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How does the human brain encode visual object categories? Our under-
standing of this has advanced substantially with the development of
multivariate decoding analyses. However, conventional electroen-
cephalography (EEG) decoding predominantly uses the mean neural
activation within the analysis window to extract category information.
Such temporal averaging overlooks the within-trial neural variability
that is suggested to provide an additional channel for the encoding of in-
formation about the complexity and uncertainty of the sensory input. The
richness of temporal variabilities, however, has not been systematically
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compared with the conventional mean activity. Here we compare the in-
formation content of 31 variability-sensitive features against the mean of
activity, using three independent highly varied data sets. In whole-trial
decoding, the classical event-related potential (ERP) components of P2a
and P2b provided information comparable to those provided by original
magnitude data (OMD) and wavelet coefficients (WC), the two most
informative variability-sensitive features. In time-resolved decoding,
the OMD and WC outperformed all the other features (including the
mean), which were sensitive to limited and specific aspects of temporal
variabilities, such as their phase or frequency. The information was
more pronounced in the theta frequency band, previously suggested
to support feedforward visual processing. We concluded that the brain
might encode the information in multiple aspects of neural variabilities
simultaneously such as phase, amplitude, and frequency rather than
mean per se. In our active categorization data set, we found that more
effective decoding of the neural codes corresponds to better prediction
of behavioral performance. Therefore, the incorporation of temporal
variabilities in time-resolved decoding can provide additional category
information and improved prediction of behavior.

1 Introduction

How does the brain encode information about visual object categories? This
question has been studied for decades using different neural recording tech-
niques, including invasive neurophysiology (Hung, Kreiman, Poggio, &
DiCarlo, 2005) and electrocorticography (ECoG); Majima et al., 2014;
Watrous, Deuker, Fell, & Axmacher, 2015; Rupp et al., 2017; Miyakawa
et al., 2018; Liu, Agam, Madsen, & Kreiman, 2009), as well as noninva-
sive neuroimaging methods such as functional magnetic resonance imag-
ing (fMRI; Haxby et al., 2001), magnetoencephalography (MEG; Contini,
Wardle, & Carlson, 2017; Carlson, Tovar, Alink, & Kriegeskorte, 2013)
and electroencephalography (EEG; Kaneshiro, Guimaraes, Kim, Norcia, &
Suppes, 2015; Simanova, Van Gerven, Oostenveld, & Hagoort, 2010) or a
combination of them (Cichy, Pantazis, & Oliva, 2014). There has been great
success in reading out or decoding neural representations of semantic object
categories from neuroimaging data. However, it is still unclear if the con-
ventional decoding analyses effectively detect the complex neural codes.
Critically, one potential source of neural codes in high-temporal-resolution
data (e.g., EEG) can be the “within-trial/window temporal variability” of
EEG signals, which is generally ignored through temporal averaging in de-
coding. The use of such summarized “mean” activity can hide the true spa-
tiotemporal dynamics of neural processes such as object category encoding,
which is still debated in cognitive neuroscience (Grootswagers, Robinson, &
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Additional Information in Temporal Variability of Evoked Potentials 3029

Carlson, 2019; Majima et al., 2014; Karimi-Rouzbahani, Bagheri, & Ebrahim-
pour, 2017b; Isik, Meyers, Leibo, & Poggio, 2014; Cichy et al., 2014; ; Karimi-
Rouzbahani, 2018).

Here, we quantitatively compare the information content and the tempo-
ral dynamics of a large set of features from EEG time series, each sensitive
to a specific aspect of within-trial temporal variability. We then evaluate the
relevance of these features by measuring how well each one predicts behav-
ioral performance. Sensory neural codes are multiplexed structures contain-
ing information on different timescales and about different aspects of the
sensory input (Panzeri, Brunel, Logothetis, & Kayser, 2010; Wark, Fairhall,
& Rieke, 2009; Gawne, Kjaer, & Richmond, 1996). Previous animal stud-
ies have shown that the brain encodes the sensory information not only in
the neural firing rates (i.e., average number of neural spikes within specific
time windows), but also in more complex patterns of neural activity, such
as millisecond-precise activity and phase (Kayser, Montemurro, Logothetis,
& Panzeri, 2009; Victor, 2000; Montemurro, Rasch, Murayama, Logothetis,
& Panzeri, 2008). It was shown that stimulus contrast was represented by
latency coding at a temporal precision of about 10 ms, whereas the stimulus
orientation and the spatial frequency were encoded at a coarser temporal
precision (30 ms and 100 ms, respectively; Victor, 2000). It was shown that
spike rates on 5 ms to 10 ms timescales carried complementary information
to the phase of firing relative to low-frequency (1–8 Hz) local field potentials
(LFPs) about epoch of naturalistic movie (Montemurro et al., 2008). There-
fore, the temporal patterns and variabilities of neural activity are enriched
platforms of neural codes.

Recent computational and experimental studies have proposed that
neural variability provides a separate and additional channel to the mean
activity for the encoding of general aspects of the sensory information—
for example, its “uncertainty” and “complexity” (Orbán, Berkes, Fiser, &
Lengyel, 2016; Garrett, Epp, Kleemeyer, Lindenberger, & Polk, 2020). Specif-
ically, uncertainty about the stimulus features (e.g., orientations of lines in
the image) was directly linked to neural variability in monkeys’ visual area
(Orbán et al., 2016) and human EEG (Kosciessa, Lindenberger, & Garrett,
2021): wider inferred range of possible feature combinations in the input
stimulus corresponded to wider distribution of neural responses. This
could be applied to both within- and across-trial variability (Orbán et al.,
2016). Moreover, temporal variability was directly related to the complex-
ity of input images: higher neural variability for house (i.e., more varied)
versus face (i.e., less varied) images (Garrett et al., 2020) and provided a
reliable measure of perceptual performance in behavior (Waschke, Tune,
& Obleser, 2019). The uncertainty- and complexity-dependent modulation
of neural variability, which is linked to the category of input information,
has been suggested to facilitate neural energy saving and adaptive and
effective encoding of the sensory inputs in changing environments (Garrett
et al., 2020; Waschke, Kloosterman, Obleser, & Garrett, 2021).
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Despite the richness of information encoded by neural variabilities, the
unclear transformation of such neuronal codes into EEG activity has led
to divergent approaches used for decoding information from EEG. For
example, the information in neural firing rates might appear in phase
patterns rather than amplitude of EEG oscillations (Ng, Logothetis, &
Kayser, 2013). Generally three families of features have been extracted
from EEG time series to detect neural codes from temporal variabilities
(Waschke et al., 2021): variance-, frequency- and information theory-based
features, each detecting specific aspects of variability. In whole-trial decod-
ing, components of event-related potentials (ERPs) such as N1, P1, P2a,
and P2b, which quantify time-specific variabilities of within-trial activa-
tion, have provided significant information about object categories (sep-
arately and in combination; Chan, Halgren, Marinkovic, & Cash, 2011;
Wang, Xiong, Hu, Yao, & Zhang, 2012; Qin et al., 2016). Others success-
fully decoded information from more complex variance- and frequency-
based features such as signal phase (Behroozi, Daliri, & Shekarchi, 2016;
Watrous, Deuker, Fell, & Axmacher, 2015; Torabi, Jahromy, & Daliri, 2017;
Wang, Wang, & Yu, 2018; Voloh, Oemisch, & Womelsdorf, 2020), signal
power across frequency bands (Rupp et al., 2017; Miyakawa et al., 2018; Ma-
jima et al., 2014), time-frequency wavelet coefficients (Hatamimajoumerd
& Talebpour, 2019; Taghizadeh-Sarabi, Daliri, & Niksirat, 2015), interelec-
trode temporal correlations (Karimi-Rouzbahani, Bagheri, & Ebrahimpour,
2017a), and information-based features (e.g., entropy; Joshi, Panigrahi,
Anand, & Santhosh, 2018; Torabi et al., 2017; Stam, 2005). Therefore, the
neural codes are generally detected from EEG activity using a wide range
of features sensitive to temporal variability.

While insightful, previous studies have also posed new questions about
the relative richness, temporal dynamics, and behavioral relevance of differ-
ent features of neural variability. First, can the features sensitive to temporal
variabilities provide additional category information to the conventional
mean feature? While several of the above studies have compared multi-
ple features (Chan et al., 2011; Taghizadeh-Sarabi et al., 2015; Torabi et al.,
2016), none of them compared their results against the conventional mean
activity, which is the dominant feature, especially in time-resolved decod-
ing (Grootswagers, Wardle, & Carlson, 2017). This comparison will not only
validate the richness of each feature of neural variability but will also show
if the mean activity detects a large portion of the neural codes produced
by the brain. We predicted that the informative neural variabilities, if prop-
erly decoded, should provide additional information to the mean activity,
which overlook the analysis window.

Second, do the features sensitive to temporal variabilities evolve over
similar time windows to the “mean” feature? Among all the studies men-
tioned above, only a few investigated the temporal dynamics of features,
other than the mean in time-resolved decoding (Majima et al., 2014; Stewart,
Nuthmann, & Sanguinetti, 2014; Karimi-Rouzbahani et al., 2017a), where
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the temporal evolution of information encoding is studied (Grootswagers
et al., 2017). As distinct aspects of sensory information (e.g., contrast ver-
sus spatial frequency) are represented on different temporal scales (Victor,
2000; Montemurro et al., 2008) and different variability features are poten-
tially sensitive to distinct aspects of variability, we might see differential
temporal dynamics for different features.

Third, do the features sensitive to temporal variabilities explain the
behavioral recognition performance more accurately than the mean fea-
ture? One important question, which was not covered in the above studies,
was whether the extracted information was behaviorally relevant or just
epiphenomenal to the experimental conditions. One way of validating the
relevance of the extracted neural codes is to check if they could predict
the relevant behavior (Williams, Dang, & Kanwisher, 2007; Grootswagers,
Cichy, & Carlson, 2018; Woolgar, Dermody, Afshar, Williams, & Rich, 2019).
We previously found that the decoding accuracies obtained from mean
signal activations could predict the behavioral recognition performance
(Ritchie, Tovar, & Carlson, 2015). However, it remains unknown whether
(if at all) the information obtained from temporal variabilities can explain
more variance of the behavioral performance. Our prediction was that as
the more informative features access more of the potentially overlooked
neural codes, they should also explain the behavioral performance more
accurately.

In this study, we address the above questions to provide additional in-
sights into what aspects of neural variabilities might reflect the neural codes
more thoroughly and how we can extract them most effectively using mul-
tivariate decoding analyses.

2 Methods

The data sets used in this study and the code are available online at
https://osf.io/wbvpn/. The EEG and behavioral data are available in
Matlab .mat format and the code in Matlab .m format. All the open-source
scripts used in this study were compared against other implementations of
identical algorithms in simulations and used only if they produced iden-
tical results. All open-source implementation scripts of similar algorithms
produced identical results in our simulations. To evaluate different imple-
mentations, we tested them using 1000 random (normally distributed with
unit variance and zero mean) time series, each including 1000 samples.

2.1 Overview of Data Sets. We chose three previously published EEG
data sets in this study which differed across a wide range of parameters in-
cluding the recording setup (e.g., amplifier, number of electrodes, prepro-
cessing steps), characteristics of the image-set (e.g., number of categories
and exemplars within each category, colorfulness of images), and task (e.g.,
presentation length, order and the participants’ task; see Table 1). All three
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Figure 1: Paradigms of the data sets used in this study. Data set 1 (top row)
presented two consecutive object images, each with a fixation dot. The partici-
pant’s task was to indicate if the fixation dots were the same or different colors
across the image pairs (passive task). Data set 2 (middle row) presented objects
from the target and nontarget categories in sequences of 12 images. The partici-
pant’s task was to indicate, for each image, if it was from the target or nontarget
category (active task). Data set 3 (bottom row), presented sequences of object
images from six categories. Participants did not have any specific tasks except
for looking at the center of the image (no overt task). More details about the data
sets in the relevant references are provided in Table 1.

data sets previously successfully provided object category information us-
ing multivariate analyses.

2.1.1 Data Set 1. We previously collected data set 1 while participants
were briefly (i.e., 50 ms) presented with gray-scale images from four syn-
thetically generated 3D object categories (Karimi-Rouzbahani et al., 2017a).
The objects underwent systematic variations in scale, positional periphery,
in-depth rotation, and lighting conditions, which made perception difficult,
especially in extreme variation conditions. Randomly ordered stimuli were
presented in consecutive pairs (see Figure 1, top row). The participants’
task was unrelated to object categorization; they pressed one of two pre-
determined buttons to indicate if the fixation dots, superimposed on the
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first and second stimuli, were the same or a different color (two-alternative
forced choice).

2.1.2 Data Set 2. We collected data set 2 in an active categorization exper-
iment, in which participants pressed a button if the presented object image
was from a target category (go/no-go), which was cued at the beginning
of each block of 12 stimuli (Karimi-Rouzbahani, Vahab, Ebrahimpour, &
Menhaj, 2019; see Figure 1, middle row). The object images, which were
cropped from photographs, were part of the well-established benchmark
image set for object recognition developed by Kiani, Esteky, Mirpour, and
Tanaka (2007). This image set has been previously used to extract object cat-
egory information from both human and monkey brain using MEG (Cichy
et al., 2014), fMRI (Cichy et al., 2014; Kriegeskorte et al., 2008), and single-
cell electrophysiology (Kriegeskorte et al., 2008; Kiani et al., 2007).

2.1.3 Data Set 3. We also used another data set (data set 3), which was
not collected in our lab. This data set was collected by Kaneshiro et al. (2015)
on six sessions for each participant. We used the first session only because
it could represent the whole data set (the next sessions were repetition of
the same stimuli to increase the signal-to-noise ratio) and we preferred to
avoid a potential effect of extended familiarity with the stimuli on neu-
ral representations. The EEG data were collected during passive viewing
(participants had no task but to keep fixating on the central fixation cross;
see Figure 1, bottom row) of six categories of objects with stimuli chosen
from Kiani et al. (2007) as explained above. We used a preprocessed (i.e.,
bandpass-filtered in the range 0.03 to 50 Hz) version of the data set, which
was available online.1

All three data sets were collected at a sampling rate of 1000 Hz. For data
sets 1 and 2, only the trials that led to correct responses by participants
were used in the analyses. Each data set consisted of data from 10 par-
ticipants. Each object category in each data set included 12 exemplars. To
make the three data sets as consistent as possible, we preprocessed them
differently from their original papers. Specifically, the bandpass filtering
range of data set 3 was 0.03 to 50 Hz, and we did not have access to the
raw data to increase the upper cutting frequency to 200 Hz. Data sets 1
and 2 were bandpass-filtered in the range 0.03 to 200 Hz before the data
were split into trials. We also applied 50 Hz notch filters to data sets 1 and
2 to remove line noise. Next, we generated different versions of the data
by bandpass-filtering the data in delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–12 Hz), beta (12–16 Hz), and gamma (16–200 Hz) bands to see if there
is any advantage for the suggested theta or delta frequency bands (Wa-
trous et al., 2015; Behroozi et al., 2016; Wang, Wang, & Yu, 2018). We used

1
https://purl.stanford.edu/tc919dd5388.
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finite-impulse-response (FIR) filters with 12 dB roll-off per octave for
bandpass-filtering of data sets 1 and 2 and when evaluating the sub-bands
of the three data sets. All the filters were applied before splitting the data
into trials.

We did not remove artifacts (e.g., eye related and movement related)
from the signals, as we and others have shown that sporadic artifacts have
minimal effect in multivariate decoding (Grootswagers et al., 2017). To
increase signal-to-noise ratios in the analyses, each unique stimulus was
presented to the participants 3, 6, and 12 times in data sets 1, 2, and 3, re-
spectively. Trials were defined in the time window from 200 ms before to
1000 ms after the stimulus onset to cover most of the range of event-related
neural activations. The average prestimulus (−200–0 ms relative to the stim-
ulus onset) signal amplitude was removed from each trial of the data. For
more information about each data set, see Table 1 and the references to their
original publications.

2.2 Features. EEG signals are generated by inhibitory and excitatory
postsynaptic potentials of cortical neurons. These potentials extend to the
scalp surface and are recorded through electrodes as amplitudes of volt-
age in units of microvolts. Researchers have been using different aspects
of these voltage recordings to obtain meaningful information about human
brain processes. The main focus of this study is to compare the information
content of features that are sensitive to temporal variabilities of neural ac-
tivations against the mean of activity within the analysis window, which is
conventionally used in decoding analysis (Grootswagers et al., 2017). Below
we explain the mathematical formulas for each feature used in this study.
We also provide brief information about potential underlying neural mech-
anisms that can lead to the information content provided by each feature.

We classified the features into five classes based on their mathematical
similarity to simplify the presentation of the results and their interpreta-
tions: moment, complexity, ERP, frequency domain, and multivalued fea-
tures. However, the classification of the features is not strict, and the features
might be classified based on other criteria and definitions. For example,
complexity itself has different definitions (Tononi & Edelman, 1998), such as
degree of randomness or degrees of freedom in a large system of interacting
elements. There are also recent studies that split the variability features into
the three categories of variance-, frequency- and information theory-based
categories (Waschke et al., 2021). Therefore, each definition may exclude or
include some of our features in the class. It is of note that we used only the
features that were previously used to decode categories of evoked poten-
tials from EEG signals through multivariate decoding analysis. Nonethe-
less, there are definitely other features available, especially those extracted
from EEG time series collected during long-term monitoring of human neu-
ral representations in health and disorder (Fulcher & Jones, 2017). In pre-
senting the features’ formulas, we avoided repeating the terms from the
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first feature to the last one. Therefore, readers might need to go back a few
steps or features to find the definitions of the terms. Note that in this study,
the analyses are performed in either 1000 ms time windows (i.e. number of
samples used for feature extraction: N = 1000) in the whole-trial analysis
or 50 ms time windows (N = 50) in time-resolved analysis.

2.2.1 Moment Features. These features are the most straightforward and
intuitive ones from which we might be able to extract information about
neural processes. Mean, variance, skewness, and kurtosis are the first to
fourth moments of EEG time series and can provide information about the
shape of the signals and their deviation from stationarity which is the case
in evoked potentials (Rasoulzadeh et al., 2017; Wong Galka, Yamashita, &
Ozaki, 2006). These moments have been shown to be able to differentiate
visually evoked responses (Pouryzdian & Erfanian, 2010; Alimardani, Cho,
Boostani, & Hwang, 2018). The second to fourth moments are also catego-
rized as variance-based features in recent studies (Waschke et al., 2021).

Mean. Mean amplitude of an EEG signal changes in proportion to the
neural activation of the brain. It is by far the most common feature of the
recorded neural activations used in analyzing brain states and cognitive
processes in both univariate and multivariate analyses (Vidal et al., 2010;
Hebart & Baker, 2018; Grootswagers et al., 2017; Karimi-Rouzbahani et al.,
2019). In EEG, brain activation is reflected as the amplitude of the recorded
voltage across each electrode and the reference electrode at specific time
points. To calculate the mean feature, the first moment in statistics, the sam-
ple mean is calculated for each recorded EEG time series as

x̄ = 1
N

N∑
t=1

xt, (2.1)

where x̄ is the mean of the N time samples contained in the analysis window
and xt refers to the amplitude of the recorded sample at time point t. N can
be as small as unity as in the case of time-resolved EEG analysis (Grootswa-
gers et al., 2017) or so large that it can cover the whole trial in whole-trial
analysis. Accordingly, we set N = 1000 (1000 ms) and N = 50 (50 ms) for
the whole-trial and time-resolved decoding analyses, respectively.

Median. Compared to the mean feature, the median is less susceptible to
outliers (e.g., spikes) in the time series, which might not come from neural
activations but rather from artifacts caused by, for example, the recording
hardware, preprocessing, or eye-blinks. The median is calculated as

Median(X ) =

⎧⎪⎨
⎪⎩

X
[N

2

]
if N is even

(X[ N−1
2 ]+X[ N+1

2 ])
2 if N is odd

⎫⎪⎬
⎪⎭ , (2.2)
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where X is the ordered values of samples in the time series xt for t =
1, . . . , N.

Variance. The variance of an EEG signal is one of the simplest indicators
showing how much the signal is deviated from stationarity, that is, from its
original baseline statistical properties (Wong et al., 2006). It is a measure of
signal variabilities (within trial here), has been shown to decline upon the
stimulus onset potentially as a result of neural coactivation, and has pro-
vided information about object categories in a recent EEG decoding study
(Karimi-Rouzbahani et al., 2017a). Variance is calculated as

σ 2 = 1
N

N∑
t=1

(xt − x̄)2. (2.3)

Skewness. While variance is silent about the direction of the deviation
from the mean, skewness, the third signal moment, measures the degree of
asymmetry in the signal’s probability distribution. In symmetric distribu-
tion (i.e., when samples are symmetric around the mean), skewness is zero.
Positive and negative skewness indicates right- and left-ward tailed distri-
bution, respectively. As the visually evoked ERP responses usually tend to
be asymmetrically deviated in either a positive or negative direction, even
after baseline correction (Mazaheri & Jensen, 2008), we assume that skew-
ness should provide information about the visual stimulus if each category
modulates the deviation of the samples differentially. Skewness is calcu-
lated as

γ1 = 1
N

N∑
t=1

(
xt − x̄

σ

)3

. (2.4)

Kurtosis. Kurtosis reflects the degree of “tailedness” or “flattedness” of
the signal’s probability distribution. Accordingly, the more heaviness there
is in the tails, the less value of the kurtosis and vice versa. Based on previ-
ous studies, Kurtosis has provided distinct representations corresponding
to different classes of visually evoked potentials (Alimardani et al., 2018;
Pouryzdian & Erfanian, 2010). We test to see if it plays a more generalized
role in information coding (e.g., coding of semantic aspects of visual infor-
mation) as well. It is the fourth standardized moment of the signal, defined
as

Kurt = 1
N

N∑
t=1

(
xt − x̄

σ

)4

. (2.5)

2.2.2 Complexity Features. There can potentially be many cases in which
simple moment statistics such as mean, median, variance, skewness, and
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kurtosis, which rely on distributional assumptions, provide equal values for
distinct time series (e.g., series A: 10, 20, 10, 20, 10, 20, 10, 20 versus series B:
20, 20, 20, 10, 20, 10, 10, 10) for both of which the five features provide equal
results. Therefore, we need more complex and possibly nonlinear measures
that can detect subtle but meaningful temporal patterns from time series.
The analysis of nonlinear signal features has recently been growing, fol-
lowing the findings showing that EEG reflects weak but significant nonlin-
ear structures (Stam, 2005; Stêpieñ, 2002). Importantly, many studies have
shown that the complexity of EEG time series can significantly alter dur-
ing cognitive tasks such as visual (Bizas et al., 1999) and working memory
tasks (Sammer, 1999; Stam, 2000). Therefore, it was necessary to evaluate
the information content of nonlinear features for our decoding of object
categories. As mentioned above, the grouping of these nonlinear features
as “complexity” here is not strict, and the features included in this class are
those that capture complex and nonlinear patterns across time series. Al-
though the accurate detection of complex and nonlinear patterns generally
needs more time samples compared to linear patterns (Procaccia, 1988), it
has been shown that nonlinear structures can be detected from short EEG
time series as well (i.e., through fractal dimensions; Preissl, Lutzenberger,
Pulvermüller, & Birbaumer, 1997). Nonetheless, we extract these features
from both time-resolved (50 samples) and whole-trial data (1000 samples)
to ensure we do not miss potential information represented in longer tem-
poral scales.

Lempel-Ziv complexity (LZ Cmplx). Lempel-Ziv complexity measures the
complexity of time series (Lempel & Ziv, 1976). Basically, the algorithm
counts the number of unique sub-sequences within a larger binary se-
quence. Accordingly, a sequence of samples with a certain regularity does
not lead to a large LZ complexity. However, the complexity generally grows
with the length of the sequence and its irregularity. In other words, it mea-
sures the generation rate of new patterns along a digital sequence. In a
comparative work, it was shown that compared to many other frequency
metrics of time series (e.g., noise power, stochastic variability), LZ complex-
ity has the unique feature of providing a scalar estimate of the bandwidth
of time series and the harmonic variability in quasi-periodic signals (Aboy,
Hornero, Abásolo, & Álvarez, 2006). It is widely used in biomedical sig-
nal processing and has provided successful results in the decoding of vi-
sual stimuli from neural responses in primary visual cortices (Szczepański,
Amigó, Wajnryb, & Sanchez-Vives, 2003). We used the code by Quang Thai2

implemented based on “exhaustive complexity,” which is considered to
provide the lower limit of the complexity as explained by Lempel and Ziv
(1976). We used the signal median as a threshold to convert the signals into

2
https://www.mathworks.com/matlabcentral/fileexchange/38211-calc_lz_complex

ity.
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binary sequences for the calculation of LZ complexity. The LZ complexity
provided a single value for each signal time series.

Fractal dimension. In signal processing, fractal is an indexing technique
that provides statistical information about the complexity of time series. A
higher fractal value indicates more complexity for a sequence as reflected
in more nesting of repetitive sub-sequences at all scales. Fractal dimensions
are widely used to measure two important attributes: self-similarity and
the shape of irregularity. A growing set of studies has been using fractal
analyses for the extraction of information about semantic object categories
(such as living and nonliving categories of visual objects; Ahmadi-Pajouh,
Ala, Zamanian, Namazi, & Jafari, 2018; Torabi et al., 2017), as well as sim-
ple checkerboard patterns (Namazi, Ala, & Bakardjian, 2018) from visually
evoked potentials. In this study, we implemented two of the common meth-
ods for the calculation of fractal dimensions of EEG time series, which have
been previously used to extract information about object categories as ex-
plained below. We used the implementations by Jesús Monge Álvarez3 for
fractal analysis.

In Higuchi’s fractal dimension (Higuchi FD; Higuchi, 1988), a set of sub-
sequences xm

k is generated in which k and m refer to the step size and initial
value, respectively. Then the length of this fractal dimension is calculated
as

Lm
k =

{[∑[ N−m
k ]

i=1 |x(m+ik) − x(m+(i−1).k)|
]

N−1
[ N−m

k ].k

}

k
, (2.6)

where N−1
[ N−m

k ].k is the normalization factor The length of the fractal curve at

step size of k is calculated by averaging k sets of Lm
k . Finally the resultant

average will be proportional to k−D where D is the fractal dimension. We
set the free parameter of k equal to half the length of signal time series in
the current study.

We also calculated fractal dimension using Katz’s method (Katz FD;
Katz, 1988) as it showed a significant amount of information about object
categories in a previous study (Torabi et al., 2017). The fractal dimension
(D) is calculated as

D = log10

( L
a

)
log10

( d
a

) = log10r

log10

( d
L

) + log10r
, (2.7)

where L and a refer to the sum and average of the consecutive signal sam-
ples, respectively. Also d refers to the maximum distance between first

3
https://ww2.mathworks.cn/matlabcentral/fileexchange/50290-higuchi-and-katz-

fractal-dimension-measures.
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sample the ith sample of the signal, which has the maximum distance from
the first sample as

L =
N∑

i=2

|xi − xi−1|, (2.8)

d = max(distance(1, i)), (2.9)

r = L/a. (2.10)

Hurst exponent. The Hurst exponent (Hurst Exp) is widely used to mea-
sure long-term memory in time-dependent random variables such as bio-
logical time series (Racine, 2011). In other words, it measures the degree of
interdependence across samples in the time series and operates like an au-
tocorrelation function over time. Hurst values between 0.5 and 1 suggest
the consecutive appearance of high signal values on large timescales while
values between 0 and 0.5 suggest frequent switching between high and low
signal values. Values around 0.5 suggest no specific patterns among sam-
ples of a time series. It is defined as an asymptotic behavior of a rescaled
range as a function of the time span of the time series defined as

E

⎡
⎣max(z1, z2, . . . , zN ) − min(z1, z2, . . . , zN )√

1
N

∑N
t=1(xt − x̄)2

⎤
⎦ = C.NH as N → ∞, (2.11)

zt =
t∑

i=1

yi; t = 1, . . . , N, (2.12)

yt = xt − x̄, (2.13)

where E is the expected value, C is a constant and H is the Hurst exponent
(Racine, 2011) We used the open-source implementation of the algorithm,4

which has also been used previously for the decoding of object category
information in EEG (Torabi et al., 2017).

Entropy. Entropy can measure the perturbation in time series (Waschke
et al., 2021). A higher value for entropy suggests a higher irregularity in the
given time series. Precise calculation of entropy usually requires a consid-
erable number of samples and is also sensitive to noise. Here we used two
methods for the calculation of entropy, each of which has advantages over
the other.

Approximate entropy (Apprx Ent) was initially developed to be used for
medical data analysis (Pincus & Huang, 1992), such as heart rate, and then

4
https://www.mathworks.com/matlabcentral/fileexchange/9842-hurst-exponent.
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was extended to other areas such as brain data analysis. It has the advan-
tage of requiring a low computational power, which makes it perfect for
real-time applications on low sample sizes (<50). However, the quality of
this entropy method is impaired on lower lengths of the data. This metric
detects changes in episodic behavior, which are not represented by peak oc-
currences or amplitudes (Pincus & Huang, 1992). We used an open-source
code5 for calculating approximate entropy. We set the embedded dimen-
sion and the tolerance parameters to 2% and 20% of the standard devia-
tion of the data, respectively, to roughly follow a previous study (Shourie,
Firoozabadi, & Badie, 2014), which compared approximate entropy in vi-
sually evoked potentials and found differential effects across artist versus
nonartist participants when looking at paintings.

Sample entropy (Sample Ent), a refinement of the approximate entropy,
is frequently used to calculate the regularity of biological signals (Richman
& Moorman, 2000). Basically, it is the negative natural logarithm of the con-
ditional probability that two sequences (subset of samples) that are similar
for m points remain similar at the next point. A lower sample entropy also
reflects a higher self-similarity in the time series. It has two main advantages
to the approximate entropy: it is less sensitive to the length of the data and is
simpler to implement. However, it does not focus on self-similar patterns in
the data. We used the Matlab entropy function for the extraction of this fea-
ture, which has already provided category information in a previous study
(Torabi et al., 2017). (See Richman & Moorman, 2000, and Subha, Joseph,
Acharya, & Lim, 2010, for the details of the algorithm.)

Autocorrelation. Autocorrelation (Autocorr) determines the degree of
similarity between the samples of a given time series and a time-lagged
version of the same series. It detects periodic patterns in signals, which is
an integral part of EEG time series. Therefore, following recent successful
attempts in decoding neural information using the autocorrelation func-
tion from EEG signals (Wairagkar, Zoulias, Oguntosin, Hayashi, & Nasuto,
2016), we evaluated the information content of the autocorrelation func-
tion in decoding visual object categories. As neural activations reflect many
repetitive patterns across time, the autocorrelation function can quantify the
information contents of those repetitive patterns. Autocorrelation is calcu-
lated as

R(τ ) = 1
(N − τ )σ 2

N−τ∑
t=1

(xt − x̄)(xt+τ − x̄), (2.14)

where τ indicates the number of lags in samples of the shifted signal. A
positive value for autocorrelation indicates a strong relationship between

5
https://www.mathworks.com/matlabcentral/fileexchange/32427-fast-approximat

e-entropy.
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the original time series and its shifted version, whereas a negative autocor-
relation refers to an opposite pattern between them. Zero autocorrelation
indicates no relationship between the original time series and its shifted
version. In this study, we extracted autocorrelations for 30 consecutive lags
([τ = 1, 2, . . . , 30]) and used their average in classification. Note that each
lag refers to 1 ms as the data were sampled at 1000 Hz.

Hjorth parameters. These are descriptors of statistical properties of signals
introduced by Hjorth (1970). These parameters are widely used in EEG sig-
nal analysis for feature extraction across a wide set of applications includ-
ing visual recognition (Joshi et al., 2018; Torabi et al., 2017). These features
consist of activity, mobility, and complexity as defined below. As the activ-
ity parameter is equivalent to the signal variance, which we already Hjorth
complexity (Hjorth Cmp) determines the variation in time series’ frequency
by quantifying the similarity between the signal and a pure sine wave lead-
ing to a value of one in case of perfect match In other words, values around
one suggest lower complexity for a signal. It is calculated as

Complexity = Mobility ( dxt
dt )

Mobility (xt )
. (2.15)

Hjorth mobility (Hjorth Mob) determines the proportion of standard de-
viation of the power spectrum as is calculated below, where var refers to
the signal variance:

Mobility =

√√√√var
(

dxt
dt

)
var(xt )

. (2.16)

2.2.3 ERP Components (N1, P1, P2a, and P2b). An ERP is a measured brain
response to a specific cognitive, sensory, or motor event that provides an
approach to studying the correlation between the event and neural pro-
cessing. According to the latency and amplitude, ERP is split into specific
subwindows called components. Here, we extracted ERP components by
calculating the mean of signals in specific time windows to obtain the P1
(80–120 ms), N1 (120–200 ms), P2a (150–220 ms), and P2b (200–275 ms) com-
ponents, which were shown previously to provide significant amounts of
information about visual object and face processing in univariate (Rossion
et al., 2000; Rousselett, Husk, Bennett, & Sekuler, 2007) and multivariate
analyses (Chan et al., 2011; Jadidi, Zargar, & Moradi, 2016; Wang et al., 2012).
As these components are calculated in limited and specific time windows,
in the whole-trial analysis, they reflect the mean of activity in their specific
time windows, rather than the whole post-stimulus window. They will be
also absent from time-resolved analyses by definition.
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2.2.4 Frequency-Domain Features. Neural variability is commonly ana-
lyzed in frequency domain by calculating spectral power across frequency
bands. Specifically, as data transformation from time to frequency domain is
almost lossless using Fourier transform, oscillatory power basically reflects
frequency-specific variance (with the total power reflecting the overall vari-
ance of the time series; Waschke et al., 2021). Motivated by previous studies
showing signatures of object categories in the frequency domain (Behroozi
et al., 2016; Rupp et al., 2017; Iranmanesh & Rodriguez-Villegas, 2017; Joshi
et al., 2018; Jadidi et al., 2016) and the representation of temporal codes
of visual information in the frequency domain (Eckhorn et al., 1988), we
also extracted frequency-domain features to see if they could provide ad-
ditional category-related information to time-domain features. It is of note
that while the whole-trial analysis allows us to compare our results with
previous studies, the evoked EEG potentials are generally nonstationary
(i.e., their statistical properties change along the trial) and potentially dom-
inated by low-frequency components. Therefore, the use of time-resolved
analysis, which looks at more stationary subwindows of the signal (e.g.,
50 samples here), will allow us to detect subtle high-frequency patterns of
neural codes.

Signal power (Signal Pw). Power spectrum density (PSD) represents the in-
tensity or the distribution of the signal power into its constituent frequency
components. This feature was motivated by previous studies showing as-
sociations between aspects of visual perception and power in certain fre-
quency bands (Rupp et al., 2017; Behroozi et al., 2016; Majima et al., 2014).
According to the Fourier analysis, signals can be broken into their con-
stituent frequency components or a spectrum of frequencies in a specific
frequency range. Here, we calculated signal power using the PSD as in

S̃xx(w) = (�t)2

T

∣∣∣∣∣
N∑

n=1

xne−iwn�t

∣∣∣∣∣
2

, (2.17)

where xn = xn�t is signal sampled at a rate of T = 1
�t and w is the frequency

at which the signal power is calculated. As signal power is a relatively broad
term, including the whole power spectrum of the signal, we also extracted a
few more parameters from the signal frequency representation to see what
specific features in the frequency domain (if any) can provide information
about object categories.

Mean frequency (Mean Freq). Motivated by the successful application of
mean and median frequencies in the analysis of EEG signals and their rela-
tionship to signal components in the time domain (Intrilligator & Polich,
1995; Abootalebi, Moradi, & Khalilzadeh, 2009), we extracted these two
features from the signal power spectrum to obtain a more detailed insight
into the neural dynamics of category representations. Mean frequency is the
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average of the frequency components available in a signal. Assume a signal
consisting of two frequency components of f1 and f2. The mean frequency
of this signal is fmean = f1+ f2

2 . Generally the mean normalized (by the inten-
sity) frequency is calculated using the following formula,

fmean =
∑n

i=0 li fi∑n
i=0 li

, (2.18)

where n is the number of splits of the PSD and fi and li are the frequency
and the intensity of the PSD in its ith slot, respectively It was calculated
using Matlab meanfreq function.

Median frequency (Med Freq). This is the median normalized frequency of
the power spectrum of a time-domain signal. It is calculated similar to the
signal median in the time domain; however, here the values are the power
intensity in different frequency bins of the PSD. This feature was calculated
using Matlab medfreq function.

Power and phase at median frequency (Pw MdFrq and Phs MdFrq). Interest-
ingly, apart from the median frequency itself, which reflects the frequency
aspect of the power spectrum, the power and phase of the signal at the me-
dian frequency have also been shown to be informative about aspects of
human perception (Joshi et al., 2018; Jadidi et al., 2016). Therefore, we also
calculated the power and phase of the frequency-domain signals at the me-
dian frequency as features.

Average frequency (Avg Freq). Evoked potentials show a few positive and
negative peaks after the stimulus onset, and they might show deviation in
the positive or negative directions depending on the information content
(Mazaheri & Jensen, 2008). Therefore, we also evaluated the average (zero-
crossing) frequency of the ERPs by counting the number of times the signal
swapped signs during the trial. Note that each trial is baselined according
to the average amplitude of the same trial in the last 200 ms immediately
before the stimulus onset. We calculated the average frequency on the post-
stimulus time window.

Spectral edge frequency (SEF 95%). This is a common feature used in mon-
itoring the depth of anesthesia and stages of sleep using EEG (Iranmanesh
& Rodriguez-Villegas, 2017). It measures the frequency that covers X per-
cent of the PSD. X is usually set in the range of 75% to 95%. Here we set X to
95%. Therefore, this reflects the frequency observed in a signal that covers
95% of a signal power spectrum.

2.2.5 Multivalued Features. The main hypothesis of this study is that we
can potentially obtain more information about object categories as well as
behavior if we take into account the temporal variability of neural activity
within the analysis window (i.e., trial) rather than averaging the samples
as in conventional decoding analyses. While the above variability-sensitive
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features return a single value from each individual time series (analysis
window), a more flexible feature would allow as many informative pat-
terns to be detected from an individual time series. Therefore, we extracted
other features, which provide more than one value per analysis window,
so that we can select the most informative values from across electrodes
and time points simultaneously (see “Dimensionality reduction” below).
We also included the original magnitude data as our reference feature, so
that we know how much (if at all) our feature extraction and selection pro-
cedures improved decoding.

Interelectrode correlation (Cross Corr). Following up on recent studies that
have successfully used interarea correlation in decoding object category in-
formation from EEG activations (Majima et al., 2014; Karimi-Rouzbahani
et al., 2017a; Tafreshi, Daliri, & Ghodousi, 2019), we extracted interelectrode
correlation to measure the similarity between pairs of signals—here, from
different pairs of electrodes. This feature of correlated variability quanti-
fies covariability of neural activations across pairs of electrodes. Although
closer electrodes tend to provide more similar (and therefore correlated)
activation, compared to further electrodes (Hacker, Snyder, Pahwa, Cor-
betta, & Leuthardt, 2017), the interelectrode correlation can detect correla-
tions that are functionally relevant and are not explained by the distance
(Karimi-Rouzbahani et al., 2017a). This feature detects similarities in tem-
poral patterns of fluctuations across time between pairs of signals, which is
calculated as

Rxy = 1
Nσxσy

N∑
t=1

(xt − x̄)(yt − ȳ), (2.19)

where x and y refer to the signals obtained from electrodes x and y, respec-
tively. We calculated the cross-correlation between each electrode and all
the other electrodes to form a cross-correlation matrix. Accordingly, we ini-
tially obtained all the unique possible pairwise interelectrode correlations
(465, 465, and 8128 unique values for data sets 1, 2, and 3, respectively),
which were then reduced in dimension using PCA to the equal number of
dimensions obtained for single-valued features.

Wavelet transform (wavelet). Recent studies have shown remarkable suc-
cess in decoding object categories using the wavelet transformation of
the EEG time series (Taghizadeh-Sarabi et al., 2015; Torabi et al., 2017).
Considering the time- and frequency-dependent nature of ERPs, wavelet
transform seems to be a reasonable choice as it provides a time-frequency
representation of signal components. It determines the primary frequency
components and their temporal position in time series. The transformation
passes the signal time series through digital filters (Guo, Rivero, Seoane,
& Pazos, 2009; see equation 2.20) using the convolution operator, each of
which adjusted to extract a specific frequency (scale) at a specific time as in
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yn = (x ∗ g) =
+∞∑

k=−∞
xkgn−k, (2.20)

where g is the digital filter and ∗ is the convolution operator. This fil-
tering procedure is repeated for several rounds (levels) filtering low-
(approximations) and high-frequency (details) components of the signal to
provide more fine-grained information about the constituent components
of the signal. This can lead to coefficients that can potentially discriminate
signals evoked by different conditions. Following up on a previous study
(Taghizadeh-Sarabi et al., 2015) and to make the number of wavelet fea-
tures comparable in number to signal samples, we used detail coefficients
at five levels, D1, . . . , D5, as well as the approximate coefficients at level 5,
A5. This led to 1015 and 57 features in the full trial and in the 50 ms slid-
ing time windows, respectively. We used the Symlet2 basis function for our
wavelet transformations as implemented in Matlab.

Hilbert transform (Hilb Amp and Hilb Phs). Hilbert transform provides am-
plitude and phase information about the signal and has recently shown
successful results in decoding visual letter information from ERPs (Wang
et al., 2018). The phase component of the Hilbert transform can qualita-
tively provide the spatial information obtained from the wavelet transform,
leading to their similarity evaluating neuronal synchrony (Le Van Quyen
et al., 2001). However, it is still unclear which method can detect category-
relevant information from the nonstationary ERP components more effec-
tively. Hilbert transform is described as a mapping function that receives a
real signal xt (as defined above), and upon convolution with the function
1
πt produces another function of a real variable H(x)(t) as

H(x)(t) = 1
n

∫ +∞

−∞

xτ

t − τ
dτ, (2.21)

where H(x)(t) is a frequency-domain representation of the signal xt , which
has simply shifted all the components of the input signal by π

2 . Accord-
ingly, it produces one amplitude and one phase component per sample in
the time series. In the current study, Hilbert transform was applied on 1000
and 50 samples in the whole-trial and time-resolved analysis, respectively.
We used the amplitude and phase components separately to discriminate
object categories in the analyses.

Amplitude and phase locking (Amp Lock and Phs Lock). Although interelec-
trode correlated variability (Cross Corr), which is interpreted as inter-area
connectivity, has successfully provided object category information (Ma-
jima et al., 2014; Karimi-Rouzbahani et al., 2017a), previous studies sug-
gested that neural communication is realized through amplitude and phase
locking and coupling (Bruns, Eckhorn, Jokeit, & Ebner, 2000; Siegel, Don-
ner, & Engel, 2012; Engel, Gerloff, Hilgetag, & Nolte, 2013). More recently,
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researchers have quantitatively shown that amplitude and phase locking
detect distinct signatures of neural communication across time and space
from neural activity (Siems & Siegel, 2020; Mostame & Sadaghiani, 2020).
Therefore, in line with recent studies, which successfully decoded object
categories using inter-area-correlated variability as neural codes (Tafreshi
et al., 2019), we extracted amplitude and phase locking as two major con-
nectivity features that might contain object category information as well.
Briefly, amplitude locking refers to the coupling between the envelopes of
two signals (electrodes) and reflects the correlation of activation amplitude.
To estimate the amplitude locking between two signals, we extracted the en-
velopes of the two signals using Hilbert transform (Gabor, 1946; explained
below), then estimated the Pearson correlation between the two resulting
envelopes as amplitude locking.

Phase locking refers to the coupling between the phases of two sig-
nals and measures the synchronization of rhythmic oscillation cycles. To
measure phase locking, we used one of the simplest implementations, the
phase-locking value (PLV), which includes minimal mathematical assump-
tions (Bastos & Schoffellen, 2016), calculated as

PLV = 1
N

∣∣∣∣∣
N∑

i=1

e��i

∣∣∣∣∣ , (2.22)

where N is the number of trials and �� is the phase difference between the
signals to electrode pairs. As we used multivariate decoding without any
trial averaging, N was equal to one here. The calculation of amplitude and
phase locking was performed on all electrode pairs leading to 465 and 8128
unique numbers for the 31- (data sets 1 and 2) and 128-electrode (data set
3) data sets before dimension reduction was performed.

Original magnitude data (Orig Mag). We also used the poststimulus origi-
nal magnitude data (1000 or 50 samples for the whole-trial and sliding time
windows, respectively) to decode object category information without any
feature extraction. This provided a reference to compare the information
content of the mean and variability features to see if the former provided
any extra information.

2.3 Multivariate Decoding. We used multivariate decoding to extract
information about object categories from our EEG data sets. Basically, mul-
tivariate decoding, which has been dominating neuroimaging studies re-
cently (Haynes & Rees, 2006; Grootswagers et al., 2017; Hebart & Baker,
2018), measures the cross-condition dissimilarity or contrast to quantify in-
formation content in neural representations. We used linear discriminant
analysis (LDA) classifiers in multivariate analysis to measure the informa-
tion content across all possible pairs of object categories within each data
set. Specifically, we trained and tested the classifiers on animal versus car,
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animal versus face, animal versus plane, car versus plane, face versus car
and plane versus face categories, then averaged the six decoding results and
reported them for each participant.

The LDA classifier has been shown to be robust when decoding object
categories from M/EEG (Grootswagers et al., 2017, 2019), has provided
higher decoding accuracies than Euclidean distance and correlation-based
decoding methods (Carlson et al., 2013), and was around 30 times faster
to train in our initial analyses compared to the more complex classifier of
support vector machines (SVM). We ran our initial analysis and found sim-
ilar results for the LDA and SVM and used LDA to save the time. We used
a 10-fold cross-validation procedure in which we trained the classifier on
90% of the data and tested it on the left-out 10% of the data, repeating the
procedure 10 times until all trials from the pair of categories participated
once in the training and once in the testing of the classifiers. We repeated
the decoding across all possible pairs of categories within each data set,
which were 6, 6, and 15 pairs for data sets 1, 2, and 3, which consisted of
4, 4, and 6 object categories, respectively. Finally, we averaged the results
across all combinations and reported them as the average decoding for each
participant.

In the whole-trial analyses, we extracted the above-mentioned features
from the 1000 data samples after the stimulus onset (from 1 to 1000 ms).
In the time-resolved analyses, we extracted the features from 50 ms sliding
time windows in steps of 5 ms across the time course of the trial (−200 to
1000 ms relative to the stimulus onset time). Therefore, in time-resolved
analyses, the decoding rates at each time point reflect the results for the
50 ms window around the time point, from −25 to +24 ms relative to the
time point. Time-resolved analyses allowed us to evaluate the evolution of
object category information across time as captured by different features.

2.4 Dimensionality Reduction. The multivalued features (e.g. inter-
electrode correlation, wavelet, Hilbert amplitude and phase, amplitude and
phase locking, and original magnitude data) resulted in more than a single
feature value per trial per sliding time window. This could provide higher
decoding values compared to the decoding values obtained from single-
valued features merely because of including a higher number of features.
Moreover, when the features outnumber the observations (trials here), the
classification algorithm can overfit to the data (Hart, Stork, & Duda, 2000).
Therefore, to obtain comparable decoding accuracies across single-valued
and multivalued features and to avoid potential overfitting of classifier to
the data we used principal component analysis (PCA) to reduce the dimen-
sion of the data in multivalued features. Accordingly, we reduced the num-
ber of the values in the multivalued features to one per time window per
trial, which equaled the number of values for the single-valued features.

To avoid potential leakage of information from testing to training (Pulini,
Kerr, Loo, & Lenartowicz, 2019), we applied the PCA algorithm on the
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training data (folds) only and used the training PCA parameters (eigenvec-
tors and means) for both training and testing sets for dimension reduction in
each cross-validation run separately. We applied the dimension-reduction
procedure only on the multivalued features. Note that we did not reduce the
dimension of the neural space (columns in the dimension-reduced data ma-
trix) to below the number of electrodes “e” (opposite of Hatamimajoumerd,
Talebpour, & Mohsenzadeh, 2020) as we were interested in qualitatively
comparing our results with the vast literature currently using multivariate
decoding with all sensors (Grootswagers et al., 2017; Hebart & Baker, 2018).
Also, we did not aim at finding more than one feature per trial, per time
window, as we wanted to compare the results of multivalued features with
those of single-valued features, which had only a single value per trial, per
time window.

One critical point here is that we applied the PCA on the concatenated
data from all electrodes and values obtained from each individual feature
(e.g., wavelet coefficients in wavelet) within each analysis window (e.g.,
50 ms in time-resolved decoding). Therefore, for the multivalued features,
the “e” selected dimensions, were the most informative spatial and tempo-
ral patterns detected across both electrodes and time samples. Therefore, it
could be the case that within a given time window, two of the selected di-
mensions were from the same electrode (because two elements from the
same electrode were more informative than the other electrode), which
would lead to some electrodes not having any representatives among the
selected dimensions. This is in contrast to the single-valued features (e.g.,
mean) from which we obtained only one value per analysis window per
electrode, limiting the features to only the spatial patterns within the anal-
ysis window, rather than both spatial and temporal patterns.

2.5 Statistical Analyses.

2.5.1 Bayes Factor Analysis. As in our previous studies (Grootswagers
et al., 2019; Robinson, Grootswagers, & Carlson, 2019), to determine the
evidence for the null and the alternative hypotheses, we used Bayes anal-
yses as implemented by Bart Krekelberg based on Rouder, Morey, Speck-
man, and Province (2012). We used standard rules of thumb for interpreting
levels of evidence (Lee & Wagenmakers, 2005; Dienes, 2014): Bayes factors
of >10 and <1/10 were interpreted as strong evidence for the alternative
and null hypotheses, respectively, and >3 and <1/3 were interpreted as
moderate evidence for the alternative and null hypotheses, respectively. We
considered the Bayes factors that fell between 3 and 1/3 as suggesting insuf-
ficient evidence either way. In the whole-trial decoding analyses, we asked
whether there was a difference between the decoding values obtained from
all possible pairs of features and also across frequency bands within ev-
ery feature. Accordingly, we performed the Bayes factor analysis and cal-
culated the Bayes factors as the probability of the data under an alternative
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(i.e., difference) relative to the null (i.e., no difference) hypothesis between
all possible pairs of features and also across frequency bands within every
feature and data set separately. The same procedure was used to evaluate
evidence for difference (i.e., alternative hypothesis) or no difference (i.e.,
null hypothesis) in the maximum and average decoding accuracies and the
time of maximum and above-chance decoding accuracies across features
for each data set separately.

We also evaluated evidence for the alternative of above-chance decoding
accuracy versus the null hypothesis of no difference from chance. For that
purpose, we performed Bayes factor analysis between the distribution of ac-
tual accuracies obtained and a set of 1000 accuracies obtained from random
permutation of class labels across the same pair of conditions (null distribu-
tion) on every time point (or only once for the whole-trial analysis), for each
feature and data set separately. No correction for multiple comparisons was
performed when using Bayes factors as they are much more conservative
than frequentist analysis in providing false claims with confidence (Gelman
& Tuerlinckx, 2000; Gelman, Hill, & Yajima, 2012). The reason for the lower
susceptibility of Bayesian analysis compared to classical statistics is the use
of priors, which, if chosen properly (here using the data-driven approach
developed by Rouder et al. (2012), significantly reduce the chance of mak-
ing type I (false-positive) errors.

The priors for all Bayes factor analyses were determined based on
Jeffrey-Zellner-Siow priors (Jeffreys, 1998; Zellner & Siow, 1980), which are
from the Cauchy distribution based on the effect size that is initially calcu-
lated in the algorithm (Rouder et al., 2012). The priors are data driven and
have been shown to be invariant with respect to linear transformations of
measurement units (Rouder et al., 2012), which reduces the chance of being
biased toward the null or alternative hypotheses.

2.5.2 Random Permutation Testing. To evaluate the significance of cor-
relations between decoding accuracies and behavioral reaction times, we
calculated the percentage of the actual correlations that were higher (when
positive) or lower (when negative) than a set of 1000 randomly generated
correlations. These random correlations were generated by randomizing
the order of participants’ data in the behavioral reaction time vector (null
distribution) for every time point and feature separately. The true correla-
tion was considered significant if it surpassed 95% of the randomly gen-
erated correlations in the null distribution in either positive or negative
directions (p < 0.05) and the p-values were corrected for multiple compar-
isons across time using Matlab’s mafdr function which works based on fix
rejection region (Storey, 2002).

3 Results

To check the information content of different features of the EEG activity
about object categories, we performed multivariate pattern decoding on
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both the whole-trial as well as time-resolved data. The whole-trial analy-
sis was aimed at providing results comparable to previous studies, most
of which performed whole-trial analysis. The time-resolved analysis, how-
ever, was the main focus of our study and allowed us to check the informa-
tion and temporal dynamics of variability-based neural codes as captured
by different features. In Figures 2 and 3, we present a summary of the re-
sults with emphasis on the comparison between the time-specific ERP com-
ponents, the most informative features detecting neural variability (Wavelet
and Orig Mag), and the conventional mean feature, which ignores potential
information in neural variabilities. The complete comparison between the
32 features are provided in supplementary materials but briefly explained
in this letter.

3.1 Can the Features Sensitive to Temporal Variabilities Provide Ad-
ditional Category Information to the Conventional Mean Feature? To an-
swer this first question, we compared decoding accuracies in the whole-trial
time span (0 to 1000 ms relative to stimulus onset) across all features and
for each data set separately (see the complete results in Supplementary Fig-
ures 1 and 2 and summary results in Figure 2, black bars). There was not
enough (BF > 3) evidence for above-chance decoding for majority of fea-
tures (e.g., moment features, complexity, and frequency-domain features;
see Supplementary Figure 1, black bars and their Bayesian analyses). How-
ever, consistently across the three data sets, there was moderate (3 < BF < 1
0) or strong (BF > 10) evidence for above-chance decoding for all ERP com-
ponents (N1, P1, P2a, and P2b), wavelet coefficients (Wavelet), and original
magnitude data (Orig Mag), which were either targeted at specific time win-
dows within the trial (ERPs) or could detect temporal variabilities within
the trial (Wavelet and Orig Mag; see Figure 2A, black bars).

Importantly, in all three data sets, there was moderate (3 < BF < 10) or
strong (BF > 10) evidence that ERP components of N1 and P2a provided
higher decoding values than the mean (see Figure 2B, black boxes in Bayes
matrices). There was also strong evidence (BF > 10) that the wavelet and
Orig Mag features outperformed the mean feature in data sets 2 and 3 (see
Figure 2B, blue boxes in Bayes matrices). This shows that simply using the
earlier ERP components of N1 and P2a can provide more information than
using the mean activity across the whole trial. This was predictable, as the
mean across the whole trial simply ignores within-trial temporally specific
information. Interestingly, even ERPs were outperformed by wavelet and
Orig Mag features in data set 3 (but not the opposite across the three data
sets; see Figure 2B, violet boxes in Bayes matrices). This suggests that even
further targeting the most informative elements (wavelet) and/or data sam-
ples (Orig Mag) within the trial can lead to improved decoding. Note that
the wavelet and Orig Mag features provided the most informative tempo-
ral patterns and samples on the dimension reduction procedure applied on
their extracted features (see section 2).
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Figure 2: Whole-trial decoding of object categories in the three data sets across
the broad band and different frequency bands (A) with their Bayesian analy-
ses (B). The results are presented only for features of mean, ERP components,
wavelet, and Orig Mag. For full results including other features, see Supple-
mentary Figures 1 and 2. (A) The black horizontal dashed lines on the top
panels refer to chance-level decoding. Thick bars show the average decod-
ing across participants (error bars standard error across participants). Bayes
factors are shown in the bottom panel of each graph. Filled circles show moder-
ate to strong evidence for either hypothesis, and empty circles indicate insuffi-
cient evidence. They show the results of Bayes factor analysis when evaluating
the difference from chance-level decoding. (B) Top panel: Bayes matrices com-
pare the decoding results within each frequency band across features separated
by data sets. Bottom panel: Bayes matrices compare decoding results across
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Following previous observations about the advantage of delta (Watrous
et al., 2015; Behroozi et al., 2016) and theta (Wang et al., 2018) frequency
bands, we compared the information content in the delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–16 Hz), gamma (16–200 Hz), and broad
frequency bands. We predicted the domination of theta frequency band,
following suggestions about the domination of the theta frequency band in
feedforward visual processing (Bastos et al., 2015). For our top-performing
ERP, wavelet, and Orig Mag features, we saw consistent domination of theta
followed by the alpha frequency band (see Figure 2A). Interestingly, for the
ERP components, the decoding in the theta band even outperformed the
broad band (BF > 3 for P2b), which contained the whole frequency spec-
trum. Note that as opposed to previous suggestions (Karakaş, Erzengin, &
Başar, 2000), the domination of the theta frequency band in ERP compo-
nents could not be trivially predicted by their timing relative to the stimu-
lus onset. If this was the case here, the P2b component (200–275 ms) should
have elicited its maximum information in the delta (0.5–4 Hz) and theta
(4–8 Hz), rather than the theta and alpha (8–12 Hz) frequency bands. For
the mean feature, the delta band provided the highest information level
comparable to the level of the broad band activity. This confirms that broad
band whole-trial mean activity, reflects the general trend of the signal (low-
frequency component).

Together, we observed that the features that are targeted at informative
windows of the trial (ERP components), and those sensitive to informative
temporal variabilities (wavelet and Orig Mag) could provide additional cat-
egory information to the conventionally used mean of activity. We observed
that the theta frequency band, which has been suggested to support feedfor-
ward information flow, is also dominant in our data sets, which are poten-
tially dominated by feedforward processing of visual information during
object perception. Next, we compare the temporal dynamics of information
encoding across our features.

3.2 Do the Features Sensitive to Temporal Variabilities Evolve over
Similar Time Windows to the Mean Feature? One main insight that EEG
decoding can provide is to reveal the temporal dynamics of cognitive pro-
cesses. However, the mean activity, which has dominated the literature

different frequency bands and data set separately. Colors indicate different lev-
els of evidence for existing difference (moderate 3 < BF < 10, orange; strong
BF > 10, yellow), no difference (moderate 0.1 < BF < 0.3, light blue; strong
BF < 0.1, dark blue) or insufficient evidence (1 < BF < 3 green; 0.3 < BF < 1
cyan) for either hypotheses. For example, for data set 1, there is strong evidence
for higher decoding values for the N1 feature in the theta and alpha bands than
in the gamma band, as indicated by the red box.
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3054 H. Karimi-Rouzbahani et al.

Figure 3: Time-resolved decoding of object categories from the three data sets
for three of the target features (A) and their extracted timing and amplitude
parameters (B–E). (A) Top section in each panel shows the decoding accura-
cies across time, and the bottom section shows the Bayes factor evidence for the
difference of the decoding accuracy compared to chance-level decoding. The
solid lines show the average decoding across participants and the shaded area
the standard error across participants. The horizontal dashed lines on the top
panel refer to chance-level decoding. Filled circles in the Bayes factors show
moderate to strong evidence for either difference or no difference from chance
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(Grootswagers et al., 2017), might hide or distort the true temporal dynam-
ics as it ignores potentially informative temporal variabilities (codes) within
the analysis window. Therefore, we systematically compared the informa-
tion content of a large set of features that are sensitive to temporal variabil-
ities using time-resolved decoding (50 ms sliding time windows in steps
of 5 ms; see the rationale for choosing the 50 ms windows in Supplemen-
tary Figure 3A). By definition, we do not have the time-resolved decoding
results for the ERP components here.

Before presenting the time-resolved decoding results, to validate the re-
sults and suggestions made about our whole-trial decoding (see Figure
2), we performed two complementary analyses. First, we checked to see
if the advantage of the theta-to-broad-band decoding in the whole-trial
analysis (see Figure 2) could generalize to time-resolved decoding: we ob-
served the same effect in the (variability-sensitive) wavelet feature (in many
time points especially for data set 2; BF > 3), but not in the (variability-
insensitive) mean feature (see Supplementary Figure 3B). This could pos-
sibly be explained by the smoothing (low-pass filtering) effect of the mean
feature making both theta and broad band data look like low-frequency
data. Next, we used the spatiotemporal specificity of classifier weights and
time-resolved decoding to see if theta band information would show a feed-
forward trend on the scalp to support our earlier suggestion. Visual inspec-
tion suggests information spread from the posterior to the anterior parts
of the head (e.g., as in feedforward models of visual processing; (Karimi-
Rouzbahani et al., 2017c; see Supplementary Figure 4), supporting the role
of theta -band activity in feedforward processing. Despite these observa-
tions, we used broad band signals in the following analyses to be able to

level or across features, and empty circles indicate insufficient evidence for
either hypotheses. (B) Timing and amplitude parameters extracted from the
time-resolved accuracies in panel A. (B–E) Left: The maximum and average de-
coding accuracies, the time of maximum, and the first above-chance decoding.
The horizontal dashed lines refer to chance-level decoding. Thick bars show
the average across participants (error bars standard error across participants).
Bottom sections on panels B and C show the Bayes factor evidence for the differ-
ence of the decoding accuracy compared to chance-level decoding. Right: Ma-
trices compare the parameters obtained from different features. Different levels
of evidence for existing difference (moderate 3 < BF < 10, orange; strong BF >

10, yellow), no difference (moderate 0.1 < BF < 0.3, light blue; strong BF < 0.1,
dark blue), or insufficient evidence (1 < BF < 3 green; 0.3 < BF < 1 cyan) for
either hypotheses. Filled circles in the Bayes factors show moderate to strong
evidence for either hypothesis, and open circles indicate insufficient evidence.
Single and double stars indicate moderate and strong evidence for difference
between the parameters obtained from decoding curves of the three features.
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compare our results with previous studies, which generally used the broad
band activity.

Time-resolved decoding analyses showed that for all features, includ-
ing the complexity features, which were suggested to need large sample
sizes (Procaccia, 1988), there was moderate (3 < BF < 10) or strong (BF >

10) evidence for above-chance decoding at some time points consistently
across the three data sets (see Supplementary Figure 5A). However, all fea-
tures showed distinct temporal dynamics to each other and across data sets.
The dissimilarities between data sets could be driven by many data set–
specific factors, including duration of image presentation (Carlson et al.,
2013). However, there were also similarities between the temporal dynam-
ics of different features. For example, the time points of first strong (BF >

10) evidence for above-chance decoding ranged from 75 ms to 195 ms (see
Supplementary Figures 5A and 5E), and the decoding values reached their
maxima in the range between 150 ms and 220 ms (see Supplementary Fig-
ures 5A and 5D) across features. This is consistent with many decoding
studies showing the temporal dynamics of visual processing in the brain
(Isik et al., 2014; Cichy et al., 2014; Karimi-Rouzbahani, Woolgar, & Rich,
2021). There was no feature that consistently preceded or followed other
features to suggest the existence of very early or late neural codes (see Sup-
plementary Figures 5D and 5E). There was more information decoded from
features of mean, median, variance, and several multivalued features, espe-
cially wavelet and Orig Mag, compared to other features across the three
data sets (see Supplementary Figure 5A). The mentioned features dom-
inated other features in terms of both average and maximum decoding
accuracies (see Supplementary Figures 5B and 5C). A complementary anal-
ysis suggested a potential overlap between the neural codes that different
features detected (see Supplementary Figure 6).

We then directly compared the mean and the most informative
variability-sensitive features (wavelet and Orig Mag). Consistently across
the data sets, there was moderate (3 < BF < 10) or strong (BF > 10) evi-
dence for higher decoding obtained by wavelet and Orig Mag compared to
the mean feature on time points before 200 ms poststimulus onset (see Fig-
ure 3A). After 200 ms, this advantage sustained (data set 3), disappeared
(data set 1), or turned into disadvantage (data set 2). Except for few very
short continuous intervals, during which wavelet provided higher decod-
ing values compared to Orig Mag, the two features provided almost the
same results (see Figure 3, yellow dots on bottom panels). Comparing the
parameters of the decoding curves, we found moderate (3 < BF < 10) or
strong (BF > 10) evidence for higher maximum decoding for the wavelet
and Orig Mag features than the mean feature in data sets 1 and 3 (see
Figure 3B). There was also moderate (3 < BF < 10) evidence for higher maxi-
mum decoding accuracy for wavelet versus Orig Mag (see Figure 3B). There
was also strong (BF > 10) evidence for higher average decoding accuracy
for the wavelet and Orig Mag features over the mean feature in data set 3
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(see Figure 3C). There was also moderate (3 < BF < 10) evidence for higher
maximum decoding for wavelet versus Orig Mag in data sets 2 and 3. These
results show that the wavelet feature provides the highest maximum (in
data set 3) and average (in data sets 2 and 3) decoding accuracies among
the three features, followed by the Orig Mag feature. The measures of max-
imum and average decoding accuracies were calculated in the poststimulus
onset (0–1000 ms) for each participant separately. We also compared the tim-
ing parameters of the decoding curves (i.e., the time to the first above chance
and maximum decoding relative to stimulus onset) obtained for the three
features (see Figures 3D and 3E), but found insufficient evidence (0.3 < BF
< 3) for their difference.

Together, these results suggest that the inclusion of temporal variabili-
ties of activity can provide additional information about object categories
to what is conventionally obtained from the mean of activity. Note that the
advantage of wavelet and Orig Mag features cannot be explained by the size
or dimensionality of the feature space, as the numbers of dimensions were
equalized across features. Importantly, however, the decoding of informa-
tion from temporal variabilities did not lead to different temporal dynam-
ics of information decoding. This can be explained by either the common
cognitive processes producing the decoded neural codes (i.e., object catego-
rization), the overlap between the information (neural codes) detected by
our features, or a combination of both.

3.3 Do the Features Sensitive to Temporal Variabilities Explain the
Behavioral Recognition Performance More Accurately than the Mean
Feature? Although we observed an advantage for the features that were
sensitive to temporal variability (e.g. wavelet) over other, more summa-
rized features (e.g. mean), this can all be a by-product of more flexibility
(e.g. inclusion of both temporal and spatial codes) in the former over the
latter, and not read out by downstream neurons that support behavior. To
validate the behavioral relevance of the detected neural codes we calculated
the correlation between the decoding accuracies of features and the reaction
times of participants (Vidaurre, Myers, Stokes, Nobre, & Woolrich, 2019;
Ritchie et al., 2015). Participants’ reaction times in object recognition have
been previously shown to be predictable from decoding accuracy (Ritchie
et al., 2015). We expected to observe negative correlations between the
features’ decoding accuracies and participants’ reaction times in the post-
stimulus span (Ritchie et al., 2015). This suggests that greater separabil-
ity between neural representations of categories might lead to categorizing
them faster in behavior, supporting that the decoded neural codes might be
used by neurons that drive behavior. We used only data set 2 in this analysis,
as it was the only data set with an active object detection task, so relevant re-
action times were available. The (Spearman’s rank-order) correlations were
calculated across the time course of the trials between the 10-dimensional
vector of neural decoding accuracies obtained on every time point and the
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10-dimensional vector of behavioral reaction times, both obtained from the
group of 10 participants (Cichy et al., 2014). This resulted in a single corre-
lation value for each time point for the whole group of participants.

All features except Katz FD showed negative trends after the stimulus
onset (see Figure 4A). The correlations showed more sustained negative val-
ues for the multivalued versus single-valued features (p < 0.05). There were
also larger negative peaks (generally < −0.5) for multivalued features, es-
pecially wavelet compared to other features (generally > −0.5). Specifically,
while higher-order moment features (variance, skewness, and kurtosis), as
well as many complexity features, showed earlier negative peaks at around
150 ms, mean, median, frequency-domain features, and multivalued fea-
tures showed later negative peaks after 300 ms. Therefore, the multivalued
features, especially wavelet, which were sensitive to temporal variabilities
of the signals, showed the most sustained and significant correlations to
behavior.

Visual inspection suggests that features that provided a higher decod-
ing accuracy (e.g., wavelet, Figure 3) also did better at predicting behav-
ioral performance (e.g., wavelet, Figure 4). To quantitatively see if such a
relationship exists, we calculated the correlation between parameters of the
decoding curves (introduced in Figures 3B to 3D) and the average correla-
tion to behavior obtained by the same features (see Figure 4A). Specifically,
we used the average decoding and maximum decoding accuracies, which
we hypothesized to predict average correlation to behavior. The rationale
behind this hypothesis was that more effective decoding of neural codes, as
reflected in higher average decoding and maximum decoding accuracies
(see Figure 3), should facilitate better prediction of behavior by detecting
subtle but overlooked behavior-relevant neural codes. As a control, we also
evaluated the time of first above-chance decoding and time of maximum
decoding accuracies, which we hypothesized not to correlate with average
correlation to behavior. Our rationale behind this prediction was that we
already observed relatively similar temporal dynamics for more and less
informative features of neural activity (see Figures 3D and 3E), suggesting
that all those features detect some aspects of the codes produced by similar
neural mechanisms.

To obtain the parameter of average correlation to behavior, we simply
averaged the correlation to behavior in the poststimulus time span for each
feature separately (see Figure 4A). Results showed that (see Figure 4B)
while the temporal parameters of time of first above-chance decoding and
time of maximum decoding (our control parameters) failed to predict the
level of average correlation to behavior (r = 0.24, p = 0.21, and r = 0.17,
p = 0.38, respectively), the parameters of maximum decoding and aver-
age decoding accuracies significantly (r = −0.69 and r = −0.71 respectively,
with p < 0.0001; Pearson’s correlation) predicted the average correlation to
behavior. Note the difference between the Spearman’s correlation to behav-
ior calculated in Figure 4A and the correlations reported in Figure 4B. While

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/11/3027/1966592/neco_a_01436.pdf by guest on 07 Septem
ber 2023



Additional Information in Temporal Variability of Evoked Potentials 3059

the Spearman’s correlation to behavior is obtained by correlating the time-
resolved decoding rates and corresponding reaction times across partici-
pants, the average correlation to behavior is calculated by correlating the
poststimulus average of the former correlations and their corresponding
decoding parameters across features rather than participants. This result
suggests that the more effective the decoding of the neural codes, the bet-
ter the prediction of behavior. This is not a trivial result; higher decoding
values for the more informative features do not necessarily lead to higher
correlation to behavior, as “correlation” normalizes the absolute values of
input variables.

4 Discussion

Temporal variability of neural activity has been suggested to provide an
additional channel to the mean of activity for the encoding of several as-
pects of the input sensory information. This includes complexity (Garrett
et al., 2020), uncertainty (Orbán et al., 2016), and variance (Hermundstad
et al., 2014) of the input information. It is suggested that the brain opti-
mizes the neuronal activation and variability to avoid overactivation (en-
ergy loss) for simple, familiar, and less informative categories of sensory
inputs. For example, face images, which have less variable compositional
features, evoked less variable responses in fMRI compared to house im-
ages, which were more varied, even in a passive viewing task (Garrett et al.,
2020). This automatic and adaptive modulation of neural variability can
result in more effective and accurate encoding of the sensory inputs in
changing environments–for example, by suppressing uninformative neu-
ronal activation for less varied (more familiar) stimuli such as face ver-
sus house images (Garrett et al., 2020). Despite the recent evidence about
the richness of information in temporal variability, which is modulated by
the category of the sensory input (Garrett et al., 2020; Orbán et al., 2016;
Waschke et al., 2021), the majority of EEG studies still ignore variability in
decoding. Specifically, they generally either extract variability (e.g., entropy
and power) from the whole-trial activity (e.g., for brain-computer interface)
or use the simple mean (average) magnitude data within subwindows of
the trial (e.g., for time-resolved decoding; Grootswagers et al., 2017). The
former can miss the informative within-trial variabilities and fluctuations
of the trial in the highly dynamical and nonstationary evoked potentials.
The latter may overlook the informative variabilities within the sliding time
windows as a result of temporal averaging.

Here, we quantified the advantage of the features sensitive to temporal
variabilities over the conventional mean activity. In whole-trial analysis, we
observed that the features, which targeted informative subwindows and
samples of the trial (e.g., ERP components, wavelet coefficients (wavelet),
and original magnitude data (Orig Mag), could provide more category
information than the mean feature, which ignored temporal variabilities.
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Interestingly, ERP components (N1, P2a, and P2b) provided comparable re-
sults to those obtained by informative samples (Orig Mag) or wavelet trans-
formation (except for data set 3). That could be the reason for the remarkable
decoding results achieved in previous studies that used ERPs (Wang et al.,
2012; Qin et al., 2016) and wavelet (Taghizadeh-Sarabi et al., 2015). These
results also propose that we might not need to apply complex transforma-
tions (e.g., wavelet) on the data in whole-trial analysis (Taghizadeh-Sarabi
et al., 2015), as comparable results can be obtained using simple ERP com-
ponents or original magnitude data. However, inclusion of more dimen-
sions of the features in decoding or combining them (Karimi Rouzbahani &
Daliri, 2011; Qin et al., 2016) could potentially provide higher decoding ac-
curacies for multivalued (e.g., wavelet; Taghizadeh-Sarabi et al., 2015) than
ERP features (i.e., we equalized the dimensions across features here).

The wavelet and Original magnitude data not only outperformed all the
variability-sensitive features, but also the conventional mean feature. Im-
portantly, while features such as Hilbert phase and amplitude, phase- and
amplitude-locking, and interelectrode correlations also had access to all the
samples within the sliding analysis window, they failed to provide informa-
tion comparable to the Wavelet and Orig Mag features. The reason for the
success of the original magnitude data seems to be that it basically makes
no assumptions about the shape or pattern of the potential neural codes,
as opposed to Hilbert phase (Hilb Phs), amplitude (Hilb Amp), and corre-
lated variability (Cross Corr), each of which is sensitive to one specific as-
pect of neural variability (phase, amplitude, correlation). The reason for the
success of the wavelet feature seems to be its reasonable balance between
flexibility in detecting potential neural codes contained in the amplitude,
phase, and frequency/scale and a relatively lower susceptibility to noise as
a result of filtering applied on different frequency bands (Guo et al., 2009).
Together, these observations support the idea that neural codes are complex

Figure 4: Correlation between the decoding accuracies and behavioral reaction
times for data set 2 (other data sets did not have an active object recognition
or detection task). (A) Top section in each panel shows the (Spearman’s) corre-
lation coefficient obtained from correlating the decoding values and the reac-
tion times for each feature separately. Correlation curves were obtained from
the data of all participants. Bottom section shows positively or negatively sig-
nificant (p < 0.05; filled circles) or nonsignificant (p > 0.05; open circles) cor-
relations as evaluated by random permutation of the variables in correlation.
(B) Correlation between each of the amplitude and timing parameters of time-
resolved decoding (i.e., maximum and average decoding accuracy and time of
first and maximum decoding) with the average time-resolved correlations cal-
culated from panel for the set of N = 28 features. The slanted line shows the
best linear fit to the distribution of the data.
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structures reflected in multiple aspects of EEG data such as amplitude,
phase, and frequency/scale (Panzeri et al., 2010; Waschke et al., 2021).

The advantage of theta over broad band in our data (see Supplementary
Figures 1 and 3) is consistent with previous monkey studies suggesting that
theta and gamma frequency bands played major roles in feedforward pro-
cessing of visual information in the brain (Bastos et al., 2015), which also
seemed dominant here (see Supplementary Figure 4). One potential reason
for the encoding of feedforward information in the theta band can be that
bottom-up sensory signals transfer information about ongoing experiences,
which might need to be stored in long-term memory for future use (Zheng
& Colgin, 2015). Long-term memories are suggested to be encoded by en-
hanced long-lasting synaptic connections. The optimal patterns of activity
that can cause such changes in synaptic weights were suggested to be suc-
cessive theta cycles that carry contents in fast gamma rhythms (∼100 Hz;
Larson, Wong, & Lynch, 1986). While direct correspondence between in-
vasive versus noninvasive neural data remains unclear (Ng, Logothetis, &
Kayser, 2013), this study provides additional evidence for the major role of
the theta frequency band in human visual perception (Wang et al., 2012; Qin
et al., 2016; Jadidi et al., 2016; Taghizadeh-Sarabi et al., 2015; Torabi et al.,
2017). It also suggests that the BCI community might benefit from concen-
trating on specific frequency bands relevant to the cognitive or sensory pro-
cessing undergoing in the brain, that is, investigating the theta band when
stimulating the visual system.

One critical question for cognitive neuroscience has been whether (if at
all) neuroimaging data can explain behavior (Williams et al., 2007; Ritchie
et al., 2015; Woolgar et al., 2019; Karimi-Rouzbahani et al., 2019; Karimi-
Rouzbahani, Ramezani, Woolgar, Rich, & Ghodrati, 2021). We extended this
question by asking whether more optimal decoding of object category infor-
mation can lead to better prediction of behavioral performance. We showed
in data set 2 that this can be the case. Critically, here we observed for the
same data set that there seems to be a linear relationship between the ob-
tainable decoding accuracy and the explanatory power of the features. It
implies that in order to bring neuroimaging observations closer to behav-
ior, we might need to work on how we can read out the neural codes more
effectively.

It has been suggested that neural variability is modulated not only by
sensory information (as focused on here) but also by other top-down cog-
nitive processes such as attention, expectation, memory, and task demands
(Waschke et al. 2021). For example, attention decreased low-frequency neu-
ral variabilities/power (2–10 Hz, referred to as “desynchronization”) while
increasing high-frequency neural variabilities/power (Wyart & Tallon-
Baudry, 2009). Therefore, in the future, it will be interesting to know which
features best detect the modulation of neural variability in other cognitive
tasks. Moreover, it is interesting to know how (if at all) a combination of the
features used in this study could provide any additional information about
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object categories or behavior. In other words, although all of the individual
features evaluated here covered some variance of category object informa-
tion, to detect the neural information more effectively, it might be helpful
to combine multiple features using supervised and unsupervised methods
(Karimi Rouzbahani & Daliri, 2011; Qin et al., 2016).

The cross-data set, large-scale analysis methods implemented in this
study align with the growing trend toward meta-analysis in cognitive neu-
roscience. Recent studies have also adopted and compared several data sets
to facilitate forming more rigorous conclusions about how the brain per-
forms different cognitive processes such as sustained attention (Langner &
Eickhoff, 2013) or working memory (Adam, Vogel, & Awh, 2020). Our re-
sults provide evidence supporting the idea that neural variability seems to
be an additional channel for information encoding in EEG, which should
not be simply ignored.
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