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Bursting plays an important role in neural communication. At the pop-
ulation level, macroscopic bursting has been identified in populations
of neurons that do not express intrinsic bursting mechanisms. For the
analysis of phase transitions between bursting and non-bursting states,
mean-field descriptions of macroscopic bursting behavior are a valuable
tool. In this article, we derive mean-field descriptions of populations
of spiking neurons and examine whether states of collective bursting
behavior can arise from short-term adaptation mechanisms. Specifi-
cally, we consider synaptic depression and spike-frequency adaptation
in networks of quadratic integrate-and-fire neurons. Analyzing the
mean-field model via bifurcation analysis, we find that bursting be-
havior emerges for both types of short-term adaptation. This bursting
behavior can coexist with steady-state behavior, providing a bistable
regime that allows for transient switches between synchronized and
nonsynchronized states of population dynamics. For all of these find-
ings, we demonstrate a close correspondence between the spiking neural
network and the mean-field model. Although the mean-field model
has been derived under the assumptions of an infinite population
size and all-to-all coupling inside the population, we show that this
correspondence holds even for small, sparsely coupled networks. In
summary, we provide mechanistic descriptions of phase transitions
between bursting and steady-state population dynamics, which play
important roles in both healthy neural communication and neurological
disorders.
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1 Introduction

The brain, composed of billions of single cells, has been demonstrated
to possess a hierarchical, modular organization, indicative of a complex
dynamical system (Ballard, 2015). Within this hierarchy, populations of
neurons form functional entities, the states of which are defined by the
collective dynamics of the population rather than by the activities of each
single cell. Mean-field descriptions of the macroscopic dynamics of such
populations are a valuable tool for the mathematical analysis of collective
phenomena, as well as for computational models of multiple coupled pop-
ulations of neurons. Population bursting is a particular mode of collective
behavior that plays a major role in both healthy and pathological neural
dynamics. At the single neuron level, bursting is characterized by the neu-
ron firing a train of spikes, followed by a period of quiescence (Izhikevich,
2000). This behavior has been suggested to result from adaptive mecha-
nisms introducing a slow timescale that enables dynamic regimes of burst-
ing and controls the burst period (Izhikevich, 2000; Dhamala, Jirsa, & Ding,
2004). Mathematical descriptions of such adaptation mechanisms have been
developed accordingly at the level of single cells. Importantly, bursting has
also been reported in populations of cells without intrinsic bursting mecha-
nisms (Izhikevich, 2000; Marder & Thirumalai, 2002; Zeldenrust, Wadman,
& Englitz, 2018). In such cases, bursting can be conceived as a property of
the collective dynamic interactions within the population, henceforth re-
ferred to as emergent bursting.

In healthy neural communication, emergent bursting activity may allow
for a more reliable information transmission via chemical synapses (Lis-
man, 1997). This can be explained by the synchronized activity of the pop-
ulation during the burst, which stabilizes neural information transmission
against different types of noise (Hahn, Ponce-Alvarez, Deco, Aertsen, & Ku-
mar, 2019). Increased bursting, however, activity has been found in various
neurological diseases, such as epilepsy and Parkinson’s disease, and can
act disruptively on neural communication if it exceeds certain levels of oc-
currence (Connors, 1984; Lobb, 2014). The mechanisms behind emergent
bursting are not well understood, since most of the computational literature
on bursting focuses on single cells (Guckenheimer, Harris-Warrick, Peck, &
Willms, 1997; Izhikevich, 2000). Typical approaches to model bursting at
the population level either use coupled circuits of excitatory and inhibitory
populations (Kudela, Franaszczuk, & Bergey, 2003; Zeldenrust, Wadman, &
Englitz, 2018) or include an explicit bursting mechanism such as the action
of a neuromodulator (Marder & Thirumalai, 2002), feedforward inhibition
(Zeldenrust & Wadman, 2013), or spike-frequency adaptation (SFA) (van
Vreeswijk & Hansel, 2001). For example, van Vreeswijk and Hansel (2001)
demonstrated in a network of coupled, excitatory leaky integrate-and-fire
neurons that SFA can lead to the emergence of network bursting.
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Bursting Dynamics in QIF Networks 1617

Importantly, these approaches investigate spiking neural networks,
where the macroscopic state variables have to be inferred from single cell
activities. However, a direct mathematical description of the macroscopic
dynamics would be beneficial for both mathematical analyses of emergent
bursting and studies on multiple coupled bursting populations. This is ev-
ident from the number of neural mass models that have been applied to
study phase transitions between asynchronous and bursting states in cou-
pled neural populations ((Suffczynski, Kalitzin, & Lopes Da Silva, 2004);
(Breakspear et al., 2006; Spiegler et al., 2011; Chen et al., 2014); (Miiller, van
Albada, Kim, & Robinson, 2017)). These models describe macroscopic state
variables such as average firing rates inside a population. Importantly, they
have not been derived from a spiking neural network but were designed to
resemble experimentally observed macroscopic features of neural behavior,
such as the input-output relationships of a population or spectral features
of population activity (Wilson & Cowan, 1972; Jansen & Rit, 1995; Robin-
son, Rennie, & Wright, 1997). Due to the continuous nature of such macro-
scopic state variables, neural mass models allow applying various methods
from dynamical systems theory that could not be applied to spiking neural
networks—for example, directly linking changes in the model structure to
phase transitions. However, as the employed neural mass models are of a
phenomenological nature, the mechanistic link to the underlying spiking
neurons remains unclear in this type of work. While suited to investigate
the emergence of bursting behavior within circuits of coupled neural pop-
ulations, these models offer limited insight into the emergence of bursting
within a population based on its intrinsic dynamics.

The aim of this article is to provide and validate mean-field descriptions
of collective bursting emerging from the dynamic interaction of short-term
adaptation mechanisms and recurrent excitation in populations of coupled
spiking neurons. Hence, our work closes the gap between investigations
of population bursting in spiking neural networks and neural mass mod-
els. First efforts into this direction were made for the special case of SFA
in a network of coupled linear integrate-and-fire neurons, employing the
Fokker-Planck formalism and an adiabatic approximation given long SFA
timescales (Gigante, Mattia, & Giudice, 2007). Analyzing this mean-field
description, Gigante et al. (2007) were able to identify different types of col-
lective bursting. In this article, we show under which conditions bursting
can emerge as a collective phenomenon from different short-term adapta-
tion (STA) mechanisms within a population of coupled spiking neurons.
To this end, we consider multiplicative and additive adaptation as general-
ized descriptions of the vast number of STA mechanisms that have been re-
ported to affect neural excitability. We incorporate these STA mechanisms in
a globally coupled population of quadratic integrate-and-fire (QIF) neurons
and derive mean-field descriptions of the macroscopic dynamics follow-
ing the approach by Montbrié, Paz6, and Roxin (2015). Using bifurcation
analysis, we identify states of collective bursting as well as the boundary
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1618 R. Gast, H. Schmidt, and T. Knosche

conditions for such bursting to occur. Our results show how changes in ei-
ther the average input or the strength of short-term adaptation within a
neural population can drive the population into and out of collective burst-
ing. We find that short-term adaptation gives rise to bistable regimes of
concurrent bursting and nonbursting states, and we show how different
short-term adaptation mechanisms can have very similar effects on the pop-
ulation dynamics. Finally, we perform a finite size analysis in which we ex-
amine the effects of network size and coupling probability of the spiking
neural network on the correspondence between this microscopic network
description and the mean-field model.

We find that emergent bursting can be found for all network sizes and
coupling probabilities we considered. Furthermore, we demonstrate that
the mean-field model generalizes well to networks of biologically plausible
size and coupling probability. This makes our work applicable to a broad
range of neurodynamic scenarios in which the impact of changes in pop-
ulation input or short-term adaptation strength on the behavior of spiking
neuron populations is of interest.

2 Model Definition

The QIF neuron is the canonical form of type 1 neurons and has previously
been used in combination with linear adaptation as a basis for models of
bursting cells (Izhikevich, 2000). The evolution equation of the membrane
potential V; of a single QIF neuron i is given by

tVi = V2 4 + I(t) + Jst, (2.1)

Z > / a(t — )8t — th)dt, (2.2)

j=1 k\t“<t

with background current 7;, synaptic strength J, evolution time constant
7, extrinsic input I(t), and synaptic activation s. The integral kernel a(t —
t') represents synaptic dynamics, for example, in the case of exponential
synapses a(t) = e /% /7, with synaptic timescale z;. In the limit 7, — 0, s
represents instantaneous synaptic coupling in an all-to-all coupled network
of N neurons. A neuron i emits its kth spike at time tf when it reaches Vj
upon which V; is reset to V. Recently, Montbri6 et al. (2015) have shown that
there exists an exact mean-field description for the macroscopic dynamics of
the population dynamics given by equations 2.1 and 2.2 in the limit of N —
oo and Vy = =V, — oco. These can be expressed in terms of the evolution of
the average firing rate » and average membrane potential v:

A
Tr = — + 2rv, (2.3)
T

0 = 02+ +I(t) + Jrr — (wrr)?. (2.4)
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Figure 1: Relationship between microscopic and macroscopic representation
of the QIF network. Microscopic network simulations were performed with
N = 10,000 neurons. Spikes are shown for 50 randomly selected neurons. Model
parameters: A =2, ] = 15VA, i1 = —4A, I(t) =2.5if 10.0 < t < 30 and I(t) = 0
otherwise.

Here, 77 and A are the center and half-width at half maximum of a
Lorentzian distribution over the single neuron parameters ;. Furthermore,
synaptic conversion is assumed to be instantaneous (z; — 0) throughout
this article, which allows us to set s = r. However, we note that the adapta-
tion mechanisms we consider here may lead to scenarios where s # r even
in this limit. In these cases, we will state the functional relationship between
s and r explicitly. For simplicity, we set the membrane time constantto t = 1
and define all other time-dependent variables used throughout this arti-
cle in units of . While Figure 1 provides a visual representation of the re-
lationship between the microscopic variables given by equations 2.1 and
2.2, and the macroscopic variables governed by equations 2.3 and 2.4, the
mathematical details of this relationship are summarized in the following
paragraphs.

As Montbri6 et al. (2015) show the variables V of the microscopic system
always follow a Lorentzian distribution,

p(Vin, t) = : x(n. )

= WV =y OF +x(n. 1P @3)
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1620 R. Gast, H. Schmidt, and T. Knosche

where x(n, t) is associated with the mean firing rate r(n,t) via x(n,t) =
wr(n,t), and y(n,t) = v(n, t) is the membrane potential averaged over V
for specific values of 1. The microscopic system follows the continuity
equation,

dp+ov[(VP4n+Js+1D)p]l =0, (2.6)

and by inserting equation 2.5 into 2.6, one obtains the dynamics of x(7, t)
and y(n, t) in complex form,

dw(n.t) =il—wn, t)* +n+]Jst) + 1(t)], 2.7)

with w(n, t) = x(n, t) + iy(n, t). Equation 2.7 can then be reduced to equa-
tions 2.3 and 2.4 using the Lorentzian distribution,

1 A

= _ B 2.8
80 = 2.8)
given in complex form by
mi+ i =i —iA+]r— (nr +iv)*]. (2.9)

There exists a regime in which two stable states of the system defined by
equations 2.3 and 2.4 can coexist, a fixed point representing low firing ac-
tivity and a focus representing high firing activity. To introduce bursting to
this system, a mechanism is required that alternatingly switches between
those two states.

3 Synaptic Depression

The first short-term adaptation mechanism we consider is synaptic depres-
sion (SD), a multiplicative downscaling of the synaptic efficacy. Neuro-
biologically, this can represent various mechanisms such as postsynaptic
receptor desensitization, alterations in the density of postsynaptic recep-
tors, or resource depletion at the synapse (Jones & Westbrook, 1996; Zucker
& Regehr, 2002).

3.1 Mathematical Definition of SD. To introduce SD to our system, we
change equation 2.2 as follows:

N
Z St —th) =1 - Apr. (3.1)
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This adds a dependency of the postsynaptic activation s; on an adaptation
variable A; pertaining to the ith postsynaptic neuron. The latter follows the
microscopic evolution equations,

00 N
o / / k /
A, :/0 53 Galt =198 — et (3.2)
=1 k<t
= OlGA X7, (33)
Galt) = 172t exp(—t/1a), (34)

which express adaptation as a convolution with an alpha kernel with rate
o and timescale t4. This choice accounts for (1) the delay between post-
synaptic activation and peak adaptation, (2) the slow decay of the adap-
tation to baseline, and (3) the exponential shape of the rise and decay of
adaptation that have been reported in experimental studies (Jones & West-
brook, 1996; Chung, Li, & Nelson, 2002; Hanson & Jaeger, 2002; Zucker &
Regehr, 2002). The alpha kernel results from the biexponential kernel when
the rise and decay time constants of the biexponential dynamics are identi-
cal (Robinson et al., 1997). This relationship allows application of our model
to scenarios where the adaptation dynamics can be described by up to two
different timescales, and it allows for an easy extension of our adaptation
mechanism to differentiate between rise and decay times of adaptation. Im-
portantly, this kind of adaptive mechanism has no effect on an isolated
neuron, because it affects only the susceptibility to synaptic input, which
is effectively zero shortly after it spiked (due to refractoriness). Therefore,
any changes to the network behavior caused by SD have to emerge from
the interaction between the network units. Furthermore, the adaptation is
coupled to the mean-field firing rate of the population, that is, each spike
in the network triggers postsynaptic adaptation at all network units. This
becomes clear from equation 3.2, where A; is driven by the mean firing
rate r of the network and thus behaves like a global variable A that can be
written as equation 3.3, with * denoting the convolution operation. There-
fore, the synaptic input into each neuron also behaves like a global variable
s = (1 — A)r with adaptation dynamics given by equations 3.3 and 3.4. Solv-
ing the convolution integral in equation 3.2 leads to the following evolution
equations for the macroscopic adaptation dynamics:

T7A = B, (3.5)
1aB=—-2B—A+ar. (3.6)

Hence, to introduce SD at the macroscopic level, we can change equations
2.3and 2.4 to
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1622 R. Gast, H. Schmidt, and T. Knosche

A
= — + 2o, (3.7)
T

=02+ q+It)+ Jrr(1 — A) — (wr7). (3.8)
We demonstrate the accuracy of this mean-field description below.

3.2 Effects of SD. Next, we performed numerical bifurcation analysis
of the four-dimensional system defined by equations 3.5 to 3.8. For differ-
ent values of «, we initialized the model at a low activity state and contin-
ued the model in 7. To this end, and for all other parameter continuations
reported in this article, we used the software package AUTO-07p (Doedel
et al., 2007). The adaptation timescale was chosen as 74 = 107, correspond-
ing to slow adaptation relative to the evolution of the average membrane
potential and firing rate. In accordance with the analysis of Montbri6 et al.
(2015), we found two fold bifurcations for o = 0, defining the borders of
a bistable regime in 77 in which a stable node (representing low firing ac-
tivity) and a stable focus (representing high firing activity) are separated
by a saddle. For an increasing adaptation rate «, we identified a parame-
ter regime in which two subcritical Andronov-Hopf bifurcations occur (see
Figure 2A). The unstable limit cycle emerging from the branch of nodes
(lower branch) exists only in a very narrow parameter range and gets anni-
hilated quickly via a homoclinic bifurcation with the saddle. Thus, it is not
of further interest for our examination of emergent bursting. As shown in
Figure 2B, the unstable limit cycles emerging from the branch of foci (upper
branch) via a subcritical Andronov-Hopf bifurcation undergo a fold bifur-
cation, marking the birth of a second, stable limit cycle. Continuation of the
stable limit cycle in 7 led to a second fold bifurcation. This fold bifurcation
occurred at a value of 77 close to the one where the stationary states of the
system undergo a saddle-node bifurcation. The period of this unstable limit
cycle grew rapidly toward infinity, terminating at a homoclinic bifurcation
close to the fold bifurcation. Since this model behavior can, again, only be
observed in a very small parameter range in our model, it is of limited rel-
evance for the analysis of population bursting, which is why we omit a de-
tailed analysis of this homoclinic bifurcation. However, this scenario has
been reported in neural models with slow-fast dynamics before and was
analyzed in detail in De Maesschalck and Wechselberger (2015).

As shown in Figure 2B, the stable regime of the bursting limit cycle can
coexist with the high-activity focus and hence permits various transitions
between bursting and steady-state behavior. Figures 2C and 2D demon-
strate that the stable bursting state can be transiently entered from a ei-
ther low-activity state through excitation (see Figure 2C) or a high-activity
state through inhibition (see Figure 2D). Furthermore, the bistable regime
allows for hysteresis—switching between limit cycle and focus equilib-
rium through transient excitatory and inhibitory inputs (see Figure 2E). In
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Figure 2: Bursting due to synaptic depression. (A) Bifurcation diagram of fixed
points in 7 for various values of «. Stable (unstable) fixed points are marked
by solid (dotted) lines. (B) Subcritical Hopf bifurctions give rise to limit cycles
representing bursting behavior. Minimum and maximum of the limit cycle are
depicted in green. Vertical lines indicate initialization points used for panels C
to E. (C) Transient bursting induced by excitation. (D) Transient bursting in-
duced by inhibition. (E) In the bistable regime, excitatory and inhibitory stim-
uli switch the system between sustained bursting and sustained regular firing.
Microscopic network simulations were performed with N = 10,000 neurons.
Spikes are shown for 50 randomly selected neurons. Model parameters: A =2,
J=15VA, t =1, 14 = 10, & = 0.05.

neural communication, this regime is particularly relevant, since it allows
for quick transitions between highly different firing modes via transient in-
puts and introduces a form of network memory. However, it is also of inter-
est for pathological neural dynamics such as observed in epilepsy, which
have been proposed to reflect switching between a healthy state of low
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Figure 3: Coexistence of bursting and steady-state behavior. Left column: three-
dimensional projection (onto 7, v, and A) of the four-dimensional state-space
representation of the system dynamics. For these parameters, the stable limit
cycle (bold green curve, representing bursting behavior) coexists with a stable
focus (purple dot) and an unstable limit cycle (black dashed curve). Thin curves
mark trajectories with different initial conditions in the basin of attraction of the
limit cycle (green) or the focus (purple). Right column: Two sample time series
that have been initiated in either the basin of attraction of the stable limit cycle
(ro =1.8, v9 = 1.0, Ag = 0.4, By = 0.01) or the basin of attraction of the stable
focus (rp = 0.75, vg = —0.4, Ag = 0.36, By = 0.0). Model parameters: A =2, ] =
15VA, 1 = 1.0, 74 = 10, « = 0.05, ij = —4.6.

neural synchrony and a coexisting pathological, synchronous state (Suf-
fczynski, Kalitzin, & Lopes Da Silva, 2004; Takeshita, Sato, & Bahar, 2007).
Importantly, Figures 2C to 2E show a close correspondence between numer-
ical simulations of the mean-field model and the spiking neural network.

3.3 Limit Cycle Characteristics. For a better understanding of the
bistable regime, we mapped out the basins of attraction with respect to
the state variables A, r, and v of the model given by equations 3.5, 3.7,
and 3.8, respectively. Figure 3 visualizes different trajectories of this three-
dimensional projection of the system when initialized at different points
near the unstable limit cycle that separates the stable limit cycle (green) and
the stable focus (purple). It is the unstable (saddle) limit cycle and its sta-
ble manifold (i.e., all points in state space from which the system converges
onto the unstable limit cycle) that act as a separatrix between the stable fo-
cus and the stable limit cycle. This separating behavior is visible where the
unstable manifold is orthogonal to the 3D-projection in Figure 3, especially
along the left part of the unstable limit cycle.
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Figure 4: Existence and period of bursting. Lines indicate two-parameter con-
tinuations of codimension 1 bifurcations in the (7, «) plane. The color-coded
region shows the interburst period of the stable limit cycle (depicted in units of
7). Other model parameters: A =2, ] = 15v/A, t = 1.0, 74 = 10.

In a next step, we performed a two-parameter continuation of the sub-
critical Andronov-Hopf bifurcation in 77 and « to examine the dependence
of population bursting on the interplay between network excitation and
adaptation rate. Figure 4 shows that dynamic regimes of stable bursting
can be found for a range of the two parameters, which is bounded by the
fold of limit cycle bifurcations. For 7, the parameter range in which the limit
cycle exists corresponds to most of the cells in the population being in an
excitable regime and has been reported for a number of models using QIF
neurons (Montbri6 et al., 2015; Ratas & Pyragas, 2016; Schmidt, Avitabile,
Montbrié, & Roxin, 2018). Within this range, the interburst frequency scales
with the input strength, which makes the latter an interesting parameter for
tuning this model to reflect experimentally reported interburst frequencies.
In summary, we identified SD as a potential mechanism for bursting to oc-
cur in networks of globally coupled spiking neurons. We demonstrated that
this bursting mechanism could be transiently switched on and off via tran-
sient input currents and found that the interburst frequency can be tuned
via the input strength.

4 Spike-Frequency Adaptation

In this section, we examine how well our results for multiplicative adapta-
tion generalize to additive short-term adaptation mechanisms, known as
spike-frequency adaptation (SFA). SFA differs from the above described
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adaptation mechanism in two aspects: (1) it affects the presynaptic activ-
ity instead of the postsynaptic efficacy, and (2) it acts additively instead of
multiplicatively (van Vreeswijk & Hansel, 2001; Gigante et al., 2007).

4.1 Mathematical Defition of SFA. SFA is a homeostatic mechanism
that acts at the single cell level via spike-triggered balancing currents (Guck-
enheimer et al., 1997; Benda & Herz, 2003). As such, SFA is an adaptive
mechanism driven by the firing rate of a single cell rather than the firing
rate of the whole network. Therefore, we introduce neuron-specific adapta-
tion variables A; and B;,

‘L’AAl' = B[, (41)

‘L’ABI' —2B; — A; + ar;, (4.2)

with neuron-specific spiking activity ; given by

=y 8(t—t). (4.3)

T\t <t

Adding the adaptation variable A; to 2.1, we receive the following evolution
equation for the membrane potential of the single neuron:

Vi = V7?40 +1(t) — Ai + Jst, (4.4)

where we can set s = 7, since the synaptic input is not directly affected by
adaptation anymore. If 74 3> 7, then we may assume that the adaption vari-
able A; changes very slowly in comparison to V;, and that the Lorentzian
ansatz, equation 2.5, holds. Effectively, the variable A; can be regarded as
constant and be absorbed into #; in this limit (for a similar approach, see
Gigante et al. (2007)). We note here that the Lorentzian ansatz equation 2.5
is independent of the distribution of {7;}. The neuron-specific spiking ac-
tivity #; is associated with x(n, t) via r; = x(n;, t)/m. Hence, the microscopic
dynamics are given by

dw =iln+Jr+1—w? —aGy* R[w]/7]. (4.5)
If g(n) follows the Lorentzian distribution, then equation 4.5 results in
i+ iv =i — iA+ Jr — (wr +iv)* — aGy #1]. (4.6)

Thus, the presynaptic additive model is identical to a postsynaptic additive
model at the macroscopic scale if 74 > 7. At this scale, postsynaptic SFA is
straightforward to realize by adding A to the right-hand side of equation

d-ajo11B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

0 & 098U/9005981/GL9L/6/ZENP

€20z Jequieideg g0 uo 3senb Aq jpd-00g |



Bursting Dynamics in QIF Networks 1627

Bursting Limit Cycle A

@ Hopf Bifurcation
¥ Fold Bifurcation
& Fold of limit cycle B

4.0

2 o
o (5]

€, ——QIF network
S 25 . E —— mean-field model
2 . 2
= 2.0 i =
g ': B E
T 15 4
o !
1.0 ot =
c
0.5 £
' ¥ .|| 2
— 3
0.0 = —
-4 -2 0 2

Background current i}

Figure 5: Bursting due to SFA. (A) Similar to SD, SFA changes the fixed-point
structure and stability of the system via Hopf bifurcations. The limit cycle min-
ima and maxima are visualized in green. Stable (unstable) equilibria are marked
by solid (dotted) lines. The dashed vertical line marks the initialization point
used for panel B. (B) In the bistable regime, positive (red) and negative (blue)
stimuli switch the system between sustained bursting and sustained regular fir-
ing. Model parameters: A =2, ] = 15vA, 1 =1,7t4 = 10, « = 1.0.

2.3, leading to the macroscopic evolution equations

. A
r = — + 2rv, (4.7)
TT
=02+ qif+I(t) — A+ Jrr — (nrr)?, 4.8)

where s = rand A is still given by equations 3.5 and 3.6. Note that equations
4.7 and 4.8 are equivalent to the complex differential form given by equation
4.6.

4.2 Effects of SFA. Using the system defined by equations 3.5, 3.6, 4.7,
and 4.8, we repeated the parameter continuation in 7 for different val-
ues of «. This was done to examine whether the results we obtained for
SD-induced population bursting would translate to an additive adaptation
mechanism. As can be seen in Figure 5A, we found results strikingly similar
to the ones we found for SD. For sufficiently strong levels of SFA (parame-
terized via «), we found a subcritical Andronov-Hopf bifurcation marking
the birth of a bursting limit cycle. Furthermore, we again found a bistable
region in which the bursting limit cycle coexists with the stable focus,
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1628 R. Gast, H. Schmidt, and T. Knosche

separated by an unstable limit cycle. These regimes could be well tra-
versed via transient inputs, as depicted in Figure 5B. Driving the micro-
scopic model given by equations 2.2 and 4.1 to 4.4 with the same transient
inputs, we found that the spiking dynamics were still attracted to the low-
dimensional manifold described by the macroscopic system. This shows
that even with t4 = 107, the condition 74 > t is sufficiently satisfied for the
macroscopic description of the population bursting dynamics to be valid.

5 Finite Size Effects

In the previous sections, we examined bursting behavior in a mean-field
model of a network of QIF neurons. This model has been derived in the ther-
modynamic limit (N — oo) and under the constraint of all-to-all coupling.
We demonstrated that the mean-field model is an accurate representation
of the macroscopic behavior of an all-to-all coupled QIF neuron network of
size N = 10%. In this section, we investigate how well our findings general-
ize to more realistic network architectures. Specifically, we ask how sensi-
tive our findings are with respect to the number of cells and the connection
probabilities inside the QIF network. For this purpose, we constructed QIF
networks with varying numbers of QIF neurons N and varying coupling
probabilities p and compared their dynamic behavior against the mean-
field model given by equations 3.5 to 3.8. We initialized each model in a
stable bursting regime (7 = —5.5, A =2, ] = 15VA, 14 =10, o = 0.05) and
performed numerical simulations over a time interval of T = 1000. For com-
parison with the mean-field model, we calculated the average frequency of
bursts in time intervals of T = 100, as well as the peak amplitude of the
bursting. The results of this procedure are visualized in Figure 6.

Most important, we found stable bursting behavior in each of the mi-
croscopic networks we investigated, even in the smallest, most sparsely
connected one (N = 1000, p = 0.01). Furthermore, we observed that the
bursting frequency scales negatively with coupling probability, whereas in-
creases of the network size improved the correspondence with the mean-
field model (see Figure 6A). This led to the interesting behavior that the
correspondence between small networks (e.g., with N = 1000 neurons) and
the mean-field model had an optimum at intermediate coupling probabil-
ities (e.g., p = 0.1). Regarding the bursting amplitude, we observed that
both a small network size and a small coupling probability led to a reduced
amplitude. Investigating the simulated time series more closely, we found
that this was due to a decreased within-burst neural synchronization (see
Figure 6B).

In summary, we found that our mean-field model generalizes well to
networks with realistic cell counts and coupling probabilities, even though
it was derived for the special case of an infinitely large network with all-to-
all coupling. Most important, our finding that states of population bursting
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Figure 6: Finite size effects. (A) Difference between mean-field model and spik-
ing neural network in interburst frequency and maximum bursting amplitude
for different network sizes (N) and coupling probabilities (p) of the spiking neu-
ral network. (B) Sample time series of the mean-field model and spiking neural
network for specific N and p. Model parameters: A =2, ij=—55, ] = 15VA,
=114 =10, = 0.05.

can emerge from the interaction of recurrent, excitatory coupling and
short-term plasticity has been reproduced in each microscopic network
we examined. Discrepancies between the mean-field model and the mi-
croscopic network were found for small, sparsely coupled networks in
the interburst frequency and within-burst neural synchrony. Interpreting
those quantities in the mean-field model must thus be handled cautiously
in cases where the underlying microscopic network may be of small size
or very sparsely coupled.

6 Discussion

In this work, we have examined the dynamic impact of two different short-
term adaptation mechanisms on the collective behavior of a globally cou-
pled QIF population: synaptic depression and spike-frequency adaptation.
For both mechanisms, we derived and validated mean-field descriptions
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of the macroscopic dynamics via the approach described in Montbri6 et al.
(2015). Using bifurcation analysis, we identified and characterized regimes
of collective bursting that emerged given a sufficiently strong adaptation
rate. These bursting regimes could coexist with nonbursting regimes, al-
lowing for dynamic phase transitions between bursting and steady-state
behavior via transient inputs.

6.1 Population Bursting in Health and Disease. In neural communi-
cation, bistable regimes are particularly relevant, since they allow for quick
transitions between highly different firing modes via transient inputs and
hence can be used to describe short-term or working memory as a dynamic
property of the collective behavior of neural populations (Kunze, Peterson,
Haueisen, & Knosche, 2017; Schmidt et al., 2018). However, these bistable
bursting regimes are also of interest for pathological neural dynamics such
as observed in epilepsy and Parkinson’s disease, which have been proposed
to reflect switching between an asynchronous, healthy state and a coexist-
ing synchronous, pathological state with increased bursting behavior (Con-
nors, 1984; Suffczynski et al., 2004; Takeshita et al., 2007; Lobb, 2014). In
Parkinson’s disease, for example, changes in the input strength and the
synaptic short-term plasticity have been reported together with a strong
increase of the bursting activity inside key neural populations known to be
affected by the disease (located inside the basal ganglia) (Magill, Bolam, &
Bevan, 2001; Hanson & Jaeger, 2002; Wichmann & Soares, 2006; Baufreton
& Bevan, 2008). Based on these findings, it has been suggested that alter-
ations of synaptic short-term depression might have a critical influence on
the recurrent coupling inside the basal ganglia populations, thus leading
to more synchronized, bursting neural activity. Since, in our model, the ex-
istence of bursting depends directly on strength of population input and
synaptic depression, it could serve as a mechanistic link between those ob-
servations and be embedded in larger network models of Parkinsonian neu-
ral dynamics. Further support for this mechanistic link can be drawn from
in vitro studies explaining bursting in neural populations via an interac-
tion between alterations in the average population input and postsynaptic
homeostatic plasticity (Zierenberg, Wilting, & Priesemann, 2018). In sum-
mary, this renders our mean-field model applicable to a broad range of neu-
rodynamic scenarios that involve generation of bursting behavior in neural
populations. As discussed above, a prime example would be the excitatory-
inhibitory interactions between subthalamic nucleus and globus pallidus,
which have been suggested as a generator of Parkinsonian oscillations in-
side the basal ganglia and are known to show altered synaptic depression
patterns in Parkinson’s disease (Magill et al., 2001; Hanson & Jaeger, 2002;
Wichmann & Soares, 2006; Baufreton & Bevan, 2008).

6.2 Neurophysiological Interpretation of the Mean-Field Model. Our
model provides a description of the emergence of synchronous, bursting
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neural dynamics in recurrently connected populations of spiking neurons
that could either arise from spike-frequency adaptation (additive) or post-
synaptic efficacy reduction (multiplicative). Experimental work suggests
that the former is a result of different balancing currents triggered at a
single cell after it generated a spike (Fuhrmann, Markram, & Tsodyks,
2002; Benda & Herz, 2003). The latter has been linked to various mech-
anisms such as receptor desensitization (Jones & Westbrook, 1996; Wong,
Graham, Billups, & Forsythe, 2003), receptor density reduction (Turrigiano,
2008; Pozo & Goda, 2010), or resource depletion at glial cells involved in
synaptic transmission (Virkar, Shew, Restrepo, & Ott, 2016; Huang, Chang,
Chen, Lai, & Chan, 2017). Even though these adaptation mechanisms can
express tremendously different timescales, ranging from a few hundred
milliseconds (e.g., spike-frequency adaptation; Fuhrmann et al., 2002) to
days (e.g., postsynaptic receptor density reduction; Pozo & Goda, 2010), our
mean-field descriptions remain applicable. However, note that our model of
synaptic depression cannot express vesicle depletion at the presynaptic site,
as introduced for single cell models in Tsodyks, Pawelzik, and Markram
(1998). For this type of plasticity, it is not clear whether the Lorentzian ansatz
can be applied, making a derivation of the mean-field equations more diffi-
cult. Apart from this restriction, our mean-field model is independent of the
particular form of adaptation that is used. That is, the convolution with an
alpha kernel we employed as a second-order approximation of the dynam-
ics of the adaptation variable A could be replaced with any other descrip-
tion. This allows future studies the examination of the influence of specific
short-term adaptation characteristics on population dynamics. Finally, we
tested the validity of our mean-field model against two of its core assump-
tions: infinitely large neural populations and all-to-all coupling inside the
population. We were able to demonstrate that short-term depression led
to population bursting even for very small and sparsely coupled networks.
While the bursting frequency and amplitude did scale with the network size
and coupling probability, the qualitative behavior of the model as predicted
by our bifurcation analysis remained the same. Hence, we conclude that our
model is well capable of describing phase transitions between steady-state
and bursting behavior in spiking neural networks of realistic size and cou-
pling density.
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