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The expected free energy (EFE) is a central quantity in the theory of active
inference. It is the quantity that all active inference agents are mandated
to minimize through action, and its decomposition into extrinsic and in-
trinsic value terms is key to the balance of exploration and exploitation
that active inference agents evince. Despite its importance, the mathemat-
ical origins of this quantity and its relation to the variational free energy
(VFE) remain unclear. In this letter, we investigate the origins of the EFE
in detail and show that it is not simply ”the free energy in the future.”
We present a functional that we argue is the natural extension of the VFE
but actively discourages exploratory behavior, thus demonstrating that
exploration does not directly follow from free energy minimization into
the future. We then develop a novel objective, the free energy of the ex-
pected future (FEEF), which possesses both the epistemic component of
the EFE and an intuitive mathematical grounding as the divergence be-
tween predicted and desired futures.

1 Introduction

The free-energy principle (FEP) (Friston, 2010; Friston & Ao, 2012; Friston,
Kilner, & Harrison, 2006) is an emerging theory from theoretical neuro-
science that offers a unifying explanation of the dynamics of self-organizing
systems (Friston, 2019; Parr, Da Costa, & Friston, 2020). It proposes that
such systems can be interpreted as embodying a process of variational infer-
ence that minimizes a single information-theoretic objective: the variational
free-energy (VFE). In theoretical neuroscience, the FEP translates into an
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elegant account of brain function (Friston, 2003, 2005, 2008a, 2008b; Friston,
Trujillo-Barreto, & Daunizeau, 2008), extending the Bayesian brain hypoth-
esis (Deneve, 2005; Doya, Ishii, Pouget, & Rao, 2007; Knill & Pouget, 2004)
by postulating that the neural dynamics of the brain perform variational
inference. Under certain assumptions about the forms of the densities em-
bodied by the agent, this theory can even be translated down to the level
of neural circuits in the form of a biologically plausible neuronal process
theory (Bastos et al., 2012; Friston, 2008a; Kanai, Komura, Shipp, & Friston,
2015; Shipp, 2016; Spratling, 2008).

Action is then subsumed into this formulation, under the name of active
inference (Friston, 2011; Friston & Ao, 2012; Friston, Daunizeau, & Kiebel,
2009) by mandating that agents act so as to minimize the VFE with respect
to action (Buckley, Kim, McGregor, & Seth, 2017; Friston et al., 2006). This
casts action and perception as two aspects of the same imperative of free-
energy minimization, resulting in a theoretical framework for control that
applies to a variety of continuous-time tasks (Baltieri & Buckley, 2017, 2018;
Calvo & Friston, 2017; Friston, Mattout, & Kilner, 2011; Millidge, 2019b).

Recent work has extended these ideas to account for inference over tem-
porally extended action sequences. (Friston & Ao, 2012; Friston, FitzGer-
ald, Rigoli, Schwartenbeck, & Pezzulo, 2017; Friston, FitzGerald, Rigoli,
Schwartenbeck, & Pezzulo, 2016; Friston et al., 2015; Tschantz, Seth, &
Buckley, 2019). Here it is assumed that rather than action minimizing the
instantaneous VFE, sequences of actions (or policies) minimize the cumu-
lative sum over time of a quantity called the expected free energy (EFE)
(Friston et al., 2015). Active inference using the EFE has been applied to
a wide variety of tasks and applications, from modeling human and an-
imal choice behavior (FitzGerald, Schwartenbeck, Moutoussis, Dolan, &
Friston, 2015; Friston et al., 2015; Pezzulo, Cartoni, Rigoli, Pio-Lopez, &
Friston, 2016), simulating visual saccades and other “epistemic foraging
behavior” (Friston, Lin, et al., 2017; Friston, Rosch, Parr, Price, & Bow-
man, 2018; Mirza, Adams, Mathys, & Friston, 2016; Parr & Friston, 2017a,
2018a), solving reinforcement learning benchmarks (Çatal, Verbelen, Nauta,
De Boom, & Dhoedt, 2020; Millidge, 2019a, 2020; Tschantz, Baltieri, Seth,
& Buckley, 2019; Ueltzhöffer, 2018; van de Laar & de Vries, 2019), to mod-
eling psychiatric disorders as cases of aberrant inference (Cullen, Davey,
Friston, & Moran, 2018; Mirza, Adams, Parr, & Friston, 2019; Parr & Fris-
ton, 2018b). Like the continuous-time formulation, active inference also
comes equipped with a biologically plausible process theory with varia-
tional update equations, which have been argued to be homologous with
observed neural firing patterns (Friston, FitzGerald, et al., 2017; Friston,
Parr, & de Vries, 2017; Parr, Markovic, Kiebel, & Friston, 2019).

A key property of the EFE is that it decomposes into both an extrin-
sic, value-seeking and an intrinsic (epistemic), information-seeking term
(Friston et al., 2015). The latter mandates active inference agents to resolve
uncertainty by encouraging the exploration of unknown regions of the
environment, a property that has been extensively investigated (Friston,
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FitzGerald, et al., 2017a; Friston et al., 2015; Schwartenbeck, FitzGerald,
Dolan, & Friston, 2013; Schwartenbeck et al., 2019). The fact that intrinsic
drives naturally emerge from this formulation is argued as an advantage
over other formulations that typically encourage exploration by adding ad
hoc exploratory terms to their loss function (Burda et al., 2018; Mohamed
& Rezende, 2015; Oudeyer & Kaplan, 2009; Pathak, Agrawal, Efros, & Dar-
rell, 2017). While the EFE is often described as a straightforward extension
to the free energy principle that can account for prospective policies and is
typically expressed in similar mathematical form (Da Costa et al., 2020; Fris-
ton, FitzGerald, et al., 2017; Friston et al., 2015; Parr & Friston, 2017b, 2019),
its origin remains obscure. Minimization of the EFE is sometimes motivated
by a reductio ad absurdum argument following from the FEP (Friston et al.,
2015; Parr & Friston, 2019) in that agents are driven to minimize the VFE,
and therefore the only way they can act is to minimize their free energy
into the future. Since the future is uncertain, however, instead they must
minimize the expected free energy. Central to this logic is the formal iden-
tification of the VFE with the EFE.

In this letter, we set out to investigate the origin of the EFE and its re-
lations with the VFE. We provide a broader perspective on this question,
showing that the EFE is not the only way to extend the VFE to account for
action-conditioned futures. We derive an objective that we believe to be a
more natural analog of the VFE, which we call the free energy of the future
(FEF), and make a detailed side-by-side comparison of the two functionals.
Crucially, we show that the FEF actively discourages information-seeking
behavior, thus demonstrating that epistemic terms do not necessarily arise
simply from extending the VFE into the future. We then investigate the ori-
gin of the epistemic term of the EFE and show that the EFE is just the FEF
minus the negative of the epistemic term in the EFE, which thus provides
a straightforward perspective on the relation between the two functionals.
We propose our own mathematically principled starting point for action
selection under active inference: the divergence between desired and ex-
pected futures, from which we obtain a novel functional, the free-energy of
the expected future (FEEF), which has close relations to the generalized free
energy (Parr & Friston, 2019). This functional has a natural interpretation in
terms of the divergence between a veridical and a biased generative model;
it allows use of the same functional for both inference and policy selection,
and it naturally decomposes into an extrinsic value term and an epistemic
action term, thus maintaining the attractive exploratory properties of EFE-
based active inference while also possessing a mathematically principled
starting point with an intuitive interpretation.

2 The Variational Free Energy

The variational free energy (VFE) is a core quantity in variational inference
and constitutes a tractable bound on both the log model evidence and the
Kullback-Leibler (KL) divergence between prior and posterior (Beal, 1998;
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Blei, Kucukelbir, & McAuliffe, 2017; Fox & Roberts, 2012; Wainwright & Jor-
dan, 2008). (For an in-depth motivation of the VFE and its use in variational
inference, see appendix A.)

The VFE, defined at time t, denoted by Ft, is given by,

Ft = DKL[Q(xt |ot;φ)||p(ot, xt )]

= EQ(xt |ot ;φ)

[
ln

Q(xt |ot;φ)
p(ot, xt )

]
. (2.1)

The agent receives observations ot and must infer the values of hidden
states xt . The agent assumes that the environment evolves according to a
Markov process so that the distribution over states at the current time step
only depends on the state at the previous time step, and that the obser-
vation generated at the current time step depends only on the state at the
current time step. Given a distribution over a trajectory of states and ob-
servations and under Markov assumptions, it can be factorized as follows:
p(o0:T , x0:T ) = p(s0)

∏T
t=0 p(ot |st )p(st+1|st ). In this letter, we also consider in-

ference over future states and observations that have yet to be observed.
Such future variables are denoted oτ or xτ where τ > t. To avoid dealing
with infinite sums, agents only consider futures up to some finite time hori-
zon, denoted T. Q(xt |ot;φ) denotes an approximate posterior density pa-
rameterized by φ, which, during the course of variational inference, is fit
as closely as possible to the true posterior. Note that there is a slight differ-
ence in notation here compared to that usually used in variational inference.
Normally the approximate posterior is written as Q(xt;φ) without the de-
pendence on o made explicit. This is because the variational posterior is not
a direct function of observations, but rather the result of an optimization
process that depends on the observations. Here, we make the dependence
on o explicit to keep a clear distinction between the variational posterior
Q(xt |ot;φ), obtained through optimization of the variational parameters φ,
and the variational prior Q(xt ) = Ep(st |st−1 )[Q(st−1|ot−1;φ)], obtained by map-
ping the previous posterior through the transition dynamics. Throughout
this letter, we assume that inference is occurring in a discrete-time partially
observed Markov decision process (POMDP). This is to ensure compatibil-
ity with the EFE formulation later, which is also situated within discrete-
time POMDPs.1

1
It is important to note that the original FEP was formulated in continuous time with

generalized coordinates (Friston, 2008a; Friston et al., 2006) (where the hidden states are
augmented with their temporal derivatives up to a theoretically infinite order). The gener-
alized coordinates mean that the agent is effectively performing variational inference over
a Taylor-expanded future trajectory instead of a temporally instant hidden state (Friston,
2008a; Friston et al., 2008). Action is derived by minimizing the gradients of the instanta-
neous VFE with respect to action, which requires the use of a forward model. More recent
work on active inference and the FEP returns to the continuous-time formulation (Friston,
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The utility of the VFE for inference comes from the fact that the VFE is
equal to the divergence between true and approximate posteriors up to a
constant: Ft ≥ DKL[Q(xt |ot;φ)||p(xt |ot )]. Thus, minimizing Ft with respect
to the parameters of the variational distribution makes Q(xt;φ) a good ap-
proximation of the true posterior.

One can also motivate the VFE as a technique to estimate model evi-
dence. Log model evidence is a key quantity in Bayesian inference but is of-
ten intractable, meaning it cannot be computed directly. Intuitively, the log
model evidence scores the likelihood of the data under a model and thus
provides a direct measure of the quality of a model. Under the free energy
principle, minimizing the negative log model evidence (or surprisal) is the
ultimate goal of self-organizing systems (Friston & Ao, 2012; Friston et al.,
2006). The VFE provides an upper bound on the log model evidence. This
can be shown by importance-sampling the model evidence with respect to
the approximate posterior and applying Jensen’s inequality:

− ln p(ot ) = − ln
∫

dxt p(ot, xt )

= − ln
∫

dxt p(ot, xt )
Q(xt |ot;φ)
Q(xt |ot;φ)

≤ −
∫

dxt Q(xt |ot;φ) ln
p(ot, xt )

Q(xt |ot;φ)

≤ DKL[Q(xt |ot;φ)||p(ot, xt )]

≤ Ft.

Since the VFE is an upper bound on the log model evidence (or surprisal),
as the VFE is minimized, it becomes an increasingly accurate estimate of
the surprisal. To get a sense of the properties of the VFE, we showcase the
following decomposition:

F = DKL[Q(xt |ot;φ)||p(ot, xt )]

= EQ(xt |ot ;φ)

[
ln

Q(xt |ot;φ)
p(ot, xt )

]

= −EQ(xt |ot ;φ)[ln p(ot |xt )]︸ ︷︷ ︸
Accuracy

+ DKL[Q(xt |ot;φ)||p(xt )]︸ ︷︷ ︸
Complexity

. (2.2)

This decomposition is the one typically used to compute the VFE in prac-
tice and has a straightforward interpretation. Specifically, minimizing the

2019; Parr, Da Costa, & Friston, 2020) and the conclusions drawn in this article may look
different in the continuous-time domain.
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negative accuracy (and thus maximizing accuracy) ensures that the obser-
vations are as likely as possible under the states, xt , predicted by the vari-
ational posterior while simultaneously minimizing the complexity term,
which is a KL-divergence between the variational posterior and the prior.
Thus, the goal is to keep the posterior as close to the prior as possible while
maximizing accuracy. Effectively, the complexity term acts as an implicit
regularizer, reducing the risk of overfitting to any specific observation.

3 The Expected Free Energy

While variational inference as presented only allows us to perform infer-
ence at the current time given observations, it is possible to extend the for-
malism to allow for inference over actions or policies in the future.

To achieve this extension, a variational objective is required that can be
minimized contingent on future states and policies, which will allow the
problem of adaptive action selection to be reformulated as a process of vari-
ational inference. To do this, the formalism must be extended in two ways.
First, the generative model is augmented to include actions aτ , and poli-
cies, which are sequences of actions π = [a1, a2 . . . aT ]. The action taken at
the current time can affect future states, and thus future observations. In
order to transform action selection into an inference problem, policies are
treated as an inferred distribution Q(π ) that is optimized to meet the agent’s
goals. The second extension required is to translate the notion of an agent’s
goals into this probabilistic framework. Active inference encodes an agent’s
goals as a desired distribution over observations p̃(oτ :T ). We denote the bi-
ased distribution using a tilde over the probability density p̃ rather than
the random variable to make clear that the random variables themselves
are unchanged; it is only the agent’s subjective distribution over the vari-
ables that is biased.2 This distribution is then incorporated into a biased
generative model of the world p̃(oτ , xτ ) ≈ p̃(oτ )Q(xτ |oτ ),3 where we have
additionally made the assumption that the true posterior can be well ap-
proximated with the variational posterior: p(xτ |oτ ) ≈ Q(xτ |oτ ) which sim-
ply states that the variational inference procedure was successful.4 Active

2
It is important to note that this encoding of preferences through a biased genera-

tive model is unique to active inference. Other variational control schemes (Levine, 2018;
Rawlik, Toussaint, & Vijayakumar, 2013; Rawlik, 2013; Theodorou, Buchli, & Schaal, 2010;
Theodorou & Todorov, 2012) instead encode desires through binary optimality variables
and optimize the posterior given that the optimal path was taken. The relation between
these frameworks is explored further in Millidge, Tschantz, Seth, and Buckley (2020).

3
Some more recent work (Da Costa et al., 2020; Friston, 2019) prefers an alternative fac-

torization of the biased generative model in terms of an unbiased likelihood and a biased
prior state distribution p̃(oτ , xτ ) = p(oτ |xτ )p̃(xτ ). This leads to a different decomposition
of the EFE in terms of risk and ambiguity (see appendix B) but which is mathematically
equivalent to the factorization described here.

4
For additional information on the effect of this assumption, see appendix D.
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inference proceeds by inferring a variational policy distribution Q(π ) that
maximizes the evidence for this biased generative model. Intuitively, this
approach turns the action selection problem on its head. Instead of saying,
“I have some goal; what do I have to do to achieve it?” the active inference
agent asks: “Given that my goals were achieved, what would have been the
most probable actions that I took?”

A further complication of extending VFE into the future comes from
future observations. While agents have access to current observations (or
data) for planning problems, they must also reason about unknown future
observations. This is dealt with by taking the expectation of the objective
with respect to predicted observations oτ drawn from the generative model.

In the active inference framework, the goal is to infer a variational dis-
tribution over both hidden states and policies that maximally fit to a biased
generative model of the future. The framework defines the variational ob-
jective function to be minimized, the expected free energy, from time τ until
the time horizon T, which is denoted G:

G = EQ(oτ :T ,xτ :T ,π )[ln Q(xτ :T , π ) − ln p̃(oτ :T , xτ :T )].

A temporal mean-field factorization of the approximate posterior and
of the generative model is assumed such that Q(xτ :T , π ) ≈ Q(π )

∏T
τ Q(x|π )

and p̃(oτ :T , xτ :T ) ≈ ∏T
t p̃(oτ )Q(xτ |oτ ). This factorization neatly severs the

temporal dependencies between time steps. Given these assumptions, in-
ferring the optimal Q(π ), turns out to be relatively straightforward:

G = EQ(oτ :T ,xτ :T ,π )
[

ln Q(xτ :T , π ) − ln p̃(oτ :T , xτ :T )
]

= EQ(oτ :T ,xτ :T |π )Q(π )
[

ln Q(xτ :T |π ) + ln Q(π ) − ln p̃(oτ :T , xτ :T )
]

= EQ(π )[ln Q(π ) − EQ(oτ :T ,xτ :T |π )

[
T∑
τ

[ln Q(x|π ) − ln p̃(oτ , xτ )]

]

= DKL

[
Q(π )‖e− ∑T

t Gτ (π )
]
,

where Gτ (π ) = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )] is defined to be the EFE
for a single time step τ . From the KL-divergence above, it follows that the
optimal variational policy distribution Q∗(π ) is simply the path integral into
the future of the expected free energies for each individual time step,

Q∗(π ) = σ

(
T∑
t

Gτ (π )

)
,

where σ (x) is a softmax function. This implies that to infer the optimal pol-
icy distribution, it suffices to minimize the sum of expected free energies for
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each time step into the future. Inference proceeds by using the generative
model to roll out predicted futures, computing the EFE of those futures, and
then selecting policies that minimize the sum of the expected free energies.
Since under temporal mean field assumptions, trajectories decompose into
a sum of time steps, it is sufficient for the rest of the letter to only consider
a single time step τ .

To gain an intuition for the EFE, we showcase the following decomposi-
tion:

Gτ (π ) = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

≈ EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ ) − ln Q(xτ |oτ )]

≈ −EQ(oτ ,xτ |π )
[

ln p̃(oτ )
]

︸ ︷︷ ︸
Extrinsic Value

−EQ(oτ )DKL[Q(xτ |oτ )||Q(xτ |π )]︸ ︷︷ ︸
Epistemic Value

. (3.1)

While the EFE admits many decompositions (see appendix B for a com-
prehensive overview), the one presented in equation 3.1 is perhaps the the
most important because it separates the EFE into an extrinsic, goal-directed
term (sometimes also called instrumental value in the literature) and an in-
trinsic, information-seeking term.5 The first term requires agents to max-
imize the likelihood of the desired observations p̃(oτ ) under beliefs about
the future. It thus directs an agent to act to maximize the probability of its
desires occurring in the future. It is called the extrinsic value term since it
is the term in the EFE that accounts for the agent’s preferences.

The second term in equation 3.1 is the expected information gain, which
is often termed the epistemic value since it quantifies the amount of infor-
mation gained by visiting a specific state. Since the information gain is neg-
ative, minimizing the EFE as a whole mandates maximizing the expected
information gain. This drives the agent to maximize the divergence between
its posterior and prior beliefs, thus inducing the agent to take actions that
maximally inform their beliefs and reduce uncertainty. It is the combination
of extrinsic and intrinsic value terms that belies active inference’s claim to
have a principled approach to the exploration-exploitation dilemma (Fris-
ton, FitzGerald, et al., 2017; Friston et al., 2015).

The idea of maximizing expected information gain or “Bayesian sur-
prise” (Itti & Baldi, 2009) to drive exploratory behavior has been argued
for in neuroscience (Baldi & Itti, 2010; Ostwald et al., 2012) and has been
regularly proposed in reinforcement learning (Houthooft et al., 2016; Still &
Precup, 2012; Sun, Gomez, & Schmidhuber, 2011; Tschantz, Millidge, Seth,

5
The approximation in the final line of equation 3.1 is that we assume that the true and

approximate posteriors are the same Q(xτ |oτ ) ≈ p(xτ |oτ ). Without this assumption, you
obtain an additional KL-divergence between the true and approximate posterior, which
exactly quantifies the discrepancy between them (see appendices B and D for more detail).
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& Buckley, 2020). It is important to note, however, that in these prior works,
information gain has often been proposed as an ad hoc addition to an exist-
ing objective function with only the intuitive justification of boosting explo-
ration. In contrast, expected information gain falls naturally out of the EFE
formalism, arguably lending the formalism a degree of theoretical elegance.

4 Origins of the EFE

Given the centrality of the EFE to the active inference framework, it is im-
portant to explore the origin and nature of this quantity. The EFE is typically
motivated through a reductio ad absurdum argument (Friston et al., 2015;
Parr & Friston, 2019).6 The logic is as follows. Agents have prior beliefs over
policies that drive action selection. By the FEP, all states of an organism, in-
cluding those determining policies, must change so as to minimize free en-
ergy. Thus, the only self-consistent prior belief over policies is that the agent
will minimize free energy into the future through its policy selection pro-
cess. If the agent did not have such a prior belief, then it would select poli-
cies that did not minimize the free energy into the future and would thus
not be a free energy minimizing agent. This logic requires a well-defined
notion of the free energy of future states and observations given a specific
policy. The active inference literature implicitly assumes that the EFE is the
natural functional that fits this notion (Friston, FitzGerald, et al., 2017; Fris-
ton et al., 2015). In the following section, we argue that the EFE is not in
fact the only functional that can quantify the notion of the free energy of
policy-conditioned futures, and indeed we propose a different functional,
the free energy of the future, which we argue is a more natural extension of
the VFE to account for future states.

4.1 The Free Energy of the Future. We argue that the natural extension
of the free energy into the future must possess direct analogs to the two
crucial properties of the VFE: it must be expressible as a KL-divergence be-
tween a posterior and a generative model, such that minimizing it causes
the variational density to better approximate the true posterior, and it must
also bound the log model evidence of future observations. Bounding the log
model evidence (or surprisal) is vital since the surprisal is the core quantity
that, under the FEP, all systems are driven to minimize. If the VFE extended
into the future failed to bound the surprisal, then minimizing this extension
would not necessarily minimize surprisal, and thus any agent that mini-
mized such an extension would be in violation of the FEP. Here, we present

6
An alternative motivation exists that situates the expected free energy in terms of a

nonequilibrium steady-state distribution (Da Costa et al., 2020; Friston, 2019; Parr, 2019).
This argument reframes everything in terms of a Gibbs free energy, from which the EFE
can be derived as a special case. The problem becomes, then, one of the motivation of the
Gibbs free energy as an objective function.
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a functional that we claim satisfies these desiderata: the free energy of the
future (FEF).

We wish to derive an expression for variational free energy at some fu-
ture time τ that is conditioned on some policy π . In other words, we wish
to quantify the free energy that will occur at some future time point, given
some sequence of actions. Here, we derive a form of the variational free en-
ergy of the future, denoted FEFτ (π ), by keeping the same terms as the VFE
(see equation 2.1), but conditioning the variational distributions on our pol-
icy of interest and rewriting for the future time point τ . Additionally, since
observations in the future are unknown, we must evaluate our free energy
under the expectation of our beliefs about future observations, as in the EFE.
We thus define

FEFτ (π ) = EQ(oτ ,xτ |π )[ln Q(xτ |oτ ) − ln p̃(oτ , xτ )].

Since this equation is simply the KL-divergence between the variational
posterior and the generative model, it satisfies the first desideratum. We
next investigate the properties of the FEF by showcasing one key decom-
position. As with the the VFE, we can then split the FEF into an energy and
an entropy or an accuracy and complexity term, which corresponds to the
extrinsic and epistemic action terms in the EFE:

FEFτ (π ) = EQ(oτ |π )DKL[Q(xτ |oτ )|| p̃(oτ , xτ )]

≈ −EQ(oτ ,xτ |π )
[

ln p̃(oτ |xτ )
]

︸ ︷︷ ︸
Accuracy

+EQ(oτ |π )DKL[Q(xτ |oτ )||Q(xτ |π )]︸ ︷︷ ︸
Complexity

.

Unlike the EFE, however, the expected information gain (complexity) term
is positive, while in the EFE term, it is negative. Since the objective function,
whether EFE or FEF, is to be minimized, we see that using the FEF mandates
us to minimize the information gain, while the EFE requires us to maximize
it (or minimize the negative information gain). An FEF agent thus tries to
maximize its reward while trying to explore as little as possible. While this
sounds surprising, it is in fact directly analogous to the complexity term
in the VFE, which mandates maximizing the likelihood of an observation,
while also keeping the posterior as close as possible to the prior.7

4.2 Bounds on the Expected Model Evidence. We next show how the
FEF can be derived as a bound on the expected model evidence satisfying
the second desidaratum. We define the expected model evidence to be a
straightforward extension of the model evidence to unknown future states.

7
An objective functional equivalent to the FEF—the predicted free energy—has also

been proposed in Schwöbel, Kiebel, and Marković (2018). See appendix F for more details.
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The expected negative log model evidence for a trajectory from the current
time step t to some time horizon T is

−EQ(ot:T |π )
[

ln p̃(ot:T )
]
.

This objective states that we wish to maximize the probability (min-
imize the negative probability) of being in a desired trajectory p̃(ot:T ),
expected under the distribution of our beliefs about our likely future trajec-
tories Q(ot:T |π ) under a specific policy π . Given a Markov generative model
p(o1:T , x1:T |π ) = ∏T

t p(ot |xt )p(xt |xt−1, π ), and assuming that the approxi-
mate posterior factorizes Q(x1:T |o1:T ) = ∏T

t=1 Q(xt |ot ), the expected model
evidence factorizes across time steps, it suffices to show the derivation for
a single time step τ > t (see appendix C for a full trajectory derivation). We
further define Q(oτ , xτ |π ) = Q(oτ |π )Q(xτ |oτ ) = p(oτ |xτ )Q(xτ |π ). We there-
fore take the expected model evidence for a single time step and show that
the FEF is a bound on this quantity:

−EQ(oτ |π )
[

ln p̃(oτ )
] = −EQ(oτ |π )

[
ln

∫
dxτ p̃(oτ , xτ )

]
(4.1)

= −EQ(oτ |π )

[
ln

∫
dxτ p̃(oτ , xτ )

Q(xτ |oτ )
Q(xτ |oτ )

]

≤ −EQ(oτ |π )

∫
dxτ Q(xτ |oτ )

[
ln

p̃(oτ , xτ )
Q(xτ |oτ )

]

≤ −EQ(oτ ,xτ |π )

[
ln

p̃(oτ , xτ )
Q(xτ |oτ )

]

≤ EQ(oτ ,xτ |π )

[
ln

Q(xτ |oτ )
p̃(oτ , xτ )

]

≤ EQ(oτ |π )DKL[Q(x|oτ )|| p̃(oτ , xτ |π )] = FEF(π ).

Crucially, this is an upper bound on expected model evidence, which
can be tightened by minimizing the FEF. By contrast, returning to the EFE,
we see below that since KL-divergences are always ≥ 0, the expected in-
formation gain is always positive, and so the EFE is a lower bound on the
expected model evidence:

Gτ (π ) = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

≈ −EQ(oτ ,xτ |π )
[

ln p̃(oτ )
]

︸ ︷︷ ︸
Negative Expected Log Model Evidence

−EQ(oτ |π )DKL[Q(xτ |oτ )||Q(xτ |π )]︸ ︷︷ ︸
Expected Information Gain

.

Since the expected information gain is an expected KL-divergence, it
must be ≥ 0, and thus the negative expected information gain must be ≤ 0.
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Since the EFE aims to minimize negative information gain (thus maximiz-
ing positive information gain), we can see that minimizing the EFE actually
drives it further from the expected model evidence.8

We further investigate the EFE and its properties as a bound in appendix
D. Additionally, in appendix E we review other attempts in the literature to
derive the EFE as a bound on the expected model evidence and discuss their
shortcomings.

4.3 The EFE and the FEF. To get a stronger intuition for the subtle dif-
ferences between the EFE and the FEF, we present a detailed side-by-side
comparison of the two functionals:

FEF = EQ(oτ ,xτ |π )[ln Q(xτ |oτ ) − ln p̃(oτ , xτ )],

EFE = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )].

While the two formulations might initially look very similar, the key dif-
ference is the variational term. The FEF, analogous to the VFE, measures
the difference between a variational posterior Q(xτ |oτ ) and the generative
model Q(xτ |π ). The EFE, on the other hand, measures the difference be-
tween a variational prior and the generative model. It is this difference that
makes the EFE not a straightforward extension to the VFE for future time
steps, and underwrites its unique epistemic value term.

We now demonstrate that both the EFE and the FEF can be decom-
posed into an expected likelihood, associated with extrinsic value, and an
expected KL-divergence between a variational posterior and a variational
prior, associated with epistemic value. We factorize the generative model in
the FEF into the (biased) likelihood and a variational prior, and factorize the
generative model in the EFE into an approximate posterior, and a (biased)
marginal:

FEF = EQ(oτ ,xτ |π )[ln Q(xτ |oτ ) − ln p̃(oτ |xτ ) − ln Q(xτ |π )],

EFE = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ ) − ln Q(xτ |oτ )].

The variational prior and variational posterior can then be combined in
both the FEF and the EFE to form epistemic terms. Crucially, the epistemic
value term is positive in the FEF and negative in the EFE, meaning that the

8
There is a slight additional subtlety here involving the fact that there is also a posterior

approximation error term that is positive. In general, the EFE functions as an upper bound
when the posterior error is greater than the information gain and a lower bound when the
posterior error is smaller. Since the goal of variational inference is to minimize posterior
error, and EFE agents are driven to maximize expected information gain, we expect this
latter condition to occur rarely. For more detail, see appendix D.
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FEF penalizes epistemic behavior whereas the EFE promotes it:

FEF = −EQ(oτ ,xτ |π )
[

ln p̃(oτ |xτ )
]

︸ ︷︷ ︸
Extrinsic Value

+EQ(oτ |π )DKL[Q(xτ |oτ )||Q(xτ |π )]︸ ︷︷ ︸
Epistemic Value

(4.2)

EFE = −EQ(oτ ,xτ |π )
[

ln p̃(oτ )
]

︸ ︷︷ ︸
Extrinsic Value

−EQ(oτ |π )DKL[Q(xτ |oτ )||Q(xτ |π )]︸ ︷︷ ︸
Epistemic Value

.

Equation 4.2. demonstrates that the FEF and EFE can be decomposed in
similar fashion. We note that the extrinsic value term for the FEF is a likeli-
hood and a marginal for the EFE. The most important difference, however,
lies in the sign of the epistemic value term. Since optimizing either the FEF
or the EFE requires their minimization, minimizing the FEF mandates us
to minimize information gain while the EFE requires us to maximize it. An
FEF agent thus tries to maximize its extrinsic value while trying to explore
as little as possible. A key question then arises: Where does the negative
information gain in the EFE come from?

While this difference in the sign of the expected information gain term
may speak to some deep connection between the two quantities, here we
offer a pragmatic perspective on the matter. We show that a possible route
to the EFE is simply that it is the FEF minus the expected information gain.
This implies that the epistemic value term of the EFE arises not from some
connection to variational inference but is present by construction:

FEFτ (π ) − IGτ = EQ(oτ ,xτ |π )

[
ln

(
Q(xτ |oτ )
p̃(oτ , xτ )

)]
− EQ(oτ ,xτ |π )

[
ln

(
Q(xτ |oτ )
Q(xτ |π )

)]

= EQ(oτ ,xτ |π )

[
ln

(
Q(xτ |oτ )Q(xτ |π )
p̃(oτ , xτ )Q(xτ |oτ )

)]

= EQ(oτ ,xτ |π )

[
ln

(
Q(xτ |π )
p̃(oτ , xτ )

)]

= EFE(π )τ .

While this proof illustrates the relation between the EFE and the FEF, it
is theoretically unsatisfying as an account of the origin of the EFE. A large
part of the appeal of the EFE is that it purports to show that epistemic
value arises “naturally” out of minimizing free energy into the future. In
contrast, here we have shown that minimizing free energy into the future
requires no commitment to exploratory behavior. While this does not ques-
tion the usefulness of using an information gain term for exploration, or the
use of the EFE as a loss function, it does raise questions about the mathe-
matically principled nature of the objective. It is thus not straightforward
to see why agents are directly mandated by the FEP to minimize the EFE
specifically, as opposed to some other free energy functional. While this fact
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may at first appear concerning, we believe it ultimately enhances the power
of the formalism by licensing the extension of active inference to encom-
pass other objective functions in a principled manner (Biehl, Guckelsberger,
Salge, Smith, & Polani, 2018). In the following section, we propose an alter-
native objective to the EFE, which results in the same information-seeking
epistemic value term, but derives it in a mathematically principled and in-
tuitive way as a bound on the divergence between expected and desired
futures.

5 Free Energy of the Expected Future

In this section, we propose our novel objective functional, which we call the
free energy of the expected future (FEEF), which possesses the same epis-
temic value term as the EFE, while possessing a more naturalistic and intu-
itive grounding. We begin with the intuition that to act adaptively, agents
should act so as to minimize the difference between what they predict will
happen and what they desire to happen. Put another way, adaptive action
for an agent consists of forcing reality to unfold according to its preferences.
We can mathematically formulate this objective as the KL-divergence be-
tween the agent’s veridical generative model of what is likely to happen
and a biased generative model of what it desires to happen:

π∗ = argmin
π

DKL[Q(ot:T , xt:T |π )|| p̃(ot:T , xt:T )].

The FEEF can be interpreted as the divergence between a veridical and a
biased generative model, and thus furnishes a direct intuition of the goals
of a FEEF-minimizing agent. The divergence objective compels the agent to
bring the biased and the veridical generative model into alignment. Since
the predictions of the biased generative model are heavily biased toward
the agent’s a priori preferences, the only way to achieve this alignment is to
act so as to make the veridical generative model predict desired outcomes
in line with the biased generative model. The FEEF objective encompasses
the standard active inference intuition of an agent acting through biased in-
ference to maximize accuracy of a biased model. However, the maintenance
of two separate generative models (one biased and one veridical) also helps
finesse the conceptual difficulty of how the agent manages to make accurate
posterior inferences and future predictions about complex dynamics if all
it has access to is a biased generative model. It seems straightforward that
the biased model would also bias these crucial parts of inference that need
to be unimpaired for the scheme to function at all. However, by keeping
both a veridical generative model (the same one used at the present time
and learned through environmental interactions) and a biased generative
model (created by systematically biasing a temporary copy of the veridical
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model), we elegantly separate the need for both veridical and biased infer-
ential components for future prediction.9

Similar to the EFE, the FEEF objective can be decomposed into an
extrinsic and an intrinsic term. We compare this directly to the EFE
decomposition:

FEEF(π )τ = EQ(oτ ,xτ |π )

[
ln

(
Q(oτ , xτ |π )

p̃(oτ , xτ )

)]

= EQ(xτ |π )DKL
[
Q(oτ |xτ )‖ p̃(oτ )

]
︸ ︷︷ ︸

Extrinsic Value

−EQ(oτ |π )DKL
[
Q(xτ |oτ )‖Q(xτ |π )

]
︸ ︷︷ ︸

Intrinsic Value

,

EFE = −EQ(oτ ,xτ |π )
[

ln p̃(oτ )
]

︸ ︷︷ ︸
Extrinsic Value

−EQ(oτ |π )DKL[Q(xτ |oτ )||Q(xτ |π )]︸ ︷︷ ︸
Intrinsic Value

.

The first thing to note is that the intrinsic value terms of the FEEF and the
EFE are identical, under the assumption that the variational posterior is ap-
proximately correct Q(xτ |oτ ) ≈ p(xτ |oτ ) such that FEEF-minimizing agents
will necessarily show identical epistemic behavior to EFE-minimizing
agents. Unlike the EFE, however, the FEEF also possesses a strong natural-
istic grounding as a bound on a theoretically relevant quantity. The FEEF
can maintain both its information-maximizing imperative and its theoreti-
cal grounding since it is derived from the minimization of a KL-divergence
rather than the maximization of a log model evidence.

The key difference with the EFE lies in the likelihood term. While the EFE
simply tries to maximize the expected evidence of the desired observations,
the FEEF minimizes the KL-divergence between the likelihood of observa-
tions predicted under the veridical generative model10 and the marginal
likelihood of observations under the biased generative model. This differ-
ence is effectively equivalent to an additional veridical generative model
expected likelihood entropy term H[Q(oτ |xτ )] subtracted from the EFE. The
extrinsic value term thus encourages the agent to choose its actions such
that its predictions over states lead to observations that are close to its pre-
ferred observations, while also trying to move to states whereby the entropy
over observations is maximized, thus leading the agent to move toward

9
This approach bears a resemblance to that taken in Friston (2019), which separates

the evolving dynamical policy-dependent density of the agent and a desired steady-state
density that is policy invariant. This approach arises from deep thermodynamic consider-
ations in continuous time, while ours is applicable to discrete time reinforcement learning
frameworks.

10
The term veridical needs some contextualizing. We simply mean that the model is not

biased toward the agent’s desires. The veridical generative model is not required to be a
perfectly accurate map of the agent’s entire world, only of action-relevant submanifolds
of the total space (Tschantz, Seth et al., 2019).
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states where the generative model is not as certain about the likely out-
come. In effect, the FEEF possesses another exploratory term, in addition to
the information gain, which the EFE lacks.

Another important advantage of the FEEF is that it is mathematically
equivalent to the VFE (with a biased generative model) in the present
time with a current observation. This is because when we have a real
observation, the distribution over the possible veridical observations col-
lapses to a delta distribution, so that the outer expectation has no effect
as EQ(oτ ,xτ |π ) = ∫

Q(xτ |oτ )Q(oτ |π ) = ∫
Q(xτ |oτ )δ(o − ō) = ∫

Q(xτ |ōτ ) when a
real observation ō is available. Similarly, the veridical model can be factor-
ized as Q(oτ , xτ ) = Q(xτ |oτ )Q(oτ ), and when the observation is known, the
entropy of the observation marginal Q(oτ |π ) is 0, thus resulting in the VFE.
Simultaneously, biased likelihood is equivalent to the veridical likelihood
p̃(ōτ |xτ ) = Q(ōτ |xτ ), assuming that (barring counterfactual reasoning capa-
bility) one cannot usefully desire things to be other than how they are at the
present moment. This means that theoretically, we can consider an agent
to be both inferring and planning using the same objective, which is not
true of the EFE. The EFE does not reduce to the VFE when observations are
known, and thus requires a separate objective function to be minimized for
planning compared to perceptual inference. Because of this, it is possible
to argue that FEEF is mandated by the free-energy principle. On this view,
there is no distinction between present and future inference, and both fol-
low from minimizing the same objective but under different informational
constraints.

Since the FEEF and the EFE are identical in their intrinsic value term
and share deep similarities in their extrinsic term, we believe that the FEEF
can serve as a relatively straightforward ”plug-in replacement” for the EFE
for many active inference agents. Moreover, it has a much more straight-
forward intuitive basis than the EFE, is arguably a better continuation of
the VFE into the future, and possesses a strong naturalistic grounding as a
bound on the divergence between predicted and desired futures.

6 Discussion

We believe it is valuable at this point to step back from the morass of vari-
ous free energies and take stock of what has been achieved. First, we have
shown that it is not possible to directly derive epistemic value from vari-
ational inference objectives, which serve as a bound on model evidence.
However, it is possible to derive epistemic value terms from divergences be-
tween the biased and veridical generative models. A deep intuitive under-
standing of why this is the case is an interesting avenue for future work. The
intuition behind the FEEF as a divergence between desired and expected
future observations is also similar to probabilistic formulations of the re-
inforcement learning problem (Attias, 2003; Kappen, 2005; Levine, 2018;
Toussaint, 2009), which typically try to minimize the divergence between a
controlled trajectory and an optimal trajectory (Kappen, 2007; Theodorou &

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/33/2/447/1896836/neco_a_01354.pdf by guest on 08 Septem
ber 2023



Whence the Expected Free Energy? 463

Todorov, 2012; Williams, Aldrich, & Theodorou, 2017). These schemes also
obtain some degree of (undirected) exploratory behavior through their ob-
jective functionals, which contain entropy terms and the FEEF can be seen
as a way of extending these schemes to partially observed environments.
Understanding precisely how active inference and the free-energy principle
relate mathematically to such schemes is another fruitful avenue for future
work.

It seems intuitive that a Bayes-optimal solution to the exploration-
exploitation dilemma should arise directly out of the formulation of reward
maximization as inference, given that sources of uncertainty are correctly
quantified. However, in this letter, we have shown that merely quantifying
uncertainty in states and observations through mean-field-factorized time
steps is insufficient to derive such a principled solution to the dilemma,
as seen by the exploration-discouraging behavior of the FEF. We therefore
believe that to derive Bayes-optimal exploration policies in the context of ac-
tive learning, such that we have to select actions that give us the most infor-
mation now to use in the future to maximize rewards, it is likely to require
both modeling multiple interconnected time steps, as well as the mechan-
ics of learning with parameters and update rules, and correctly quantifying
the uncertainties therein. This is beyond the scope of this letter, but is a very
interesting avenue for future work.

The comparison of the FEEF and the EFE also raises an interesting philo-
sophical point about the number and types of generative models employed
in the active-inference formalism. One interpretation of the FEEF is in terms
of two generative models, but other interpretations are possible, such as be-
tween a single unbiased generative model and a simple density of desired
states and observations. It is also important to note that due to requiring dif-
ferent objective functions for inference and planning, the EFE formulation
also appears to implicitly require two generative models: the generative
model of future states and the generative model of states in the future (Fris-
ton et al., 2015). While the mathematical formalism is relatively straight-
forward, the philosophical question of how to translate the mathematical
objects into ontological objects called “generative models” is unclear, and
progress on this front would be useful in determining the philosophical sta-
tus, and perhaps even neural implementation of active inference.

The implications of our results for studies of active inference are var-
ied. Nothing in what we have shown argues directly against the use of the
EFE as an objective for an active inference agent. However, we believe we
have shown that the EFE is not necessarily the only, or even the natural,
objective function to use. We thus follow Biehl et al. (2018) in encourag-
ing experimentation with different objective functions for active inference.
We especially believe that our objective, the FEEF, has promise due its in-
tuitive interpretation, largely equivalent terms to the EFE, its straightfor-
ward use of two generative models rather than just a single biased one, and
its close connections to similar probabilistic objectives used in variational
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reinforcement learning, while also maintaining the crucial epistemic prop-
erties of the EFE. Moreover, while in this letter we have argued for the FEF
instead of the EFE as a direct extension of the VFE into the future, the log-
ical requirements of exactly which functional (if any) is, in fact, mandated
by the free-energy principle remains open. We believe that elucidating the
exact constraints which the free-energy principle places on a theory of vari-
ational action, and understanding more deeply the relations between the
various free energies, could shed light on deep questions regarding notions
of Bayes-optimal epistemic action in self-organising systems.

Finally, it is important to note that although in this letter, we have
solely been concerned with the EFE and active inference in discrete-time
POMDPs, the original intuitions and mathematical framework of the free-
energy principle arose out of a continuous time formulation, deeply in-
terwoven with concerns from information theory and statistical physics
(Friston, 2019; Friston & Ao, 2012; Friston et al., 2006; Parr et al., 2020).
As such, there may be deep connections between the EFE, FEF, and log
model evidence that exist only in the continuous time limit and that fur-
nish a mathematically principled origin of epistemic action.

7 Conclusion

In this letter, we have examined in detail the nature and origin of the EFE.
We have shown that it is not a direct analog of the VFE extended into the fu-
ture. We then derived a novel objective, the FEF, which we claimed is a more
natural extension and shown that it lacks the beneficial epistemic value term
of the EFE. We then proved that this term arises in the EFE directly as a re-
sult of its nonstandard definition since the EFE can be expressed as just the
FEF minus the expected information gain. Taking this into account, we then
proposed another objective, the free energy of the expected future (FEEF),
which attempts to get the best of both worlds by preserving the desirable
information-seeking properties of the EFE, while also maintaining a math-
ematically principled origin.

Appendix A: Variational Inference

To motivate the variational free energy, and variational inference more gen-
erally, we set up a standard inference problem. Let us say we are an agent
that exists in a partially observed world. We have some observation ot , and
from this, we wish to infer the hidden state of the world xt . That is, we
want to compute the posterior p(xt |ot ). While we do not know this pos-
terior directly, we do possess a generative model of the world. This is a
model that maps from hidden states to observations. Mathematically, we
possess p(ot, xt ) = p(ot |xt )p(xt ). Since computing the true posterior exactly
is likely intractable, the strategy in variational inference is to try to ap-
proximate this density with a tractable one Q(xt |ot;φ), which we postulate,
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and thus have full control over. While the true posterior might be
arbitrarily complex, we might define Q(xt |ot;φ) to be a gaussian distribu-
tion: Q(xt |ot;φ) = N (x;μφ, σφ ), for instance. Given that we have this varia-
tional density q, parameterized by some parameters φ, the goal is to adjust
the parameters to make q as close as possible to the true posterior p(xt |ot ).
Mathematically, this means we want to minimize

argmin
φ
DKL[Q(xt |ot;φ)||p(xt |ot )],

where DKL[Q‖P] is the KL-divergence. This initially doesn’t seem to have
bought us much. We wish to minimize the divergence between the varia-
tional density q and the true posterior p(xt |ot ). However, by assumption,
we do not know the true posterior. So how can we possibly minimize this
divergence if we do not know one of the parts? This is where we use
the key trick of variational inference. By Bayes’ theorem, we know that
p(xt |ot ) = p(ot |xt )p(xt )

p(ot ) and we can thus substitute this into the KL divergence
term:

argmin
φ
DKL[Q(xt |ot;φ)||p(xt |ot )]

= argmin
φ
DKL

[
Q(xt |ot;φ)|| p(ot |xt )p(xt )

p(ot )

]
,

= EQ(xt |ot ;φ)

[
ln

(
Q(xt |ot;φ)p(ot )

p(ot |xt )p(xt )

)]
,

= EQ(xt |ot ;φ)

[
ln

(
Q(xt |ot;φ)

p(ot |xt )p(xt )

)]
+ EQ(xt |ot ;φ)

[
ln p(ot )

]

= DKL[Q(xt |ot;φ)||p(ot |xt )p(xt )] + ln p(ot ). (A.1)

In step 2 we applied Bayes’ theorem to the posterior. In step 3 we sim-
ply utilized the definition of the KL divergence DKL[Q||P] = EQ ln( Q

P ). In
step 4 we applied the property of logs that ln(a ∗ b) = ln(a) + ln(b). In step
5 we recognize that the remaining first term is now a KL-divergence be-
tween the variational posterior and the generative model. We also recog-
nize that since the ln p(ot ) term has no dependence on x or φ, the expectation
EQ(xt |ot ;φ) ln p(ot ) vanishes, leaving just the ln p(ot ) term alone. It is important
to note that the KL term in equation A.1 is now between two things we can
actually compute: the variational posterior, which we control, and the gen-
erative model, which we assume that we know. The remaining ln p(ot ) term
is called the log model evidence and is incomputable in general. However,
since it is not affected by the parameters φ of the variational density, it does
not affect the minimization, and so for the purposes of the minimization
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process can be ignored. We can thus write out what we have defined as

DKL[Q(xt |ot;φ)||p(xt |ot )] = DKL[Q(xt |ot;φ)||p(ot |xt )p(xt )] + ln p(ot )

⇒ DKL[Q(xt |ot;φ)||p(ot |xt )p(xt )] ≥ DKL[Q(xt |ot;φ)||p(xt |ot )].

This implies that the KL-divergence between the variational density
and the generative model is always greater than or equal to the KL-
divergence between the true and variational posteriors. Since we can com-
pute the first KL-divergence, we call it the variational free energy F.
Since it is an upper bound on the divergence between the true poste-
rior and the variational posterior, which is what we really want to min-
imize, then if we minimize F, we are constantly pushing that bound
lower and thus largely minimizing the divergence between the true and
variational posterior. As an additional bonus, when the true and vari-
ational posteriors are approximately equal, DKL[Q(xt |ot;φ)||p(xt |ot )] ≈ 0
then DKL[Q(xt |ot;φ)||p(ot |xt )p(xt )] ≈ − ln p(ot ), which means that the final
value of the variational free energy is thus equal to the negative log model
evidence. Since the log model evidence is a very useful quantity to com-
pute for Bayesian model selection, it effectively means that once we have
finished fitting our model, we are automatically left with a measure of how
good our model is.

In effect, the variational free energy is useful because it has two prop-
erties. The first is that it is an upper bound on the divergence between the
true and approximate posterior. By adjusting our approximate posterior to
minimize this bound, we drive it closer to the true posterior, thus achieving
more accurate inference. Second, the variational free energy is a bound on
the log model evidence. This is an important term that scores the likelihood
of the data observed given the model and so can be used in Bayesian model
selection.

The log model evidence takes on additional importance in terms of the
free-energy principle, since the negative log model evidence − ln p(ot ) is
surprisal, which all agents, it is proposed, are driven to minimize (Friston
et al., 2006). This is because the expected log model evidence is the entropy
of observations, the minimization of which is postulated as a necessary con-
dition for any self-sustaining organism to maintain itself as a unique sys-
tem. The free-energy minimization comes about since the VFE is, as we have
seen, a tractable bound on the log model evidence, or surprisal.

The VFE can be decomposed in three principal ways, each showcasing a
different facet of the objective:

F = DKL[Q(xt |ot;φ)||p(ot, xt )]

= EQ(xt |ot ;φ)

[
ln

Q(xt |ot;φ)
p(ot, xt )

]
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= EQ(xt |ot ;φ)[ln Q(xt |ot;φ)]︸ ︷︷ ︸
Entropy

−EQ(xt |ot ;φ)[ln p(ot, xt )]︸ ︷︷ ︸
Energy

= −EQ(xt |ot ;φ)[ln p(ot |xt )]︸ ︷︷ ︸
Accuracy

+ DKL[Q(xt |ot;φ)||p(xt )]︸ ︷︷ ︸
Complexity

= − ln p(ot )︸ ︷︷ ︸
Negative Log Model Evidence

+ DKL[Q(xt |ot;φ)||p(xt |ot )]︸ ︷︷ ︸
Posterior Divergence

.

In the first entropy-energy decomposition, we simply split the KL-
divergence using the properties of logarithms so that the numerator of
the fraction becomes the entropy term and the denominator becomes the
energy term. If we are seeking to minimize the variational free energy,
we need to minimize both the negative entropy (since entropy is de-
fined as −EQ(x)

[
ln Q(x)

]
and the negative energy (or maximize the energy)

EQ(xt |ot ;φ)[ln p(ot, xt )]. This can be interpreted as saying we require that the
variational posterior be as entropic as possible while also maximizing the
likelihood that the xs proposed as probable by the variational posterior also
be judged as probable under the generative model.

The second decomposition into accuracy and complexity perhaps has
a more straightforward interpretation. We wish to minimize the negative
accuracy (and thus maximize the accuracy), which means we want the ob-
served observation to be as likely as possible under the xs predicted by the
variational posterior. However, we also want to minimize the complexity
term, which is a KL-divergence between the variational posterior and the
prior. That is, we wish to keep your posterior as close to our prior as possi-
ble while still maximizing accuracy. The complexity term then functions as
a kind of implicit regularizer, making sure we do not overfit to any specific
observation.

The final decomposition speaks to the inferential functions of the VFE.
It serves as an upper bound on the log model evidence, since the poste-
rior divergence term, as a KL-divergence, is always positive. Moreover,
we see that by minimizing the free energy, we must also be minimiz-
ing the posterior divergence, which is the difference between the ap-
proximate and true posterior, and we are thus improving our variational
approximation.

Appendix B: Decompositions of the EFE

In this section we provide a comprehensive overview of the many decom-
positions of the EFE. The EFE is defined as

G(π ) = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )].
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The standard decomposition is into the extrinsic term (expected log like-
lihood of the desired observations) and an epistemic term (the information
gain, or KL-divergence between variational prior and posterior from the
generative model:

EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

= EQ(oτ ,xτ |π )[− ln p̃(oτ ) − ln p(xτ |oτ ) + ln Q(xτ |π )]

= −EQ(oτ ,xτ |π )
[

ln p̃(oτ )
]

︸ ︷︷ ︸
Extrinsic Value

−EQ(oτ |π )
[
DKL[Q(xτ |oτ )||Q(xτ |π )]

]
︸ ︷︷ ︸

Epistemic Value

.

Similar to the VFE, it is also possible to split it into an energy and an
entropy term. While the energy term is similar to the VFE as the expectation
of the generative model (albeit an expectation under the joint instead of the
posterior), the entropy term is different as it is the entropy of the variational
prior, not the approximate posterior, which results:

G(π ) = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

= EQ(oτ ,xτ |π )[ln Q(xτ |π )] − EQ(oτ ,xτ |π )[ln p̃(oτ , xτ )]

= −EQ(oτ |xτ )
[
H

[
Q(xτ |π )

]]
︸ ︷︷ ︸

Entropy

−EQ(oτ ,xτ |π )[ln p̃(oτ , xτ )]︸ ︷︷ ︸
Energy

.

It is also possible to decompose the biased generative model the other way
around, thus in line with that of the VFE to derive

G(π ) = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

= EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ |xτ ) − ln p(xτ )]

= −EQ(oτ ,xτ |π )
[

ln p̃(oτ |xτ )
]

︸ ︷︷ ︸
Accuracy

+EQ(oτ |xτ )
[
DKL

[
Q(xτ |π )‖p(xτ )

]]
︸ ︷︷ ︸

Complexity

.

Unlike the VFE, however, the divergence is between the variational prior
and the generative prior rather than between the variational posterior and
the generative prior. Finally, the EFE can also be represented in observation
space by using Bayes’ rule to flip the likelihoods and priors:

G(π ) = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

= EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ ) − ln Q(xτ |oτ )]

= EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ ) − ln Q(oτ |xτ )

− ln Q(xτ |π ) + ln Q(oτ )]
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= EQ(oτ ,xτ |π )[− ln p̃(oτ ) − ln Q(oτ |xτ ) + ln Q(oτ )]

= EQ(xτ |π )
[
H

[
Q(oτ |xτ )

]]
︸ ︷︷ ︸

Predicted Uncertainty

−EQ(xτ |oτ )
[
DKL

[
Q(oτ )‖ p̃(oτ )

]]
︸ ︷︷ ︸

Predicted Divergence

= −EQ(xτ |π )
[

ln p̃(oτ )
]

︸ ︷︷ ︸
Extrinsic Value

−EQ(xτ |π )
[
DKL

[
Q(oτ |xτ )‖Q(oτ )

]]
︸ ︷︷ ︸

(Observation) Information Gain

.

It is also possible to factorize the biased generative model the other way
around in terms of an unbiased likelihood and biased states: p̃(oτ , xτ ) =
p(oτ |xτ ) p̃(xτ ). This different factorization leads to a new decomposition in
terms of risk and ambiguity, as well as potentially different behavior due to
the change from desired observations to desired states:11

G(π ) = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

= EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p(oτ |xτ ) − ln p̃(xτ )]

= EQ(xτ |π )
[
H[p(oτ |xτ )]

]
︸ ︷︷ ︸

Ambiguity

+ DKL
[
Q(xτ |π )‖ p̃(xτ |π )

]
︸ ︷︷ ︸

Risk

.

Here the agent is driven to minimize the divergence between desired and
prior expected states, while also trying to minimize the entropy of the
observations it receives. This drives the agent to try to sample observa-
tions with a minimally ambiguous (or maximally precise) mapping back to
states.

This formulation is mathematically equivalent to the previous decom-
positions despite defining desired states instead of desired observations, as
can be seen with the following manipulations:

G(π ) = EQ(xτ |π )
[
H[p(oτ |xτ )]

]
︸ ︷︷ ︸

Ambiguity

+ DKL
[
Q(xτ )‖ p̃(xτ )

]
︸ ︷︷ ︸

Risk

= EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p(oτ |xτ ) − ln Q(xτ |oτ ) − ln p̃(oτ )

+ ln p(oτ |xτ )]

= −EQ(oτ ,xτ |π )
[

ln p̃(oτ )
]

︸ ︷︷ ︸
Extrinsic Value

−EQ(oτ |π )
[
DKL[Q(xτ |oτ )||Q(xτ |π )]

]
︸ ︷︷ ︸

Epistemic Value

= G(π ).

11
For further detail on this factorization see Da Costa et al. (2020).
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The risk-ambiguity formulation has very close relations to KL control
(Rawlik et al., 2013), in that it encompasses KL control with an additional
“epistemic” ambiguity term;

G(π ) = EQ(xτ |π )H[p(oτ |xτ )] + DKL
[
Q(xτ |π )‖ p̃(xτ )

]
︸ ︷︷ ︸

KL Control︸ ︷︷ ︸
Active Inference

.

Appendix C: Trajectory Derivation of the Expected Model Evidence

Here we present the derivation of the free energy of the future (FEF) from
the expected model evidence for the full trajectory distribution rather than
a single time step. Importantly, we show that with a temporal mean-field
approximation on the approximate posterior: p(x1:T |o1:T ) ≈ ∏T

t p(xt |ot ), the
assumption that desired rewards are independent in time: p̃(o) ≈ ∏T

t p(r̂t ),
and given a Markovian generative model, then the trajectory distribution
factorizes into a sum of individual time-steps,12 only dependent on the past
through the prior term p(xt ) = EQ(xt−1|ot−1 p(xt |xt−1). We name this final ap-
proximation the factorization approximation, and it simply states that the
prior at the current time step is based on the posterior of the previous time
step mapped through the transition dynamics p(xt |xt−1):

argminp(π ) − EQ(o1:T |π ) ln p̃(o1:T )

= −EQ(o1:T |π )

[
ln

∫
dx1:T p̃(o1:T , x1:T )

]

= −EQ(o1:T |π )

[
ln

∫
dx1:T

p̃(o1:T , x1:T )Q(x1:T |o1:T )
Q(x1:T |o1:T )

]

= −EQ(o1:T |π )

[
ln

∫
dx1:T

T∏
t

p̃(ot, xt )Q(xt |ot )
Q(xt |ot )

]

= −EQ(o1:T |π )

[
ln

∫
dx1:T

T∏
t

p̃(ot |xt )EQ(xt−1|ot−1 ) p(xt |xt−1)Q(xt |ot )
Q(xt |ot )

]

= EQ(o1:T |π )

[
t∑
t

ln
∫

dxt
p̃(ot |xt ) − EQ(xt−1|ot−1 ) p(xt |xt−1)Q(xt |ot )

Q(xt |ot )

]

≥ −
t∑
t

EQ(o1:T |π )

[∫
dxt Q(xt |ot ) ln

p̃(ot |xt )EQ(xt−1|rt−1 ) p(xt |xt−1)
Q(xt |ot )

]

12
We assume discrete time so there is a sum over time steps. We also assume continu-

ous states so there is an integral over states x. However, the derivation is identical in the
case of discrete states where the integral is simply replaced with a sum.
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≥ −
t∑
t

∫
dxt

∫
do1:T Q(o1:T , xt |π ) ln

p̃(ot |xt )EQ(xt−1|ot−1 ) p(xt |xt−1)
Q(xt |ot )

≥ −
t∑
t

EQ(ot ,xt |π )

[
ln

p̃(ot |xt )EQ(xt−1|ot−1 ) p(xt |xt−1)
Q(xt |ot )

]

≥ −
t∑
t

EQ(ot ,xt |π )

[
ln p̃(ot |xt ) −

t∑
t

Ep(ot )DKL[p(xt |ot )||EQ(xt−1|ot−1 ) p(xt |xt−1)]

]

≥ −
t∑
t

FEFt .

The trajectory derivation of the FEEF follows an almost identical scheme
to that of the FEF. The only difference is that now the term inside the log also
contains an additional − ln p̃(o), which is then combined with the likelihood
from the generative model to form the extrinsic-value KL-divergence.

Appendix D: EFE Bound on the Negative Log Model Evidence

It is important to note that the EFE is also a bound on the negative log model
evidence, but a lower bound, not an upper bound. This means that in theory,
one should want to maximize the EFE, instead of minimize it, to make the
bound as tight as possible.

It is straightforward to show the bound, since the extrinsic value term of
the EFE simply is the log model evidence:

EFE = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

≈ EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln Q(xτ |oτ ) − ln p̃(oτ )]

≈ −EQ(oτ |π )[ln p̃(oτ )]︸ ︷︷ ︸
Negative Expected Log Model Evidence

−EQ(oτ |π )DKL[Q(xτ |oτ )‖Q(xτ |π )]|︸ ︷︷ ︸
Information Gain

.

This derivation assumes that the true and approximate posteriors are
approximately equal, p(xτ |oτ ) ≈ Q(xτ |oτ ), such that this is true only after a
variational inference procedure is completed.

We wish to minimize both log model evidence and minimize the EFE.
Since the information gain term is a KL-divergence, which is always ≥ 0,
and we have a negative information gain term, this means that the EFE is
always less than the log model evidence and so is a lower bound. However,
this bound becomes tight when the information gain is 0, so to maximally
tighten the bound, we wish to reduce the information gain while the EFE
demands we maximize it. In effect, this means that the EFE bound is the
wrong way around.
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We can see this more clearly when we retrace the logic for the FEF. From
equation 4.1, we have that the FEF is an upper bound on the negative log
model evidence. This means that minimizing the FEF necessarily tightens
the bound, while this is not true of the EFE lower bound, where minimizing
the EFE can actually cause it to diverge from the log model evidence. We
can see this even more clearly by doing an analogous decomposition of the
FEF:

FEF = EQ(oτ ,xτ |π )[ln Q(xτ |oτ ) − ln p̃(oτ , xτ )]

= EQ(oτ ,xτ |π )[ln Q(xτ |oτ ) − ln p(xτ |oτ ) − ln p̃(oτ )]

= −EQ(oτ |π )[ln p̃(oτ )]︸ ︷︷ ︸
Negative Expected Log Model Evidence

+EQ(oτ |π )DKL[Q(xτ |oτ )‖p(xτ |oτ )]|︸ ︷︷ ︸
Posterior Approximation Error

.

Here, since the KL is between the generative model and the approxi-
mate posterior, and then decompose the generative model into a true pos-
terior and marginal, we can no longer make the assumption, made in the
EFE derivation, that the true and approximate posterior are approximately
equal, since that would leave us with only the model evidence. There-
fore, instead we get a posterior approximation error term, which is the KL-
divergence between the approximate and true posteriors. When the true
and approximate posteriors are equal, we are left with the log model evi-
dence. Since the posterior approximation error is always ≥ 0, the FEF is an
upper bound on the negative log model evidence, and thus by minimizing
the FEF, we make the bound tighter. This logic is essentially a reprise of the
standard variational inference logic from a slightly different perspective.

If we do not make the assumption in the EFE that the approximate and
true posterior are the same, we can derive a similar expression to the EFE
that will shed more light on the relation:

EFE = EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )]

≈ EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p(xτ |oτ ) − ln p̃(oτ )]

≈ EQ(oτ ,xτ |π )[ln Q(xτ |π ) − ln p(xτ |oτ ) − ln p̃(oτ ) + ln Q(xτ |oτ )

− ln Q(xτ |oτ )]

≈ −EQ(oτ |π )[ln p̃(oτ )]︸ ︷︷ ︸
Negative Expected Log Model Evidence

+EQ(oτ |π )DKL[Q(xτ |oτ )‖p(xτ |oτ )]|︸ ︷︷ ︸
Posterior Approximation Error︸ ︷︷ ︸

FEF

− EQ(oτ |π )DKL[Q(xτ |oτ )‖Q(xτ |π )]|︸ ︷︷ ︸
Information Gain

.
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Without the true posterior assumption, we thus find that the EFE could
be an upper or a lower bound on the log model evidence, since the two ad-
ditional KL-divergence terms have opposite signs. If the posterior approxi-
mation error is larger than the information gain, the EFE functions correctly
as an upper bound. However, if the information gain is larger, the EFE will
become a lower bound and could diverge from the log model evidence. This
latter situation is more likely since the goal of variational inference is to re-
duce the approximation error, while EFE agents seek to maximize informa-
tion gain. This means that the EFE functions correctly as an upper bound
on log model evidence only during the early stages of optimization when
the posterior approximation is poor. Further optimization steps likely drive
the EFE further away from the model evidence. The bound is tight when the
information gain equals the posterior approximation error. We can also see
that the first two terms of the EFE are simply the FEF; we have thus red-
erived by a rather round-about route the fact that the EFE is simply the FEF
minus the information gain.

We thus see that the status of the EFE as a bound on the log model evi-
dence is shaky, since it depends on the information gain always being larger
or smaller than the posterior approximation error. Moreover, the bound-
ing behavior seems to emerge directly from the relation of the EFE to the
FEF rather than the intrinsic qualities of the EFE, and it is primarily the
information-seeking properties of the EFE that serve to damage the clean
bounding behavior of the FEF.

It can be argued that although the mathematical justification of the EFE
as a bound may be shaky, the additional information gain term may be ben-
eficial, and the bound may be recovered in the long run, since as a result of
short-term actions to maximize the EFE, the epistemic value itself goes to
0, and thus the EFE exactly approximates the bound, while also potentially
increasing the ultimate expected reward achieved. This argument is valid
heuristically and is identical to the standard justifications for ad hoc intrin-
sic measures terms in the literature (Oudeyer & Kaplan, 2009)—namely,
that exploration hurts in the short run but helps in the long run. We do
not dispute that argument in this letter; instead we simply show that the
EFE cannot straightforwardly be justified mathematically as being a result
of variational inference into the future or as a bound on model evidence.
We do not argue at all against its heuristic use to encourage exploration of
the environment and thus (we hope) better performance overall.

Appendix E: Attempts at Naturalizing the EFE

In this appendix, we review several attempts to derive the EFE directly from
the expected model evidence.

Since we have derived the FEF by importance-sampling the expected
model evidence with the approximate posterior, one obvious avenue would
be to importance-sample on the variational prior instead. Following this
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line of thought gives us

−EQ(oτ |π )
[

ln p̃(oτ )
] = −EQ(oτ |π )

[
ln

∫
dxp̃(oτ , xτ )

]

= −EQ(oτ |π )

[
ln

∫
dxτ p̃(oτ , xτ )

Q(xτ |π )
Q(xτ |π )

]

≤ −EQ(oτ |π )

[ ∫
dxτ Q(xτ |π ) ln

p̃(oτ , xτ )
Q(xτ |π )

]

≤ −EQ(oτ |π )Q(xτ |π )

[
ln

p̃(oτ , xτ )
Q(xτ |π )

]

≤ −EQ(oτ |π )Q(xτ |π )[ln Q(xτ |π ) − ln p̃(oτ , xτ )].

While this approach gets the correct form of the EFE inside the expecta-
tion, the expectation itself is the product of the two marginals rather than
the joint required for the full EFE. While this may seem minor, this differ-
ence must underpin all the other differences and relations we have explored
throughout this letter.

To get to the full EFE, we must make some assumptions to allow us to
combine the expectation under two marginals into an expectation under the
joint. The first and simplest assumption is that they are the same, such that
the joint factorizes into the two marginals: Q(oτ , xτ |π ) ≈ Q(oτ |π )Q(xτ |π ).
This assumption is equivalent to assuming independence of observations
and latent states, which rather defeats the point of a latent variable model.

A second approach is to assume that the variational prior equals the
variational posterior Q(xτ |π ) ≈ Q(xτ |oτ ). This allows one to combine the
marginal and posterior into a joint, giving the EFE as desired. However
this assumption has several unfortunate consequences. First, it eliminates
the entire idea of inference, since the prior and posterior are assumed to be
the same; thus, no real inference can have taken place. This is not neces-
sarily an issue if we separate the inference and planning stages of the algo-
rithm, such that they optimize different objective functions; however, the
FEEF approach is more elegant as it enables the optimization of the same
objective function for both inference and planning, thus casting them as
different facets of the same underlying process. Moreover, a more serious
issue is that this assumption also eliminates the information gain term in
active inference; since the prior and posterior are the same, the divergence
between them (which is the information gain), must be zero.

A slightly different approach is taken in a proof in Parr (2019), which
begins with the KL-divergence between two distributions, one encoding
beliefs about future states and observations and the other being the biased
generative model. By definition, this KL-divergence is always ≥ 0, which
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allows us to write

DKL[p(oτ , xτ |π )‖ p̃(oτ , xτ )] ≥ 0

= Ep(oτ |π )DKL[p(xτ |oτ )‖ p̃(oτ , xτ )] − Ep(oτ |π )[ln p(oτ |π )] ≥ 0

⇒ −Ep(oτ |π )DKL[p(xτ |oτ )‖ p̃(oτ , xτ )] ≥ −Ep(oτ |π )[ln p(oτ |π )]

⇒ FEF ≥ −Ep(oτ |π )[ln p(oτ |π )].

Under the assumption that p(x|o) ≈ Q(x|π ), this becomes

−Ep(oτ |π )DKL[p(xτ |oτ )‖ p̃(oτ , xτ )] ≥ −Ep(oτ |π )[ln p(oτ |π )]

≈ Ep(oτ |π )DKL[Q(xτ |π )‖ p̃(oτ , xτ )] ≥ −Ep(oτ |π )[ln p(oτ |π )]

≈ EFE ≥ −Ep(oτ |π )[ln p(oτ |π )].

This proof derives the FEF as a bound on not the expected model evi-
dence by our definition, but on the entropy of expected observations given
a policy. The EFE is then derived from the FEF by assuming that the prior
and posterior are the same, which comes with all the drawbacks explained
above. This proof is primarily unworkable because of the assumption that
the prior and the posterior are identical. While this may be arguable in
the continuous time limit, where it is equivalent to the assumption that
that dQ(x|o)

dt ≈ 0, which is when the continuous-time inference has reached
an equilibrium, it is definitely not true in discrete time; although there is
a relation between the prior in the current time step and the posterior in
the previous one, it must be mapped through the transition dynamics –
Q(xt |π ) = EQ(xt−1|π )[p(xt |xt−1, π )].

One can also attempt a related proof by splitting the KL-divergence the
other way. This gives

DKL[p(oτ , xτ |π )‖ p̃(oτ , xτ )] ≥ 0

= DKL[p(oτ , xτ |π )‖ p̃(xτ |oτ )] − Ep(oτ |π )[ln p̃(oτ )] ≥ 0

⇒ −DKL[p(oτ , xτ |π )‖ p̃(xτ |oτ )] ≥ −Ep(oτ |π )[ln p̃(oτ )]

⇒ Ep(xτ |π )[ln p(oτ |xτ )] + Ep(oτ |π )DKL[p(xτ |oτ )‖ p̃(xτ |π )] ≥ −Ep(oτ |π )[ln p̃(oτ )]

⇒ FEF ≥ −Ep(oτ |π )[ln p̃(oτ )],

which is just another way of showing that the FEF is a bound on the ex-
pected model evidence.

Appendix F: Related Quantites

Recently a new free energy, the generalized free energy (GFE) (Parr &
Friston, 2019), has been proposed in the literature as an alternative or an
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extension to the EFE. The GFE shares some close similarities with the FEEF.
Both fundamentally extend the EFE by proposing a unified objective func-
tion, which is valid for both inference at the current time and planning
into the future, whereas the EFE can only be used for planning. More-
over, both GFE and FEEF encode future observations as latent unobserved
variables, over which posterior beliefs can be formed. Moreover agents
maintain prior beliefs over these variables, which encode its preferences or
desires.13

The generalized free energy is defined as

GFE = EQ(oτ ,xτ )[ln Q(oτ ) + ln Q(xτ ) − ln p̃(oτ , xτ )],

whereas the FEEF is defined as

FEEF = EQ(oτ ,xτ )[ln Q(oτ , xτ ) − ln p̃(oτ , xτ )].

There are two key differences mathematically and intuitively between
the GFE and the FEEF. The first is that the GFE maintains a factorized pos-
terior over beliefs and observations, where the posterior beliefs of the two
are separated by a mean-field approximation and assumed to be separate.
By contrast, the FEEF maintains a joint approximate belief over both ob-
servations and states simultaneously. This joint in the case of the FEEF ef-
fectively functions as a veridical generative model since Q(o|x) = p(o|x) and
Q(x) = EQ(xt−1|π ) p(xt |xt−1). This means that posterior beliefs of the future are
computed simply by rolling forward the generative model given the beliefs
about the current time.

A second and more important differences lies in the generative models.
The GFE assumes that the agent is only equipped with a single genera-
tive model with both veridical and biased components. The preferences
of an EFE agent are encoded as a separate factorizable marginal over
observations. This means that the generative model of the GFE agent fac-
torizes as p̃(o, x)GFE ∝ p(o|x)p(x)p̃(o). This means that for the GFE, the like-
lihood and the prior are unbiased, and there is simply an additional prior
preferences term in the free-energy expression. By contrast, the FEEF es-
chews this unusual factorization of the generative model and instead pre-
supposes a separate warped generative model for use in the future that
is intrinsically biased. The FEEF generative model thus decomposes as
p̃(o, x)FEEF = p̃(o|x)p̃(x), which is the standard factorization of the joint dis-
tribution in a generative model, but where both the likelihood and prior

13
To help make clear the similarity between the GFE and the FEEF, we have defined

the veridical generative model as Q(oτ , xτ ).
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distributions are biased toward generating more favorable states of affairs
for the agent. This inherent optimism bias then drives action.

A further free energy proposed in the literature has been the Bethe free
energy and the Bethe approximation (Schwöbel et al., 2018). This approach
eschews the standard mean-field assumption on the approximate posterior
in favor of a Bethe approximation from statistical physics (Yedidia, Free-
man, & Weiss, 2001, 2005), which instead represents the approximate pos-
terior as the product of pairwise marginals, thus preserving a constraint of
pairwise temporal consistency that the mean-field assumption lacks. Due
to this greater representation of temporal constraints (the approximate pos-
teriors at each time step being no longer assumed to be independent), the
Bethe free energy has the potential to be significantly more accurate than
the standard mean-field variational free energy (and is, in fact, exact for
factor graphs without cycles such as the standard nonhierarchical POMDP
model). In this letter, we focus entirely on the standard mean-field varia-
tional free energy used in the vast majority of active inference publications,
and thus the Bethe free energy is out of scope for this article. However, ex-
ploring the nature of any intrinsic terms that might arise from the Bethe
free energy is an interesting avenue for future work. Although primarily
focused on the Bethe free energy, Schwöbel et al. (2018) also introduced a
“predicted free energy” functional. This functional is equivalent to the FEF
as we have defined it here, and so has a complexity instead of an informa-
tion gain term, leading to minimizing the prior-posterior divergence.

Finally, Biehl et al. (2018) suggested that if the EFE is not mandated by the
free-energy principle, which we have argued for in this letter, then in theory
any standard intrinsic measure, such as empowerment, could be used as an
objective. We believe that exploring the effect of these other potential loss
functions could be a area of great interest for future work.
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