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We consider the problem of extracting a common structure from multi-
ple tensor data sets. For this purpose, we propose multilinear common
component analysis (MCCA) based on Kronecker products of mode-wise
covariance matrices. MCCA constructs a common basis represented by
linear combinations of the original variables that lose little information
of the multiple tensor data sets. We also develop an estimation algorithm
for MCCA that guarantees mode-wise global convergence. Numerical
studies are conducted to show the effectiveness of MCCA.

1 Introduction

Various statistical methodologies for extracting useful information from a
large amount of data have been studied over the decades since the appear-
ance of big data. In the present era, it is important to discover a common
structure of multiple data sets. In an early study, Flury (1984) focused on
the structure of the covariance matrices of multiple data sets and discussed
the heterogeneity of the structure. The author reported that population
covariance matrices differ among multiple data sets in practical applica-
tions. Many methodologies have been developed for treating the hetero-
geneity between covariance matrices of multiple data sets (see, Flury, 1986,
1988; Flury & Gautschi, 1986; Pourahmadi, Daniels, & Park, 2007; Wang,
Banerjee, & Boley, 2011; Park & Konishi, 2020).

Among such methodologies, common component analysis (CCA; Wang
et al., 2011) is an effective tool for statistics. The central idea of CCA is to
reduce the number of dimensions of data while losing as little information
of the multiple data sets as possible. To reduce the number of dimensions,
CCA reconstructs the data with a few new variables that are linear combi-
nations of the original variables. For considering the heterogeneity between
covariance matrices of multiple data sets, CCA assumes that there is a dif-
ferent covariance matrix for each data set. There have been many papers
on various statistical methodologies using multiple covariance matrices:
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discriminant analysis (Bensmail & Celeux, 1996), spectral decomposition
(Boik, 2002), and a likelihood ratio test for multiple covariance matrices
(Manly & Rayner, 1987). It should be noted that principal component anal-
ysis (PCA) (Pearson, 1901; Jolliffe, 2002) is a technique similar to CCA. In
fact, CCA is a generalization of PCA; PCA can only be applied to one data
set, whereas CCA can be applied to multiple data sets.

Meanwhile, in various fields of research, including machine learning and
computer vision, the main interest has been in tensor data, which has a mul-
tidimensional array structure. In order to apply the conventional statistical
methodologies, such as PCA, to tensor data, a simple approach is to first
transform the tensor data into vector data and then apply the methodol-
ogy. However, such an approach causes the following problems:

1. In losing the tensor structure of the data, the approach ignores the
higher-order inherent relationships of the original tensor data.

2. Transforming tensor data to vector data substantially increases the
number of features. It also has a high computational cost.

To overcome these problems, statistical methodologies for tensor data anal-
yses have been proposed that take the tensor structure of the data into
consideration. Such methods enable us to accurately extract higher-order
inherent relationships in a tensor data set. In particular, many existing statis-
tical methodologies have been extended for tensor data, for example, mul-
tilinear principal component analysis (MPCA) (Lu et al., 2008) and sparse
PCA for tensor data analysis (Allen, 2012; Wang, Sun, Chen, Pang, & Zhou,
2012; Lai, Xu, Chen, Yang, & Zhang, 2014), as well as others (see Carroll &
Chang, 1970; Harshman, 1970; Kiers, 2000; Badeau & Boyer, 2008; Kolda &
Bader, 2009).

In this letter, we extend CCA to tensor data analysis, proposing multi-
linear common component analysis (MCCA). MCCA discovers the com-
mon structure of multiple data sets of tensor data while losing as little of
the information of the data sets as possible. To identify the common struc-
ture, we estimate a common basis constructed as linear combinations of
the original variables. For estimating the common basis, we develop a new
estimation algorithm based on the idea of CCA. In developing the estima-
tion algorithm, two issues must be addressed: the convergence properties
of the algorithm and its computational cost. To determine the convergence
properties, we investigate first the relationship between the initial values
of the parameters and global optimal solution and then the monotonic con-
vergence of the estimation algorithm. These analyses reveal that our pro-
posed algorithm guarantees convergence of the mode-wise global optimal
solution under some conditions. To analyze the computational efficacy, we
calculate the computational cost of our proposed algorithm.

The rest of the letter is organized as follows. In section 2, we review
the formulation and the minimization problem of CCA. In section 3, we
formulate the MCCA model by constructing the covariance matrices of
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Multilinear Common Component Analysis 2855

tensor data, based on a Kronecker product representation. Then we for-
mulate the estimation algorithm for MCCA in section 4. In section 5, we
present the theoretical properties for our proposed algorithm and ana-
lyze the computational cost. The efficacy of the MCCA is demonstrated
through numerical experiments in section 6. Concluding remarks are pre-
sented in section 7. Technical proofs are provided in the appendixes. Our
implementation of MCCA and supplementary materials are available at
https://github.com/yoshikawa-kohei/MCCA.

2 Common Component Analysis

Suppose that we obtain data matrices X(g) = [x(g)1, . . . x(g)Ng]
� ∈ R

Ng×P with
Ng observations and P variables for g = 1, . . . , G, where x(g)i is the P-
dimensional vector corresponding to the ith row of X(g) and G is the number
of data sets. Then the sample covariance matrix in group g is

S(g) = 1
Ng

Ng∑
i=1

(
x(g)i − x̄(g)

) (
x(g)i − x̄(g)

)�
, g = 1, . . . , G, (2.1)

where S(g) ∈ S
P
+, in which S

P
+ is a set of symmetric positive-definite matri-

ces of size P × P, and x̄(g) = 1
Ng

∑Ng

i=1 x(g)i is a P-dimensional mean vector in
group g.

The main idea of the CCA model is to find the common structure of mul-
tiple data sets by projecting the data onto a common lower-dimensional
space with the same basis as the data sets. Wang et al. (2011) assumed that
the covariance matrices S(g) for g = 1, . . . , G can be decomposed to a prod-
uct of latent covariance matrices and an orthogonal matrix for the linear
transformation as

S(g) = V�(g)V� + E(g), s.t. V�V = IR, (2.2)

where �(g) ∈ S
R
+ is the latent covariance matrix in group g, V ∈ R

P×R is an
orthogonal matrix for the linear transformation, E(g) ∈ S

P
+ is the error matrix

in group g, and IR is the identity matrix of size R × R. E(g) consists of the sum

of outer products for independent random vectors
∑Ng

i=1 e(g)ie�
(g)i with mean

E
[
e(g)i
] = 0 and covariance matrix Cov

[
e(g)i
]

(> O) (i = 1, 2, . . . , Ng). V de-
termines the R-dimensional common subspace of the multiple data sets. In
particular, by assuming R < P, the CCA can discover the latent structures
of the data sets. Wang et al. (2011) referred to the model, equation 2.2, as
common component analysis (CCA).

The parameters V and �(g) (g = 1, . . . , G) are estimated by solving the
minimization problem,
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min
V,�(g)

g=1,...,G

G∑
g=1

‖S(g) − V�(g)V�‖2
F, s.t. V�V = IR, (2.3)

where ‖ · ‖F denotes the Frobenius norm. The estimator of latent covari-
ance matrices �(g) for g = 1, . . . , G can be obtained by solving the mini-
mization problem as �̂(g) = V�S(g)V. By using the estimated value �̂(g), the
minimization problem can be reformulated as the following maximization
problem:

max
V

tr

⎧⎨⎩V�
G∑

g=1

(
S(g)VV�S(g)

)
V

⎫⎬⎭ , s.t. V�V = IR, (2.4)

where tr(·) denotes the trace of a matrix. A crucial issue for solving the
maximization problem 2.4 is the nonconvexity. Certainly the maximization
problem is nonconvex since the problem is defined on a set of orthogonal
matrices, which is a nonconvex set. Generally it is difficult to find the global
optimal solution in nonconvex optimization problems. To overcome this
drawback, Wang et al. (2011) proposed an estimation algorithm in which
the estimated parameters are guaranteed to constitute the global optimal
solution under some conditions.

3 Multilinear Common Component Analysis

In this section, we introduce a mathematical formulation of the MCCA, an
extension of the CCA in terms of tensor data analysis. Moreover, we for-
mulate an optimization problem of MCCA and investigate its convergence
properties.

Suppose that we independently obtain Mth order tensor data X(g)i ∈
R

P1×P2×...×PM for i = 1, . . . Ng. We set the data sets of the tensors X(g) =
[X(g)1,X(g)2, . . . ,X(g)Ng] ∈ R

P1×P2×···×PM×Ng for g = 1, . . . , G, where G is the
number of data sets. Then the sample covariance matrix in group g for the
tensor data set is defined by

S∗
(g) := S(1)

(g) ⊗ S(2)
(g) ⊗ · · · ⊗ S(M)

(g) , (3.1)

where S∗
(g) ∈ S

P
+, in which P =∏M

k=1 Pk, ⊗ denotes the Kronecker product op-

erator, and S(k)
(g) ∈ S

Pk+ is the sample covariance matrix for kth mode in group
g defined by

S(k)
(g) := 1

Ng
∏

j �=k Pj

Ng∑
i=1

(
X(k)

(g)i − X̄(k)
(g)

) (
X(k)

(g)i − X̄(k)
(g)

)�
. (3.2)
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Here, X(k)
(g)i ∈ R

Pk×(
∏

j �=k Pj ) is the mode-k unfolded matrix of X(g)i, and X̄(k)
(g) ∈

R
Pk×(

∏
j �=k Pj ) is the mode-k unfolded matrix of X̄(g) = 1

Ng

∑Ng

i=1 X(g)i. Note

that the mode-k unfolding from an Mth order tensor X ∈ R
P1×P2×···×PM to

a matrix X(k) ∈ R
Pk×(

∏
j �=k Pj ) means that the tensor element (p1, p2, . . . , pM)

maps to matrix element (pk, l), where l = 1 +∑M
t=1,t �=k(pt − 1)Lt with Lt =∏t−1

m=1,m �=k Pm, in which p1, p2, . . . , pM denote the indices of the Mth order
tensor X . For a more detailed description of tensor operations, see Kolda
and Bader (2009). A representation of the tensor covariance matrix by Kro-
necker products is often used (Kermoal, Schumacher, Pedersen, Mogensen,
& Frederiksen, 2002; Yu et al., 2004; Werner, Jansson, & Stoica, 2008).

To formulate CCA in terms of tensor data analysis, we consider CCA for
the kth mode covariance matrix in group g as follows,

S(k)
(g) = V(k)�

(k)
(g)V

(k)� + E(k)
(g), s.t. V(k)�V(k) = IRk , (3.3)

where �
(k)
(g) ∈ S

Rk+ is the latent kth mode covariance matrix in group g, V(k) ∈
R

Pk×Rk is an orthogonal matrix for the linear transformation, and E(k)
(g) ∈ S

Pk+
is the error matrix in group g. E(k)

(g) consists of the sum of outer products

for independent random vectors
∑Ng

i=1 e(k)
(g)ie

(k)
(g)i

�
with mean E

[
e(k)

(g)i

]
= 0 and

covariance matrix Cov
[
e(k)

(g)i

]
(> O) (i = 1, 2, . . . , Ng). Since S∗

(g) can be de-

composed to a Kronecker product of S(k)
(g) for k = 1, . . . , M in formula 3.1, we

obtain the following model,

S∗
(g) = V∗�∗

(g)V
∗� + E∗

(g), s.t. V∗�V∗ = IR, (3.4)

where R =∏M
k=1 Rk, V∗ = V(1) ⊗ V(2) ⊗ · · · ⊗ V(M), �∗

(g) = �
(1)
(g) ⊗ �

(2)
(g) ⊗ · · ·

⊗ �
(M)
(g) , and E∗

(g) is the error matrix in group g. We refer to this model as
multilinear common component analysis (MCCA).

To find the R-dimensional common subspace between the multiple ten-
sor data sets, MCCA determines V(1), V(2), . . . , V(M). As with CCA, we ob-
tain the estimate of �∗

(g) for g = 1, . . . , G as �̂∗
(g) = V∗�S∗

(g)V
∗. With respect

to V∗, we can obtain the estimate by solving the following maximization
problem, which is similar to equation 2.4:

max
V∗

tr

⎧⎨⎩V∗�
G∑

g=1

(
S∗

(g)V
∗V∗�S∗

(g)

)
V∗

⎫⎬⎭ , s.t. V∗�V∗ = IR. (3.5)

However, the number of parameters will be very large when we try to
solve this problem directly, and thus results in a high computational cost.
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Moreover, it may not be possible to discover the inherent relationships
among the variables in each mode simply by solving problem 3.5.

To solve the maximization problem efficiently and identify the inherent
relationships, the maximization problem 3.5 can be decomposed into the
mode-wise maximization problems represented in the following lemma.

Lemma 1. An estimate of the parameters V(k) for k = 1, 2, . . . , M in the maxi-
mization problem 3.5 can be obtained by solving the following maximization prob-
lem for each mode:

max
V(k)

k=1,2,...,M

G∑
g=1

M∏
k=1

tr
{

V(k)�S(k)
(g)V

(k)V(k)�S(k)
(g)V

(k)
}

, s.t. V(k)�V(k) = IRk . (3.6)

However, we cannot simultaneously solve this problem for V(k), k =
1, 2, . . . , M. Thus, by summarizing the terms unrelated to V(k) in maximiza-
tion problem 3.6, we can obtain the maximization problem for kth mode,

max
V(k)

fk(V(k) ) = max
V(k)

tr
{

V(k)�M(V(k) )V(k)
}

, s.t. V(k)�V(k) = IRk , (3.7)

where M(V(k) ) =∑G
g=1 w

(−k)
(g) S(k)

(g)V
(k)V(k)�S(k)

(g), in which w
(−k)
(g) is given by

w
(−k)
(g) =

∏
j �=k

tr
{

V( j)�S( j)
(g)V

( j)V( j)�S( j)
(g)V

( j)
}

. (3.8)

Although an estimate of V(k) can be obtained by solving maximization prob-
lem 3.7, this problem is nonconvex, since V(k) is assumed to be an orthog-
onal matrix. Thus, the maximization problem has several local maxima.
However, by choosing the initial values of parameters in the estimation
near the global optimal solution, we can obtain the global optimal solu-
tion. In section 4, we develop not only an estimation algorithm but also an
initialization method for choosing the initial values of the parameters near
the global optimal solution. The initialization method helps guarantee the
convergence of our algorithm to the mode-wise global optimal solution.

4 Estimation

Our estimation algorithm consists of two steps: initializing the parameters
and iteratively updating the parameters. The initialization step gives us the
initial values of the parameters near the global optimal solution for each
mode. Next, by iteratively updating the parameters, we can monotonically
increase the value of the objective function 3.7 until convergence.
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4.1 Initialization. The first step is to initialize the parameters V(k) for

each mode. We define an objective function f ′
k(V(k) ) = tr

{
V(k)�M

(
I(k)
)

V(k)
}

for k = 1, . . . , M, where M
(
I(k)
) =∑G

g=1 w
(−k)
(g) S(k)

(g)S
(k)
(g). Next, we adopt a max-

imizer of f ′
k(V(k) ) as initial values of the parameters V(k). To obtain the maxi-

mizer, we need an initial value of w(k) =
[
w

(−k)
(1) ,w

(−k)
(2) , . . . ,w

(−k)
(G)

]
. The initial

value for w(k) is obtained by solving the quadratic programming problem,

min
w(k)

w(k)�λ
(k)
0 λ

(k)
0

�
w(k), s.t. w(k) > 0, w(k)�λ

(k)
1 λ

(k)
1

�
w(k) = 1, (4.1)

where

λ
(k)
0 =

⎡⎣ Pk∑
i=Rk+1

λ
(k)
(1)i,

Pk∑
i=Rk+1

λ
(k)
(2)i, . . . ,

Pk∑
i=Rk+1

λ
(k)
(G)i

⎤⎦�

,

λ
(k)
1 =

[ Pk∑
i=1

λ
(k)
(1)i,

Pk∑
i=1

λ
(k)
(2)i, . . . ,

Pk∑
i=1

λ
(k)
(G)i

]�

, (4.2)

in which λ
( j)
(g)i is the ith largest eigenvalue of S( j)

(g)S
( j)
(g).

Using the initial value of w(k), we can obtain the initial value of the pa-
rameter V(k)

0 by maximizing f ′
k(V(k) ) for each mode. The maximizer consists

of Rk eigenvectors, corresponding to the Rk largest eigenvalues, obtained by
eigenvalue decomposition of M

(
I(k)
)
. The theoretical justification for this

initialization is discussed in section 5.

4.2 Iterative Update of Parameters. The second step is to update pa-
rameters V(k) for each mode. We update parameters such that the objective
function fk(V(k) ) is maximized. Let V(k)

s be the value of V(k) at step s. Then
we solve the surrogate maximization problem,

max
V(k)

s+1

tr
{

V(k)
s+1

�
M(V(k)

s )V(k)
s+1

}
, s.t. V(k)

s+1

�
V(k)

s+1 = IRk . (4.3)

The solution of equation 4.3 consists of Rk eigenvectors, corresponding
to the Rk largest eigenvalues, obtained by eigenvalue decomposition of
M(V(k)

s ). By iteratively updating the parameters, the objective function
fk(V(k) ) is monotonically increased, which allows it to be maximized. The
monotonically increasing property is discussed in section 5.

Our estimation procedure comprises the above estimation steps. The
procedure is summarized as algorithm 1.
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5 Theory

This section presents the theoretical and computational analyses for algo-
rithm 1. Theoretical analyses consist of two steps. First, we prove that the
initial values of parameters obtained in section 4.1 are relatively close to
the global optimal solution. If the initial values are close to the global maxi-
mum, then we can obtain the global optimal solution even if the maximiza-
tion problem is nonconvex. Second, we prove that the iterative updates of
the parameters in section 4.2 monotonically increase the value of objective
function 3.7 by solving the surrogate problem 4.3. From the monotonically
increasing property, the estimated parameters always converge at a sta-
tionary point. The combination of these two results enables us to obtain
the mode-wise global optimal solution. In the computational analysis, we
calculate computational cost for MCCA and then compare the cost with
conventional methods. By comparing the costs, we investigate the compu-
tational efficacy of MCCA.
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5.1 Analysis of Upper and Lower Bounds. This section aims to pro-
vide the upper and lower bounds of the maximization problem 3.7. From
the bounds, we find that the initial values in section 4.1 are relatively close
to the global optimal solution. Before providing the bounds, we define a
contraction ratio.

Definition 1. Let f ′ max
k be the global maximum of f ′

k(V(k) ) and M(k) =
tr
{
M
(
I(k)
)}

. Then a contraction ratio of data for kth mode is defined by

α(k) = f ′ max
k

M(k)
=

tr
{

V(k)
0

�
M
(
I(k)
)

V(k)
0

}
tr
{
M
(
I(k)
)} . (5.1)

Note that a contraction ratio α(k) satisfies 0 ≤ α(k) ≤ 1 and α(k) = 1 if and
only if Rk = Pk.

Using f ′ max
k and the contraction ratio α(k), we have the following theo-

rem that reveals the upper and lower bounds of the global maximum in
problem 3.7.

Theorem 1. Let f max
k be the global maximum of fk(V(k) ). Then

α(k) f ′ max
k ≤ f max

k ≤ f ′ max
k , (5.2)

where α(k) is the contraction ratio defined in equation 5.1 and f ′ max
k is the global

maximum of f ′
k(V(k) ).

This theorem indicates that f ′ max
k → f max

k when α(k) → 1. Thus, it is im-
portant to obtain an α(k) that is as close as possible to one. Since α(k) depends
on V(k)

0 and w(k), V(k)
0 depends on w(k). From this dependency, if we could set

the initial value of w(k) such that α(k) is as large as possible, then we could
obtain an initial value of V(k)

0 that attains a value near f max
k . The following

theorem shows that we can compute the initial value of w(k) such that α(k)

is maximized.

Theorem 2. Let λ
(k)
0 and λ

(k)
1 be the vectors consisting of eigenvalues defined

in equation 4.2. For w(k) =
[
w

(−k)
(1) ,w

(−k)
(2) , . . . ,w

(−k)
(G)

]
(k = 1, 2, . . . , M), suppose

that the estimate ŵ(k) is obtained by solving equation 4.1 for k = 1, 2, . . . , M. Then
ŵ(k) maximizes α(k).

In fact, α(k) is very close to one with the initial values given in theorem 2
even if Rk is small. This resembles the cumulative contribution ratio in PCA.

5.2 Convergence Analysis. We next verify that our proposed pro-
cedure for iteratively updating parameters maximizes the optimization
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problem 3.7. In algorithm 1, the parameter V(k)
s+1 can be obtained by solving

the surrogate maximization problem 4.3. Theorem 3 shows that we can
monotonically increase the value of the function fk(V(k) ) in equation 3.7 by
algorithm 1.

Theorem 3. Let V(k)
s+1 be Rk eigenvectors, corresponding to the Rk largest eigen-

values, obtained by eigenvalue decomposition of M(V(k)
s ). Then

fk(V(k)
s ) ≤ fk(V(k)

s+1). (5.3)

From theorem 1, we obtain initial values of the parameters that are near
the global optimal solution. By combining theorems 1 and 3, the solution
from algorithm 1 can be characterized by the following corollary.

Corollary 1. Consider the maximization problem 3.7. Suppose that the initial
value of the parameter is obtained by V(k)

0 = arg max
V(k)

f̃k
′
(V(k) ), and the parameter

V(k)
s is repeatedly updated by algorithm 1. Then the mode-wise global maximum

for the maximization problem 3.7 is achieved when all the contraction ratios α(k)

for k = 1, 2, . . . , M go to one.

Algorithm 1 does not guarantee the global solution due to the fundamen-
tal problem of nonconvexity, but it is enough for pragmatic purposes. We
investigate the issue of convergence to global solution through numerical
studies in section 6.3.

5.3 Computational Analysis. First, we analyze the computational cost.
To simplify the analysis, we assume P = arg max

j
Pj for j = 1, 2, . . . , M. This

implies that P is the upper bound of Rj for all j. We then calculate the upper
bound of the computational complexity.

The expensive computations of the each iteration in algorithm 1 con-
sist of three parts: the formulation of M(V(k)

s ), the eigenvalue decomposi-
tion of M(V(k)

s ), and updating latent covariance matrices �
(k)
g . These steps

are O(GM2P3), O(P3), and O(GMP3), respectively. The total computational
complexity per iteration is then O(GM2P3).

Next, we analyze the memory requirement of algorithm 1. MCCA repre-
sents the original tensor data with fewer parameters by projecting the data
onto a lower-dimensional space. This requires the Pk × Rk projection matri-

ces V(k) for k = 1, 2, . . . , M. MCCA projects the data with size of N
(∏M

k=1 Pk

)
to N

(∏M
k=1 Rk

)
, where N =∑G

g=1 Ng. Thus, the required size for the pa-

rameters is
∑M

k=1 PkRk + N
(∏M

k=1 Rk

)
. MPCA requires the same amount of
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Table 1: Comparisons of the Computational Complexity and the Memory
Requirement.

Method Computational Complexity Memory Reqirement

PCA O(P3M ) R
(∏M

k=1 Pk

)
+ NR

CCA O(GP3M ) R
(∏M

k=1 Pk

)
+ NR

MPCA O(NMPM+1)
∑M

k=1 PkRk + N
(∏M

k=1 Rk

)
MCCA O(GM2P3)

∑M
k=1 PkRk + N

(∏M
k=1 Rk

)

memory as MCCA. Meanwhile, CCA and PCA need a projection matrix,

which is size R
(∏M

k=1 Pk

)
. The required size for the parameters is then

R
(∏M

k=1 Pk

)
+ NR.

To compare the computational cost clearly, the upper bounds of compu-
tational complexity and the memory requirement are summarized in Table
1. Table 1 shows that the computational complexity of MCCA is superior
to that of the other algorithms and the complexity of MCCA is not limited
by sample size. In contrast, the MPCA algorithm is affected by the sample
size (Lu, Plataniotis, & Venetsanopoulos, 2008). Additionally, MCCA and
MPCA require a large amount of memory when the number of modes in
a data set is large, but their memory requirements are much smaller than
those of PCA and CCA.

6 Experiment

To demonstrate the efficacy of MCCA, we applied MCCA, PCA, CCA, and
MPCA to image compression tasks.

6.1 Experimental Setting. For the experiments, we prepared the follow-
ing three image data sets:

MNIST data set consists of data of handwritten digits 0, 1, . . . , 9 at im-
age sizes of 28 × 28 pixels. The data set includes a training data set
of 60,000 images and a test data set of 10,000 images. We used the
first 10 training images of the data set for each group. The MNIST
data set (Lecun, Bottou, Bengio, & Haffner, 1998) is available at http:
//yann.lecun.com/exdb/mnist/.

AT&T (ORL) face data set contains gray-scale facial images of 40 people.
The data set has 10 images sized 92 × 112 pixels for each person. We
used images resized by a factor of 0.5 to improve the efficiency of the
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Table 2: Summary of the Data Sets.

Data Set
Group

Size
Sample Size

(/Group)
Number of
Dimensions

Number
of Groups

MNIST Small 10 28 × 28 = 784 10
AT&T(ORL) Small 10 46 × 56 = 2576 10

Medium 20
Large 40

Cropped AR Small 14 30 × 41 × 3 = 7380 10
Medium 25
Large 50

experiment. The AT&T face data set is available at https://git-disl.
github.io/GTDLBench/datasets/att_face_dataset/. All the credits of
this data set go to AT&T Laboratories Cambridge.

Cropped AR database has color facial images of 100 people. These im-
ages are cropped around the face. The size of images is 120 × 165 × 3
pixels. The data set contains 26 images in each group, 12 of which
are images of people wearing sunglasses or scarves. We used the
cropped facial images of 50 males who were not wearing sunglasses
or scarves. Due to memory limitations, we resized these images by
a factor of 0.25. The AR database (Martinez & Benavente, 1998; Mar-
tinez & Kak, 2001) is available at http://www2.ece.ohio-state.edu/∼
aleix/ARdatabase.html.

The data set characteristics are summarized in Table 2.
To compress these images, we performed dimensionality reductions by

MCCA, PCA, CCA, and MPCA, as follows. We vectorized the tensor data
set before performing PCA and CCA. In MCCA, the images were com-
pressed and reconstructed according to the following steps:

1. Prepare the multiple image data sets X(g) ∈ R
P1×P2×···×PM×Ng for g =

1, 2, . . . , G.
2. Compute the covariance matrix of X(g) for g = 1, 2, . . . , G.
3. From these covariance matrices, compute the linear transforma-

tion matrices Vi ∈ R
Pi×Ri for i = 1, 2, . . . , M for mapping to the

(R1, R2, . . . , RM)-dimensional latent space.
4. Map the ith sample X(g)i to X(g)i ×1 V1 ×2 V2 · · · ×M VM ∈

R
R1×R2×···×RM , where the operator ×i is the i-mode product of

tensor (Kolda & Bader, 2009).
5. Reconstruct ith sample X̃(g)i = X(g)i ×1 V1V�

1 ×2 V2V�
2 · · · ×M VMV�

M.

Meanwhile, PCA and MPCA each require a single data set. Thus, we ag-

gregated the data sets asX = [X(1),X(2), . . . ,X(G)] ∈ R
P1×P2×···×PM×∑G

g=1 Ng and
performed PCA and MPCA for data set X .

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/10/2853/1982256/neco_a_01425.pdf by guest on 07 Septem
ber 2023

https://git-disl.github.io/GTDLBench/datasets/att_face_dataset/
http://www2.ece.ohio-state.edu/aleix/ARdatabase.html


Multilinear Common Component Analysis 2865

6.2 Performance Assessment. For MCCA and MPCA, the reduced di-
mensions R1 and R2 were chosen as the same number, and then we fixed
R3 as two. All computations were performed by the software R (version 3.6)
(R Core Team, 2019). In the initialization of MCCA, solving the quadratic
programming problem was carried out using the function ipop in the pack-
age kernlab. MPCA was implemented as the function mpca in the package
rTensor. (The implementations of MCCA, PCA, and CCA are available at
https://github.com/yoshikawa-kohei/MCCA.)

To assess their performances, we calculated the reconstruction error rate
(RER) under the same compression ratio (CR). RER is defined by

RER =
∥∥X − X̃

∥∥2
F

‖X‖2
F

, (6.1)

where X̃ = [X̃(1), X̃(2), . . . , X̃(G)] is the aggregated data set of reconstructed
tensors X̃(g) = [X̃(g)1, X̃(g)2, . . . , X̃(g)Ng] for g = 1, 2, . . . , G and ‖X‖F is the
norm of a tensor X ∈ R

P1×P2×···×PM computed by

‖X‖F =

√√√√√ P1∑
p1=1

P2∑
p2=1

· · ·
PM∑

pM=1

x2
p1,p2,...,pM

, (6.2)

in which xp1,p2,...,pM is an element (p1, p2, . . . , pM) of X . In addition, we de-
fined CR as

CR = {The number of required parameters}
N ·∏M

k=1 Pk
. (6.3)

The number of required parameters for MCCA and MPCA is
∑M

k=1 PkRk +
N
(∏M

k=1 Rk

)
, whereas that for CCA and PCA is R

(∏M
k=1 Pk

)
+ NR.

Figure 1 plots the RER obtained by estimating various reduced dimen-
sions for the AT&T(ORL) data set with group sizes of small, medium, and
large. As the figures for the results of the other data sets were similar to
Figure 1, we show them in the supplementary materials S1.

From Figure 1, we observe that the RER material MCCA is the smallest
for any value of CR. This indicates that MCCA performs better than the
other methods. In addition, note that CCA performs better than MPCA only
for fairly small values of CR, even though it is a method for vector data,
whereas MPCA performs better for larger values of CR. This implies the
limitations of CCA for vector data.

Next we consider group size by comparing panels a, b, and c in Figure 1.
The value of CR at the intersection of CCA and MPCA increases with
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Figure 1: Plots of RER versus CR for the AT&T(ORL) data set of various group
sizes: (a) small, (b) medium, and (c) large.

increasing the group size. This indicates that MPCA has more trouble ex-
tracting an appropriate latent space as the group size increases. Since MPCA
does not consider the group structure, it is not possible to properly estimate
the covariance structure when the group size is large.

Figure 2 shows the comparison of runtime for the AT&T(ORL) data set
with group sizes of small, medium, and large. Although Table 1 gives the
superiority of the computational complexity for MCCA, Figure 2 shows
that MCCA is slower than MPCA for any size of data set. This probably
arises from the difference of implementation of MCCA and MPCA: MCCA
is implemented by our hand-built source code, while MPCA is done by
the package rTensor. But when we compare MCCA with CCA, MCCA is
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Figure 2: Plots of runtime versus CR for the AT&T(ORL) data set of various
group sizes: (a) small, (b) medium, and (c) large.

superior to CCA in terms of both computational complexity and the run-
time comparisons.

Figure 3 plots the reconstructed images for the AT&T(ORL) data set with
group sizes of the medium. This figure can be obtained by performing four
methodologies when we set R1 = R2 = 5 and R = 2. By setting the number
of the ranks in this way, we can compare the images with almost the same
CR, PCA, CCA, and MPCAcan recover the average structure of face images,
but they cannot deal with changes in the angle of the face. MCCA can also
recover the detailed differences in each image.

6.3 Behavior of Contraction Ratio. We examined the behavior of con-
traction ratio α(k). We performed MCCA on the AT&T(ORL) data set with
the medium group size and computed α(1) and α(2) with the various pairs
of reduced dimensions (R1, R2) ∈ {1, 2, . . . , 25} × {1, 2, . . . , 25}.

Figure 4 shows the values of α(1) and α(2) for all pairs of R1 and R2. As
shown, α(1) and α(2) were invariant to variations in R2 and R1, respectively.
Therefore, to facilitate visualization of changes in α(k), we draw Figure 5,
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Figure 3: The reconstructed images for the AT&T(ORL) data set with the
medium group sizes under almost the same CR. Image source: AT&T
Laboratories Cambridge.

Figure 4: α(1) and α(2) versus pairs of reduced dimensions (R1, R2).

which represents α(1) and α(2) for, respectively, R2 = 1 and R1 = 1. From
these, we observe that when both R1 and R2 are greater than eight, both
α(1) and α(2) are close to one.

6.4 Efficacy of Solving the Quadratic Programming Problem. We in-
vestigated the usefulness of determining the initial value of w(k) by solv-
ing the quadratic programming problem 4.1. We applied MCCA to the
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Figure 5: α(1) and α(2) versus R1 and R2, respectively.

AT&T(ORL) data set with the small, medium, and large number of groups.
In addition, we used the smaller group size of three. For determining
the initial value of w(k), we consider three methods: solving the quadratic
programming problem 4.1 (MCCA:QP); setting all values of w(k) to one
(MCCA:FIX); and setting the values by random sampling according to the
uniform distribution U(0, 1) (MCCA:RANDOM). We computed the α(k)

with the reduced dimensions R1 = R2 (∈ {1, 2, . . . , 10}) for each of these
methods.

To evaluate the performance of these methods, we compared the val-
ues of α(k) and the number of iterations in the estimation. The number of
iterations in the estimation is the number of repetitions of lines 7 to 9 in al-
gorithm 1. For MCCA(RANDOM), we performed 50 trials and calculated
averages of each of these indices.

Figure 6 shows the comparisons of α(1) and α(2) when the initializa-
tion was performed by MCCA:QP, MCCA:FIX, and MCCA:RANDOM for
the AT&T(ORL) data set with a group size of three. It was confirmed that
MCCA:QP provides the largest values of α(1) and α(2). Figure 7 shows the
number of iterations. MCCA:QP gives the smallest number of iterations
for almost all values of the reduced dimensions. This result indicates that
MCCA:QP converges to a solution faster than the other initialization meth-
ods. However, when the reduced dimension is greater than or equal to eight,
the other methods are competitive with MCCA:QP. A lack of difference in
the number of iterations could result from the closeness of the initial values
and the global optimal solution. Note that when the R1 and R2 are greater
than or equal to eight, α(1) and α(2) are sufficiently close to one, based on
Figure 6. This indicates that the initial values are close to the global optimal
solution obtained from theorem 1. Hence, the result shows almost the same
number of iterations for the three methods.
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Figure 6: Comparisons of α(1) and α(2) computed by using the initial values ob-
tained from the initializations MCCA:QP, MCCA:FIX, and MCCA:RANDOM
with the AT&T(ORL) data set for a group size of three.

Figure 7: Comparison of the number of iterations when the initialization
was performed by MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the
AT&T(ORL) data set for a group size of three.

Figures 8 and 9 show comparisons for the AT&T(ORL) data set with the
medium group size. Since the figures for the results of other group sizes are
similar to Figures 8 and 9, we show them in the supplementary materials
S2. Figure 8 shows results similar those in Figure 6, whereas Figure 9 shows
competitive performances for all reduced dimensions.
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Figure 8: Comparisons of α(1) and α(2) computed using the initial values ob-
tained from the initialization of MCCA:QP, MCCA:FIX, and MCCA:RANDOM
with the AT&T(ORL) data set and the medium group size.

Figure 9: Comparison of the number of iterations when the initialization
was perfomed by MCCA:QP, MCCA:FIX, and MCCA:RANDOM with the
AT&T(ORL) data set and the medium group size.

7 Conclusion

We have developed the multilinear common components analysis (MCCA)
by introducing a covariance structure based on the Kronecker product. To
efficiently solve the nonconvex optimization problem for MCCA, we have
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proposed an iteratively updating algorithm that exhibits some superior the-
oretical convergence properties. Numerical experiments have shown the
usefulness of MCCA.

Specifically, MCCA was shown to be competitive among the initializa-
tion methods in terms of the number of iterations. As the number of groups
increases, the overall number of samples increases. This may be the reason
why all methods required almost the same number of iterations for small,
medium, and large groups. Note that in this study, we used the Kronecker
product representation to estimate the covariance matrix for tensor data
sets. Greenewald, Zhou, and Hero (2019) used the Kronecker sum repre-
sentation for estimating the covariance matrix, and it would be interesting
to extend the MCCA to this and other covariance representations.

Appendix A: Proof of Lemma 1

We provide two basic lemmas about Kronecker products before we prove
lemma 1.

Lemma 2. For matrices A, B, C, and D such that matrix products AC and BD
can be calculated, the following equation holds:

(A ⊗ B)(C ⊗ D) = AC ⊗ BD.

Lemma 3. For square matrices A and B, the following equation holds:

tr(A ⊗ B) = tr(A)tr(B).

These lemmas are known as the mixed-product property and the spec-
trum property, respectively. See Harville (1998) for detailed proofs.

Proof of Lemma 1. For the maximization problem 3.5, move the summa-
tion over index g out of the tr(·) and replace S∗

(g) and V∗ with S(1)
(g) ⊗ S(2)

(g) ⊗
· · · ⊗ S(M)

(g) and V(1) ⊗ V(2) ⊗ · · · ⊗ V(M), respectively. Then

max
V(k)

k=1,2,...,M

G∑
g=1

tr
{(

V(1) ⊗ · · · ⊗ V(M)
)� (

S(1)
(g) ⊗ · · · ⊗ S(M)

(g)

) (
V(1) ⊗ · · · ⊗ V(M)

)
(

V(1) ⊗ · · · ⊗ V(M)
)� (

S(1)
(g) ⊗ · · · ⊗ S(M)

(g)

) (
V(1) ⊗ · · · ⊗ V(M)

)}
,

s.t. V(k)�V(k) = IRk .
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By lemmas 2 and 3, we have

max
V(k)�V(k)=IRk

k=1,2,...,M

G∑
g=1

tr
{(

V(1)�S(1)
(g)V

(1)V(1)�S(1)
(g)V

(1)
)

· · ·
(

V(M)�S(M)
(g) V(M)V(M)�S(M)

(g) V(M)
)}

= max
V(k)�V(k)=IRk

k=1,2,...,M

G∑
g=1

M∏
k=1

tr
{

V(k)�S(k)
(g)V

(k)V(k)�S(k)
(g)V

(k)
}

.

This leads to the maximization problem in lemma 1. ��

Appendix B: Proof of Theorem 1

Theorem 1 can be easily shown from the following lemma.

Lemma 4. Consider the maximization problem

max
V(k)

f ′
k(V(k) ) = max

V(k)
tr

⎧⎨⎩V(k)�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)S
(k)
(g)

⎞⎠V(k)

⎫⎬⎭ . (B.1)

Let M(k) = tr
{∑G

g=1 w
(−k)
(g) S(k)

(g)S
(k)
(g)

}
. Then

f ′
k(V(k) )2

M(k)
≤ fk(V(k) ) ≤ f ′

k(V(k) ).

Proof of Lemma 4. First, we prove fk(V(k) ) ≤ f ′
k(V(k) ). For any orthog-

onal matrix V(k) ∈ R
Pk×Rk , we can always find an orthogonal matrix

V(k)
⊥ ∈ R

Pk×(Pk−Rk ) that satisfies V(k)�V(k)
⊥ = O. Then the equation V(k)V(k)� +

V(k)
⊥ V(k)

⊥
� = IPk holds. By definition,

fk(V(k) ) = tr

⎧⎨⎩V(k)�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)V
(k)V(k)�S(k)

(g)

⎞⎠V(k)

⎫⎬⎭
≤ tr

⎧⎨⎩V(k)�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)

(
V(k)V(k)� + V(k)

⊥ V(k)
⊥

�)
S(k)

(g)

⎞⎠V(k)

⎫⎬⎭
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= tr

⎧⎨⎩V(k)�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)S
(k)
(g)

⎞⎠V(k)

⎫⎬⎭
= f ′

k(V(k) ).

Thus, we have obtained fk(V(k) ) ≤ f ′
k(V(k) ).

Next, we prove f ′
k (V(k) )2

M(k) ≤ fk(V(k) ). We define the following block
matrices:

A =
[√

w
(−k)
(1) S(k)

(1)

1
2 V(k)V(k)�S(k)

(1)

1
2
, . . . ,

√
w

(−k)
(G) S(k)

(G)

1
2 V(k)V(k)�S(k)

(G)

1
2

]
,

B =
[√

w
(−k)
(1) S(k)

(1), . . . ,

√
w

(−k)
(G) S(k)

(G)

]
.

Note that since S(k)
(g) is a symmetric positive-definite matrix, S(k)

(g) can be

decomposed to S(k)
(g)

1
2 S(k)

(g)

1
2 . We calculate the traces of AA, AB, and BB,

respectively:

tr (AA) =
G∑

g=1

w
(−k)
(g) tr

(
S(k)

(g)

1
2 V(k)V(k)�S(k)

(g)

1
2 S(k)

(g)

1
2 V(k)V(k)�S(k)

(g)

1
2

)

=
G∑

g=1

w
(−k)
(g) tr

{
V(k)�S(k)

(g)V
(k)V(k)�S(k)

(g)V
(k)
}

= tr

⎧⎨⎩V(k)�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)V
(k)V(k)�S(k)

(g)

⎞⎠V(k)

⎫⎬⎭
= fk(V(k) ),

tr (AB) =
G∑

g=1

w
(−k)
(g) tr

(
S(k)

(g)

1
2 V(k)V(k)�S(k)

(g)

1
2 S(k)

(g)

)

=
G∑

g=1

w
(−k)
(g) tr

(
S(k)

(g)

1
2 V(k)V(k)�S(k)

(g)

1
2 S(k)

(g)

1
2 S(k)

(g)

1
2

)

=
G∑

g=1

w
(−k)
(g) tr

{
V(k)�S(k)

(g)S
(k)
(g)V

(k)
}
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= tr

⎧⎨⎩V(k)�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)S
(k)
(g)

⎞⎠V(k)

⎫⎬⎭
= f ′

k(V(k) ),

tr (BB) = tr

⎛⎝ G∑
g=1

w
(−k)
(g) S(k)

(g)S
(k)
(g)

⎞⎠ = M(k).

From the Cauchy–Schwarz inequality, we have

fk(V(k) )M(k) = tr (AA) tr (BB) ≥ {tr (AB)
}2 = f ′

k(V(k) )2.

By dividing both sides of the inequality by M(k), we obtain f ′
k (V(k) )2

M(k) ≤ fk(V(k) ).
�

Proof of Theorem 1. Let f ′ max
k be the global maximum of f ′

k(V(k) ) and
V(k)

0 = arg max
V(k)

f ′
k(V(k) ). From lemma 4 and the definition of α(k), we have

α(k) f ′ max
k = f ′

k(V(k)
0 )2

M(k)
≤ fk(V(k)

0 ).

Let f max
k be the global maximum of fk(V(k) ). It then holds that fk(V(k)

0 ) ≤
f max
k . Thus,

α(k) f ′ max
k ≤ f max

k .

Let V(k)
0∗ = arg max

V(k)

fk(V(k) ). From lemma 4, we have

f max
k = fk(V(k)

0∗ ) ≤ f ′
k(V(k)

0∗ ).

Since f ′
k(V(k)

0∗ ) ≤ f ′ max
k , we have

f max
k ≤ f ′ max

k .

Hence, we have obtained α(k) f ′ max
k ≤ f max

k ≤ f ′ max
k . �
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Appendix C: Proof of Theorem 2

Proof of Theorem 2. By definition

α(k) = f ′ max
k

M(k)
=

tr
{

V(k)
0

� (∑G
g=1 w

(−k)
(g) S(k)

(g)S
(k)
(g)

)
V(k)

0

}
tr
{∑G

g=1 w
(−k)
(g) S(k)

(g)S
(k)
(g)

} . (C.1)

By using the eigenvalue representation, we can rewrite the numerator of
α(k) as

f ′ max
k =

G∑
g=1

w
(−k)
(g)

Rk∑
i=1

λ
(k)
(g)i.

The denominator of α(k) can be represented as the sum of eigenvalues as
follows:

M(k) =
G∑

g=1

w
(−k)
(g)

Pk∑
i=1

λ
(k)
(g)i.

Thus, we can transform α(k) as follows:

α(k) =
∑G

g=1 w
(−k)
(g)

∑Rk
i=1 λ

(k)
(g)i∑G

g=1 w
(−k)
(g)

∑Pk
i=1 λ

(k)
(g)i

.

When we set

λ
(k)
0 =

⎡⎣ Pk∑
i=Rk+1

λ
(k)
(1)i,

Pk∑
i=Rk+1

λ
(k)
(2)i, . . . ,

Pk∑
i=Rk+1

λ
(k)
(G)i

⎤⎦�

,

λ
(k)
1 =

[ Pk∑
i=1

λ
(k)
(1)i,

Pk∑
i=1

λ
(k)
(2)i, . . . ,

Pk∑
i=1

λ
(k)
(G)i

]�

,

w(k) =
[
w

(−k)
(1) ,w

(−k)
(2) , . . . ,w

(−k)
(G)

]�
,

we can reformulate α(k) as

α(k) =
(
λ

(k)
1 − λ

(k)
0

)�
w(k)

λ
(k)
1

�
w(k)

.
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Thus, we obtain the following maximization problem:

max
w(k)

(
λ

(k)
1 − λ

(k)
0

)�
w(k)

λ
(k)
1

�
w(k)

, s.t. w(k) > 0.

Note that the constraints can be obtained by the definition of w(k). In addi-
tion, this maximization problem can be reformulated as

max
w(k)

(
λ

(k)
1 − λ

(k)
0

)�
w(k)

λ
(k)
1

�
w(k)

= max
w(k)

1 − λ
(k)
0

�
w(k)

λ
(k)
1

�
w(k)

= min
w(k)

λ
(k)
0

�
w(k)

λ
(k)
1

�
w(k)

.

Since λ
(k)
0

�
w(k)/λ

(k)
1

�
w(k) is nonnegative, solving the optimization problem

for the squared function of the objective function maintains generality.
Thus, we can consider the following minimization problem:

min
w(k)

w(k)�λ
(k)
0 λ

(k)
0

�
w(k)

w(k)�λ
(k)
1 λ

(k)
1

�
w(k)

, s.t. w(k) > 0.

Additionally, from the invariance under multiplication of w(k) by a constant,
we obtain the following objective function of the quadratic programming
problem:

min
w(k)

w(k)�λ
(k)
0 λ

(k)
0

�
w(k), s.t. w(k) > 0, w(k)�λ

(k)
1 λ

(k)
1

�
w(k) = 1.

�

Appendix D: Proof of Theorem 3

Proof of Theorem 3. We define the following block matrices:

As =
[√

w
(−k)
(1) S(k)

(1)

1
2 V(k)

s V(k)
s

�
S(k)

(1)

1
2
, . . . ,

√
w

(−k)
(G) S(k)

(G)

1
2 V(k)

s V(k)
s

�
S(k)

(G)

1
2

]
.

Here, we calculate the traces of AsAs, AsAs+1, and As+1As+1. The calcula-
tions of tr (AsAs) and tr (As+1As+1) are the same as that of tr (AA) by replac-
ing V(k) with V(k)

s and V(k) with V(k)
s+1, respectively, in lemma 4. Thus, we

obtain

tr (AsAs) = fk(V(k)
s ),
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tr (AsAs+1) =
G∑

g=1

w
(−k)
(g) tr

(
S(k)

(g)

1
2 V(k)

s V(k)
s

�
S(k)

(g)

1
2 S(k)

(g)

1
2 V(k)

s+1V(k)
s+1

�
S(k)

(g)

1
2

)

=
G∑

g=1

w
(−k)
(g) tr

{
V(k)

s+1

�
S(k)

(g)V
(k)
s V(k)

s
�

S(k)
(g)V

(k)
s+1

}

= tr

⎧⎨⎩V(k)
s+1

�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)V
(k)
s V(k)

s
�

S(k)
(g)

⎞⎠V(k)
s+1

⎫⎬⎭ ,

tr (As+1As+1) = fk(V(k)
s+1).

Since V(k)
s+1 = arg max

V(k)

tr
{

V(k)�
(∑G

g=1 w
(−k)
(g) S(k)

(g)V
(k)
s V(k)

s
�

S(k)
(g)

)
V(k)
}

, we have

fk(V(k)
s ) = tr

⎧⎨⎩V(k)
s

�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)V
(k)
s V(k)

s
�

S(k)
(g)

⎞⎠V(k)
s

⎫⎬⎭
≤ tr

⎧⎨⎩V(k)
s+1

�
⎛⎝ G∑

g=1

w
(−k)
(g) S(k)

(g)V
(k)
s V(k)

s
�

S(k)
(g)

⎞⎠V(k)
s+1

⎫⎬⎭
= tr (AsAs+1) .

From the positivity of both sides of the inequality, it holds that

fk(V(k)
s )2 ≤ [tr (AsAs+1)]2

.

In addition, from the Cauchy–Schwarz inequality, we have

fk(V(k)
s ) fk(V(k)

s+1) = tr (AsAs) tr (As+1As+1)

≥ [tr (AsAs+1)]2
.

Thus,

fk(V(k)
s ) fk(V(k)

s+1) ≥ [tr (AsAs+1)]2 ≥ fk(V(k)
s )2.

Then, we have obtained fk(V(k)
s )2 ≤ fk(V(k)

s ) fk(V(k)
s+1). By dividing both

sides of the inequality by fk(V(k)
s ), we obtain the inequality fk(V(k)

s ) ≤
fk(V(k)

s+1). �
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