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Fox and Lu introduced a Langevin framework for discrete-time stochas-
tic models of randomly gated ion channels such as the Hodgkin-
Huxley (HH) system. They derived a Fokker-Planck equation with
state-dependent diffusion tensor D and suggested a Langevin formula-
tion with noise coefficient matrix S such that SST = D. Subsequently,
several authors introduced a variety of Langevin equations for the HH
system. In this article, we present a natural 14-dimensional dynamics for
the HH system in which each directed edge in the ion channel state tran-
sition graph acts as an independent noise source, leading to a 14 x 28
noise coefficient matrix S. We show that (1) the corresponding 14D sys-
tem of ordinary differential equations is consistent with the classical 4D
representation of the HH system; (2) the 14D representation leads to a
noise coefficient matrix S that can be obtained cheaply on each time step,
without requiring a matrix decomposition; (3) sample trajectories of the
14D representation are pathwise equivalent to trajectories of Fox and Lu’s
system, as well as trajectories of several existing Langevin models; (4) our
14D representation (and those equivalent to it) gives the most accurate in-
terspike interval distribution, not only with respect to moments but un-
der both the L; and L, metric-space norms; and (5) the 14D representation
gives an approximation to exact Markov chain simulations that are as fast
and as efficient as all equivalent models. Our approach goes beyond ex-
isting models, in that it supports a stochastic shielding decomposition
that dramatically simplifies S with minimal loss of accuracy under both
voltage- and current-clamp conditions.
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1776 S. Pu and P. Thomas

1 Introduction

Many natural phenomena exhibit stochastic fluctuations arising at the
molecular scale, the effects of which impact macroscopic quantities. Un-
derstanding when and how microscale fluctuations will significantly con-
tribute to macroscale behavior is a fundamental problem spanning the
sciences. The impact of random ion channel fluctuations on the timing of ac-
tion potentials in nerve cells provides an important example. Channel noise
can have a significant effect on spike generation (Mainen & Sejnowski, 1995;
Schneidman, Freedman, & Segev, 1998), propagation along axons (Faisal &
Laughlin, 2007), and spontaneous (ectopic) action potential generation in
the absence of stimulation (O’Donnell & van Rossum, 2015). At the network
level, channel noise can drive the endogenous variability of vital rhythms
such as respiratory activity (Yu, Dhingra, Dick, & Galan, 2017).

Hodgkin and Huxley’s quantitative model for active sodium and potas-
sium currents producing action potential generation in the giant axon of
Loligo suggested an underlying system of gating variables consistent with
a multistate Markov process description (Hill & Chen, 1972). The dis-
crete nature of individual ion channel conductances was confirmed ex-
perimentally (Neher & Sakmann, 1976). Subsequently, numerical studies
of high-dimensional discrete-state, continuous-time Markov chain models
produced insights into the effects of fluctuations in discrete ion channel
populations on action potentials (Skaugen & Wallee, 1979; Strassberg & De-
Felice, 1993), also known as channel noise (White, Klink, Alonso, & Kay, 1998;
White, Rubinstein, & Kay, 2000).

In the standard molecular-level HH model, which we adopt here, the
K* channel comprises four identical n gates that open and close indepen-
dently, giving a five-vertex channel-state diagram with eight directed edges;
the channel conducts a current only when in the rightmost state (see Fig-
ure 1, top). The Na™ channel comprises three identical m gates and a single
h gate, all independent, giving an eight-vertex diagram with 20 directed
edges, of which one is conducting (see Figure 1, bottom).

Discrete-state channel noise models are numerically intensive, whether
implemented using discrete-time binomial approximations to the underly-
ing continuous-time Markov process (Skaugen & Wallge, 1979; Schmandt
& Galan, 2012) or continuous-time hybrid Markov models with exponen-
tially distributed state transitions and continuously varying membrane po-
tential. The latter were introduced by Clay and DeFelice (1983) and are in
principle exact (Anderson, Ermentrout, & Thomas, 2015). Under voltage-
clamp conditions, the hybrid conductance-based model reduces to a
time-homogeneous Markov chain (Colquhoun & Hawkes, 1981) that can
be simulated using standard methods such as Gillespie’s exact algorithm
(Gillespie, 1977, 2007). Even with this simplification, such Markov chain
(MC) algorithms are numerically expensive to simulate with realistic
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Figure 1: Molecular potassium (K*) and sodium (Na*) channel states for the
Hodgkin-Huxley model. Filled circles mark conducting states 14 and m3;. Per
capita transition rates for each directed edge (v, Bu, otm, B, o and py,) are volt-
age dependent (cf. equations B.1 and B.6). Directed edges are numbered 1 to 8
(K* channel) and 1 to 20 (Na*-channel), marked in small red numerals.

population sizes of thousands of channels or greater. Therefore, there is an
ongoing need for efficient and accurate approximation methods.

Following Clay and DeFelice’s exposition of continuous time Markov
chain implementations, Fox and Lu (1994) introduced a Fokker-Planck
equation (FPE) framework that captured the first- and second-order statis-
tics of HH ion channel populations in a 14-dimensional representation. Tak-
ing into account conservation of probability, one needs four variables to
represent the population of K channels, seven for Na*, and one for volt-
age, leading to a 12-dimensional state-space description. The resulting high-
dimensional partial differential equation is impractical to solve numerically.
However, as Fox and Lu observed, “To every Fokker-Planck description,
there is associated a Langevin description” (Fox & Lu, 1994). They there-
fore introduced a Langevin stochastic differential equation:

av
CE = Lpp(t) — §naMs (V — Va) — SkN5 (V = Vi) — Qleak(V — Vieak),
(1.1)
dM
= AnaM + S, (1.2)
dN
— = AN + Szgz, (13)

dt
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1778 S. Pu and P. Thomas

where C is the capacitance, l,pp is the applied current, maximal conduc-
tances are denoted Zion, with Vion being the associated reversal potential,
and ohmic leak current jeak(V — Vieax)- M € R8 and N € R® are vectors for
the fractions of Na™ and K* channels in each state, with Mg representing the
open channel fraction for Na*, and N5 the open channel fraction for K* (see
Figure 1). Vectors & (t) € R® and & (t) € R’ are independent gaussian white
noise processes with zero mean and unit variances (£ (t)§] (t')) = Ig 8(t —t)
and (&(t)&] (t')) =I5 8(t —t'). The state-dependent rate matrices Ay, and
Ak are given in equations 2.10 and 2.11. In Fox and Lu’s formulation, S must
satisfy S = +/D, where D is a symmetric, positive semidefinite k x k “diffu-
sion matrix” (see appendix D for the D matrices for the standard HH K" and
Na* channels). We will refer to the 14-dimensional Langevin equations 1.1
to 1.3, with S = +/D, as the Fox-Lu model.

The original Fox-Lu model, later called the conductance noise model by
Goldwyn and Shea-Brown (2011), did not see widespread use until gains
in computing speed made the square root calculations more feasible. Seek-
ing a more efficient approximation, Fox and Lu (1994) also introduced a
four-dimensional Langevin version of the HH model. This model was sys-
tematically studied in Fox (1997), which can be written as

av
CE = Lpp(t) — namh (V — Via) — 3 (V = Vi) — Gteak(V — Vieak)
(1.4)
dx
' = oy(1 — x) — Byx + & (t), where x = m, h, or, n, (1.5)
where &,(t) are gaussian processes with covariance function
, ay(1 —x) + Brx ,
Els(t), &) = 00T Py 16)

N

Here N represents the total number of Na*channels (respectively, the total
number of K™ channels), and §(-) is the Dirac delta function. This model, re-
ferred to as the “subunit noise model” by Goldwyn and Shea-Brown (2011),
has been widely used as an approximation to MC ion channel models (see
the references in Bruce, 2009; Goldwyn & Shea-Brown, 2011). For example,
Schmid et al. (2001) used this approximation to investigate stochastic reso-
nance and coherence resonance in forced and unforced versions of the HH
model (e.g. in the excitable regime). However, the numerical accuracy of
this method was criticized in several studies (Mino, Rubinstein, & White,
2002; Bruce, 2009), which found that its accuracy does not improve even
with increasing numbers of channels.
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Although more accurate approximations based on Gillespie’s algorithm
(using a piecewise constant propensity approximation: Bruce, 2009; Mino
et al., 2002) and even based on exact simulations (Clay & DeFelice, 1983;
Newby, Bressloff, & Keener, 2013; Anderson et al., 2015) became avail-
able, they remained prohibitively expensive for large network simulations.
Meanwhile, Goldwyn and Shea-Brown’s rediscovery of Fox and Lu’s ear-
lier conductance-based model (Goldwyn & Shea-Brown, 2011; Goldwyn,
Shea-Brown, & Rubinstein, 2010) launched a flurry of activity seeking the
best Langevin-type approximation. Goldwyn and Shea-Brown (2011) intro-
duced a faster decomposition algorithm to simulate equations 1.1 to 1.3 and
showed that Fox and Lu’s (1994) method accurately captured the fractions
of open channels and the interspike interval (ISI) statistics, in comparison
with Gillespie-type Monte Carlo (MC) simulations. However, despite the
development of efficient singular value decomposition based algorithms
for solving S = +/D, this step still causes a bottleneck in the algorithms
based on Fox and Lu (1994), Goldwyn and Shea-Brown (2011), and Gold-
wyn, Imennov, Famulare, and Shea-Brown (2011).

Many variations on Fox and Lu’s (1994) Langevin model have been pro-
posed in recent years (Dangerfield, Kay, & Burrage, 2010, 2012; Linaro,
Storace, & Giugliano, 2011; Orio & Soudry, 2012; Giiler, 2013b; Huang, Riidi-
ger, & Shuai, 2013, 2015; Pezo, Soudry, & Orio, 2014; Fox, 2018), including
Goldwyn etal.’s work (Goldwyn & Shea-Brown, 2011; Goldwyn et al., 2011),
each with its own strengths and weaknesses. One class of methods imposes
projected boundary conditions (Dangerfield et al., 2010, 2012); as we will
show in section 5, this approach leads to inaccurate interspike interval dis-
tribution and is inconsistent with a natural multinomial invariant manifold
structure for the ion channels. Several methods implement correlated noise
at the subunit level, as in equations 1.5 and 1.6 (Fox, 1997; Linaro et al.,
2011; Giiler, 2013a, 2013b). However, if one recognizes that at the molec-
ular level, the individual directed edges represent the independent noise
sources in ion channel dynamics, then the approach incorporating noise at
the subunit level obscures the biophysical origin of ion channel fluctuations.
Some methods introduce the noisy dynamics at the level of edges rather
than nodes but lump reciprocal edges together into pairs (Orio & Soudry,
2012; Dangerfield et al., 2012; Huang et al., 2013; Pezo et al., 2014). This ap-
proach implicitly assumes, in effect, that the ion channel probability distri-
bution satisfies a detailed balance (or microscropic reversibility) condition.
However, while detailed balance holds for the HH model under stationary
voltage clamp, this condition is violated during active spiking. Finally, the
stochastic shielding approximation (Schmandt & Galan, 2012; Schmidt &
Thomas, 2014; Schmidt et al., 2018) does not have a natural formulation in
the representation associated with an n x n noise coefficient matrix S; in the
cases of rectangular S matrices used in Orio and Soudry (2012) and Danger-
field et al. (2012) stochastic shielding can only be applied to reciprocal pairs
of edges. We elaborate on these points in section 6.
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1780 S. Pu and P. Thomas

In this article, we introduce a new variation of Fox and Lu’s conductance-
noise model that avoids the limitations we have described. We show that
preserving each directed edge in the channel transition graph (see Figure 1)
as an independent noise source leads to a natural, biophysically motivated
Langevin model that does not require any matrix decomposition step. Our
construction lends itself to direct application of stochastic shielding meth-
ods, leading to faster simulations that retain the accuracy of Fox and Lu’s
method.

As an additional benefit, our method answers an open question in the lit-
erature, arising from the fact that the decomposition D = SST is not unique.
As Fox (2018) recently pointed out, subblock determinants of the D matrices
play a major role in the structure of the S matrix elements. Fox conjectured
that “a universal form for S may exist.” In this article, we obtain the uni-
versal form for the noise coefficient matrix S. Moreover, we prove that our
model is equivalent to Fox and Lu’s 1994 model in the strong sense of path-
wise equivalence.

The remainder of the article is organized as follows. In section 2, we re-
view the canonical deterministic 14D version of the HH model. We prove
a series of lemmas that show (1) the multinomial submanifold M is an
invariant manifold within the 14D space and (2) the velocity on the 14D
space and the pushforward of the velocity on the 4D space are identical.
Moreover, we show (numerically) that (3) the submanifold M is globally
attracting, even under current clamp conditions. Figure 2 illustrates the
relationship between the 4D and 14D deterministic HH models. Section
3 lays out our 14 x 28 Langevin HH model. Like Orio and Soudry (2012),
Dangerfield et al. (2012), and Pezo et al. (2014), we avoid matrix decompo-
sition by computing S directly. The key difference between our approach
and its closest relative (Pezo et al., 2014) is to use a rectangular n x k matrix
S for which each directed edge is treated as an independent noise source
rather than lumping reciprocal edges together in pairs. In the new Langevin
model, the form of our S matrix reflects the biophysical origins of the un-
derlying channel noise and allows us to apply the stochastic shielding ap-
proximation by neglecting the noise on selected individual directed edges.
As we prove in section 4, our model (without the stochastic shielding ap-
proximation) is pathwise equivalent to all those in a particular class of bio-
physically derived Langevin models, including those used in Fox and Lu
(1994), Goldwyn et al. (2011), Goldwyn and Shea-Brown (2011), Orio and
Soudry (2012), Pezo et al. (2014), and Fox (2018). In addition to 4D and 14D
deterministic trajectories, Figure 2 shows a stochastic trajectory generated
by our Langevin model. Finally, we compare our Langevin model to sev-
eral alternative stochastic neural models in terms of accuracy (of the full ISI
distribution) and numerical efficiency in section 5.

Matlab code to generate the figures throughout the article is available
on github from https://github.com/shusenpu/Stochastic_shielding and
on ModelDB at accession number 266551.
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50 Voltage (mV)

Figure 2: 4D and 14D HH models. The meshed surface is a three-dimensional
projection of the 14D state space onto three axes representing the voltage, v, the
probability of all four potassium gates being in the closed state, 119, and the prob-
ability of exactly one potassium gate being in the open state, 7;. Blue curves:
Trajectories of the deterministic 14D HH model with initial conditions located
on the 4D multinomial invariant submanifold, M. We prove that M is an in-
variant submanifold in section 2.3. Black curve: The deterministic limit cycle
solution for the 14D HH model, which forms a closed loop within M. Green
curve: A trajectory of the deterministic 14D HH model with initial conditions
(vertical green arrow) off the multinomial submanifold. Red curve: A trajectory
of the stochastic 14D HH model (see section 3) with the same initial conditions
as the green trajectory. The blue and black arrows mark the directions of the
trajectories. Note that trajectories starting away from M converge to M, and all
deterministic trajectories converge to the deterministic limit cycle. Parameters
of the simulation are given in Table 5.

2 The Deterministic 4D and 14D HH Models

In this section, we review the classical four-dimensional model of Hodgkin
and Huxley (1952) HH), as well as its natural 14-dimensional version
(Dayan & Abbott, 2001, sec. 5.7), with variables comprising membrane
voltage and the occupancies of five potassium channel states and eight
sodium channel states. The deterministic 14D model is the mean field of
the channel-based Langevin model proposed by Fox and Lu (1994); this ar-
ticle describes both the Langevin and the mean field versions of the 14D
Hodgkin-Huxley system. For completeness of exposition, we briefly review
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the 4D deterministic HH system and its 14D deterministic counterpart. In
section 4, we prove that the sample paths of a class of Langevin stochas-
tic HH models are equivalent; in section 2.3, we review analogous results
relating trajectories of the 4D and 14D deterministic ODE systems.

In particular, we show that the deterministic 14D model and the origi-
nal 4D HH model are dynamically equivalent, in the sense that every flow
(solution) of the 4D model corresponds to a flow of the 14D model. The
consistency of trajectories between the 14D and 4D models is easy to ver-
ify for initial data on a 4D submanifold of the 14D space given by choos-
ing multinomial distributions for the gating variables (Dayan & Abbott,
2001; Goldwyn et al., 2011). Similarly, Keener established results on multi-
nomial distributions as invariant submanifolds of Markov models with ion
channel kinetics under several circumstances (Keener, 2009, 2010; Earnshaw
& Keener, 2010a, 2010b), but without treating the general current-clamped
case. Consistent with these results, we show that the set of all 4D flows maps
to an invariant submanifold of the state space of the 14D model. Moreover,
we show numerically that solutions of the 14D model with arbitrary ini-
tial conditions converge to this submanifold. Thus the original HH model
“lives inside” the 14D deterministic model in the sense that the former em-
beds naturally and consistently within the latter (see Figure 2).

In the stochastic case, the 14D model has a natural interpretation as a hy-
brid stochastic system with independent noise forcing along each edge of
the potassium (8 directed edges) and sodium (20 directed edges) channel
state transition graphs. The hybrid model leads naturally to a biophysically
grounded Langevin model that we describe in section 3. In contrast to the
ODE case, the stochastic versions of the 4D and 14D models are not equiv-
alent (Goldwyn & Shea-Brown, 2011).

2.1 The 4D Hodgkin-Huxley Model. The 4D voltage-gated ion channel
HH model is a set of four ordinary differential equations:

dv

Cop = —gnat’h(v — Vna) — Zxn* (0 — Vi) — gL(0 — VL) + Lpp,  (2.1)
T )1 =) — Buo)m. 22)
% = a,(v)(1 = h) — Bu(v)h, 23)
o = )1 =)~ fulopn (2.4)

where v is the membrane potential, Lpp is the applied current, and 0 <
m,n,h <1 are dimensionless gating variables associated with Na' and
K* channels. The constant §ion is the maximal value of the conductance
for the sodium and potassium channel, respectively. Parameters Vo, and C
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are the ionic reversal potentials and capacitance, respectively. The quanti-
ties oy and By, x € {m, n, h} are the voltage-dependent per capita transition
rates, defined in appendix B.

This system is a C* vector field on a four-dimensional manifold
(with boundary) contained in R X ={-oc0o<v<o00,0<mhn<1}=
R x [0, 1]3. The manifold is forward and backward invariant in time. If Lapp
is constant then A has an invariant subset given by X N {vmin < 0 < Vmax},
where vmin and vmax are calculated in lemma 1.

As pointed Keener and Sneyd (1998) and Keener (2009) pointed out, for
voltage either fixed or given as a prescribed function of time, the equations
for m, h, and n can be interpreted as the parameterization of an invariant
manifold embedded in a higher-dimensional time-varying Markov system.
Several papers developed this idea for a variety of ion channel models and
related systems (Keener, 2009; Earnshaw & Keener, 2010b), but the theory
developed is restricted to the voltage-clamped case.

Under a fixed voltage clamp, the ion channels form a time-homogeneous
Markov process with a unique (voltage-dependent) stationary probability
distribution. Under a time-varying current clamp, the ion channels never-
theless form a Markov process, albeit no longer time homogeneous. Under
these conditions, the ion channel state converges rapidly to a multinomial
distribution indexed by a low-dimensional set of time-varying parameters
(m(t), h(t), n(t)) (Keener, 2010). In the current-clamped case, the ion chan-
nel process, considered alone, is neither stationary nor Markovian, making
the analysis of this case significantly more challenging from a mathematical
point of view.

2.2 The Deterministic 14D Hodgkin-Huxley Model. For the HH kinet-
ics given in Figure 1, we define the eight-component state vector M for the
Na™ gates and the five-component state vector N for the K* gates, respec-
tively, as

M = [1mgo, 110, Mag, M0, Mot, M1, M1, ma1]T € [0, 15 (2.5)

N = [ng, n1, 12, n3, m4]™ € [0, 17°, (2.6)

where Y7 Z}=0 m;j =1 and St oni=1. The open probability for the
Na' channel is Mg = m3; and is N5 = n4 for the K* channel. The determin-
istic 14D HH equations may be written (compare equations 2.1 to 2.4)

av

CE == _gNaMS(V - VNa) _gKNS(V - VK) - gL(V - VL) + Iapps (27)
M _ Ana(V)M, (2.8)
dt
N _ Ax(V)N, (2.9)

dt
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1784 S. Pu and P. Thomas

where the voltage-dependent drift matrices A, and Ak are given by

Ana(V) =

[Ana(1) B 0 0 B 0 0 0
3o, Ana(2) 2Bm 0 0 B 0 0
0 20, Ana(3) 3Bum 0 0 Bn 0
0 0 an  Ana(4) 0O 0 0 B
@ 0 0 0 Axa() Bn 0 0 |, (210
0 a0 0  B3am Axa(6) 2B O
0 0 a4 0 0 2un Aa(?) 3Bn
0 0 0 a4 0 0  an Au®

Ax@) Bu(V) 0 0 0
dan(V) Ak(2) 2B.(V) 0 0
Ac(V)=| 0 Bay(V) Ak@B) 38.(V) 0 |, (2.11)
0 0 20,(V) Ax(4) 4pu(V)
0 0 0 anV) Ax(5)

and the diagonal elements

Aion(i) = = Y Aion(j. i), forion e {Na,K}.
o

2.3 Relation Between the 14D and 4D Deterministic HH Models.
Earnshaw and Keener (2010b) suggest that it is reasonable to expect that the
global flow of the 14D system should converge to the 4D submanifold but
also that it is far from obvious that it must. Existing theory applies to the
voltage-clamped case (Keener, 2009; Earnshaw & Keener, 2010b). Here, we
consider instead the current-clamped case, in which the fluctuations of the
ion channel state influences the voltage evolution, and vice versa.

In the remainder of this section, we (1) define a multinomial submani-
fold M and show that it is an invariant manifold within the 14D space, and
(2) we show that the velocity on the 14D space and the pushforward of the
velocity on the 4D space are identical. In section 2.4, we (3) provide numer-
ical evidence that M is globally attracting within the higher-dimensional
space.

In order to compare the trajectories of the 14D HH equations with tra-
jectories of the standard 4D equations, we define lower-dimensional and
higher-dimensional domains X and ), respectively, as

X={-c0o<v<00,0<m<10<h<1,0<n<1}=Rx][0,1] c R*
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Table 1: R:Map from the 14D HH Model (i, . . ., 131, 1o, . . ., n4) to the 4D HH
Model (m, h, n).

14D Model 4D Model

(v, mgg, . .., m31, Mg, ..., Ma) (v,m, h,n)

D D

T(myy + myg) + 5 (ma1 + mag) + mzy + mag m

Mo + My + My + mM3q h

ni/4+ny/2 4+ 3n3/4 4+ ny n’

Note: Note that both {myy, ..., mz} and {ng, ..., ny} fol-

low multinomial distributions.

Table 2: H: Map from the 4D HH Model (m, h, n) and the 14D HH Model

(moo, ..., ma1, g, ..

3 1
Y ={-0c0o<0v<oo}N Ofmi]‘, szijzl

.y 1’14).
4D Model 14D Model
(u,m,h,n) (1),1’!100,...,11131,710,...,1’14)
v v
(1—n)* 1o
41 —n)’n ny
6(1 — n)2n? 1y
41 — n)n® ns
114 Ny
(1—m)*(1 —h) Mmoo
3(1 — m)?m(1 — h) MMy
3(1 — mym?(1 — h) Mg
m3(1—h) m3g
(1—m)°h o1
3(1 — m)2mh My
3(1 — m)m%h Moy
m3h M3y

=R x A7 x A* c RY,

i=0 j=0

4
N {057’11‘, Zn,-:l}
i=0

(2.12)

where AF is the k-dimensional simplex in R! given by y1 + ... + Y1 =
1,y; > 0. The 4D HH model % = F(x), equations 2.1 to 2.4, is defined for

x € X, and the 14D HH model % = G(y), equations 2.7 and 2.9, is defined
for y € Y. We introduce a dimension-reducing mapping R: Y — & as in
Table 1 and a mapping from lower to higher dimension, H : X — ), as in
Table 2. We construct R and H in such a way that R o H acts as the identity on
X, thatis, forall x € X, x = R(H(x)). The maps H and R are consistent with
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a multinomial structure for the ion channel state distribution, in the follow-
ing sense. The space ) covers all possible probability distributions on the
eight sodium channel states and the five potassium channel states. Those
distributions, which are products of one multinomial distribution on the
K*-channelland a second multinomial distribution on the Na*-channel
form a submanifold of A7 x A%. In this way we define a submanifold, de-
noted M = H(X), the image of X under H.

Before showing that the multinomial submanifold M is an invariant
manifold within the 14D space, we first show that the deterministic 14D
HH model is defined on a bounded domain. Having a bounded forward-
invariant manifold is a general property of conductance-based models,
which may be written in the form

av
E = f(Va Nopen)
1 .
= E Iapp - gleak(v - Vleak) - Z I:gingen(V - Vl)]] (213)
i€l
‘%V = A(V)N and (2.14)
Nopen = O[N] (2.15)

Here, C is the membrane capacitance, I,pp is an applied current with upper
and lower bounds I, respectively, and g; is the conductance for the ith ion
channel. The index i runs over the set of distinct ion channel types in the
model, Z. The gating vector N represents the fractions of each ion chan-
nel population in various ion channel states, and the operator O gives the
fraction of each ion channel population in the open (or conducting) channel
states. The following lemma establishes that any conductance-based model
(including the 4D or 14D HH model) is defined on a bounded domain.

Lemma 1. For a conductance-based model of the form 2.13 to 2.15 and for any
bounded applied current I < Lo, < Iy, there exist upper and lower bounds Vimax
and Vmin such that trajectories with initial voltage condition V' € [Viin, Vmax] 7e-
main within this interval for all times t > 0, regardless of the initial channel state.

Proof. Let V] = miIn{Vi} A Vieax, and V, = me}x{Vi} V Vieak, Where the index
1€ 1€

i runs over Z, the set of distinct ion channel types. Note that for all 7, 0 <

"That is, distributions indexed by a single open probability 1, with the five states hav-
ingzprobabilities (?)n"(l —n)*iforo<i<4.
That is, distributions indexed by two open probabilities m and i, with the eight states
having probabilities (3)m!(1 —m)>~'h/(1 —h)'~/, for0<i<3, and 0<j<1.
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1787

Nj)pen <1,and g > 0, Gleak > 0. Therefore, when V < V;,
av 1
E = E app gleak(v Vleak) - Z [ open(v Vi )] } (216)
i€l
1
= E app gleak(V Vl) Z [gl open(V - )]} (217)
ieZ
1
= E app gleak(v Vl) - Z [gl x 0 x (V - Vl)]] (218)
ieZ
1
= E { app gleak(v Vl)} (219)

Inequality 2.17 follows because Vi = min{Vi} A Vieak, and inequality 2.18

I
Sleak

Vi, Vq } WhenV < Viin, 'Z—‘t/ > 0. Therefore, V will not decrease beyond Vipin.
Similarly, when V' > V,,

follows because V —V; <0, g; > 0 and N >0. Let Vign := min{

open

+

av. 1
E = E app gleak(V Vleak) - Z [gt open(v - Vl)]} (220)
iel
1
= = {lapp = earV = V2) = D [8iNopen(V Vz)]] (221)
ieT
= é app gleak(V VZ) Z [gz x 0 x (V - VZ)]} (222)
i€l
1
= E { app gleak(v VZ)} (223)

Inequality 2.21 holds because V, = max{Vi} V Vieak, and inequality 2.22

holds because V —V, >0, g; > 0 and N >0. Let Vipax = max[ e

open Sleak
Vs, Vz}. WhenV > Viax, ”;—‘t/ < 0. Therefore, V will not go beyond Vinax.

We conclude that if V takes an initial condition in the interval
[Vimins Vimaxl, then V () remains within this interval for all ¢ > 0. O

Given that y € Y has a bounded domain, lemma 2 follows directly
and establishes that the multinomial submanifold M is a forward-time-
invariant manifold within the 14D space. The proof of lemma 2 is in
appendix C.
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Lemma 2. Let X and Y be the lower-dimensional and higher-dimensional
Hodgkin-Huxley manifolds given by equation 2.12, and let F and G be the vector
fields on X and Y defined by equations 2.1 to 2.4 and 2.7 to 2.9, respectively. Let
H: X > McYandR:Y — X bethe mappings given in Tables 2 and 1, respec-
tively, and define the multinomial submanifold M = H(X). Then M is forward-
time-invariant under the flow generated by G. Moreover, the vector field G, when
restricted to M, coincides with the vector field induced by F and the map H. That
is, forally € M, G(y) = D:H(R(y)) - F(R(y)).

Lemma 2 establishes that the 14D HH model given by equations 2.7 to
2.91s dynamically consistent with the original 4D HH model given by equa-
tions 2.1 to 2.4.

In section 2.4 we provide numerical evidence that the flow induced by
G on Y converges to M exponentially fast. Thus, an initial probability dis-
tribution over the ion channel states that is not multinomial quickly ap-
proaches a multinomial distribution with dynamics induced by the 4D HH
equations. Similar results, restricted to the voltage-clamp setting, were es-
tablished by Keener and Earnshaw (Keener & Sneyd, 1998; Keener, 2009;
Earnshaw & Keener, 2010b).

2.4 Local Convergence Rate. Keener and Earnshaw (Keener & Sneyd,
1998; Keener, 2009; Earnshaw & Keener, 2010b) showed that for Markov
chains with constant (even time-varying) transition rates, (1) the multino-
mial probability distributions corresponding to mean-field models (such as
the HH sodium or potassium models) form invariant submanifolds within
the space of probability distributions over the channel states, and (2) ar-
bitrary initial probability distributions converged exponentially quickly to
the invariant manifold. For systems with prescribed time-varying transi-
tion rates, such as for an ion channel system under voltage clamp with a
prescribed voltage V (t) as a function of time, the distribution of channel
states had an invariant submanifold, again corresponding to the multino-
mial distributions, and the flow on that manifold induced by the evolution
equations was consistent with the flow of the full system.

In the preceding section, we established the dynamical consistency of
the 14D and 4D models with enough generality to cover both the voltage-
clamp and current-clamp systems; the latter is distinguished by not hav-
ing a prescribed voltage trace, but rather having the voltage coevolve along
with the (randomly fluctuating) ion channel states. Here, we give numerical
evidence for exponential convergence under current clamp similar to that
established under voltage clamp by Keener and Earnshaw.

Rather than providing a rigorous proof, we give numerical evidence for
the standard deterministic HH model that y — M under current clamp
(spontaneous firing conditions) in the following sense: if y(t) is a solution of
y = G(y) with arbitrary initial data yy € Y, then ||[y(t) — H(R(y(t)))|| — O as
t — oo, exponentially quickly. Moreover, the convergence rate is bounded
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1789

by A = max(Xy, Ana, Ak), Where Ay, is the least negative nontrivial eigen-
value of the channel state transition matrix (over the voltage range Viin <
v < Viax) for a given ion, and —1/2, is the largest value taken by the mem-
brane time constant (for Vimin < v < Vmax). In practice, we find that the
membrane time constant does not determine the slowest timescale for con-
vergence to M. In fact it appears that the second-least-negative eigenvalues
(not the least-negative eigenvalues) of the ion channel matrices set the con-
vergence rate.

Note that y € ) can be written as y = [V; M; N]. As shown in appendix
C, the Jacobian matrix 2 "H consists of three block matrices: one for the volt-

age terms, 97; one assoc1ated with the Na+ gates, given by 2™ and 3;

one corresponding to the K* gates, Y. Fixing a particular voltage v, let
Ai, 1€4{0,1,2,...,7} be the eight eigenvalues of An, and v; be the associ-
ated eigenvectors, that is, Anav; = A;v; for the rate matrix in equations 2.8.
Similarly, let n;, w;, i € {0,1,2,...,4} be the five eigenvalues and the asso-
ciated eigenvectors of Ak, that is, Axw; = n;w;, for the rate matrix in equa-
tions 2.9. If we rank the eigenvalues of either matrix in descending order,
the leading eigenvalue is always zero (because the sum of each column for
Ana and Ak is zero for every V) and the remainder are real and negative.
Let A1 and n; denote the largest (least negative) nontrivial eigenvalues of
Ana and Ag, respectively, and let v; € R® and w1 € R be the corresponding
eigenvectors.

The eigenvectors of the full 14D Jacobian are not simply related to the
eigenvectors of the component submatrices, because the first (voltage) row
and column contain nonzero off-diagonal elements. However, the eigenvec-
tors associated with the largest nonzero eigenvectors of An, and Ak (respec-
tively, v and w,) are parallel to 9M/dh and 9N/9n, regardless of voltage. In
other words, the slowest decaying directions for each ion channel, v; and
w1, transport the flow along the multinominal submanifold of ). Therefore,
it is reasonable to make the hypothesis that if Y (t) is a solution of 7 = G(y)
with arbitrary initial data y € ), then

and

ly®) — HRGODI ot

2.24
ly(0) = HRy(O)))I ~ (2.24)

for 1, being the second largest nonzero eigenvalue of Ax and An, over all v
in the range vmin < v < Vmax. The convergence behavior is plotted numeri-
cally in Figure 3 and is consistent with the Ansatz equation 2.24. We calcu-
late the distance from a point y to M as

Ymax = argmyax ||y — H(R(y))”2 . (2.25)
yE
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0 5 10 15 20
Time (msec)

Figure 3: Convergence of trajectories y(f), for arbitrary initial conditions yy € ),
to the multinomial submanifold M, for an ensemble of random initial con-
ditions. (A) Distance (see equation 2.25) between y(t) and M. (B) Logarithm
of the distance in panel A. The red solid line shows dma.e ™' in panel A and
log(dmax) — A2t in panel B.

In order to obtain an upper bound on the distance as a function of time, we
begin with the farthest point in the simplex from M by numerically finding
the solution to the argument 2.25, which is

Ymax = [0,0.5,0,0,0.5,0,0,0,0,0.5,0,0,0,0.5].

This vector represents the furthest possible departure from the multinomial
distribution: all probability equally divided between the extreme states g
and mgs for the sodium channel and the extremal states 19 and 14 for potas-
sium. The maximum distance from the multinomial submanifold M, day,
is calculated using this point. As shown in Figure 3, the function dpmax et
provides a tight upper bound for the convergence rate from arbitrary initial
data y € Y to the invariant submanifold M.

3 Stochastic 14D Hodgkin-Huxley Models

Finite populations of ion channels generate stochastic fluctuations (“chan-
nel noise”) in ionic currents that influence action potential initiation and
timing (White et al., 1998; Schneidman et al., 1998). At the molecular level,
fluctuations arise because transitions between individual ion channel states
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are stochastic (Hill & Chen, 1972; Neher & Sakmann, 1976; Skaugen &
Wallee, 1979). Each directed edge in the ion channel state transition dia-
grams (see Figure 1) introduces an independent noise source. It is of inter-
est to be able to attribute variability of the interspike interval timing distri-
bution to specific molecular noise sources, specifically individual directed
edges in each channel state graph. In order to explore these contributions,
we develop a system of Langevin equations for the Hodgkin-Huxley equa-
tions, set in a 14-dimensional phase space.

Working with a higher-dimensional stochastic model may appear incon-
venient, butin fact has several advantages. First, any projection of an under-
lying 14D model onto a lower (e.g., 4D) stochastic model generally entails
loss of the Markov property. Second, the higher-dimensional representation
allows us to assess the contribution of individual molecular transitions to
the macroscopically observable variability of timing in the interspike inter-
val distribution. Third, by using a rectangular noise coefficient matrix con-
structed directly from the transitions in the ion channel graphs, we avoid
a matrix decomposition step. This approach leads to a fast algorithm that
is equivalent to the slower algorithm due to (Fox & Lu, 1994; Goldwyn &
Shea-Brown, 2011) in a strong sense (pathwise equivalence) that we detail
in section 4.

3.1 Exact Stochastic Simulation of HH Kinetics: The Random-
Time-Change Representation. An “exact” representation of the Hodgkin-
Huxley system with a population of M, sodium channels and Niu
potassium channels treats each of the 20 directed edges in the sodium chan-
nel diagram, and each of the 8 directed edges in the potassium channel
diagram, as independent Poisson processes, with voltage-dependent per
capita intensities. As in the deterministic case, the sodium and potassium
channel population vectors M and N satisfy Y7 Z}:o M;=1= SN2
Thus, they are constrained, respectively, to a 7D simplex embedded in
R® and a 4D simplex embedded in R°. In the random-time-change rep-
resentation (Anderson & Kurtz, 2015) the exact evolution equations are
written in terms of sums over the directed edges £ for each ion channel,
Ena =1{1,...,20}and & = {1, ..., 8}, (see Figure 1),

t
M) = MO) + = 3 6 (M [ VM 0)s) G)

tot keéna 0

t
N(t) = N(0) + N >y <Ntot / al(V(s))Nje () ds) . (3.2)
tot ey

*We annotate the stochastic population vector M as either [Myy, My, ..., Ms;] or as
[My, ..., Mg], whichever is more convenient. In either notation M3; = Mg is the conduct-

ing state of the Na'*channel. For the K*channel, N, denotes the conducting state.
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1792 S. Pu and P. Thomas

Here ¢[°" is the stoichiometry vector for the kth directed edge. If we write
i(k) for the source node and j(k) for the destination node of edge k, then
G = ey — eigh.* Each Y{*'(7) is an independent unit-rate Poisson pro-
cess, evaluated at “internal time” (or integrated intensity) r, represent-
ing the independent channel noise arising from transitions along the kth
edge. The voltage-dependent per capita transition rate along the kth edge
is a,i(‘)“(u), and M) (s) (resp. Njg(s)) is the fractional occupancy of the
source node for the kth transition at time s. Thus, for example, the quan-
tity Mtotoz}ja (V(s))Mj (s) gives the net intensity along the kth directed edge
in the Na* channel graph at time s.

Remark 1. Under voltage-clamp conditions, with the voltage V held fixed,
equations 3.1 and 3.2 reduce to a time-invariant first-order transition pro-
cess on a directed graph (Schmidt & Thomas, 2014; Gadgil, Lee, & Othmer,
2005).

Under current-clamp conditions, the voltage evolves according to a con-
ditionally deterministic current balance equation of the form

av 1
T E{Iapp(t) — 8NaMs1 (V — VNa) — §xNa (V = Vi)
- gleak(v - Vleak)}~ (33)

Here, C (uF/cm?) is the capacitance, I, p (nA/ cm?) is the applied current, the
maximal conductance is §ehan (1S/c1), Vihan (V) is the associated reversal
potential, and the ohmic leak current is gjeax (V — Vieak)-

The random-time-change representation, equations 3.1 to 3.3, leads to an
exact stochastic simulation algorithm, given in Anderson and Kurtz (2015);
equivalent simulation algorithms have been used previously (Clay &
DeFelice, 1983; Newby et al., 2013). Many authors substitute a simpli-
fied Gillespie algorithm that imposes a piecewise-constant propensity ap-
proximation, ignoring the voltage dependence of the transition rates o
between channel transition events (Goldwyn et al., 2011; Goldwyn & Shea-
Brown, 2011; Orio & Soudry, 2012; Pezo et al., 2014). The two methods
give similar moment statistics, provided Niot, Mot 2 40 (Anderson & Kurtz,
2015); their similarity regarding path-dependent properties (including in-
terspike interval distributions) has not been studied in detail. Moreover,
both Markov chain algorithms are prohibitively slow for modest numbers
(e.g., thousands) of channels; the exact algorithm may be even slower than
the approximate Gillespie algorithm. For consistency with previous studies,
in this article, we use the piecewise-constant propensity Gillespie algorithm
with Mot = 6000 Na®™ and Niot = 1800 K channels as our gold standard
Markov chain (MC) model, as in Goldwyn and Shea-Brown (2011).

*We write eN* and ¢X for the ith standard unit vector in RS or R?, respectively.
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In section 3.2 we develop a 14D conductance-based Langevin model with
28 independent noise sources — one for each directed edge — derived from
the random-time-change representation equations 3.1 to 3.3. In previous
work (Schmidt & Thomas, 2014), we established a quantitative measure
of edge importance, namely, the contribution of individual transitions (di-
rected edges) to the variance of channel state occupancy under steady-state
voltage-clamp conditions. Under voltage clamp, the edge importance was
identical for each reciprocal pair of directed edges in the graph, a conse-
quence of detailed balance. Some Langevin models lump the noise contri-
butions of each pair of edges (Dangerfield et al., 2010, 2012; Orio & Soudry,
2012; Pezo et al., 2014). Under conditions of detailed balance, this simpli-
fication is well justified. However, as we will show (see Figure 5), under
current-clamp conditions (e.g., for an actively spiking neuron) detailed bal-
ance is violated, the reciprocal edge symmetry is broken, and each pair of
directed edges makes a distinct contribution to ISI variability.

3.2 Langevin Equations of the 14D HH Model. For sufficiently large
number of channels, Schmidt and Thomas (2014) and Schmidt et al.
(2018) showed that under voltage clamp, equations 3.1 and 3.2 can be ap-
proximated by a multidimensional Ornstein-Uhlenbeck (OU) process (or
Langevin equation) in the form®

20
dM =) g {a}:’a(V)Mi(k)dt + /eNaaNa (V)M dw,f“a} , (3.4)
k=1

8
dN = Z {kK {a}I(((V)Ni(k)di’ + ,/GK(XE(V)NI'(;() dWIF} . (3.5)
k=1

Here, M, N, {,i"“, and oz,ic"“ have the same meaning as in equations 3.1 and
3.2. The channel state increments in a short time interval dt are dM and
dN, respectively. The finite-time increment in the Poisson process Y, is
now approximated by a gaussian process, namely, the increment dW;*" in
a Wiener (Brownian motion) process associated with each directed edge.
These independent noise terms are scaled by €Nt = 1 /My and €X = 1/Nyy,
respectively.

Equations 3.3 to 3.5 comprise a system of Langevin equations for the
HH system (under current clamp) on a 14-dimensional phase space driven
by 28 independent white noise sources, one for each directed edge. These
equations may be written succinctly in the form

dX = £(X) dt + JeG(X) dW(t) (3.6)

°The convergence of the discrete channel system to a Langevin system under voltage
clamp is a special case of Kurtz’s theorem (Kurtz, 1981).
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1794 S. Pu and P. Thomas

where we define the 14-component vector X = (V; M; N), and W(t) is a
Wiener process with 28 independent components. The deterministic part
of the evolution equation f(X) = [%F; “™; 4N] is the same as the mean
field, equations 2.7 to 2.9. The state-dependent noise coefficient matrix G
is 14 x 28 and can be written as

01520 | O1x8
VeG =| Sna |Osxs

05,20 | Sk

The coefficient matrix Sy is

_—«/40[”7’10 «/ﬂniﬁ 0 0
1 Vaagng  —/Bani —Bouni /2B
Sk = ..
T N 0 0 Bam —/2Bm
0 0 0 0
L 0 0 0 0
0 0 0 7
0 0 0

o O O

Y 2000112 +/3Bunis 0
\/201;17’12 —\/3,3,11’13 VALY 4B,n4
0 0 Jaiin —vAuns.

and S, is given in appendix D. Note that each of the 8 columns of Sk cor-
responds to the flux vector along a single directed edge in the Kt channel
transition graph. Similarly, each of the 20 columns of Sy, corresponds to the
flux vector along a directed edge in the Na™ graph (see appendix D).

Remark 2. Although the ion channel state trajectories generated by equa-
tion 3.6 are not strictly bounded to remain within the nonnegative simplex,
empirically, the voltage nevertheless remains within specified limits with
overwhelming probability.

To facilitate comparison of the model, equations 3.3 to 3.5, prior work
(Fox & Lu, 1994; Fox, 1997; Goldwyn & Shea-Brown, 2011), we may rewrite
the 14 x 28D Langevin description in the equivalent form:

av

CE = Iapp(t) - gNaMS (V - VNa) - gKNS (V - VK) - gleak(V - Vleak),

(3.7)
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dM
W = ANaM + SNa‘é;:Nay (38)
dN
E = AxM + Sgék. (3.9)

The drift matrices An, and Ag remain the same as in Fox and Lu (1994), and
are the same as in the 14D deterministic model, equations 2.10 and 2.11. Snj,
and Sk are constructed from direct transitions of the underlying kinetics
in Figure 1, and &n, € R? and &k € R® are vectors of independent gaussian
white noise processes with zero mean and unit variance.

Fox and Lu’s original approach (Fox & Lu, 1994) requires solving a ma-
trix square root equation SST = D to obtain a square (8 x 8 for Na* or 5 x 5
for K*) noise coefficient matrix consistent with the state-dependent diffu-
sion matrix D. As an advantage, the ion channel representation equations
3.7 to 3.9, uses sparse, nonsquare noise coefficient matrices (8 x 20 for the
Na™ channel and 5 x 8 for the Kt channel), which exposes the independent
sources of noise for the system.

The new Langevin model in equations 3.7 to 3.9 does not require detailed
balance, which gives more insight into the underlying kinetics. Review pa-
pers (e.g., Goldwyn & Shea-Brown, 2011; Pezo et al., 2014; Huang et al.,
2015) did systematic comparison of various stochastic versions of the HH
model. In sections 4 and 5, we quantitatively analyze the connection be-
tween the new model and other existing models (Fox & Lu, 1994; Goldwyn
et al., 2011; Goldwyn & Shea-Brown, 2011; Dangerfield et al., 2010, 2012;
Orio & Soudry, 2012; Huang et al., 2013, 2015; Pezo et al., 2014; Fox, 2018).
Problems such as the boundary constraints are beyond the scope of this ar-
ticle; however, we would like to connect the new model to another type of
approximation to the MC model; the stochastic shielding approximation.

3.3 Stochastic Shielding for the 14D HH Model. The stochastic shield-
ing (SS) approximation was introduced by Schmandt and Galan (2012), in
order to approximate the Markov process using fluctuations from only a
subset of the transitions, namely, those corresponding to changes in the
observable states. In Schmidt and Thomas (2014), we showed that under
voltage clamp, each directed edge makes a distinct contribution to the
steady-state variance of the ion channel conductance, with the total vari-
ance being a sum of these contributions. We call the variance due to the kth
directed edge the edge importance; assuming detailed balance, it is given by

Re=J Y ) (k;lkj) (cTon) (] ) (57 w)) (0]c). (3.10)

i=2 j=2

Here, J; is the steady-state probability flux along the kth directed edge;
Ap < A1 < ... < Ay < 0 are the eigenvalues of the drift matrix (An;, or Ax,
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(A) HH K channel: F!k as a function of voltage (B) HH Na channel: Rk as a function of voltage
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Figure 4: Stochastic shielding under voltage clamp. Redrawn (with permission)
from Figures 10 and 13 of Schmidt and Thomas (2014). Each curve shows the
edge importance Ry (see equation 3.10) as a function of voltage in the range
[—-100, 100] mV for a different edge pair. For the K* kinetics, Ry = Rg are the
largest R value in the voltage range above. For the Na™ kinetics, Ry; = Ry, have
the largest Ry values in the subthreshold voltage range (c. [-100, —25] mV),
and Rj9 = Ry have the largest Ry values in the suprathreshold voltage range
(c. [-25,100] mV).

respectively), and v; (resp. w;) are the corresponding right (resp. left) eigen-
vectors of the drift matrix. Each edge’s stoichiometry vector ¢ has compo-
nents summing to zero; consequently, the columns of Ay, and Ak all sum
to zero. Thus, each drift matrix has a leading trivial eigenvalue A; = 0. The
vector ¢ specifies the unitary conductance of each ion channel state; for the
HH model, it is proportional to e} or 5, respectively.

Figure 4 shows the edge importance for each pair of edges in the HH
Na® and K ion channel graph, as a function of voltage in the range
[—100, 100] mV. Note that reciprocal edges have identical Ry due to detailed
balance. Under voltage clamp, the largest value of Ry for the HH channels
always corresponds to directly observable transitions, that is, edges k such
that |cT¢i| > 0, although this condition need not hold in general (Schmidt,
Galan, & Thomas, 2018).

To apply the stochastic shielding method under current clamp, we sim-
ulate the model with noise from only a selected subset £ C & of directed
edges, replacing equations 3.8 to 3.9 with

M
W == ANaM + Si\IaéNa’ (3.11)
dN

where S}, (resp. Sy) is a reduced matrix containing only the noise coef-
ficients from the most important edges £'. That is, £ contains a subset of
edges with the largest edge-importance values Ry.
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1797

Schmandt and Galdn (2012) assumed that the edges with the largest
contribution to current fluctuations under voltage clamp would also make
the largest contributions to variability in voltage and timing under current
clamp and included edges 7 and 8 of the K*channel (& = {7, 8}) and edges
11 and 12 and 19 and 20 of the Na™ channel (&L, = {11, 12,19, 20}), yield-
ing an 8 x 4 matrix S|, and a 5 x 2 matrix Si.. They demonstrated numer-
ically that restricting stochastic forcing to these edges gave a significantly
faster simulation with little appreciable change in statistical behavior: un-
der voltage clamp, the mean current remained the same, with a small (but
noticeable) decrease in the current variance; meanwhile, similar interspike
interval (ISI) statistics were observed.

Under current clamp, detailed balance is violated, and it is not clear from
mathematical principles whether the edges with the largest R; under volt-
age clamp necessarily make the largest contribution under other circum-
stances. In order to evaluate the contribution of the fluctuations driven by
each directed edge on ISI variability, we test the stochastic shielding method
by removing all but one column of Sj,, at a time. That is, we restrict to a sin-
gle noise source and observe the resulting ISI variance empirically. For ex-
ample, to calculate the importance of the kth direct edge in the Na*t channel,
we suppress the noise from all other edges by setting S &k = 05,1 and

Sha = [0sx1, -+ SNa(:, k), - -+, Ogxa]

that is, we include only the kth column of Sy, and set other columns to
be zeros. The ISI variance was calculated from an ensemble of 10* voltage
traces, each spanning about 500 ISIs.

Figure 5A plots the logarithm of the ISI variance for each edge in &.
Vertical bars (cyan) show the ensemble mean of the ISI variance, with a
95% confidence interval superimposed (magenta). Several observations are
in order. First, the ISI variance driven by the noise in each edge decreases
rapidly the farther the edge is from the observable transitions (edges 7,8),
reflecting the underlying “stochastic shielding” phenomenon. Second, the
symmetry of the edge importance for reciprocal edge pairs—(1,2), (3,4),
(5,6), and (7,8)—that is observed under voltage clamp is broken under cur-
rent clamp. The contribution of individual directed edges to timing variabil-
ity under current clamp has another important difference compared with
the edge importance (current fluctuations) under voltage clamp. A simi-
lar breaking of symmetry for reciprocal edges is seen for the Na* channel,
again reflecting the lack of detailed balance during active spiking.

Figure 5B shows the ISI variance when channel noise is included on in-
dividual edges of Ena. Here, the difference between voltage and current
clamp is striking. Under voltage clamp, the four most important edges are
always those representing observable transitions, in the sense that the tran-
sition’s stoichiometry vector ¢ is not orthogonal to the conductance vector c.
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log(a?(IS1))
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Figure 5: Logarithm of variance of ISI for stochastic shielding under current
clamp. The cyan bar is the mean of ISI, and the magenta plots the 95% con-
fidence interval of the mean ISI (see text for details). The applied current is
10 nA with other parameters specified in the appendixes. For the K* kinetics,
the largest contribution edge is 7, and 8 is slightly smaller, ranking the second
largest. For the Na* kinetics, the largest contribution pair is 19 and 20, with 20
slightly smaller than 19. Moreover, edge 17 and 18 is the second largest pair.
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1799

That is, the four most important pairs are always 11 and 12 and 19 and
20, regardless of voltage (see Figure 4). Under current clamp, the most im-
portant edges are 17, 18, 19, and 20. Although edges 11 and 12 are among
the four most important sources of channel population fluctuations under
voltage clamp, they are not even among the top 10 contributors to ISI vari-
ance when taken singly. Even though edges 17 and 18 are hidden, meaning
they do not directly change the instantaneous channel conductance, these
edges are nevertheless the second most important pair under current clamp.
Therefore, when we implement the stochastic-shielding based approxima-
tion, we include the pairs 17 and 18 and 19 and 20 in equation 3.11. We refer
to the approximate SS model driven by these six most important edges as
the 14 x 6D HH model.

Given the other parameters we use for the HH model (see Table 5 in ap-
pendix B), the input current of I, = 10 nA is slightly beyond the region
of multistability associated with a subcritical Andronov-Hopf bifurcation.
In order to make sure the results are robust against increases in the applied
current, we tried current injections ranging from 20 to 100 nA. While inject-
ing larger currents decreased the ISI variance, it did not change the rank
order of the contributions from the most important edges.

4 Pathwise Equivalence for a Class of Langevin Models

Fox and Lu’s method has been widely used since its appearance (see ref-
erences in Bruce, 2009; Goldwyn & Shea-Brown, 2011; Huang et al., 2015),
and the “best” approximation for the underlying Markov chain (MC) model
has been a subject of ongoing discussion for decades. Several studies (Mino
et al., 2002; Bruce, 2009; Sengupta, Laughlin, & Niven, 2010) attested to dis-
crepancies between Fox’s later approach (Fox, 1997) and the discrete-state
MC model, raising the question of whether Langevin approximations could
ever accurately represent the underlying fluctuations seen in the gold stan-
dard MC models. An influential review paper (Goldwyn & Shea-Brown,
2011) found that these discrepancies were due to the way in which noise
is added to the stochastic differential equations, 1.1 to 1.3. Recent studies,
including Dangerfield et al. (2010, 2012); Linaro et al. (2011); Goldwyn and
Shea-Brown (2011); Goldwyn et al. (2011); Orio and Soudry (2012); Giiler
(2013b); Huang et al. (2013, 2015); Pezo et al. (2014); and Fox (2018), dis-
cussed various ways of incorporating channel noise into HH kinetics based
on the original work by Fox and Lu (Fox & Lu, 1994; Fox, 1997), some of
which have the same SDEs but with different boundary conditions. Differ-
ent boundary conditions (BCs) are not expected to have much impact on
computational efficiency. Indeed, if BCs are neglected, the main difference
between channel-based (or conductance-based) models is the diffusion ma-
trix S in the Langevin euqations 1.2 and 1.3. As the discussion about where
and how to incorporate noise into the HH model framework goes on, Fox
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1800 S. Pu and P. Thomas

(2018) recently asked whether there is a way of relating different models
with different S matrices. We give a positive answer to this question below.

In section 4.1 we demonstrate the equivalence (neglecting the bound-
ary conditions) of a broad class of previously proposed channel-based
Langevin models (Fox & Lu, 1994; Dangerfield et al., 2010, 2012; Goldwyn &
Shea-Brown, 2011; Orio & Soudry, 2012; Huang et al., 2013; Pezo et al., 2014;
Fox, 2018) and the 14D Langevin HH model with 28 independent noise
sources (one for each directed edge in the channel state transition graph),
that is, our 14 x 28D Langevin model.

4.1 When Are Two Langevin Equations Equivalent? Two Langevin
models are pathwise equivalent if the sample paths (trajectories) of one
model can be made to be identical to the sample paths of the other under an
appropriate choice of gaussian white noise samples for each. To make this
notion precise, consider two channel-based Langevin models of the form
dX = £(X)dt + G(X) dW with the same mean dynamics f € R? and two dif-
ferent d x n matrices (possibly with different values of n; and 1), G; and
G,. Denote

f:RY > RY, (4.1)
Gy : RY — RPM, (4.2)
G, : R - R, (4.3)

Let X(t) = [Xq(t), Xo(t), ..., Xa(®)]T and X*(t) = [X[(t), X5(t), ..., X;(D)]T
be trajectories produced by the two models, and let W(t) =
[Wi(t), Wa(t), ..., Wy, ()] and W*(t) = [Wy (), WS (t), ..., W, (£)]T be vec-
tors of Weiner processes. That is, Wi(t), i =1,2,...,n; and Wj*(t), =12,
...,y are independent Wiener processes with (Wi(s)W;(t)) = &;;8(t — s)
and (W* (s)W;‘(t)) = §;j6(t — s). Note that n; and 1, need not be equal. As
defined in (Allen, Allen, Arciniega, & Greenwood, 2008), the stochastic
differential equation (SDE) models

dX = £(t, X(t))dt + Gi(t, X(t))dW(t) (4.4)
and

dX* = £(t, X*(t))dt + Go(t, X*(t))dW*(t) (4.5)
are pathwise equivalent if systems 4.4 and 4.5 possess the same probability
distribution and, moreover, a sample path solution of one equation is also a
sample solution to the other one. Allen et al. (2008) proved a theorem giving

general conditions under which the trajectories of two SDEs are equivalent.
We follow their construction closely below, adapting it to the case of two
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1801

different Langevin equations for the Hodgkin-Huxley system represented
in a 14-dimensional state space.

As in section 3, channel-based Langevin models for the stochastic dy-
namics of HH can be written as

dX = £(X)dt + S(X) dW(t), (4.6)

where the 14-component random vector X = (V;M;N) and f(x) =

%’; dd—l\f; ‘%] is the same as the mean-field, equations 2.7 to 2.9. Recall that

x = [v, m, n]7. Here we write

_Ouem | O1xn
S(X) = M 08><n s with
055 | Sk(m)
Sna : R® — R¥™, 4.7)

for the Na* channel and

Sk : R® — R>" (4.8)
for the K* channel. Here, 1 is the number of independent white noise forc-
ing terms affecting the sodium channel variables, while # is the number

of independent noise sources affecting the potassium gating variables. We
write

W(t) = [Wi(t), Wa(t). . ... Winsn (D17

for a Wiener process incorporating both the sodium and potassium noise
forcing. Given two channel-based models with diffusion matrices,

Snai i RS — R&M (4.9)
SNaz2 : R® — R8*m2, (4.10)

for the Na* channel, and

Sk : R — RY™, (4.11)
Sk : R — R, (4.12)
for the K™ channel, we construct the diffusion matrix D = SST. In order for

the two models to generate equivalent sample paths, it suffices that they
have the same diffusion matrix:
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01x1|01x8 |01x5
D =88] = [ 0sx1|Dna |03x5 | =SS,
05x1|0sxs | Dk

The SDEs corresponding to the two channel-based Langevin models are
dX = f(t, X(t))dt 4 Sy (t, X(t))dW(t), (4.13)
dX* = £(t, X*(£))dt + So(t, X*(£))dW* (t). (4.14)

The probability density function p(t, x) for random variable X in equa-
tion 4.13 satisfies the Fokker-Planck equation:

my+n

8 8
P, ") ! ZZ — [p(t x) Y 8, x50, x)]
! =1

i=1 j=1

il[ (t, x)p(t, x)]

8 2

Zl Bix] [D(l Pt 0p(t. x)] i aixi[ff(t, x)p(t, x)],

i=1

5Mw EMm

(4.15)

where Sl(j’j )(t, x) is the (i, j)th entry of the diffusion matrix Si(t, x). Equa-
tion 4.15 holds because

my+ny ) )
DNt x) = Y SH (08It %).
=1

If z1,z, € R™*and z; < zp, then

22,14 22,13 221
P(Z1 < X(t) < Z2) = / / / p(t,X)dxldJQ"'ng
21,14 21,13 211

Note that equations 4.13 and 4.14 have the same expression equation 4.15,
for the Fokker-Planck equation; therefore, X and X* possess the same prob-
ability density function. In other words, the probability density function of
Xin equation 4.6 is invariant for different choices of the diffusion matrix S.

4.2 Map Channel-based Langevin Models to Fox and Lu’s Model. We
now explicitly construct a mapping between Fox and Lu’s (1994) 14D model
and any channel-based model (given the same boundary conditions). We
begin with a channel-based Langevin description
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1803
dX = f(t, X(t))dt + S(t, X(t))dW(t), (4.16)
and Fox and Lu’s (1994) model,
dX* = £(t, X*(t))dt + So(t, X*(£))dW* (), (4.17)

where S is a d by m matrix satisfying SST = D (note that S is not necessarily
a square matrix), and Sy = v/D.

Let T be the total simulation time of the random process in equations 4.16
and 4.17. For 0 <t < T, denote the singular value decomposition (SVD) of
Sas

S(t) = P(A(B)Q(),

where P(t) is a d x d orthogonal matrix (i.e.,, PTP = PPT =1I;), Q(t) is an
m x m orthogonal matrix, and A(t) is a d x m matrix with rank(A) =7 <d
positive diagonal entries and d — r zero diagonal entries.

First, we prove that given a Wiener trajectory, W(t), t € [0, T] and the
solution to equation 4.16 X(t), there exists a Wiener trajectory W*(¢) such
that the solution to equation 4.17, X*, is also a solution to equation 4.16. In
other words, for a Wiener process W(t), we can construct a W*(t), such that
X*(f) = X(t), for0 <t < T.

Following Allen et al. (2008), we construct the vector W*(t) of 4 indepen-
dent Wiener processes as follows:

t g ¢
W () = /0 P(s)[(A(s)AT(s))z] A(s)Q(s)dW(s) + /0 P(s)dW™ (s)

(4.18)

for 0 <t < T, where W*(t) is a vector of length d with the first r entries
equal to 0 and the next d — r entries independent Wiener processes, and

19+ 1
[(A (s)AT(s)) %] is the pseudoinverse of (A(s)AT(s)) * Consider that

D(t) = SHST() = POAOQAN[POAOQD)|' (4.19)
= P(H)A(H)AT(H)PT(t) (4.20)
= [So(®)]% .21

[T

where Sy(t) = P(t)(A(t)AT (t)) PT(t) is a square root of D, by construction.
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The diffusion term on the right side of equation 4.17 with X*(t) replaced
by X(t) satisfies

So(t, X(£))dW*(t)

= So(t)(P(t)[(A(t)AT(t))%]+A(t)Q(t)dW(t) + P(HAW" (1))
- P(t)(A(t)AT(t))EPT(t)P(t)[(A(t)AT(t))%]+A(t)Q(t)dW(t)

+ P(t)(A(t)AT(t)) “pr (HP(H)dW™ (t)
= {P(H)A(H)Q(t)} dW(2). (4.22)
From the SVD of S = PAQ, we conclude that
So(t, X(£) AW (£) = S(t, X())dW(t). (4.23)

Hence, dX = f(t, X(t))dt + So(t, X(t))dW;, that is, X(¢) is a sample path so-
lution of equation 4.17.

Similarly, given a Wiener trajectory W*(t) and the solution to equa-
tion 4.17 X*(t), we can construct a vector W(t) of m independent Winner
processes as

! t
W(t)zfo QT(S)A+(S)[A(S)AT(S)]l/ZPT(S)dW*(S)+L QT(S)dW***(S)
(4.24)

for 0 <t < T, where W**(t) is a vector of length m with the first r entries
equal to 0 and the next m — r entries independent Wiener processes, and
AT (s) is the pseudoinverse of A(s). Then, by an argument parallel to equa-
tion 4.22, we conclude that

S, X*(1)AW () = So(t, X*(t))dW* (¢). (4.25)

Hence, dX* = f(t, X*(t))dt + S(t, X*(t))dW(t), that is, X*(t) is also a solu-
tion to equation 4.16. Therefore, we can conclude that the channel-based
Langevin model in equation 4.16 is pathwise equivalent to Fox and Lu’s
model.

To illustrate pathwise equivalence, Figure 6 plots trajectories of the
14 x 28D stochastic HH model and Fox and Lu’s model using noise traces
dictated by the preceding construction. In panel A, we generated a sam-
ple path for equation 4.16 and plot three variables in X: the voltage V,
Na* channel open probability M3;, and Kt channel open probability Nj.
The corresponding trajectory, X*, for Fox and Lu’s model was generated
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Figure 6: Pathwise equivalency of 14D HH model and Fox and Lu’s model.
(A) Given a sample path of the 14 x 28D Langevin model in equation 4.16, we
construct the noise by equation 4.18 and generate the sample trajectory of Fox
and Lu’s model using equation 4.17. (B) Given a sample path of Fox and Lu’s
model in equation 4.17, we construct the noise by equation 4.24 and generate
the sample trajectory of the 14 x 28D Langevin model using equation 4.16. For
both cases, we plot the voltage V, the open probability of the Na* channel (Ms;),
and the open probability of the K™ channel (N;). We obtain excellent agreement

in both directions.
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from equation 4.17 and the corresponding Wiener trajectory was calculated
using equation 4.18. The top three subplots in panel A superposed the volt-
age V*, Na* channel open probability M}, and K* channel open proba-
bility Nj in X* against those in X. The bottom three subplots in panel A
plot the point-wise differences of each variable. Equations 4.16 and 4.17 are
numerically solved in Matlab using the Euler-Maruyama method with a
time step dt = 0.001 ms. The slight differences observed arise in part due
to numerical errors in calculating the singular value decomposition of S (in
equation 4.16); another source of error is the finite accuracy of the Euler-
Maruyama method.® As shown in Figure 6, most differences occur near the
spiking region, where the system is numerically very stiff and the numerical
accuracy of the SDE solver accounts for most of the discrepancies (analysis
of which is beyond the scope of this article). To illustrate pathwise equiva-
lence, Figure 6 shows superposed voltage trajectories for each simulation,
as well as the point-wise voltage differences of each. We can conclude from
the comparison in Figure 6 that the 14 x 28D Langevin model is pathwise
equivalent with Fox and Lu’s model. Similarly, the same analogy applies
for other channel-based Langevin models such that with the same diffusion
matrix D(X).

We have shown that our 14 x 28D model, with a 14-dimensional state
space and 28 independent noise sources (one for each directed edge), is
pathwise equivalent to Fox and Lu’s original 1994 model, as well as other
channel-based models (under corresponding boundary conditions) includ-
ing Goldwyn et al. (2011); Goldwyn and Shea-Brown (2011); Orio and
Soudry (2012); Pezo et al. (2014); Fox (2018). As we shall see in section 5, the
pathwise equivalent models give statistically indistinguishable interspike
interval distributions under the same BCs. We emphasize the importance of
boundary conditions for pathwise equivalence. Two simulation algorithms
with the same A; and S; matrices will generally have nonequivalent tra-
jectories if different boundary conditions are imposed. For example, Dan-
gerfield et al. (2012) employ the same dynamics as Orio and Soudry (2012)
away from the boundary, where ion channel state occupancy approaches
zero or one. But where the latter allow trajectories to move freely across this
boundary (which leads only to small, short-lived excursions into “nonphys-
ical” values), Dangerfield imposes reflecting boundary conditions through
a projection step at the boundary. As we will see In section 5, this difference
in boundary conditions leads to a statistically significant difference in the
ISI distribution, as well as a loss of accuracy when compared with the gold
standard Markov chain simulation.

®The forward Euler method is first-order accurate for ordinary differential equations,

but the forward Euler-Maruyama method is only O(+/dt) accurate for stochastic differen-
tial equations (Kloeden & Platen, 1999).
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5 Model Comparison

In section 3, we studied the contribution of every directed edge to the ISI
variability and proposed how stochastic shielding could be applied under
current clamp. Moreover, in section 4, we proved that a family of Langevin
models is pathwise equivalent.

Here we compare the accuracy and computational efficiency of sev-
eral models, including the “subunit model” (Fox, 1997; Goldwyn &
Shea-Brown, 2011), Langevin models with different S matrices or bound-
ary conditions (Fox & Lu, 1994; Goldwyn & Shea-Brown, 2011; Dangerfield
etal., 2012; Orio & Soudry, 2012; Pezo et al., 2014), the 14D HH model (pro-
posed in section 3.2), the 14D stochastic shielding model with six indepen-
dent noise sources (proposed in section 3.3), and the gold standard Markov
chain model (discussed in section 3.1). Where other studies have compared
moment statistics such as the mean firing frequency (under current clamp)
and stationary channel open probababilies (under voltage clamp), we base
our comparison on the entire interspike interval (ISI) distributions, under
current clamp with a common fixed driving current. We use two different
comparisons of ISI distributions, the first based on the L; norm of the dif-
ference between two distributions (the Wasserstein distance; Wasserstein,
1969), in section 5.1 and the second based on the Lo, norm (the Kolmogorov-
Smirnov test; Kolmogorov, 1933; Smirnov, 1948), in section 5.2. We find
similar results using both measures: as expected, the models that produce
pathwise equivalent trajectories (Fox & Lu, 1994; Orio & Soudry; and our
14 x 28D model) have indistinguishable ISI statistics, while the nonequiv-
alent models (Fox, 1997; Dangerfield, 2010, 2012; Goldwyn & Shea-Brown,
2011; our 14 x 6D stochastic-shielding model) have significantly different
ISI distributions. Of these, the 14 x 6D SS model is the closest to the models
in the 14 x 28D class and as fast as any other model considered.

5.1 L; Norm Difference of ISIs. We first evaluate the accuracy of dif-
ferent stochastic simulation algorithms by comparing their ISI distributions
under current clamp to that produced by a reference algorithm, namely, the
discrete-state Markov chain (MC) algorithm.

Let Xi, X, ..., X,, be n independent samples of ISIs with a true cumu-
lative distribution function F. Let F,(-) denote the corresponding empirical
cumulative distribution function (ECDF) defined by

1 n
F.(x) = " Zl(x,gx}, x eR, (5.1)
i=1

where we write 14 to denote the indicator function for the set A. Let Q and
QM be the quantile functions of F and FM, respectively. The L;-Wasserstein
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Table 3: Summary of the L;-Wasserstein Distances of ISI Distributions for
Langevin Type Hodgkin-Huxley Models Compared to the MC Model.

Variables Noise Dimensions  L; Norm (msec.)  Run Time
Model V+M+N S Matrix Na+K (Wasserstein Dist.) (sec.)
MC 14845 n/a 20+8 227e-4+7.15e-5 3790
Fox94 1+7+4 S=+D 7+4 4.74e-2+193e-4 2436
Fox97 14241 n/a 3 8.01e-1+9.48e-4 67
Dangerfield  14+8+5 Sgr 10+4 2.18e-1+2.14e-4 655
Goldwyn 14845 S=+D 8+5 1.83e-1+£1.93e-4 2363
Orio 14845 Spaired 1044 4.52e-2+2.08e-4 577
14 x 28D 14845 Ssingle 20+8 493e-2+194e4 605
SS 14845 Ses 442 7.62e-2+7.57e-5 73

Notes: Model (see text for details): MC: Markov chain. Fox94; From Fox and Lu (1994).
Fox97: Fox (1997). Goldwyn: Goldwyn and Shea-Brown (2011). Dangerfield: Dangerfield
etal. (2010,2012). 14 x 28D: model proposed in section 3.2. SS: stochastic-shielding model
(see section 3.3). Variables: number of degrees of freedom in Langevin equation represent-
ing voltage, sodium gates, and potassium gates, respectively. S Matrix: Form of the noise
coefficient matrix in equations 1.1 to 1.3. Noise dimensions: number of independent gaus-
sian white noise sources represented for sodium and potassium, respectively. L; Norm:
Empirically estimated L;-Wasserstein distance between the model’s ISI distribution and
the MC model’s ISI distribution. For MC versus MC, independent trials were compared.
a £ b: mean-+tstandard deviation. Run time (in seconds): see text for details.

distance between two CDF’s FM and F can be written as (Shorack & Wellner,
2009)

e} 1
. = [P - P dr= [ Jow - oMl d 62)
0 0

Note that p; has the same units as dx. Thus, the L; distances reported in
Table 3 have units of milliseconds.

When two models have the same number of samples, 1, equation 5.2 can
be estimated by

1 1 n
[ 10 - QU dx~ 3 1% = it i= pr(F. B, 3)

0 i=1
where X, -+, X, and Yi, - -+, Y, are n independent samples sorted in as-

cending order with CDF F and FM, respectively.

We numerically calculate p; (F,, F) to compare several Langevin mod-
els against the MC model. We consider the following models: “Fox94” de-
notes the original model proposed by Fox and Lu (1994), which requires
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1809

a square root decomposition (S = +/D) for each step in the simulation (see
equations 1.1 to 1.3). “Fox97” is the widely used “subunit model” of Fox
(1997); see equations 1.4 and 1.5). “Goldwyn” denotes the method taken
from Goldwyn and Shea-Brown (2011), where they restrict the 14D sys-
tem (V, 5 K* gates and 8 Na* gates) to the 4D multinomial submanifold
(V, m, n, and h; see section 4.2), with gating variables truncated to [0,1].
We write “Orio” for the model proposed by Orio and Soudry (2012), where
they constructed a rectangular matrix S such that SST = D (referred to as
Spaired in Table 3) combining fluctuations driven by pairs of reciprocal edges,
thereby avoiding taking matrix square roots at each time step. The model
“Dangerfield” represents Dangerfield et al. (2012), which used the same S
matrix as in Orio and Soudry (2012) but added a reflecting (no-flux) bound-
ary condition via orthogonal projection (referred to as Sgr in Table 3). Fi-
nally, we include the 14 x 28D model we proposed in section 3.2, or “14D”
(referred to as Sgingle in Table 3); “SS” is the stochastic shielding model spec-
ified in section 3.3.

For each model, we ran 10,000 independent samples of the simulation,
holding channel number, injected current (I,pp = 10 nA), and initial condi-
tions fixed. Throughout the article, we presume a fixed channel density of
60 channels/um? for sodium and 18 channels/um? for potassium in a mem-
brane patch of area 100 um?, consistent with prior work such as Goldwyn
and Shea-Brown (2011) and Orio and Soudry (2012). The initial condition
is taken to be the point on the deterministic limit cycle at which the volt-
age crosses upward through —60 mV. An initial transient corresponding to
10 to 15 ISIs is discarded, to remove the effects of the initial condition. (See
Table 5 in appendix B for a complete specification of simulation parame-
ters.) We compared the efficiency and accuracy of each model through the
following steps:

1. For each model, a single run simulates a total time of 84,000 millisec-

onds (ms) with time step 0.008 ms, recording at least 5000 ISIs.

For each model, repeat 10,000 runs in step 1.

3. Create a reference ISI distribution by aggregating all 10,000 runs of
the MC model, that is, based on roughly 5 x 107 ISIs.

4. Por each of 10* individual runs, align all ISI data into a single vector
and calculate the ECDF using equation 5.1.

5. Compare the ISI distribution of each model with the reference MC
distribution by calculating the L;-difference of the ECDFs using
equation 5.3.

6. To compare the computational efficiency, we take the average execu-
tion time of the MC model as the reference. The relative computa-
tional efficiency is the ratio of the average execution time of a model
with that of the MC model (about 3790 sec).

N
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1810 S. Pu and P. Thomas

Table 3 gives the empiricially measured L; difference in ISI distribution
between several pairs of models.” The first row (“MC”) gives the average
L, distance between individual MC simulations and the reference distri-
bution generated by aggregating all MC simulations, in order to give an
estimate of the intrinsic variability of the measure. Figure 8 plots the L;-
Wasserstein differences versus the relative computational efficiency of sev-
eral models against the MC model. These results suggest that the Fox94,
Orio, and 14 x 28D models are statistically indistinguishable when com-
pared with the MC model using the L{-Wasserstein distance. This result
is expected in light of our results (see section 4) showing that these three
models are pathwise-equivalent. (We will make pairwise statistical com-
parisons between the ISI distributions of each model in see section 5.2.)
Among these equivalent models, however, the 14 x 28D and Orio mod-
els are significantly faster than the original Fox94 model (and the Gold-
wyn model) because they avoid the matrix square root computation. The
Dangerfield model has speed similar to the 14 x 28D model, but the use
of reflecting boundary conditions introduces significant inaccuracy in the
ISI distribution. The imposition of truncating boundary conditions in the
Goldwyn model also appears to affect the ISI distribution. Of the models
considered, the Fox97 subunit model is the fastest; however, it makes a par-
ticularly poor approximation to the ISI distribution of the MC model. Note
that the maximum L;-Wasserstein distance between two distributions is 2.
The ISI distribution of the Fox97 subunit model to that of the MC model is
more than 0.8, which is 10 times larger than the L;-Wasserstein distance of
the SS model, and almost half of the maximum distance. As shown in Fig-
ure 7, the Fox97 subunit model fails to achieve the spike firing threshold and
produces longer ISIs. Because of its inaccuracy, we do not include the sub-
unit model in our remaining comparisons. The stochastic shielding model,
on the other hand, has nearly the same speed as the Fox97 model, but it is
over 100 times more accurate (in the L; sense). The SS model is an order
of magnitude faster than the 14 x 28D model and has less than twice the
Ly discrepancy versus the MC model (L; norm 76.2 versus 49.3 microsec-
onds). While this difference in accuracy is statistically significant, it may
not be practically significant, depending on the application (see section 6
for further discussion of this point).

5.2 Two-Sample Kolmogorov-Smirnov Test. In addition to using the
L-Wasserstein distances to test the differences between two CDFs, we can
also make a pairwise comparison between each model by applying the
Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky, Kiefer, & Wolfowitz,

"Run times in Table 3, rounded to the nearest integer number of seconds, were ob-
tained by averaging the run times on a distribution of heterogeneous compute nodes from
Case Western Reserve University’s high-performance computing cluster.
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Figure 7: The probability density of interspike intervals (ISIs) for Fox97 (blue)
and the MC model (red). The probability densities were calculated over more
than 5.4 x 107 ISIs.
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Figure 8: The L;-Wasserstein distances and relative computational efficiency
versus the MC model. Fox94 (green circle), Goldwyn (black cross), Orio (cyan
square), 14D (blue star), SS (magenta downward-pointing triangle), Dangerfield
(red upward-pointing triangle), and the MC (brown diamond) model. The L, er-
ror for ISI distribution was computed using the L;-Wasserstein distance, equa-
tion 5.3, with discrete time Gillespie/Monte Carlo simulations as a reference.
The relative computational efficiency is the ratio of the recorded run time to
the mean recorded time of the MC mode (3790 seconds). The mean and 95%
confidence intervals were calculated using 100 repetitions of 10,000 runs each
(5 x 10° ISIs total).
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1812 S. Pu and P. Thomas

1956) and the two-sample Kolmogorov-Smirnov (KS) test (Kolmogorov,
1933; Smirnov, 1948). While the Wasserstein distance is based on the L;
norm, the KS statistic is based on the Ly, (or supremum) norm.

The Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956) es-
tablishes confidence bounds for the CDF. Specifically, the interval that con-
tains the true CDF, F(-), with probability 1 — «, is given by

In 2
|F.(x) — F(x)| < ¢ wheree = n"’ . (5.4)
When comparing samples XM, XM, ..., XM obtained from an approximate

model M against the gold standard, in section 5.1 we computed the L; dif-
ference of the empirical density functions as an approximation for the L; dif-
ference of the true distributions. Instead, we work here with the L., norm:

My (/oo " B p )1/17
poo(Er F) = lim |EV () = By ()] dx
p—>o0 0
zosup (|EM(x) = Ei(x)]) . (5.5)

For each x > 0, equation 5.4 bounds the discrepancy between the true
and empirical distribution differences as follows. By the triangle inequality
and independence of the X; from the XM, the inequality

IFM —Fl=|FM - FM L F, - F+FM _F,|
< [FM —E| + |F — FI + |E} — F|
<2+ |F)" —F,| (5.6)
holds with probability (1 — «)?. Similarly,
IE = Fil = " = F+F —F + FY — F|
< [FM = F)| + |F — F| + |F" — F|
<2+ |FM—F| (5.7)

holds with probability (1 — ). Together, equations 5.6 and 5.7 indicate that
the discrepancy between the difference of empirical distributions and the
difference of true distributions is bounded as

IFM —F| = |EY = Fil| < 2¢ (5.8)

. s In 2
with probability (1 — a)?, for e = |/ 5=.
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1813

We will use the pointwise difference of the ECDFs for a large sample as
an estimate for the pointwise difference between two true CDFs. The two-
sample Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933; Smirnov, 1948)
offers a statistics to test whether two samples are from the same distribution.
The two-sample KS statistic is

Dy = sup |F1,(x) — B2 (), (5.9)

where F , and F, ,, are two ECDFs for two samples defined in equation
5.1 and the sup is the supremum function. The reference statistic, R, ,(c),
depending on the significance level «, is defined as

Rym(a) = \/_ IOg(a/z)\/n ha - (5.10)

2 nm

where 1 and m are the sample sizes. The null hypothesis that “the two sam-
ples come from the same distribution” is rejected at the significance level «
if

Dy > Rn,m(a)- (5.11)

Figure 9 plots the logarithm of ratio of the two-sample KS statistics,
%&1), for Fox94 (Fox & Lu, 1994), Goldwyn (Goldwyn & Shea-Brown,
2011), Dangerfiled (Dangerfield et al., 2012), Orio (Orio & Soudry, 2012), 14D
(the 14 x 28D model we proposed in section 3.2). Data of “self-comparison”
(e.g. Fox94 versus Fox 94) was obtained by comparing two ISI ECDFs from
independent simulations. As shown in Figure 9, models that we previously
proved were pathwise equivalent in section 4, namely, the Fox94, Orio,
and 14D models, are not distinguishable at any confidence level justified
by our data. Note that those three models use the same boundary con-
ditions (free boundary condition as in Orio & Soudry, 2012) and the ra-
tio Dy /Ry, m(er) of pairwise comparison is on the same magnitude of that
for the self-comparisons. The models of Fox and Lu and Orio and Soudry,
and our 14D model generate indistinguishable ISI distributions but are dis-
tinguishable from Dangerfield’s model and Fox’s 97 model. Thus, as the
bottom panel of Figure 9 shows, Fox94, Orio, and 14 x 28D form a block
of statistically indistinguishable samples. However, as pointed out above,
these statistically equivalent simulation algorithms have different computa-
tional efficiencies (see Figure 8). Among these methods, Orio and Soundry’s
algorithm (14-dimensional state space with 14 undirected edges as noise
sources) and our method (14-dimensional state space with 28 directed edges
as noise sources) have similar efficiencies, with Orio’s method being about
5% faster than our method. Our 14 x 28D method provides the additional
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Figure 9: Logarithm of the ratio of Kolmogorov-Smirnov test statistic
Dy, /Rym(e), equations 5.9 and 5.10, for samples from the ISI distribution for
each pair of models. (Top) Box and whisker plots showing mean and 95% confi-
dence intervals based on 10,000 pairwise comparisons. The first five plots show
self-comparisons (green bars); the remainder compare distinct pairs (gray bars).
A: Fox94 (Fox & Lu, 1994), B: Orio (Orio & Soudry, 2012), C: 14D (14 x 28D
model, section 3.2), D: Dangerfield (Dangerfield et al., 2012), E: Goldwyn (Gold-
wyn & Shea-Brown, 2011). (Bottom) Mean logarithms (as in top panel) for all
pairwise comparisons.
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Fast and Accurate Stochastic Hodgkin-Huxley Simulations 1815

advantage that it facilitates further acceleration under the stochastic shield-
ing approximation (see section 6).

In contrast to the statistically equivalent Orio, 14 x 28D, and Fox94
models, algorithms using different boundary conditions are not pathwise
equivalent, which is again verified in Figure 9. Algorithms with subunit ap-
proximation and truncated boundary condition (i.e., “Goldwyn”) and the
reflecting boundary condition (i.e., “Dangerfield”) are significantly differ-
ent in accuracy (and, in particular, they are less accurate) than models in the
14 x 28D class.

6 Discussion and Conclusions

6.1 Summary. The exact method for Markov chain (MC) simula-
tion for an electrotonically compact (single compartment) conductance-
based stochastic model under current clamp is a hybrid discrete (channel
state)/continuous (voltage) model of the sort used by Clay and DeFelice
(1983), Newby et al. (2013), and Anderson et al. (2015). While MC methods
are computationally expensive, simulations based on gaussian/Langevin
approximation can capture the effects of stochastic ion channel fluctua-
tions with reasonable accuracy and excellent computational efficiency. Since
Goldwyn and Shea Brown’s work focusing the attention of the computa-
tional neuroscience community on Fox and Lu’s Langevin algorithm for the
Hodgkin-Huxley system (Fox & Lu, 1994; Goldwyn & Shea-Brown, 2011),
several variants of this approach have appeared in the literature.

In this article, we advocate for a class of models combining the best fea-
tures of conductance-based Langevin models with the recently developed
stochastic shielding approximation (Schmandt & Galan, 2012; Schmidt &
Thomas, 2014; Schmidt et al., 2018). We propose a Langevin model with
a l4-dimensional state space, representing the voltage, five states of the
K™ channel, and eight states of the Na*-channel; and a 28-dimensional rep-
resentation of the driving noise: one independent gaussian noise term for
each directed edge in the channel-state transition graph. We showed in sec-
tion 2 that the corresponding mean-field 14D ordinary differential equation
model is consistent with the classical HH equations in the sense that the
latter correspond to an invariant submanifold of the higher-dimensional
model, to which all trajectories converge exponentially quickly. Figure 2
illustrated the relation between the deterministic 4D and 14D Hodgkin-
Huxley systems. Building on this framework, we introduced the 14 x 28D
model, with independent noise sources corresponding to each ion channel
transition (see section 3). We proved in section 4 that given identical bound-
ary conditions, our 14 x 28D model is pathwise equivalent to Fox and Lu’s
original Langevin model and to a 14-state model with 14 independent noise
sources due to Orio and Soudry (2012).

The original 4D HH model, the 14D deterministic HH model, and the
family of equivalent 14D Langevin models we consider here form a nested
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family, each contained within the next. Specifically, the 14D ODE model is
the mean-field version of the 14D Langevin model, and the 4D ODE model
forms an attracting invariant submanifold within the 14D ODE model, as
we establish in our lemma 2. So in a very specific sense, the original HH
equations “live inside” the 14D Langevin equations. Thus, these three mod-
els enjoy a special relationship. In contrast, the 4D Langevin equations stud-
ied in Fox (1997) do not bear an especially close relationship to the other
three.

In addition to rigorous mathematical analysis, we also performed nu-
merical comparisons (see section 5) showing that, as expected, the pathwise
equivalent models produced statistically indistinguishable interspike inter-
val (ISI) distributions. Moreover, the ISI distributions for our model (and
its equivalents) were closer to the ISI distribution of the gold standard MC
model under two different metric space measures. Our method (along with
Orio and Soudry’s) proved computationally more efficient than Fox and
Lu’s original method and Dangerfield’s model (Dangerfield et al., 2012).
In addition, our method lends itself naturally to model reduction (via the
stochastic shielding approximation) to a significantly faster 14 x 6D simu-
lation that preserves a surprisingly high level of accuracy.

6.2 Discrete Gillespie Markov Chain Algorithms. The discrete-state
MC algorithm due to Gillespie is often taken to be the gold standard simu-
lation for a single-compartment stochastic conductance-based model. Most
former literature on Langevin HH models (Goldwyn & Shea-Brown, 2011;
Linaro et al., 2011; Orio & Soudry, 2012; Huang et al., 2013), when establish-
ing a reference MC model, consider a version of the discrete Gillespie algo-
rithm that assumes a piecewise-constant propensity approximation, that is,
it does not take into account that the voltage changes between transitions,
which changes the transition rates. This approximation can lead to biophys-
ically unrealistic voltage traces for very small system sizes (see Figure 2 of
Kispersky & White, 2008; top trace with N = 1 ion channel) although the
differences appear to be mitigated for N 2 40 channels (Anderson et al.,
2015). In this article our MC simulations are based on 6000 Na* and 1800
K* channels (as in Goldwyn & Shea-Brown, 2011), and we too use the ISI
distribution generated by a piecewise-constant propensity MC algorithm
as our reference distribution. As shown in Table 3 and Figure 8, the com-
putation time for MC is one order of magnitude larger than efficient meth-
ods such as Orio and Soudry (2012) and Dangerfield et al. (2012) and the
14 x 28D model. The computational cost of the MC model increases dra-
matically as the number of ion channels grows; therefore, even the approx-
imate MC algorithm is inapplicable for a large number of channels.

6.3 Langevin Models. It is worth pointing out that the accuracy of Fox
and Lu’s original Langevin equations has not been fully appreciated. In fact,
Fox and Lu’s model (Fox & Lu, 1994) gives an approximation to the MC
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model that is just as accurate as that of Orio and Soudry (2012) both in the
gating variable statistics (Goldwyn & Shea-Brown, 2011) and the ISI dis-
tribution sense (see section 5), because, as we have established, these mod-
els are pathwise equivalent! However, the original implementation requires
taking a matrix square root in every time step in the numerical simulation,
which significantly reduces its computational efficiency.

Models based on modifications of Fox and Lu’s (1994) work can be di-
vided into three classes: the subunit model (Fox, 1997), effective noise mod-
els (Linaro et al., 2011; Giiler, 2013b), and channel-based Langevin models
(e.g., Goldwyn & Shea-Brown, 2011; Dangerfield et al., 2012; Orio & Soudry,
2012; Pezo et al., 2014; Huang et al., 2013).

6.3.1 Subunit Model. The first modification of Fox and Lu’s model is the
subunit model (Fox, 1997), which keeps the original form of the HH model,
and adds noise to the gating variables (m, h, and n) (Fox, 1997; Goldwyn
& Shea-Brown, 2011). The subunit approximation model was widely used
because of its fast computational speed. However, as Bruce (2009) and oth-
ers pointed out, the inaccuracy of this model remains significant even for
large number of channels. Moreover, Goldwyn and Shea-Brown (2011) and
Huang et al. (2015) found that the subunit model fails to capture the statis-
tics of the HH Nat and K gates. In this article, we also observed that the
subunit model is more efficient than channel-based Langevin models but
tends to delay spike generation. As shown in Figure 7, the subunit model
generates significantly longer ISIs than the MC model.

6.3.2 Effective Noise Models. Another modification to Fox and Lu’s algo-
rithm is to add colored noise to the channel open fractions. Though colored
noise models such as those of Linaro et al. (2011) and Giiler (2013b) are not
included in our model comparison, Huang et al. (2015) found that both of
these effective noise models generate shorter ISIs than the MC model with
the same parameters. Though the comparison we provided in section 5 only
include the Fox and Lu 94, Fox97, Goldwyn, Dangerfield, Orio, SS, and the
14 x 28D models, combining the results from Goldwyn and Shea-Brown
(2011) and Huang et al. (2015), the 14 x 28D model could be compared to a
variety of models (e.g., Fox & Lu, 1994; Fox, 1997; Goldwyn & Shea-Brown,
2011; Linaro et al., 2011; Orio & Soudry, 2012; Dangerfield et al., 2012; Huang
et al., 2013; Giiler, 2013b).

6.3.3 Channel-based Langevin Models. The main focus of this article is
the modification based on the original Fox and Lu’s matrix decomposi-
tion method, namely, the channel-based (or conductance-based) Langevin
models. We proved in section 4 that under the same boundary conditions,
Fox and Lu’s original model, Orio’s model, and our 14 x 28D model are
pathwise equivalent, which was also verified from our numerical simula-
tions in sections 4 and 5. In section 4 we discussed channel-based Langevin
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models (Fox & Lu, 1994; Goldwyn & Shea-Brown, 2011; Dangerfield et al.,
2012; Orio & Soudry, 2012; Fox, 2018). We excluded Fox’s more recent im-
plementation (Fox, 2018) in section 5 for two reasons. First, the algorithm is
pathwise equivalent to others considered there. Moreover, the method is
vulnerable to numerical instability when the Cholesky decomposition is
performed. Specifically, some of the elements in the S matrix from the
Cholesky decomposition in Fox (2018) involve square roots of differences of
several quantities, with no guarantee that the differences will result in non-
negative terms—even with strictly positive value of the gating variables.
Nevertheless, this model would be in the equivalence class and in any case
would not be more efficient than the Orio model because of the noise dimen-
sion and complicated operations (involving taking multiple square roots) in
each step.

6.4 Model Comparisons. If two random variables have similar distri-
butions, then they will have similar moments, but not vice versa. Therefore,
comparison of the full interspike-interval distributions produced by dif-
ferent simulation algorithms gives a more rigorous test than comparison
of first and second moments of the ISI distribution. Most previous evalua-
tions of competing Langevin approximations were based on the accuracy
of low-order moments, for example, the mean and variance of channel
state occupancy under voltage clamp, or the mean and variance of the
interspike interval distribution under current clamp (Goldwyn et al., 2011;
Goldwyn & Shea-Brown, 2011; Schmandt & Galédn, 2012; Linaro et al., 2011;
Dangerfield et al., 2012; Orio & Soudry, 2012; Huang et al., 2013, 2015).
Here, we compare the accuracy of the different algorithms using the full ISI
distribution but using the L; norm of the difference (Wasserstein metric)
and the Lo, norm (Kolmogorov-Smirnov test). Greenwood, McDonnell,
and Ward (2015) previously compared the ISI distributions generated by
the Markov chain (Gillespie algorithm) to the distribution generated by
different types of Langevin approximations (LA), including the original
Langevin models (Fox & Lu, 1994; Goldwyn & Shea-Brown, 2011), the
channel-based LA with colored noise (Linaro et al., 2011; Giiler, 2013b),
and LA with a 14 x 14 variant of the diffusion coefficient matrix S (Orio &
Soudry, 2012). They concluded that Orio and Soudry’s method provided
the best match to the Markov chain model, specifically, “Fox-Goldwyn, and
Orio-Kurtz® methods both generate ISI histograms very close to those of
“Micro.”? (Greenwood et al., 2015). We note that the comparison reported
in this article simply superimposed plots of the ISI distributions, allowing
a qualitative comparison, while our metric-space analysis is fully quan-
titative. In any case, their conclusions are consistent with our findings;
we showed in section 4 that the Fox-Goldwyn and the Orio-Kurtz model

*We refer to this model as “Orio.”
This is the model we refer to as the Markov chain model.
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are pathwise equivalent (when implemented with the same boundary
conditions), which accounts for the similarity in the ISI histograms they
generate. In fact, because of pathwise equivalence, we can conclude that
the true distributions for these models are identical, and any differences
observed just reflect finite sampling.

6.5 Stochastic Shielding Method. The stochastic shielding (SS) ap-
proximation (Schmandt & Galdn, 2012) provides an efficient and accurate
method for approximating the Markov process with only a subset of ob-
servable states. For conductance-based models, rather than aggregating
ion channel states, SS affects dimension reduction by selectively eliminat-
ing those independent noise sources that have the least impact on current
fluctuations. Recent work in (Pezo, Soudry, & Orio, 2014) compared pre-
vious methods (Gillespie, 1977; Orio & Soudry, 2012; Dangerfield et al.,
2012; Huang et al., 2013; Schmandt & Galan, 2012) in accuracy, applicabil-
ity, and simplicity, as well as computational efficiency. They concluded that
for mesoscopic numbers of channels, stochastic shielding methods com-
bined with diffusion approximation methods can be an optimal choice. Like
Orio and Soudry (2012), the stochastic shielding method proposed by Pezo
etal. (2014) also assumed a detailed balance of transitions between adjacent
states and used edges that are directly connected to the open gates of HH
Na* and K*. We calculated the edge importance in section 3.3 and found
that the 4 (out of 20) most important directed edges for the Na™ gates are
not the 4 edges directly connected to the conducting state, as assumed in
previous application of the SS method (Schmandt & Galan, 2012).

6.6 Which Model to Use? Among all modifications of Fox and Lu’s
method considered here, Orio and Soudry’s approach and our 14 x 28D
model provide the best approximation to the gold standard MC model, with
the greatest computational efficiency. Several earlier models were studied
in the review paper by Goldwyn and Shea-Brown (2011), where they re-
discovered that the original Langevin model proposed by Fox and Lu is
the best approximation to the MC model among those considered. Later
work (Huang et al., 2015) further surveyed a wide range of Langevin ap-
proximations for the HH system (Fox & Lu, 1994; Fox, 1997; Goldwyn &
Shea-Brown, 2011; Linaro et al., 2011; Giiler, 2013b; Orio & Soudry, 2012;
Huang et al., 2013) and explored models with different boundary con-
ditions. Huang et al. (2015) concluded that the bounded and truncated-
restored Langevin model (Huang et al., 2013) and the unbounded model
(Orio & Soudry, 2012) provide the best approximation to the MC model.

As shown in sections 4 and 5, the 14 x 28D Langevin model naturally
derived from the channel structure is pathwise equivalent to the Fox94,
Fox18, and Orio-Soudry models under the same boundary conditions. The
14 x 28D model is more accurate than the reflecting boundary condition
method of Dangerfield et al. (2012) and also better than the approximation
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method proposed by Goldwyn and Shea-Brown (2011) when the entire ISI
distribution is taken into account. We note that Huang et al. (2015) treated
Goldwyn’s method (Goldwyn & Shea-Brown, 2011) as the original Fox and
Lu model in their comparison; however, the simulation in Goldwyn and
Shea-Brown (2011) uses the 4D multinomial submanifold to update gating
variables. Our analysis and numerical simulations suggest that the original
Foxand Lumodelis indeed as accurate as the Orio-Soudry model, although
the computational cost remains a major concern.

Though the 14 x 28D model has similar efficiency and accuracy as that
of Orio and Soudry (2012), it has several advantages. First, the rectangu-
lar S matrix (in equations 1.2 and 1.3) in Orio’s model merges the noise
contributions of reciprocal pairs of edges. However, this dimension reduc-
tion assumes, in effect, that detailed balance holds along reciprocal edges,
which our results show is not the case, under current clamp (see Figure 5).
Moreover, the 14 x 28D model arises naturally from the individual transi-
tions of the exact evolution equations (see equations 3.1 and 3.2) for the
underlying Markov chain model, which makes it conceptually easier to
understand. In addition, our method for defining the 14 x 28D Langevin
model and finding the best SS model extends to channel-based models with
arbitrary channel gating schemes beyond the standard HH model. Given
any channel state transition graph, the Langevin equations may be read off
from the transitions, and the edge importance under current clamp can be
evaluated by applying the stochastic shielding method to investigate the
contributions of noise from each individual directed edge. Finally, in ex-
change for a small reduction in accuracy, the stochastic shielding method
affords a significant gain in efficiency. The 14 x 28D model thus offers a
natural way to quantify the contributions of the microscopic transitions to
the macroscopic voltage fluctuations in the membrane through the use of
stochastic shielding. For general ion channel models, extending a biophys-
ically based Langevin model analogous to our 14 x 28D HH model, to-
gether with the stochastic shielding method, may provide the best available
tool for investigating how unobservable microscopic behaviors (such as ion
channel fluctuations) affect the macroscopic variability in many biological
systems.

6.7 Limitations. All Langevin models, including our proposed 14 x
28D model, proceed from the assumption that the ion channel population
is large enough (and the ion channel state transitions frequent enough) that
the gaussian approximations by which the white noise forcing terms are
derived are justified. Thus, when the system size is too small, no Langevin
system will be appropriate. Fortunately the Langevin approximation ap-
pears quite accurate for realistic population sizes.

The 14 x 28D model uses more noise sources than other approaches.
However, stochastic shielding allows us to jettison noise sources that do
not significantly affect the system dynamics (the voltage fluctuations and
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ISI distribution). Moreover, in order to compare the ISI distribution in de-
tail among several variants of the Fox94" model versus the Markov chain
standard, we have considered a single value of the driving current, while
other studies have compared parameterized responses such as the firing
rate, ISI variance, or other moments, as a function of applied current. Accu-
rate comparisons require large ensembles of independent trajectories, forc-
ing a trade-off between precision and breadth; we opted here for precise
comparisons at a representative level of the driving current.

From a conceptual point of view, a shortcoming of most Langevin mod-
els is the tendency for some channel state variables x to collide with the
domain boundaries x € [0, 1] and to cross them during numerical simula-
tions with finite time steps. We adopted the approach advocated by Orio
and Soudry (2012) of using “free boundaries” in which gating variables
can make excursions into the (unphysical) range x < 0 or x > 1. Practically,
these excursions are always short if the time step is reasonably small, as
they tend to be self-correcting.!® Another approach is to construct reflect-
ing boundary conditions; different implementations of this idea were used
in Dangerfield et al. (2010), Fox and Lu (1994), and Schmid, Goychuk, and
Hénggi (2001). Dangerfield’s method proved both slower and less accurate
than the free boundary method. As an alternative method, one uses a biased
rejection sampling approach, testing each gating variable of the 14D model
on each time step and repeating the noise sample for any time step violat-
ing the domain conditions (Fox & Lu, 1994; Schmid et al., 2001). We found
that this method had accuracy similar to that of Dangerfield’s method (L;-
Wasserstein difference ~ 4.4e-1 msec; see Table 3) and run time similar to
that of the Fox94 implementation, about four times slower than our 14D
Langevin model.

Yet another approach that in principle can guarantee that the stochas-
tic process remains within proscribed bounds, rederives a “best diffusional
approximation” Fokker-Planck equation based on matching a master-
equation birth-and -death description of a (binomial) population of two-
state ion channels, leading to modified drift and diffusion terms (Goychuk,
2014). This method does not appear to extend readily to the 14D setting,
with underlying multinomial structure of the ion channel gates, so we do
not dwell on it further.

Table 3 gives the accuracies with which each model reproduces the
ISI distribution, compared to a standard reference distribution generated
through a large number of samples of the MC method. The mean L; dif-
ference between a single sample and the reference sample is about 0.227
microseconds. For a nonnegative random variable T > 0, the difference in
the mean under two probability distributions is bounded above by the L;

10 - - . - . .
To avoid complex entries, we use |x| when calculating entries in the noise coefficient
matrix.
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difference in their cumulative distribution functions.!! Thus, the L; norm
gives an idea of the temporal accuracy with which one can approximate
a given distribution by another. The mean difference between the ISI dis-
tribution generated by a single run of the full 14 x 28D model is about 49
usec, and the discrepancy produced by the (significantly faster) SS model
is about 76 usec. When would this level of accuracy matter for the func-
tion of a neuron within a network? The barn owl Tyto alba uses interau-
ral time difference to localize its prey to within 1 to 2 degrees, a feat that
requires encoding information in the precise timing of auditory system ac-
tion potentials at the scale of 5 to 20 microseconds (Moiseff & Konishi, 1981;
Gerstner, Kempter, Van Hemmen, & Wagner, 1996). For detailed studies of
the effects of channel noise in this system, the superior accuracy of the MC
model might be preferred. On the other hand, the timescale of information
encoding in the human auditory nerve is thought to be in the millisecond
range (Goldwyn, Shea-Brown, & Rubinstein, 2010), with precision in the
feline auditory system reported as low as 100 us (Imennov & Rubinstein,
2009; see also Woo, Miller, & Abbas, 2009). For these and other mammalian
systems, the stochastic shielding approximation should provide sufficient
accuracy.

6.8 Future Work. In section 3.3 we compared the ISI variance when
noise was included one edge at a time and found that the edges making the
greatest contribution to population fluctuations under voltage clamp were
not identical to the edges having the largest effect on ISI variance when
taken one at a time. However, the ISI, considered as a random variable de-
termined through a first-passage time process, depends on the entire trajec-
tory, not just on the occupancy of the conducting states. The HH dynamics
are strongly nonlinear, producing a limit cycle in the deterministic case, and
it is not immediately clear whether the effects of channel noise on ISI vari-
ability should be additive. In future work, we plan to address the question
of the additive contribution of individual/molecular noise sources on ISI
variability.

A principal motivation for using the stochastic shielding algorithm is to
develop fast and accurate algorithms for ensemble simulations of forward
models for parameter estimation in a data assimilation framework. We ex-
pect that our method may prove useful for such studies based on current-
clamp electrophysiological data in the future.

"For a nonnegative random variable T with cumulative distribution function F(t) =
P[T < t], the mean satisfies E[T] = fooo(l — F(t))dt (Grimmett & Stirzaker, 2005). There-
fore, the difference in mean under two distributions F; and F, satisfies |E{[T] — Eo[T]| =
[T R = B®)dt] < p1(BL B).
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Appendix A: Table of Common Symbols and Notations

Table 4: Common Symbols and Notations in This Article.

1823

Symbol Meaning

C Membrane capacitance (F/cm?)

v Membrane potential (mV)

VNas Vi, VL Ionic reversal potential for Na™, K*and leak (mV)

Lapp Applied current to the membrane (nA/ cm?)

m, h, n Dimensionless gating variables for Na™ and K* channels

Ay, By x € {m, n, h}

X

M= [M;, My, ---, Mg]
[moo, m10, mag, m3p,
moy, My, o1, ma1]7
N =[Ny, Np, ---,N5]
[ng, ny, o, n3, ny]7

Voltage-dependent rate constant (1/msec)
Vector of state variables

Eight-component state vector for the Na™' gates
Components for the Na* gates

Five-component state vector for the Kt gates
Components for the KT gates

Miot, Niot Total number of Na* and K+ channels
X 4-dimensional manifold domain for 4D HH model
y 14-dimensional manifold domain for 14D HH model
Ak k-dimensional simplex in R**! given by
it Y=Ly =0
M Multinomial submanifold within the 14D space
ANa, Ak State-dependent rate matrix
D State diffusion matrix
S, 51, S2, SNnas Sk Noise coefficient matrices
& Vector of independent §-correlated gaussian white noise with

X =[X1, Xp, ..., X4]
W=[W;,W,,...,W,]
8()

E,

zero mean and unit variance

A d-dimensional random variable for sample path

A Wiener trajectory with # components

The Dirac delta function

The Kronecker delta

Empirical cumulative distribution function with n
observations (in section 5, we use 1, n as sample sizes)

Table 5: Parameters Used for Simulations in This Article.
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Symbol Meaning Value

C Membrane capacitance 1uE/ cm?
3Na Maximal sodium conductance 120 uS/cm?
3K Maximal potassium conductance 36 uS/cm?
Sleak Leak conductance 0.3 uS/cm?

VNa Sodium reversal potential for Na* 50 mV
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Table 5: Continued.

S. Pu and P. Thomas

Symbol Meaning Value
Vk Potassium reversal potential for K™ —77 mV
Vieak Leak reversal potential —54.4mV
Lapp Applied current to the membrane 10 nA/cm?
A Membrane area 100 um?
Mot Total number of Nat channels 6,000
Niot Total number of K+ channels 18,00

Appendix B: Parameters and Transition Matrices

Subunit kinetics for the Hodgkin and Huxley equations are given by

_ 01(25-0)
on(v) = exp(25—0.10) — 1’
Bu(v) = dexp(—v/18),

ap(v) = 0.07 exp(—0/20),

) = -
Al) = B =0T + 1
0.01(10 — »)

() = ST —010) = 1"

Bn(v) = 0.125exp(—v/80)

(B.1)

(B.2)
(B.3)

(B.4)

(B.5)

(B.6)

[ Dx(1) Bu(v) 0O 0 0
4oy (v) Dx(2) 2B,(v) O 0
Ax() = 0 Bau(v) Dk(3) 3Bu.(v) O
0 0 2a,(v) Dk(4) 4B.(v)
0 0 0 au(w) Dk(5)
TDna(1)  Bu 0 0 B
3y Dna(2) 2B 0 0
0 20y Dna(3) 3Bum 0
0 0 an Dna(4) O
ANa = o 0 0 0 Dna(5)
an 0 0 3oy
0 ) 0 0
0 0 0 ) 0

0 0 0
B 0 0
0 B
0 0 B
B 0 0 )
Dna(6)  2Bm 0
2a,, Dna(7) 3Bm
0 ay DNa(8)
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where the diagonal elements

Dion(i) = — ) Aion(j. i),  ion € {Na,K]}.
Jij#

Appendix C: Proof of Lemma 2

For the reader’s convenience, we restate this lemma.

Lemma 2. Let X and Y be the lower-dimensional and higher-dimensional
Hodgkin-Huxley manifolds given by equation 2.12, and let F and G be the vector
fields on X and Y defined by equations 2.1 to 2.4 and 2.7 to 2.9, respectively. Let
H: X > McYandR:Y — X bethe mappings given in Tables 2 and 1, respec-
tively, and define the multinomial submanifold M = H(X). Then M is forward-
time-invariant under the flow generated by G. Moreover, the vector field G, when
restricted to M, coincides with the vector field induced by F and the map H. That
is, forall y € M, G(y) = D;H(R(y)) - F(R()).

The main idea of the proof is to show that for every y € ), G(y) is con-

, 4
tained in the span of the four vectors { Z—f(R(y))} "

Proof. The map from the 4D HH model to the 14D HH model is given in
Table2as {H : x — y|x € X,y € Y}, and the map from the 14D HH model
to the 4D HH model is given in Table 1 as {R:y — x|x € X,y € V}. The
partial derivatives 22 of the map H are given by

dmOo dmo()

M0 a1 21 — (1 — )
Im 3(1—=m) (1 —h) 7 (1 —m)
d d

Mo _ 30 —my@m—am+1) MO _ 301 — mpm
dm dh
dﬂ’IQ() _ > dﬂ12() _ 2
T = 3(1 — h)(2m — 3m~) = 3(1 —m)m
dmsg _ 2 dmsy _ 3

I = 3(1 —h)ym T —m
dﬂ’lm _ 2 dﬂ’l()l _ 3

o= ==3h(1—m) pa )
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d;’;f — 3h3m? — 4m + 1) d;”; = 3(1 — m)’m
d;;f — 3h(2m — 3m?) dZZl = 3(1 — m)m?
dm dm
dnil = 3hm? thl =m°.
We can write dH/dx in matrix form as:
M1 0 0 0 7
0 30-mP1—-h  —1-mp 0
0 3(1 —h)(@m?>—4m+1) —3(1 —m)’m 0
0 31-h@2m-3m* =301 -—mm? 0
0 3(1 — h)m? —md 0
0 —3h(1 — m)? 1 —m)® 0
9H 0  3h@Bm?—4m+1) 3(1 —m)*m 0
x| o0 3h(2m — 3m?) 3(1 — m)m? 0
0 3hm? m3 0
0 0 0 —4(1 — ny?
0 0 0 4(1 — n2(1 — 4n)
0 0 0 12n(1 — n)(1 — 2n)
0 0 0 4n2(3 — 4n)
K 0 0 4nd |

We write out the vector fields 2.8 and 2.9 component by component:

dM
Wl = BuMa + M5 — Botyy + an)My
= —3(1 —m)*(1 — h) [(1 — m)oty, — mPy]
+ (1 —m)?[hpy — (1 — o] ,
dM,
T Bo;My + 28,uM3 + BiMs — (20 + B + )Mo
=3(1 — h)(3m* — 4m + 1) [(1 — m)ay, — mPBy]
+3(1 —mPm[hp, — (1 —h)a],
dM3
T 200, My + 38,Ms + M7 — (p + 2Bm + an)Ms,

— 3(1 = h)(@m — 3n2) [(1 — m)a, — mB]
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+3(1 = mym?* [hpy, — (1 = h)au ],

dM
— = M+ BiMs — (3B + )M,
= 3(1 — hym? [(1 — m)oty — mBy] + m> [hBy — (1 — h)ay,],
dM
WS = BuMg + aM1 — (Bay + Bi)Ms,
= _3h(1 - m)Z [(1 - m)(xm - m,B‘rn]
+ @ —=m)*[hBy — (1 — h)ay ],
dMg
7 = 3amM5 + ZIBTHM7 + O[hMZ - (Zam + IBm + IBh)Méa
= 3h(Bm?* — 4m + 1) [(1 — m)ay — mPBy]
—3(1 = m)*m [hBy — (1 — Ba],
dM;
T 20,,,Me + 3B8uMs + oy M3 — (ot 4 2B + )My,
= 3h(2m — 3m?) [(1 — m)ay — 1Bm]
—3(1 —m)m? [hBy — (1 — h)ay ] ,
M
78 = auM7 + oMy — 3B, + Br)Ms,
= 3hm* [(1 — m)ay — mByu] — m® [hBy — (1 — h)ay ] ,
% = BNy — 4a,N; = —4(1 — n)*[er, (1 — 1) — nB,],
T = 40Ny +28,Ns — (Bt + )N
= 4(1 — n)*(1 — 4n)[an (1 — n) — npy],
dN3
T 30, N2 + 38,Ny — (2t 4+ 28,)N3
= 12n(1 — n)(1 = 2n)[ey (1 — n) — np,],
% = 2anN3 + 4ﬂnN5 - (306” + 3ﬂn)N4
= 4112(3 —An)[e, (1 — n) — np,l,
% = ayNy —48,Ns5 = 4713[0{,1(1 — 1) —npy].

By extracting common factors from the previous expressions it is clear that
G(y) may be written, for ally € ), as
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Gly) = —3NaMs (V' — V) — SkNs(V — Vi) = g (V — V1) + Lpp {8H

! &)
+ [(1 —m Yo, — m/ﬂm] {%(R(y))}

= [~ @ -] { TR0 |

oH

a1 - ) - | T ROD)|. €

where m' = (M + Ms)/3+2(M3z +My)/3 + My +Mg), I =Ms+ Mg+
My + Mg and ' = Ny /4 + N3/2 + 3Ny /4 + Ns. Thus, G(y) is in the span of
the column vectors dH/dv, dH/dm, dH/dn, and dH/dh, as was to be shown.

On the other hand, the vector field for the 4D HH ODE, equations 2.1 to
2.4, is given by

(=gnam®h(V — Ving) = Zxn*(V — Vi) — gL(V — V1) + Lpp) /C
(V)1 —m) — Bu(V)m
ap(V)(L = h) = Bu(V)h
an(V)(1 —n) = Bu(V)n

Referring to equation C.1, we see that G(y) = D.H(R(y)) F(R(y)). Thus we
complete the proof of lemma 2. O

Appendix D: Diffusion Matrix of the 14D Model

As defined in equations 2.5 and 2.6,

M = [mqo, Mg, Mo, M3y, Mo1, M1, Mo1, M31]T, (D.1)

N = [ng, n1, n2, n3, ng]7, (D.2)

the diffusion matrices Dy, and Dk are given by

Dx(1,1) —4ay,ng — By 0
—doynog — Bum Dx(2,2) 3oy — 2Bumo
Dx = 0 —3a,n1 — 2B,12 Dk (3, 3)
0 0 —20,1p — 3B,13

0 0 0
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i Dna(1,1)
—3aty Mgy — BuMio
0
. 0
Dy, =
—ayMoy — Bpior
0
0
L 0
B 0
0
—ay Mg — 3BuiMsg
‘ Dra(4, 4)
(4:6) Nal\=,
DNa = 0
0
0
L —apmzy — Bz
B 0
0
—apimg — Bpima
0
(7:8)
DNa = O
—20ty My — 2o
Dna(7,7)
L —apymy — 3B,z
where

0
0
o =2auny — 3Pun3
Dk (4, 4)

—aung — 4B,ny

—3ayMigy — BmMio
Dna(2,2)
—20t,m1g — 2BmMoo
0
0
—apimy — Bumn
0
0

—ay oo — Buio
0
0
0
DNa (5: 5)
—3oymor — B
0
0

0
0
0
—apimzo — Ppmz
0
0
—yta — 3Bz
Dna(8.8)

1829

0
0
0 ,
—aynz — 4Bny
Dk (5, 5)
0 _
—2ay, 119 — 2B
Dna(3,3)
— iz — 3BmM3o
0
0
—apmoo — Bpima
0
0 _
—apmy — B
0
0
—3amMor — P
Dna(6, 6)
—20t,m1 — 2BmMn1
0

Dion(i.i) = — Y Dion(j. i). forion € {Na,K}.

jri#
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The matrices Sk and S, for the 14 x 28D HH model are given by

[ — oo /Butor  —~/3emioo /Bt 0 ]
0 0 NBaingy  —~/Butio —A/apiiig
0 0 0 0 0
as_| 0 0 0 0 0
Na = Japtgy  —/Britior 0 0 0
—/Bumy 0 0 0 0
0 0 0 oty —/Britia
0 0 0 0 0o
B 0 0 0 0 0 T
VBimin = 20mmig /2B 0 0
V20,19 —/2Bmma —/antiag /Brimar
610 _ 0 0 0 0 0
N 0 0 0 0 0
— /B 0 0 0 0
0 0 0 Vg —/Butmar
0 0 0 0 0o |
0 0 0 0 0 7
0 0 0 0 0
@tz /3Buiizg 0 0 0
SI(\lIizls) _ ooy —/3Bumzg —Jommzg  /Buiiai 0
0 0 0 00
0 0 0 0 VBayo
0 0 0 0 0
L 0 0 Japizg  —+/Brmsy 0
B 0 0 0 0 0 7
0 0 0 0 0
0 0 0 0 0
g _ 0 0 0 0 0
Na —Baymor /B 0 0 0
—Bumin = 20mmy /2Buma 0 0
0 V2001 —/2Bumar —famio /3B
L 0 0 0 ooy —/3Bmmzt |
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where 51(\?;) is the ith — jth column of Sn,, and

—Aanng /By 0 0
Vaaung  —/Bati —+/3ouni  /2Buna
Sk = 0 0 VBagni  —/2Buny -
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

M Y 3Bun3 —A/ N3 4p,ny
0 0 \/‘TnS 4/ 4,811714
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