be computable by 7; but by
the virtue of theorem 3, they are also sufficient for the existence of a lo-
cal representation of F on 7T if suitable nonvanishing conditions are sat-
isfied. An interesting feature of this setting is that when F is a polynomial
P = P(x1, ..., x,), one can relax the nonvanishing conditions; and P actually
admits a global representation as a composition of polynomials if it satisfies
the characteristic PDEs (Farhoodi et al., 2019, proposition 4). The basic idea
is that if P is locally written as a superposition of smooth functions accord-
ing to the hierarchy provided by 7T, then comparing the Taylor series shows
that the constituent parts of the superposition could be chosen to be poly-
nomials as well. Now P and such a polynomial superposition must be the
same since they agree on a nonempty open set. Consequently, each F;(\)
coincides with its closure V4(N) and can be described by equations of the
form Px,.kax] = ijkax,. in the polynomial space. Substituting an expression
of the form

ay,...,a, >0

in Py, Px/ — Px/. xPr, = 0 and equating the coefficient of a monomial x’l“ X
with zero yields

Z a;< (ﬂ;ﬂ/]»/ - a/ja;/) Cu’l ,,,,, a,/,Ca’l’,...,a;; =0. (329)

Pl g _ gl
a;+a; 7n,+1.a]+u] 7a/+l.ak+ak7nk+l

a+al =as Vse(l,...n} i, j.k}

We deduce that equations 3.29 written for a1, ...,4, > 0 and for triples
(i, j, k) with the property that x; is separated from x; and x; by a subtree
of T (as in theorem 3) describe the functional varieties associated with 7.
In a given degree d, to obtain equations describing 7 in Poly, ,, one should
set any ¢y, p, with by + --- + b, > d to be zero in equation 3.29. No such a
coefficient occursifd > a; + - - - + a, + 3, and thus for d large enough, equa-
tion 3.29 defines an equation in Poly,, , as is.

Similarly, theorem 7 can be used to write equations for Fi(N) =
Va(N). In that situation, a new family of equations corresponding to equa-
tion 1.20 emerges that are expected to be extremely complicated.
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3.3.2 Example13. Let N be the neural network appearing in Figure 4. The
functional space Fi (V') is formed by polynomials P(x, t) of total degree at
most d that are in the form of o (f(ax + bt) + g(a’x + b't)). By examining the
Taylor expansions, it is not hard to see that if P(x, t) is written in this form
for univariate smooth functions o, f, and g, then these functions could be
chosen to be polynomials. Therefore, in any degree d, our characterization
of superpositions of this form in example 11 in terms of PDEs and PDIs re-
sults in polynomial equations and inequalities that describe a Zariski open
subset of Fi*(\V') which is the complement of the locus where the nonva-
nishing conditions fail. The inequalities disappear after taking the closure,
so V3(N) is strictly larger than F3*'(N) here.

Remark 8. The emergence of inequalities in describing the functional
spaces, as observed in example 13, is not surprising due to the Tarski-
Seidenberg theorem (see Coste, 2000), which implies that the image of a
polynomial map between real varieties (i.e., a map whose components are
polynomials) is semialgebraic; that is, it could be described as a union of
finitely many sets defined by polynomial equations and inequalities. To
elaborate, fix a neural network architecture A/. Composing polynomials of
bounded degrees according to the hierarchy provided by A yields polyno-
mial superpositions lying in Fp (NV) for D sufficiently large. The composition
thus amounts to a map

Polyd],nl X oo X Poldequ — PolyD’n,

where, on the left-hand side, the polynomials assigned to the neurons of N/
appear, and D > d, ..., d,. The image, a subset of Fp(\), is semialgebraic
and thus admits a description in terms of finitely many polynomial equa-
tions and inequalities. The same logic applies to the regime of activation
functions too; the map just mentioned must be replaced with

RE x Poly, , x --- x Poly, ; — Poly,,

whose image lies in F&'(\), and its domain is the Cartesian product of
spaces of polynomial activation functions assigned to the neurons by the
space RC of weights assigned to the connections of the network.

4 PDE Characterization of Tree Functions

Building on the examples of the previous section, we prove theorems 3 and
4. This will establish conjecture 1 for tree architectures with distinct inputs.

Proof of Theorem 3. The necessity of the constraints from equation 1.18 fol-
lows from example 1. As demonstrated in Figure 12, picking three of vari-
ables x; = x, x; = y, and x; = z where the former two are separated from the
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z

Figure 12: The necessity of constraint 1.18 in theorem 3 follows from the case of
trivariate tree functions discussed in example 1. Choosing three of the variables
(red leaves) and fixing the rest (gray leaves) results in a superposition of the
form g(f(x, y), z) that must obey constraint 1.4.

latter by a subtree and taking the rest of variables to be constant, we obtain
a superposition of the form F(x, y, z) = g(f(x, y), z) studied in example 1; it
should satisfy F..F, = F,.F, or, equivalently, equation 1.18.

We induct on the number of variables, which coincides with the number
of leaves, to prove the sufficiency of constraint 1.18 and the nonvanishing
conditions in theorem 3 for the existence of a local implementation, in the
form of a superposition of functions of lower arity, on the tree architecture
in hand. Consider a rooted tree 7 with n leaves labeled by the coordinate

functions x1, ..., x,. The inductive step is illustrated in Figure 13. Remov-
ing the root results in a number of smaller trees 71, ..., 7; and a number
of single vertices® corresponding to the leaves adjacent to the root of 7. By
renumbering xi, ..., X, one may write the leaves as

X1sevos Ximys X415 - o5 Xiggmgs -+ 3 Xiggdeeodimy_ 415+« - s Xy eetomy >

Xy 4oty +15 -5 Xns (41)
where X, ¢ tm 1415 - - - » Xmyotm, 1 +m, (1 <8 <1) are the leaves of the sub-

tree 7; while x,, 1...., 11 through x,, are the leaves adjacent to the root of 7.
The goal is to write F(x, ..., x,) as

g(Gl (xl» ey xml)7 ey Gl(xm1+~~+m;_1+17 cee xml+~~+m1)7 Xy 4eoetm+1s « s xn)v
4.2)

where each smooth function,

G Xty ottty 1415 -+ - 5 Xty ooty 1115 )

8 . . . . .
A single vertex is not considered to be a rooted tree in our convention.
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T

Tma-4mp+1 Tp
z Tmg4-4my_1+1

Tma+--+my

T To Tmq+-tmy_1+1 my+-+mp+1 n

. Ty Ly +-+my

Figure 13: The inductive step in the proof of theorem 3. The removal of the root
of T results in a number of smaller rooted trees along with single vertices that
were the leaves adjacent to the root of 7 (if any).

satisfies the constraints coming from 7; and thus, by invoking the induction
hypothesis, is computable by the tree 7;. Following the discussion before
theorem 5, it suffices to express VF as a linear combination of the gradients
VGi, ..., VGl VX 4m+1, - - -, VX, The nonvanishing conditions in theo-
rem 3 require the first-order partial derivative with respect to at least one of
the leaves of each 7; to be nonzero; we may assume Fy # 0 without
any loss of generality. We should have

g g +1

T
VF = I:FV . Fxml Fxml+-~+m[,1+l . Fxml+~-+ml Fxm1+m+m[+l Fxn]

My +-1m_q n—(my+---+ms)

1
F 1 Xy 4efmg_q+2 mel o _q s 0 0
= : : Xong +otmg_q+1 0 e 0 e e
s=1 Xy +etmg_q+1 Xy +eetmg_q+1
a a
+ Fxml+-v-+ml+] +eee qu

(R 0xy
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S Span {VG‘[ (.X], ey xml), ey VGl(xml+m+mlil+1, ey xm1+m+m[),

VXml+"‘+ml+1’ ey Vxn}.

T
. Eeoim 4n S
In the expressions above, the vector |1 l—r=1t ... _ooelie

Ty g _q+1 Fxml+---+m571+l
(which is of size m;) is dependent only on the variables
Xyt 1415 - - s Xpy4pm,, Which are the leaves of 7;: any other leaf
Xy is separated from them by the subtree 7; of 7, and, hence, for any leaf
. . E.
x; with my +---+ms_1 <i <my +---+m;, we have <F7) =0
xml+~--+m571+l X

due to the simplified form 1.21 of equation 1.18. To finish the proof, one

should establish the existence of functions Gg(Xy-tm._y+1s - - - » Xyt )
T
. . . . F-“f e, Fx e, s
appearing in equation 4.2; that is, |1 =12 ... el | should
Ty epimg_q+1 Ty Aetmg_q+1

be shown to be parallel to a gradient vector field VG;. Notice that the in-
(G
Gy,
derivatives is the same as the corresponding ratio of partial derivatives of
F. Invoking theorem 5, to prove the existence of G;, we should verify that
the 1-form

duction hypothesis would be applicable to G, since any ratio of partial

M+ 411 E
o=y Y —dy (l<s<])

. X
i=my+-+ms_1+1 myeetmg_q+1

satisfies w; A dws = 0. We finish the proof by showing this in the case of
s = 1; other cases are completely similar. We have

- E‘Ci - Z:x/
w1 Adwy = ZF dx; | A Zd F /\de
X1 ].:1 X1

i=1

mq F mq 1y Fx»
(Z in dxi> A Z (Z <F—’> dxk> AN dxj
X1 X1/ x

i=1 j=1 \k=1

FX‘E’(/'Xk FX FXiFJCle}
- — = dx; A dxg A dx;
[ (Fo)  (R)P e

|
1

ijxk dxi A dx;

|
/e
WE
|
e
&
SNS—
>
N

mq
F
+ Z FoF dog Adx; | A <Z (l—f,:lx)k3 dxk> )
k=1

i,je{l,...mi}
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The last two terms are zero because, in the parentheses, the 2-forms

Z ijxk dx; A dxg, Z Fx,Fx/ dx; A dx;,
joke{l,...,mq} i,jefl,....m}

are zero since interchanging j and k or 7 and j in the summations results in
the opposite of the original differential form. d

Remark 9. The formulation of theorem 3 in Farhoodi et al. (2019) is con-
cerned with analytic functions and binary trees. The proof presented above
follows the same inductive procedure but utilizes theorem 5 instead of Tay-
lor expansions. Of course, theorem 5 remains valid in the analytic category,
so the tree representation of F constructed in the proof here consists of ana-
lytic functions if F is analytic. An advantage of working with analytic func-
tions is that in certain cases, the nonvanishing conditions may be relaxed.
For instance, if in example 1 the function F(x, y, z) satisfying equation 1.4 is
analytic, it admits a local representation of the form 1.1, while if F is only
smooth, at least one of the conditions F, # 0 of F, # 0 is required. (See Far-
hoodi et al., 2019, sec. 5.1 and 5.3, for details.)

Proof of Theorem 4. Establishing the necessity of constraints 1.19 and
1.20 is straightforward. An implementation of a smooth function F =
F(x1,...,x,) on the tree T is in a form such as

0( (G).&(u}l.rl(---(ﬂ)l.fl(cx,-—i---~)+17)1.§1(c'x,v +)+>)

+ wz.f2<-~-(ﬂ)z.fz(de-i—'")-f—ﬁ)z.%Q(d,x]v +)+> )

+w3,13(...)+...>+...>...> 4.3)

for appropriate activation functions and weights. In the expression above,
variables x; appearing in

5<U)1.1’1(--- (ﬁ)l.f1(CX,' + )+ T (X )+ ) . )
+ wz.r2<-~- (ﬁ)z.fz(dxj 4o) Do Ea(d Xy )+ - ) : )

+w3,,3(...)+...)

are the leaves of the smallest (full) subtree of 7" in which both x; and x;
appear as leaves. Denoting this subtree by 7, the activation function applied
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at the root of T is &, and the subtrees emanating from the root of T, which
we write as T, T2, Tas ..., have 11, 1, T3, . . . assigned to their roots. Here,
7’1 and ’75 contain x; and x;, respectively, and are the largest (full) subtrees

that have exactly one of x; and x;. To verify equation 1.19, notice that —?" is
i
proportional to

7_-1’(...(@1.f1(cxi+...)+ﬁ)1.%1(c/xi,_|_...)_|_...)...>.”f1/(cxi+...)
12/<~~~(ﬁ)z.fz(dxj+~~)+ﬁ)2.%2(d/xjr+~~~)+~~~)~«)...fz’(dxj+-~-)
(4.4)

with the constant of proportionality being a quotient of two products of
certain weights of the network. The ratio 4.4 is dependent only on those
variables that appear as leaves of T and 75, SO

F,.
(F : ) =0 ¢ Fo B, = BBy
X .

unless there is a subtree of 7 containing the leaf x; and exactly one of x; or x;
(which forcibly will be a subtree of 71 or T2). Before switching to constraint
1.20, we point out that the description of F in equation 4.3 assumes that the
leaves x; and x; are not siblings. If they are, F may be written as

g(...(g).&(w.f(cxi+dxj_|_...)_|_...)+...)...>’

in which case, % = 5 is a constant and hence equation 1.21 holds for all
1 < k < n. To finish the proof of necessity of the constraints introduced in
theorem 7, consider the fraction from equation 4.4, which is a multiple of
}f—’ This has a description as a product of a function of x;, x;, ... (leaves of
] ~

T1) by a function of x;, x;, ... (leaves of 7). Lemma 4 now implies that for
any leaf x; of 71 and any leaf x; of 75,

hence, the simplified form, equation 1.22 of 1.20.
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T

T4l Tpo1 Tp

Figure 14: The first case of the inductive step in the proof of theorem 4. The
removal of the leaves directly connected to the root of 7 results in a smaller
rooted tree.

Figure 15: The second case of the inductive step in the proof of theorem 4. There
is no leaf directly connected to the root of 7. Separating one of the rooted sub-
trees adjacent to the root results in two smaller rooted trees.

We induct on the number of leaves to prove the sufficiency of constraints
1.19 and 1.20 (accompanied by suitable nonvanishing conditions) for the
existence of a tree implementation of a smooth function F = F(x1, ..., x,)
as a composition of functions of the form 1.12. Given a rooted tree 7 with n
leaves labeled by x1, ..., x,, the inductive step has two cases demonstrated
in Figures 14 and 15:

* There are leaves, say, Xy41, . . ., X, directly adjacent to the root of T;
their removal results in a smaller tree 7' with leaves x1, ..., X, (see
Figure 14). The goal is to write F(xq, ..., x,) as

O(G(.X], ey xm) + Cm+1Xme1 + -+ Cnxn)a (45)

with G satisfying appropriate constraints that, invoking the induction
hypothesis, guarantee that G is computable by 7.

* There is no leaf adjacent to the root of 7, but there are smaller sub-
trees. Denote one of them with 7; and show its leaves by x,,11, . . ., X;.
Removing this subtree results in a smaller tree 7; with leaves
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X1, ..., Xn (see Figure 15). The goal is to write F(x1, ..., x,,) as
o (G1(x1, -+ s Xm) + G2 (Xpg1s - - -5 X)), (4.6)

with Gy and G, satisfying constraints corresponding to 77 and 75, and
hence may be implemented on these trees by invoking the induction
hypothesis.

Following the discussion at the beginning of section 3, F may be locally writ-
ten as a function of another function with nonzero gradient if the gradients
are parallel. This idea has been frequently used so far, but there is a twist
here: we want such a description of F to persist on the box-like region B that
is the domain of F. Lemma 2 resolves this issue. The tree function in the ar-
gument of ¢ in either of equation 4.5 or 4.6, which here we denote by F, shall
be constructed below by invoking the induction hypothesis, so F is defined
at every point of B. Besides, our description of VF below (cf. equations 4.7
and 4.9) readily indicates that just like F, it satisfies the nonvanishing con-
ditions of theorem 7. Applying lemma 2 to F, any level set {x € B|F(x) = c}
is connected, and F can be extended to a coordinate system (F, b, ..., F,)
for B. Thus, F, whose partial derivatives with respect to other coordinate
functions vanish, realizes precisely one value on any coordinate hypersur-
face {x € B| F(x) = c}. Setting o (c) to be the aforementioned value of F de-
fines a function o with F = o (F). After this discussion on the domain of
definition of the desired representation of F, we proceed with constructing

F=F(xi,...,x,) as either G(x1, ..., Xm) + Cmi1Xmy1 + - - - + CaXy, in the case
of equation 4.5 or as G(x1, . .., ) + G2(Xy+1, - - -, X) in the case of equation
4.6.

In the case of equation 4.5, assuming that, as theorem 7 requires, one
of the partial derivatives F, F,,, example F,,, is nonzero, we should

m12

have
T [E E, E, E. .1
VF=[F, ... F, E,, ... Fy E.] | [F: ﬁ ;x:1 ?1 1}
T
= [le <+ Gy, Ot o+ Cn1 1]
= V(G(x1, ..., Xp) + Cong1 Xmg1 + - -+ F Cuo1 X1 + Xn)- 4.7)

E,
Here, each ratio g- wherem < j < n mustbe a constant, which we show by

cj, due to the s1mphf1ed form equation 1.21 of equation 1.19: the only (full)
subtree of 7 containing either x; or x, is the whole tree since these leaves

T
are adjacent to the root of 7. On the other hand, [% e %] appearing
in equation 4.7 is a gradient vector field of the form VG(xy, ..., x,,) again

as a by-product of equations 1.19 and 1.21: each ratio ﬁi wherel <i<mis
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independent of x,,11, . . ., X, by the same reasoning as above; and this vector
function of (x1, ..., x,,) is integrable because for any 1 <i,7 < m,

F, F,,
<P:,>xi, = (Fz’,, )XI < Fox By, = Fox, .

Hence, such a G(x1, .. ., x,,) exists; moreover, it satisfies constraints from the

GX i . . . .
inductions hypothesis since any ratio - coincides with the corresponding
»
ratio of partial derivatives of F, a function assumed to satisfy equations 1.21
and 1.22.
Next, in the second case of the inductive step, let us turn to equation
4.6. The nonvanishing conditions of theorem 7 require a partial derivative

among F,, ..., F;, and also a partial derivative among F;, ., ..., Fy, to be
nonzero. Without any loss of generality, we assume F;, # 0 and F,, # 0. We
want to apply lemma 4 to split the ratio % # 0 as
F 1 Bx1,....x
i::3(351,~~',xm)7(xm+17~~.,Xn):—( m) . (4.8)
Fx,, Y ]/(xn1+1,...,xn)

To do so, it needs to be checked that

xj

for any twoindices 1 <i < mand m < j < n. This is the content of equation
1.20, or its simplified form, equation 1.22, when x; belongs to the same max-
imal subtree of 7 adjacent to the root that has x; and holds for other choices
of x; € {x1, ..., xy} too since in that situation, by the simplified form equa-

F,

xn

tion 1.21, of equation 1.19, the derivative (FL) must be zero because x7,
Xi

x;, and x, belong to different maximal subtrees of 7. Next, the gradient of
F could be written as

T
VF=[Fy Fy, ... Fo, Fo,oy -+ Foy By
H & & FXm Fxm+1 Fan !
Fxn Fxn Fxn Fxn qu

— & PXZ Fxl . Fxm Fxl Fxm+1 . Fxn—l 1 !
B Fxn I:‘XH
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3252 K. Filom, R. Farhoodi, and K. Kording

n—m T m T
FY Fx Fx P——— ~—— F F 5
—_ 0 1 “X2 m O L. O + O O X1 . Xn—1 1
Fxﬂ Fx1 Fx1 Fxn Fxn
Combining with equation 4.8:
n—m T
P F — e
VE | | B(x1, ..., Xm) ﬂ(xl,...,xm).lz—x2 ﬂ(xl,...,xm).% 0---0
m
— E’(nﬂrl
+[0---0 )/(an,l,...,xn).T o Y (Xt ey Xpy)
Xn
E T
% y(xm+1,...,x,,):| ) (4.9)
Xn

To establish equation 4.6, it suffices to argue that the vectors on the
right-hand side are in the form of VG; and VG, for suitable functions
Gi(x1, ..., xp) and Go (X1, - - -, X), to which the induction hypothesis can
be applied by the same logic as before. Notice that the first one is dependent
only on x1, ..., X, while the second one is dependent only on X141, ..., Xy,

again by equations 1.19and 1.21. Forany 1 <i < mand m < j < n,we have

E. . Fe . .
(F—') = 0 (respectively, (ﬁ) = 0) since there is no subtree of 7 that has
1/ x; o/ x;i

only one of x; and x; (resp. only one of x, and x;) and also x; (resp. also x;).
We finish the proof by verifying the corresponding integrability conditions,

F F, Ey, E,
(), =0e), () =),
X1/ xy X1/ x; Xn /Xy Xn / xj

]

for any 1 <i,/ <m and m < j, j < n. In view of equation 4.8, one can
F E. . . . .

change g and y above to £ or #*, respectively, and write the desired iden-
o

tities as the new ones,

(£9), (), (0~ (55
nw) \ex) ) e, ~ww))

i

which hold due to equation 1.21. O

Remark 10. As mentioned in remark 3, working with functions of the form
1.12 in theorem 7 rather than general smooth functions has the advantage of
enabling us to determine a domain on which a superposition representation
exists. In contrast, the sufficiency part of theorem 3 is a local statement since
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PDE Characterization of Functions Computed by Neural Networks 3253

it relies on the implicit function theorem. It is possible to say something
nontrivial about the domains when functions are furthermore analytic. This
is because the implicit function theorem holds in the analytic category as
well (Krantz & Parks, 2002, sec. 6.1) where lower bounds on the domain of
validity of the theorem exist in the literature (Chang, He, & Prabhu, 2003).

5 Conclusion

In this article, we proposed a systematic method for studying smooth real-
valued functions constructed as compositions of other smooth functions
that are either of lower arity or in the form of a univariate activation func-
tion applied to a linear combination of inputs. We established that any such
smooth superposition must satisfy nontrivial constraints in the form of al-
gebraic PDEs, which are dependent only on the hierarchy of composition
or, equivalently, only on the topology of the neural network that produces
superpositions of this type. We conjectured that there always exist charac-
teristic PDEs that also provide sufficient conditions for a generic smooth
function to be expressible by the feedforward neural network in question.
The genericity is to avoid singular cases and is captured by nonvanishing
conditions that require certain polynomial functions of partial derivatives
to be nonzero. We observed that there are also situations where nontriv-
ial algebraic inequalities involving partial derivatives (PDIs) are imposed
on the hierarchical functions. In summary, the conjecture aims to describe
generic smooth functions computable by a neural network with finitely
many universal conditions of the form ® # 0, ¥ =0, and ® > 0, where ®,
V¥, and © are polynomial expressions of the partial derivatives and are de-
pendent only on the architecture of the network, not on any tunable pa-
rameter or any activation function used in the network. This is reminiscent
of the notion of a semialgebraic set from real algebraic geometry. Indeed,
in the case of compositions of polynomial functions or functions computed
by polynomial neural networks, the PDE constraints yield equations for the
corresponding functional variety in an ambient space of polynomials of a
prescribed degree.

The conjecture was verified in several cases, most importantly, for tree
architectures with distinct inputs where, in each regime, we explicitly ex-
hibited a PDE characterization of functions computable by a tree network.
Examples of tree architectures with repeated inputs were addressed as well.
The proofs were mathematical in nature and relied on classical results of
multivariable analysis.

The article moreover highlights the differences between the two regimes
mentioned at the beginning: the hierarchical functions constructed out
of composing functions of lower dimensionality and the hierarchical
functions that are compositions of functions of the form y - o ((w, y)).
The former functions appear more often in the mathematical literature
on the Kolmogorov-Arnold representation theorem, while the latter are
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3254 K. Filom, R. Farhoodi, and K. Kording

ubiquitous in deep learning. The special form of functions y — o ((w,y))
requires more PDE constraints to be imposed on their compositions,
whereas their mild nonlinearity is beneficial in terms of ascertaining the
domain on which a claimed compositional representation exists.

Our approach for describing the functional spaces associated with feed-
forward neural networks is of natural interest in the study of expressivity
of neural networks and could lead to new complexity measures. We be-
lieve that the point of view adapted here is novel and might shed light on
a number of practical problems such as comparison of architectures and
reverse-engineering deep networks.

Appendix A: Technical Proofs

Proof of Lemma 2. We first prove that F can be extended to a coordinate
system on the entirety of the box-like region B, which we shall write as
I x -+ x I,. As in the proof of theorem 3, we group the variables x1, ..., x,
according to the maximal subtrees of 7 in which they appear:

X1y ooy Xiys X415« o5 Ximggmgs oo+ 3 Xiggdeeodrmy_+15 -+ - s Xy ooty >

Xy 4oty +15 -5 Xns

where, denoting the subtrees emanating from the root of 7 by 71, ..., 7j, for
any 1 <s <[ theleaves of 7; are labeled by Xy, ..m. 1+1, - - - » Xy ooty 14mys
and X, 4...fmy+1, - - - » Xn Tepresent the leaves that are directly connected to the
root (if any); see Figure 13. Among the variables labeling the leaves of T;,
there should exist one with respect to which the first-order partial derivative
of F is not zero. Without any loss of generality, we may assume that F,, # 0
at any point of B. Hence, the Jacobian of the map (F, xo,...,x,) : B > R”
is always invertible. To prove that the map provides a coordinate system,
we just need to show that it is injective. Keeping x, ..., x, constant and
varying xi, we obtain a univariate function of x; on the interval I; whose
derivative is always nonzero and is hence injective.

Next, to prove that the level sets of F : B — R are connected, notice that
F admits a representation

F(xlv e xﬂ) =0 (lel + -+ le[ + w;n]+.4.+m1+]xm1+m+m1+l + -+ U);,lxn)

(A1)

where G = Gs(Xpy4tm, 1+1s - - - s Xopytotmy_+m,) 1S the tree function that
Ts computes by receiving Xy, +..m. 1+1, - - - » Xmytotmy_+m, from its leaves;
o is the activation function assigned to the root of 7; and ws, ..., wy,
Wy totmyt1s - - - » Wy, are the weights appearing at the root. A simple appli-
cation of the chain rule implies that G;, which is a function implemented
on the tree 7y, satisfies the nonvanishing hypotheses of theorem 7 on the
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box-like region I; x --- x I,,;; moreover, the derivative of o is nonzero at
any point of its domain® because otherwise there exists a point of p € B at
which F,, (p) = 0 for any leaf x;. By the same logic, the weight w; must be
nonzero because otherwise all first-order partial derivatives with respect
to the variables appearing in 7; are identically zero. We now show that an
arbitrary level set L. := {x € B|F(x) = c} is connected. Given the represen-
tation (see equation A.1) of F, the level set is empty if o does not attain the
value c. Otherwise, o attains c at a unique point o ~!(c) of its domain. So one

may rewrite the equation F(x1, ..., x,) =cas
/
w7 wy w,, .. 1
Gi=—-—7Gy—+——G — mxmﬁmwﬂ
w1 w1 w1
w! 1
— =y, — o Y(0). (A.2)
w1 w1
The left-hand side of equation A.2 is a function of x1, .. ., x;,,, while its right-
hand side, which we denote by G, is a function of x,,, 11, . .., x,,. Therefore,

the level set L, is the preimage of
{(1:%) € R x (i1 x - x L) |y = GX)) (A3)
under the map

w:B=(h x- X Lp) X (1 X -+ X L) > R X (Lyy1 X -+ X Iy)
(X125 ooy Xy X) = (Gr(x1, e oy Xy ), X)

(A4)

The following simple fact can now be invoked: Let 7w : X — Y be a continu-
ous map of topological spaces that takes open sets to open sets and has connected
level sets. Then the preimage of any connected subset of Y under m is connected.
Here, L, is the preimage of the set from equation A.3, which is connected
since it is the graph of a continuous function, under the map = defined in
equation A.4, which is open because the scalar-valued function G; is: its
gradient never vanishes. Therefore, the connectedness of the level sets of F
is implied by the connectedness of the level sets of . A level set of the map,
equation A.4, could be identified with a level set of its first component G;.
Consequently, we have reduced to the similar problem for the function G,
which is implemented on the smaller tree 7;. Therefore, an inductive argu-
ment yields the connectedness of the level sets of F. It only remains to check
the basic case of a tree whose leaves are directly connected to the root. In

’ As the vector (x1, ..., x,) of inputs varies in the box-like region B, the inputs to each
node form an interval on which the corresponding activation function is defined.
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3256 K. Filom, R. Farhoodi, and K. Kording

that setting, F(x1, ..., x,,) is in the form of o (a1x1 + - - - + a,,x,,) (the family of
functions that lemma 3 is concerned with). By repeating the argument used
before, the activation function o is injective. Hence, a level set F(x) = cis the
intersection of the hyperplane ajx; + - - - + a,x, = o ~1(c) with the box-like
region B. Such an intersection is convex and thus connected. O

Proof of Lemma 3. The necessity of conditions FxlxkFx, = Fxkain follows
from a simple computation. For the other direction, suppose F, #0
throughout an open box-like region B € R" and any rat1o = is constant on
B. Denoting it by a;, we obtain numbers a, ..., a, with a j = 1. They form
avector [a -+ a,]T parallel to VF. Thus, F could have nonzero first-order

partial derivative only with respect to the first member of the coordinate
system,

(a1x1 4 4 X, X1, X1 X1 - X)),

for B. The coordinate hypersurfaces are connected since they are intersec-
tions of hyperplanes in R" with the convex region B. This fact enables us to
deduce that F can be written as a function of a1x1 + - - - + a,x,, globally. O

Proof of Lemma 4. For a function g =414, such as equation 3.4,
equalities of the form q9,0,0 = 4,0 4,0 hold since both sides
a Jb
coincide with 4142 (ql)y1>(q2)y . For the other direction, let g=
a b

q (ygl), e y,11 ; y&z), A yff)) be a smooth function on an open box-like re-
glOIl B; x B, € R™ x R™ that satisfies qqy(l)ym = qym E]y(Z) for any l<a<m
a Yy a b

and 1 < b < np, and never vanishes. So g is either always positive or always
negative. One may assume the former by replacing g with —g if necessary.
Hence, we can define a new function p := Ln(g) by taking the logarithm.
We have

- (%w) 0000 ~ 90 U _
= 5 = U.
y y q Jl(z) q

It suffices to show that this vanishing of mixed partial derivatives
. 1 1 2 1 1

allows us to write p(yg L yﬁll),yl ,...,y,(h)) as pi (yg ),...,yﬁll)) +

p2 (ygz), e yff)) since then exponentiating yields g; and g, as e and e??,

respectively. The domain of p is a box-like region of the form

By x By = (]‘[1},1)) x (]‘[1}}’) :
a=1 b=1
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Picking an arbitrary point zgl) € I{l), the fundamental theorem of calculus

implies
1 2
p (D)

(1)
W
@ @ 1 2 1)
=fm pyor (578 Dy D) s
%

(1) 1). ,,2) 2
+p(21 Wa e U)W ~-~,y22)-

On the right-hand side, the integral is dependent only on ygl), . ym) be-
cause the partial derivatives of the integrand with respect to 3/1 . y,(fz)
are all identically zero. The second term, p (zgl), yz Ve ynl ; y?), T ),

is a function on the smaller box-like region

ny 1y
a=2 b=1

in R"~! x R™ and thus, proceeding inductively, can be brought into the
appropriate summation form. (]

Appendix B: Differential Forms

Differential forms are ubiquitous objects in differential geometry and tensor
calculus. We only need the theory of differential forms on open domains in
Euclidean spaces. Theorem 5 (which has been used several times through-
out the, for example, in the proof of theorem 3) is formulated in terms of
differential forms. This appendix provides the necessary background for
understanding the theorem and its proof.

We begin with a very brief account of the local theory of differential
forms. (For a detailed treatment see Pugh, 2002, chap. 5.) Let U be an open
subset of R". A differential k-form @ on U assigns a scalar to any k-tuple of
tangent vectors at a point p of U. This assignment, denoted by wp, must
be multilinear and alternating. We say w is smooth (resp. analytic) if wp
varies smoothly (resp. analytically) with p. In other words, feeding w with
k smooth (resp. analytic) vector fields Vi, ..., Vi on U results in a func-
tion w(Vi, ..., Vi) : U — R that is smooth (resp. analytic). We next exhibit
an expression for w. Consider the standard basis (ﬁ R &

fields on U where ()ix, assigns e; to each point. The dual basis is denoted

) of vector
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3258 K. Filom, R. Farhoodi, and K. Kording

by (dxq, ..., dx,), which at each point yields the dual of the standard basis
(e1,...,e,) for R", that is, dx; ( 9 ) = §;;. Bach of dxy, ..., dx, is a 1-form

o
on U, and any k-form w can be written in terms of them:

o= Y figde Aady. (B.1)

1<ii<..<ix<n

Here, each coefficient f; ; is a (smooth or analytic according to the con-
text) function U — R. In front of it, dx;, A ... A dx; appears, which is a
the operation of the exterior product (also called the wedge product) from
multilinear algebra. The exterior product is an associative and distributive
linear operation that out of k;-tensors 7; (1 <i <) constructs an alternat-
ing (ki + - - - 4+ k;)-tensor 71 A ... A ;. This product is anti-commutative, for
example, dx; A dx; = —dx; A dx;; this is the reason that in equation B.1, the
indices are taken to be strictly ascending.

Another operation in the realm of differential forms is exterior differen-
tiation. For the k-form o from equation B.1, its exterior derivative dw is a
(k + 1)-form defined as

k-form satisfying dx; A ... Adx;, ( ) = 1. This is constructed by

do:= > dfiqAde AL Ady,

1<i)<..<ir<n

where the exterior derivative of a function f is defined as

df == Z £, dx;. (B.2)

i=1

Notice that the 1-form is the dual of the gradient vector field
n 3
Vi=) fug (B.3)
i=1 i

B.1 Example 14. In dimension 3, the exterior differentiation encapsu-
lates the familiar vector calculus operators curl and divergence. Consider
the vector field

V(x,y,z) =[Vi(x,y. 2), Valx, v, 2), V3(x, . z)]T.
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The exterior derivatives

d(V1 dx +V; dy + V3 dZ) = ((V3)y - (VQ)Z)dy Adz + ((V1 ), — (V3)x)dZ A dx
+ (V) = (V1)y)dx A dy

and

d(Vidy Adz + Vo dz A dx + Vadx A dy)
= ((V1)x + (V2)y + (V3)-)dx A dy A dz,

respectively, have curlV and divV as their coefficients. In fact, there is a gen-
eral Stokes formula for differential forms that recovers the Kelvin-Stokes
theorem and the divergence theorem as special cases. Finally, we point out
that the familiar identities curl o V = 0 and div o curl = 0 are instances of
the general property d o d = 0 of the exterior differentiation.

B.2 Example 15. As mentioned in the previous example, the outcome
of twice applying the exterior differentiation operator to a form is always
zero. This is an extremely important property that leads to the definitions
of closed and exact differential forms. A k-form » on an open subset U of
R" is called closed if dw = 0. This holds if w is in the form of w = do for a
(k — 1)-form @ on U. Such forms are called exact. The space of closed forms
may be strictly larger than the space of exact forms; the difference of these
spaces can be used to measure the topological complexity of U. If U is an
open box-like region, every closed form on it is exact. But, for instance, the
1-form o = —# dx+ iz dyon R? — {(0, 0)} is closed while it may not
be written as de for any smooth function & : R? — {(0, 0)} — R. This brings
us to a famous fact from multivariable calculus that we have used several
times (e.g., in the proof of theorem 4). A necessary condition for a vector
fieldV=>3",V; % on an open subset U of R" to be a gradient vector field
is (Vi)x; = (Vj)x, forany 1 < i, j < n. Near each point of U, the vector field V
may be written as V f; it is globally in the form of V f for a function f : U —
R when U is simply connected. In view of equations B.2 and B.3, one may
rephrase this fact as: Closed 1-forms on U are exact if and only if U is simply
connected.

Proof of Theorem 5. Near a point p € R" at which V(p) # 0, we seek a lo-
cally defined function & with V || V& # 0. Recall that if q € R" is a regular
point of £, then near q, the level set of & passing through q is an (n — 1)-
dimensional submanifold of R" to which the gradient vector field, V& # 0,
is perpendicular. As we want the gradient to be parallel to the vector field
V, the equivalent characterization in terms of the 1-form w, which is the
dual of V (cf. equations 3.1 and 3.3), asserts that w is zero at any vector
tangent to the level set. So the tangent space to the level set at the point q
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3260 K. Filom, R. Farhoodi, and K. Kording

could be described as {v € R" | wq(v) = 0}. As q varies near p, these (1 — 1)-
dimensional subspaces of R" vary smoothly. In differential geometry, such
a higher-dimensional version of a vector field is called a distribution, and
the property that these subspaces are locally given by tangent spaces to a
family of submanifolds (the level sets here) is called integrability. The semi-
nal Frobenius theorem (Narasimhan, 1968, theorem 2.11.11) implies that the
distribution defined by a nowhere vanishing 1-from w is integrable if and
only if w A dw = 0. 0
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