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Understanding how rich dynamics emerge in neural populations re-
quires models exhibiting a wide range of behaviors while remaining
interpretable in terms of connectivity and single-neuron dynamics. How-
ever, it has been challenging to fit such mechanistic spiking networks at
the single-neuron scale to empirical population data. To close this gap,
we propose to fit such data at a mesoscale, using a mechanistic but low-
dimensional and, hence, statistically tractable model. The mesoscopic
representation is obtained by approximating a population of neurons
as multiple homogeneous pools of neurons and modeling the dynamics
of the aggregate population activity within each pool. We derive the
likelihood of both single-neuron and connectivity parameters given this
activity, which can then be used to optimize parameters by gradient as-
cent on the log likelihood or perform Bayesian inference using Markov
chain Monte Carlo (MCMC) sampling. We illustrate this approach
using a model of generalized integrate-and-fire neurons for which
mesoscopic dynamics have been previously derived and show that both
single-neuron and connectivity parameters can be recovered from
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Inference of a Mesoscopic Population Model 1449

simulated data. In particular, our inference method extracts posterior
correlations between model parameters, which define parameter subsets
able to reproduce the data. We compute the Bayesian posterior for com-
binations of parameters using MCMC sampling and investigate how the
approximations inherent in a mesoscopic population model affect the
accuracy of the inferred single-neuron parameters.

1 Introduction

Neuron populations produce a wide array of complex collective dynam-
ics. Explaining how these emerge requires a mathematical model that not
only embodies the network interactions but is also parameterized in terms
of interpretable neuron properties. Just as crucial, in order to draw data-
supported conclusions, we also need to be able to infer those parameters
from empirical observations. These requirements tend to involve a trade-
off between model expressiveness and tractability. Low-dimensional state-
space models (Macke et al., 2011; Pandarinath et al., 2018; Pillow et al., 2008;
Zhao & Park, 2016) are simple enough to allow for inference but achieve
that simplicity by focusing on phenomenology: any mechanistic link to the
individual neurons is ignored. Conversely, microscopic mechanistic mod-
els with thousands of simulated neurons do provide that link between pa-
rameters and output (Hawrylycz et al., 2016; Potjans & Diesmann, 2014);
however, this complexity makes the analysis difficult and is limited to net-
works with highly simplified architectures (Doiron, Litwin-Kumar, Rosen-
baum, Ocker, & Josic, 2016; Marti, Brunel, & Ostojic, 2018). Since methods to
fit these models to experimental data are limited to single neurons (Mensi
et al., 2012), it is also unclear how to set their parameters such that they
capture the dynamics of large, heterogeneous neural populations.

To reduce the problem to a manageable size and scale, one can con-
sider models that provide a mesoscopic dynamical description founded
on microscopic single-neuron dynamics (Dumont, Payeur, & Longtin, 2017;
Nykamp & Tranchina, 2000; Wallace, Benayoun, van Drongelen, & Cowan,
2011). Specifically, we will focus on the model described in Schwalger,
Deger, and Gerstner (2017), where neurons are grouped into putative ex-
citatory (E) and inhibitory (I) populations in a cortical column. The key ap-
proximation is to replace each population with another of equal size but
composed of identical neurons, resulting in an effective mesoscopic model
of homogeneous populations. In contrast with previous work on popula-
tion rate dynamics (Gerstner, 2000; Nykamp & Tranchina, 2000; Wilson &
Cowan, 1972), Schwalger et al. (2017) correct their mean-field approxima-
tions for the finite size of populations. They are thus able to provide stochas-
tic equations for the firing rate of each population with explicit dependence
on the population sizes, neuron parameters, and connectivities between
populations (see Figure 1A, top). We use these equations to fit the model
to traces of population activity.
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Figure 1: (A) General procedure to infer parameters of a mesoscopic popula-
tion model from microscopic data. A microscopic model of GIF neurons is used
to generate spike trains, which are averaged to obtain traces of population ac-
tivity; these traces constitute our data. A mesoscopic model of either two or four
populations is then fit to these traces. Simulating the mesoscopic model with the
inferred parameters allows us to evaluate how well it reproduces the true dy-
namics. (B) For heterogeneous systems, average parameters might not predict
mean activity. Mean activity (line) and its standard deviation (shaded area) for
a heterogeneous microscopic model (left) and mesoscopic models attempting to
approximate it (middle, right). A mesoscopic model constructed by averaging
parameters across the microscopic population overestimates the population’s
variability (middle). Inferred parameters in this case deviate from these aver-
ages and provide a better representation of the true activity (right). Models are
as in Figure 5; traces are for the inhibitory population. Means and standard de-
viations are computed from 50 realizations and averaged over disjoint bins of
10 ms.

Directly inferring mesoscopic model parameters has a number of ad-
vantages compared to extrapolating from those obtained by fitting a mi-
croscopic model. For one, it allows the use of data that do not have single-
neuron resolution. In addition, since neuron parameters in a mesoscopic
model represent a whole population, there may not be a clear way to re-
late micro- and mesoscopic parameters if the former are heterogeneous. By
inferring population parameters from population recordings, we target the
values that best compensate for the mismatch between the data and the ide-
alized mesoscopic model (see Figure 1B).

The method we present assumes that the model to be inferred can be
expressed as a set of stochastic equations and that we have access to time
series for both the observed (and possibly aggregated) neural activities and
external input. It is thus not limited to mesoscale models and could also be
applied to, say, Hodgkin Huxley-type neurons in isolation or networks.
Nevertheless, in this article, the underlying microscopic model does make
the inferred parameters more readily interpretable and provides a good
idea of what values an inference algorithm should find for the parameters.
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Inference of a Mesoscopic Population Model 1451

Methods have recently been developed for inferring models where
stochastic equations are treated as a black box simulator (Greenberg, Non-
nenmacher, & Macke, 2019; Lueckmann et al., 2017; Papamakarios & Mur-
ray, 2016; Papamakarios, Sterratt, & Murray, 2018). In such a case, one does
not have access to the internal variables of the model and thus cannot com-
pute the likelihood of its parameters; instead, these methods make use of
repeated simulations to find suitable parameters. While this makes them
applicable to a wide range of models, the repeated simulations can make
them computationally expensive and best suited to optimizing a set of sta-
tistical features rather than full-time traces. Moreover, for the models of
interest here, the likelihood can be derived from the stochastic evolution
equations.

We show in this work that the likelihood can indeed be used to
infer model parameters using non-convex optimization. The resulting
optimization problem shares many similarities with training recurrent
neural networks (RNNs) popular in machine learning (Goodfellow, Bengio,
& Courville, 2016; Waibel, Hanazawa, Hinton, Shikano, & Lang, 1989) and
allows us to leverage optimization tools from that field. However, RNNs in
machine learning are typically based on generic, nonmechanistic models,
which implies that interpretation of the resulting network can be challeng-
ing (but see work on RNN visualization by Barak et al. (Barak, 2017; Haviv,
Rivkind, & Barak, 2019; Sussillo & Barak, 2012). Thus, our approach can be
regarded as complementary to RNN approaches, as we directly fit a mech-
anistically interpretable model.

This article is organized as follows. In sections 2.1 and 2.2, we estab-
lish that maximum likelihood inference for our chosen mesoscopic model
is sound, and in section 2.3 we provide empirical estimates for the amount
of data this procedure requires. Using the example of heterogeneous popu-
lations, section 2.4 then shows how inference can find effective parameters,
which compensate for the mismatch between data and model. In section
2.5 we identify codependence between multiple model parameters by re-
covering the full Bayesian posterior. Finally, section 2.6 demonstrates that
the approach scales well by considering a more challenging four-population
model with 36 free parameters. Section 3 discusses our results, with an em-
phasis on circumscribing the class of models amenable to our approach.
Method details are provided in section 4, along with technical insights
gained as we adapted likelihood inference to a detailed dynamical model.
Additional details, including a full specification of parameter values used
throughout the article, are given in appendixes A to 1.

2 Results

2.1 Model Summary. We studied the pair of microscopic and meso-
scopic models presented in Schwalger et al. (2017), which is designed to
represent excitatory (E) and inhibitory (I) populations of a putative cortical
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1452 A.René, A. Longtin, and J. Macke

column of four neural layers (Potjans & Diesmann, 2014). For this study,
we considered only layers 2/3 and 4 and made minor parameter adjust-
ments to maintain realistic firing rates (see appendix A). We also reduced
all population sizes by a factor of 50 to ease the simulation of the micro-
scopic model. This increases the variance of population activities and so
does not artificially simplify the task of inferring mesoscopic parameters.

The microscopic model is composed of either two or four populations of
generalized integrate-and-fire (GIF) neurons. Neurons are randomly con-
nected, with connectivity probabilities depending on the populations. The
combination of excitatory and inhibitory input, along with internal adap-
tation dynamics, produces for each neuron i a time-dependent firing rate
Ai(t|H;); this rate is conditioned on the spike history up to t, denoted H; (for
equations, see section 4.1). Whether that neuron spikes within a time win-
dow [t, t + At)is then determined by sampling a Bernoulli random variable
(Schwalger et al., 2017),

si(t|Hy) ~ Bernoulli(x;(t|H;) At), (2.1)

where At is chosen such that A;(t|H;)At « 1is always true; we later refer
to this stochastic process as escape noise. If all parameters are shared across
all neurons within each population, we call this a homogeneous microscopic
model. Conversely, we call a model heterogeneous if at least one parameter is
unique to each neuron. We denote Z,, the set of indices for neurons belong-
ing to a population .

The expected activity a, of a population « is the normalized expected num-
ber of spikes,

a(H1H) = - D224, 22)

[
i€l,

which is a deterministic variable once we know the history up to t. In con-
trast, the activity A, of that population is a random variable corresponding
to the number of spikes actually observed:

Aut1H) = 5T Y (7). @3)
i€,
These variable definitions are summarized in Table 1.

In practice, data are discretized into discrete time steps {tk},ezl, which we
assume to have uniform lengths At and to be short enough for spike events
of different neurons to be independent within one time step (this condition
is always fulfilled when the time step is less than the synaptic transmission
delay). Under these assumptions, equation 2.3 can be approximated by a
binomial distribution (Schwalger et al., 2017),
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Inference of a Mesoscopic Population Model 1453

Table 1: Key Variable Definitions.

Variable  Definition

Ny Number of neurons in population «

M Number of populations, « =1, ..., M

L Number of time steps used to compute the likelihood

At Time step

To Set of indices of neurons belonging to population «

si(t) 1 if neuron i spiked within time window [f, t 4+ At), 0 otherwise
Aq(t) Activity in population « averaged over time window [t, f + At)
aq(t) Expectation of A(t) conditioned on {A(t')}y

AD = A, (| Hy) ~

NLAF Binom(Ngag (te|Hy, ) At; Ny ). (2.4)

If we repeat a simulation R times with the same input, we obtain an en-
semble of histories {#} }X | (due to the escape noise). Averaging over these
histories yields the trial-averaged activity,

R

_ 1

AB .= R D AultlHy), (2.5)
r=1

the theoretical counterpart to the peristimulus time histogram (PSTH).
For the microscopic model, the history is the set of all spikes,

Htk = {Sj(tl)}x:l,....N. (26)

tp<ty

To generate activities, we first generate spikes with equation 2.1 and use
equation 2.3 to obtain activities (c.f. Figure 1A).

For the mesoscopic model, hereafter referred to as mesoGIEF, the history
contains only population activities:

Hy, = {AD} et . (2.7)

o t <ty

The expected activity is then an expectation over all spike sequences con-
sistent with that history, for which a closed-form expression was derived
in Schwalger et al. (2017) (the relevant equations are given in appendix E).
Activities are generated by using this expression to compute a,(t) and then
sampling equation 2.4. Unless mentioned otherwise, for the results reported
in the following sections, we used the microscopic model for data genera-
tion and the mesoscopic model for inference.
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1454 A.René, A. Longtin, and J. Macke

In addition to homogeneity of populations and independence of spikes
within a time step, the mesoscopic model depends on one more key approx-
imation: that neuron populations can be treated as quasi-renewal (Naud &
Gerstner, 2012; Schwalger et al., 2017). If neurons are viewed as having both
refractory and adaptation dynamics, this is roughly equivalent to requiring
that the latter be either slow or weak with respect to the former. (A typical
example where this approximation does not hold is bursting neurons; see
Naud & Gerstner, 2012.) Under these approximations, the unbounded his-
tory H;, can be replaced by a finite state vector S®, which is updated along
with the expected activity a®) (see section 4.2). Since the update equations
depend only on S*1, they are then Markovian in S. This in turn allows
the probability of observations P (A®), AL=D ... AW) to be factorized as
P (A(L)|S(L)) -P (A(L_1)|S(L‘1)) R (A(1)|S(1)), which is key to making the in-
ference problem tractable.

2.2 Recovering Population Model Parameters. We first consider a two-
population model composed of E and I neurons. We use the homoge-
neous microscopic model to generate activity traces (see Figure 2A), with a
frozen noise input, which is shared within populations; this input is sine-
modulated to provide longer-term fluctuations (see equation 4.28). A max-
imum a posteriori (MAP) estimate fyvap of 14 model parameters is then
obtained by performing stochastic gradient descent on the posterior (see
section 4). Because the likelihood is nonconvex, we perform multiple fits,
initializing each one by sampling from the prior (see Figure 2B). We then
keep the one that achieves the highest likelihood, which in practice is of-
ten sufficient to find a near-global optimum (Meyer, Williamson, Linden, &
Sahani, 2017).

An important note is that one can fit only parameters that are properly
constrained by our data. For example, in the mesoGIF model, the firing
probability is determined by the ratio (see equation 4.8)

u(t) = 9 (t) 8
Ay
where u is the membrane potential, ¢ the firing threshold, and A, a param-
eter describing the level of noise. All of these quantities are computed in
units of millivolts, and the terms in the numerator depend on the resting
potential ur.s and threshold uy,. However, since equation 2.8 is dimension-
less, the choice of millivolts is arbitrary: after changing A, one can rescale
Urest and uy, (along with the synaptic weights w and reset potential u,) to
recover exactly the same dynamics. The set of parameters w, Ay, tyrest, Uth
and u, is thus degenerate, and they cannot all be inferred simultaneously;
for this article, we set the voltage scale to millivolts by fixing tyest and uy,
to the values proposed by Schwalger et al. (2017). Other parameters are
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Figure 2: Inferred model generalizes to different inputs. (A) Data generation.
Microscopic E and I populations receive a noisy sinusoidal input (see equation
4.28 and Table 5), which is shared across populations (top). Generated spikes
(middle) are summed across each population, such that the inference algorithm
sees only the total activity in each. Despite being deterministic given the his-
tory H, the population-averaged expected activity (see equation 2.2) still shows
substantial fluctuations due to stochasticity of the history itself (bottom). (B)
Inference recovers parameter values close to those used to generate the data.
We performed 25 fits, retaining the one that found the local optimum with
the highest likelihood (shown in red). Black lines indicate the prediction of
the mesoscopic theory of Schwalger et al. (2017), based on ground-truth val-
ues of the microscopic model. Fits for all 14 parameters are shown in Figure
12. (C) Inferred mesoscopic model reproduces input-driven variations in pop-
ulation activity. For testing, we used low-pass-filtered frozen white noise in-
put (see equation 4.29, Table 6, top) to simulate the inferred mesoscopic model;
middle and bottom plots respectively show the activity of the E and I popula-
tions. Each model was simulated 100 times; we show the mean and standard
deviation over these realizations as lines and shading of corresponding colors.
(Values were averaged over disjoint bins of 10 ms.) Performance measures are
p =0.950,0.946, 0.918 and RMSE = 3.42 £ 0.07, 3.55 4 0.09, 3.4 £ 0.08 for the
true, theory and inferred models, respectively (see section 4.7).
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Table 2: Parameters for the Micro- and Mesoscopic Models.

Number of Components

Two-Population ~ Four-Population

Parameter Model Model Description

4 4 16 Connection probability

w 4 16 Connection weight

A 4 16 Transmission delay

N 2 4 Number of Neurons in population
R 2 4 Membrane resistance

Urest 2 4 Membrane resting potential
T 2 4 Membrane time constant
Fref 2 4 Absolute refractory period
Uph 2 4 Nonadapting threshold

Uy 2 4 Reset potential

c 2 4 Escape rate at threshold

Ay 2 4 Noise level

Ts 2 4 Synaptic time constant

Jo 1 2 Adaptation strength

Ty 1 2 Adaptation time constant

Notes: For the mesoscopic populations, the ensemble of neuron parameters is replaced by
asingle effective value for that population. For each parameter, we indicate the number of
components in the two- and four-population models; adaptation parameters have fewer
components because the model assumes no adaptation for inhibitory neurons. Boldface is
used to indicate inferred parameters; the remainder are fixed to the known ground truth
values listed in Table 7. This results in, respectively, 14 and 36 free parameters for the
two- and four-population models. A brief discussion of how we chose which parameters
to infer is given at the end of section 4.5.

similarly ill constrained, and in total we inferred 14 model parameters; these
are listed in Table 2.

We tested the inferred model on frozen low-pass-filtered white noise
of the same form as in Augustin, Ladenbauer, Baumann, and Obermayer
(2017); see Figure 2C, top), ensuring that a range of relevant time scales are
tested. Despite the frozen input, variability between realizations does re-
main: for the GIF model this is due to sampling the escape noise (equation
2.1), while for the mesoGIF model, it is due to sampling the binomial in
equation 2.4. We thus compare models based on the statistics of their re-
sponse rather than single realizations: each model is simulated 100 times
with different internal noise sequences (for each neuron in the case of the
GIF model, and for each population in the case of the mesoGIF model)
to produce an ensemble of realizations, from which we estimate the time-
dependent mean and standard deviation of A(t). Mean and standard devi-
ation are then averaged over disjoint 10 ms windows to reduce variability
due to the finite number of realizations. The results are reported as respec-
tively, lines and shading in Figure 2C, and show agreement between true

d-ajo11B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

0 & 008U/Er05981/8FYL/8/ZENP

€20z Jequisideg g0 uo isenb Aq jpd'z6z |



Inference of a Mesoscopic Population Model 1457

A Excitatory Inhibitory B

population population — True — micro

PSD = Theory — meso
Exc. population = |nferred — meso

TR

PSD

20 Hz/neuron

20 Hz/neuron

_| Inh. population

EXE o 0 s
Figure 3: Inferred model reproduces expected power spectral density. (A) Seg-
ment of simulations of the same three models shown in Figure 2C under con-
stant 0.5 mA input to both E and I populations. Dotted line indicates ordinate
zero. (B) Power spectral density for the excitatory (top) and inhibitory (bottom)
populations. For each model, spectra were computed for 50 distinct realizations
of 9 s each and averaged. To reduce the error due to finite number of realizations,
the frequency axis was then coarsened to steps of 0.5 Hz by averaging nonover-
lapping bins.

and inferred models; we also find good agreement in the power spectrum
of the response to constant input (see Figure 3). Parameterizations for the
training and test inputs are given in section 4.8 and the full set of fits is
shown in Figure 12.

2.3 Quantifying Data Requirements. While simulated data can be rel-
atively cheap and easy to obtain, this is rarely the case of experimental data.
An important question therefore is the amount required to infer the param-
eters of a model. To this end, we quantify in Figure 4 the accuracy of the
inferred dynamics as a function of the amount of data.

In order to be certain our ground-truth parameters were exact, for this
section we used the mesoGIF for both data generation and inference. This
allows us to quantify the error on the inferred parameters, rather than just
on the inferred dynamics. In a more realistic setting, data and model are not
perfectly matched, and this will likely affect data requirements. Testing and
training were done with different external inputs to avoid overfitting; as in
section 2.2, we used a sinusoidal frozen white noise for training and a low-
pass-filtered frozen white noise for testing. During training, E and Ineurons
had respective average firing rates of 5.9 and 8.4 Hz, which translates to
approximately 3500 spikes per second for the whole population.

We measured the accuracy of inferred dynamics by simulating the model
with both the ground truth and inferred parameters, generating 20 dif-
ferent realizations for each model. These were used to calculate both the
per trial and trial-averaged Pearson correlation (p, p) and root-mean-square
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Figure 4: Inferred model no longer improves after 20,000 spikes. Model
parameters were inferred from data generated using shared frozen noisy si-
nusoidal input and tested on low-pass-filtered frozen white noise. (A) Sam-
ple portion of the simulated traces used to compute discrepancy measures.
Traces of the expected activity a(t) of the excitatory population in a two-
population E-I model, using parameters inferred from increasing amounts
L of data; all simulations are done on test input using the same random
seed to sample the binomial in equation 2.4. Note that the model did not
see this input during training. (B, C) Inferrence performance, measured
as either Pearson correlation p (B) or RMSE (C) between 20 simulations
of the inferred and true mesoscopic models. Dashed lines indicate maxi-
mum achievable performance, estimated by computing the measures on a
different set of 20 realizations of the ground-truth model; shading indicates stan-
dard deviation of that value. Blue points: per trial statistics (see equations 4.24
and 4.25); green points: trial-averaged traces (see equations 4.26 and 4.27). Trial-
averaged errors were estimated by bootstrapping. Results suggests that perfor-
mance is well summarized by 5 and RMSE.

error (RMSE, RMSE) between models. An additional 20 simulations of the
ground-truth model were used to estimate the best achievable performance
for each measure. For per trial measures, the reported standard devia-
tion provides an estimate of the variability between realizations; for trial-
averaged measures, the standard deviation is obtained by bootstrapping,
and is purely an uncertainty on the statistic (it vanishes in the limit of large
number of realizations). The calculations for these measures are fully de-
scribed in section 4.7. In subsequent section, we report only the values of
/., RMSE to avoid redundant information.

Consistent with the observations of Augustin et al. (2017), we found that
p (in contrast to p) does not allow differentiating between models close to
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Inference of a Mesoscopic Population Model 1459

ground truth. The RMSE and RMSE, on the other hand, showed similar sen-
sitivity but may be unreliable far from ground truth (as evidenced by the
data point at L = 1.25 s in Figure 4C). Since the per trial RMSE additionally
quantifies the variability between realizations (through its standard devia-
tion), we preferred it over its trial-averaged analog.

As we would expect, the inferred model better reproduces the dynamics
of the true model when the amount of data is increased (see Figure 4); when
fitting all 14 parameters of the mesoGIF model, the inferred model no longer
improves when more than 5 s to 7 s of data are provided (see Figures 4B and
4C) — corresponding to a total of about 17,500 to 24,500 spikes. In appendix
D, we repeat the test described here with smaller parameter sets (achieved
by clamping certain parameters to their known ground-truth values). We
find that this has only a modest effect on the achieved performance, but
does significantly improve the consistency of fits (compare Figures 9B and
9C). Inferring larger parameter sets is thus expected to require more fits (and
consequent computation time) before a few of them find the MAP. Certain
parameters are also more difficult to infer: for the case shown in Figure 4,
relative errors on the inferred parameters range from 5% to 22% (see ap-
pendix D, Table 12). Parameters describing the inhibitory population (z,,,
wr, wir) show the highest relative error, as well as the escape rates (cg, cr)
and the adaptation time constant (7 ).

2.4 Modeling High-Dimensional Heterogeneous Populations with an
Effective Low-Dimensional Homogeneous Model. A frequently under-
stated challenge of meso- and macroscale population models is that of
choosing their parameters such that the dynamics of the modeled neu-
ron populations are consistent with the high-dimensional dynamics of net-
works of individual neurons. A typical approach, when measurements of
microscopic single-neuron parameters are available, is to assign each pa-
rameter its mean across the population (Gerstner, Paninski, Naud, & Kistler,
2014, sec. 12). However, as alluded to in section 1, mean parameters do not
always make good predictors for nonlinear systems; this is evidenced by
Figure 5, which expands on Figure 1B.

An alternative approach would be to fit the population model to ob-
served population activities, such as to ensure maximum consistency with
data—for example, by finding the maximum a posteriori (MAP) parame-
ters. In this way, we obtain effective parameters that compensate for the
mismatch between data and population model.

To show that this can work, we made the microscopic model heteroge-
neous in three parameters: 7, g, Ty1, and To.E- These parameters were set
individually for each neuron by sampling from a log-normal distribution
(see Figure 5A and Table 8). As in previous sections, output from the mi-
croscopic model under sine-modulated frozen white noise input was then
used to train the mesoscopic one. For testing, we used a single step input
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Figure 5: Inferred effective parameters can compensate for mismatch between
microscopic and mesoscopic models. (A) A heterogeneous microscopic model
of two populations was constructed by sampling three time constants from log-
normal distributions (see Table 8). All other parameters are as in section 2.2 and
Figure 2, and the same sine-modulated white noise as in Figure 2A was used
to train the model. (B) Heterogeneous microscopic model driven by a single
step current. Shown are the mean (line) and standard deviation (shading) of
the model’s response, computed from 60 realizations and averaged over dis-
joint windows of 10 ms. Realizations differ due to sampling the escape noise.
(C) Simulations of the mesoscopic model with the same step input as in panel B,
using mean parameters (left), inferred z,, and 7, (middle, with all other param-
eters homogeneous and set to ground truth), and the inferred full 14-parameter
set (right). Line and shading have the same meaning as in panel B) and are based
on 50 realizations for each model; these differ by the sampling of the binomial
in equation 2.4. We see that inferred models more closely reproduce the trace in
panel B, which is confirmed by the decreased RMSE and increased 4.

2s

(see Figure 5B); this allowed us to test the performance of the inferred model
in both the transient and steady-state regimes. The per trial RMSE and trial-
averaged correlation p were computed on ensembles of realizations, as de-
scribed in section 4.7.

We considered three sets of parameters for the mesoscopic model. For the
first, we set 7, g, Tin,1, and 1y g to their sample averages. This produced rather
poor results (see Figure 5C, left); in particular, the transient response to the
step is much more dramatic and long-lived than that of the ground-truth
model. As the neural model is highly nonlinear in its parameters, linearly
averaging parameters is not guaranteed to produce optimal results.

The test results are improved when the heterogeneous parameters are
inferred (see Figure 5C, middle). However, fitting only the heterogeneous
parameters gives the mesoscopic model only three degrees of freedom to
compensate for approximating a heterogeneous model by a homogeneous
one, and it still produces traces with a variance that is too high. Indeed,
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Inference of a Mesoscopic Population Model 1461

giving the model full freedom over the parameters provides another step
improvement (see Figure 5C, right), with output from the mesoscopic
model differing from the target output only by a higher transient peak and
slightly different mean activities (obtained parameter values are listed in
Table 9). Thus while fitting more parameters may incur additional compu-
tational cost (see appendix D), it also provides more opportunities to ac-
commodate model mismatch.

The results of this section show the necessity of inferring population pa-
rameters rather than simply averaging single-neuron values. It also demon-
strates the ability of population models to reproduce realistic activities
when we provide them with good effective parameters; in order to com-
pensate for modeling assumptions, those parameters will in general differ
from those of a more detailed microscopic model.

2.5 Full Posterior Estimation over Parameters. It can often be de-
sirable to know which parameters, or combinations of parameters, are
constrained by the data. Bayesian inference, that is, estimation of the
posterior distribution over parameters given the data, can be used to not
only identify the best-fitting parameters but also to characterize the un-
certainty about these estimates. Notably, these uncertainties may be highly
correlated across parameters. For instance, one expects an increase in E con-
nectivity to cancel a decrease in (negative) I connectivity to the same pop-
ulation, and this is confirmed by the correlation in the marginals shown
in Figure 6A. Interestingly, this correlation is in fact stronger for connec-
tivities sharing the same farget than those sharing the same source. More
novel structure can be learned from Figure 6B, such as the strong correla-
tion between the adaptation parameters or the complete absence of corre-
lation between them and the synaptic parameters. In particular, the tight
relationship between Jy £, 79 , and cg suggests that for determining model
dynamics, the ratios Jy £/79.r and Jy g /ce may be more important than any
of those three quantities individually.

Since there are 14 unknown parameters, the posterior is also 14-
dimensional; we represent it by displaying the joint distributions between
pairs, obtained by marginalizing out the other 12 parameters (see section
4.6). Training data here were generated in the same way as in section 2.2,
from a homogeneous microscopic model with the parameters listed in Table
2. To provide a sense of scale, we have drawn ellipses in Figure 6 to indi-
cate the volume corresponding to two standard deviations from the mean
under a gaussian model. In a number of cases, it highlights how the true
distribution is nongaussian—for example, the distributions of cg, Jy g, and
Ty, are noticeably skewed.

A naive way to compute these 2D marginals would be to numerically in-
tegrate the likelihood; however, given that that leaves 12 dimensions to in-
tegrate, such an approach would be computationally unfeasible. Instead we
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Figure 6: Posterior probability highlights dependencies between model pa-
rameters. Panels show one- and two-parameter marginals; all panels within a
column use the same parameter for their abscissa. (A) Above diagonal: Full
posterior over the connectivities w. Strongest (anti)correlation is between pairs
impinging on the same population (i.e., wg—wge and wig—wy;.) Below diagonal:
Membrane time constants and adaptation strength show correlations with con-
nectivity. Panels on the diagonal show the marginal for that column’s param-
eters. Red dot or line shows the parameters’ ground-truth values. The ellipse
is centered on the mean and corresponds to two standard deviations under a
gaussian model. The full posterior over all 14 parameters is shown in Figure
11 and was obtained with HMC sampling using data generated with the two-
population homogeneous microscopic model. (B) Above diagonal: Tight cor-
relation between 1, k, Jy g, and cg suggests their ratios are most important to
determining model dynamics. Below diagonal: There is little correlation be-
tween adaptation and synaptic parameters. Diagonal panels, red marks, and
ellipses are as in panel A.

used Hamiltonian Monte Carlo (HMC) sampling (Betancourt & Girolami,
2013; Neal, 2012). Monte Carlo methods are guaranteed to asymptotically
converge to the true posterior, a valuable feature when one wishes to de-
duce interactions between parameters from its structure. Nevertheless, due
to the complexity of mesoGIF’s likelihood, memory and computational cost
still required special consideration (see section 4.6).

We note that the 20 ellipses in Figure 6, while informative, are imper-
fect indicators of the probability mass distribution. If the posterior is gaus-
sian, then each projection to a 2D marginal places 86.5% of the probability
mass within the ellipse; however, for nongaussian posteriors, this number
can vary substantially. Moreover, the markers for ground-truth parameters
shown in Figure 6 may differ from the effective parameters found by the
model (see section 2.4).
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—— True — micro 0.418 1.39 +0.03
== Theory — meso 0.354 1.39 + 0.04
== Inferred — meso  0.352 1.39 + 0.03
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= True — micro 0.994 3.47 +0.13
= Theory — meso 0.991 3.76 £ 0.15
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0.25 0.25 0.2s

S Hz/neuron

Figure 7: Inference of a four-population model with 36 free parameters. (A)
Model represented E (blue) and I (red) populations from layers L.2/3 and L4 of
a cortical column. During training, only L4 populations received external sinu-
soidal input. The homogeneous microscopic model was used to generate data.
(B) The mesoscopic model matches aggregate microscopic dynamics (“True —
micro”), both when using theoretical (“Theory — meso”) and inferred param-
eters (“Inferred — meso”). In contrast to the previous section, correlation and
RMSE scores are reported separately for each population; they are computed
from 60 realizations of each models.

2.6 Pushing the Limits of Generalization. The previous sections have
shown that we can recover 14 parameters of the two population mesoGIF
model. A natural question is whether this approach scales well to larger
models. We investigated this by considering four neuron populations rep-
resenting the L2/3 and L4 layers of the Potjans-Diesmann microcircuit
(Potjans & Diesmann, 2014). The associated higher-dimensional set of
mesoscopic equations follows the same form as in previous sections
(Schwalger et al., 2017). There are 36 free parameters in this model, of which
16 are connectivities; they are listed in Table 2. Similar to previous sections,
we trained mesoGIF on output from the microscopic model with sinusoidal
drive (see Figure 7A).

The L4 populations tend to drive the activity in this model, and we found
that we do not need to provide any input to the L2/3 neurons to get pa-
rameter estimates that accurately predict population activity (see Figure 8,
left): the small fluctuations in L2/3 (see Figure 7B) suffice to provide con-
straints on those population parameters. Those constraints, of course, are
somewhat looser, and in particular connection strengths onto L4 are not as
well estimated when compared to ground truth (see Table 10).

Pushing the mesoscopic approximation beyond its validity limits us-
ing inputs with abrupt transitions understandably increases the discrep-
ancy between ground truth and model (see Figure 8, right). Indeed, such
a strong input may cause neurons to fire in bursts, thereby breaking the
quasi-renewal approximation (see section 2.1). During an input spike, the
true model shows small oscillations; the theoretical mesoGIF reproduces
these oscillations but with an exaggerated amplitude and higher variance
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Figure 8: Generalization errors appear with large deviations from the training

input. We test the 36 parameter model inferred in Figure 7 under two differ-
ent stimulation protocols. Lines and shading show mean and standard devia-
tion over 60 realizations, computed as in section 2.2. (A, B) After completely
removing external inputs to L4e (compare A with the training input in Figure
7A), predictions of the inferred and theoretical models are still indistinguish-
able. (C, D) To obtain visible deviations between inferred and theoretical mod-
els, we used inputs (C) that stretch the mesoGIF assumptions. Oscillations are
present in both the microscopic and mesoscopic models, but in the latter they
have much larger amplitudes: compare the blue and red traces to the thicker
green trace in panel D.
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between realizations, and in contrast to section 2.4, the inferred model does
no better. This larger discrepancy with the true model is reflected in the
performance measures (see Tables 14 and 15), and is consistent with the ob-
servation that the mesoGIF has higher variance during bursts (Schwalger
et al.,, 2017, p. 15). Slower timescale dynamics are still accurately captured
by both the theoretical and inferred models.
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Inference of a Mesoscopic Population Model 1465

The capacity of the inferred model to generalize to unseen inputs is thus
quite robust, with discrepancies between inferred and ground-truth mod-
els occurring only when the test and training input were very different. Of
course this is in part due to mesoGIF being a good representation of the ac-
tivity of homogeneous GIF neurons: while inference may compensate for
some discrepancies between the model and the data, it still can work only
within the freedom afforded by the model.

3 Discussion

Population models play a key role in neuroscience: they may describe ex-
perimental data at the scale they are recorded and serve to simplify the dy-
namics of large numbers of neurons into a human-understandable form.
These dynamics may occur on a range of scales, from the mesoscopic, lim-
ited to a single cortical column, to the macroscopic, describing interactions
between regions across the entire brain. Mechanistic models allow us to
bridge those scales, relating microscale interactions to meso- or macroscale
dynamics; of these, the model chosen for this study allows for rich dy-
namics at the single level by including synaptic, refractory, and adaptation
dynamics.

We have demonstrated that it is possible to fit a mechanistic population
model to simulated data by maximizing the likelihood of its parameters,
in much the same way as is already done with phenomenological models
(Macke et al., 2011; Pillow et al., 2008; Zhao & Park, 2016). Since mechanistic
models describe concrete, albeit idealized, biophysical processes, they have
the additional benefit that their parameters can be understood in terms of
those processes. Moreover, those parameters are typically not dependent on
the applied input, and thus we can expect the inferred model to generalize
to novel stimulus conditions.

We also found that after making a few parameters heterogeneous, aver-
aging did not recover the most representative parameters. In general, when
there is discrepancy between model and data, the effective parameters are
difficult to recover analytically; data-driven methods then provide a valu-
able supplement to theoretical analysis in order to ensure that a model ac-
tually represents the intended biological process. Nevertheless, since the
inference procedure is agnostic to the model, it is up to the modeler to
choose one for which the effective parameters remain interpretable.

The approach we have presented requires only that a differentiable like-
lihood function be available and thus is not limited to neuron population
models. Stochastic models of neuron membrane potentials (Goldwyn &
Shea-Brown, 2011), animal populations (Wood, 2010), and transition phe-
nomena in physics and chemistry (Horsthemke & Lefever, 2006) are exam-
ples for which parameters could be inferred using this approach.

In practice we expect some models to be more challenging than oth-
ers. For instance, evaluating the likelihood of a spiking model typically
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involves integrating over all time courses of the subthreshold membrane
potential compatible with the observed spike train (Paninski, Pillow, &
Simoncelli, 2004). This integral can be difficult to evaluate accurately, es-
pecially for models incorporating adaptation and refractoriness (Mena &
Paninski, 2014; Ramirez & Paninski, 2014). If evaluation of the likelihood is
prohibitively expensive, likelihood-free approaches might be more appro-
priate (Lueckmann et al., 2017; Papamakarios & Murray, 2016).

Also of note is that we required the dynamics to be formulated as a
Markov process to express the likelihood (see section 4.3). We achieved this
by constructing a state vector, but the size of this vector adds substantial
computational cost, and in practice there is a trade-off between the length
of the integration time window and the number of units (here, neuron pop-
ulations) we can infer. Since neural field models are also computationally
represented by long state vectors, inference on these models would be sub-
ject to a similar trade-off. Finally, our current implementation assumes that
the state S (see section 4.2) can be fully reconstructed from observations. If
only a partial reconstruction of S is possible, undetermined components of
S form a latent state that must be inferred along with the parameters. This
type of problem has already been studied in the context of dimensionality
reduction (Cunningham & Yu, 2014; Macke et al., 2011; Rule, Schnoerr, Hen-
nig, & Sanguinetti, 2019), and it is conceivable that such methods could be
adapted to our framework. Such an approach would allow one to perform
dimensionality reduction with mechanistic models of temporal dynamics.

The work of Rule et al. (2019) presents an interesting complement to ours.
The authors consider a neural field model where activities are observed
only indirectly via a point process, thus addressing the problem of infer-
ring latent states. They infer both these states and the point-process pa-
rameters but assume known parameters and neglect finite-size effects for
the mesoscopic model; in contrast, here we inferred the mesoscopic model
parameters while assuming that population states are observed. Inferring
both mesoscopic model parameters and latent states remains a challenge
for both of these approaches.

To obtain posteriors, we employed a Hamiltonian Monte Carlo algo-
rithm with minimal automatic tuning. We found this to work better than
a more automatically tuned variant (see section 4.6), but it is beyond the
scope of this work to provide a complete survey of sampling methods. The
applicability of more recently developed algorithms such as Riemann man-
ifold Monte Carlo (Girolami & Calderhead, 2011), sequential Monte Carlo
(Moral, Doucet, & Jasra, 2006), and nested sampling (Skilling, 2006) would
be worth exploring in future work. Variational methods such as that de-
scribed by Kucukelbir, Tran, Ranganath, Gelman, and Blei (2017) are an-
other alternative to estimating posteriors that do not require sampling at
all. They generally scale to large parameter spaces but do not provide the
asymptotic guarantees of MCMC and may artificially smooth the resulting
posterior.
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Inference of a Mesoscopic Population Model 1467

Important obstacles to using inference on complex models are the imple-
mentation and computational costs. Software tools developed for this work
have helped limit the former, but the latter remain a challenge, with many
of the figures shown requiring multiple days of computation on a personal
workstation. While manageable for studying fixed networks, this would be-
come an impediment for scaling to larger models or tracking the evolution
of parameter values by inferring them on successive time windows. For
such tasks, further work would be required to reduce the inference time,
for example, by investigating how large the integration time step for the
mesoGIF model can be made or by optimizing the current implementation.
One might also attempt to derive a computationally simpler model or make
better use of parallelization and/or graphical processing units.

AsRule et al. (2019) noted, an additional complication to inferring mech-
anistic model parameters is that they may be underconstrained. In our case,
since mesoGIF is a rate model, the voltage scale can be chosen freely by
setting the resting (urest) and threshold (uy,) potentials; if we nonetheless
attempt to infer them along with the noise scale (A,), fits are unable to con-
verge (see sections 2.2 and 4.5). We avoided this problem by identifying the
problematic parameters and fixing them to their known values. However,
the development of a more systematic approach to dealing with undercon-
strained parameters is left for future investigations.

Since inference time is highly dependent on computational complexity,
there is a trade-off between bottom-up models that attempt to match dy-
namics as closely as possible and simpler top-down models that aim for
computational efficiency; while the latter tend to provide better scalability,
the former are likely to be more interpretable and allow for extrapolation
to new dynamical regimes (see section 2.6). Choosing the right model thus
remains a key component of data analysis and modeling.

Inference methods based on machine learning allow for flexible model
design, using known biophysical parameter values when they are avail-
able and inference to determine the others that are consistent with data. We
hope this work further motivates the use of richer models in neuroscience
by providing tools to fit and validate them.

4 Methods

4.1 Microscopic Model. We consider an ensemble of neurons grouped
into M populations; the symbols i, j are used to label neurons and «, 8 to
label populations. The neuron indices i, j run across populations and are
thus unique to each neuron.

Each neuron i produces a spike train represented as a sum of Dirac delta
functions,

si(t) = Y 8(t —tix), 4.1)
k
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where t; i is the time of its kth spike. We denote Ff the set of neuron indices
from population g that are presynaptic to neuron i, w,p the strength of the
connection from a neuron in population g to another in population «, and
A,p the transmission delay between the two populations. As in Schwalger
et al. (2017), we assume that intrinsic neural parameters are homogeneous
across a given population. We further assume that connection strengths de-
pend only on the source and target populations; for a connection between
neurons of population g to those of population «, the strength is either wqg
with probability p.s or zero with probability 1 — p,s. Each spike elicits a
postsynaptic current, which we sum linearly to obtain the synaptic inputs
to neuron i from M populations,

M
Rolsyni(t) =70 Y wap Y _ (€ap *5))(t). (4.2)
B=1

ier?
jeT;

The transmission delay is captured by shifting the synaptic kernel with a
Heaviside function ©:

e_(t_A)/Ts,ﬂ
€ap(t) = Ot — Agp)—. (4.3)
Ts,p

Spike generation is modeled by a generalized integrate-and-fire mecha-
nism: leaky integration with adapting threshold, followed by an escape rate
process. For each neuron 7, the membrane potential u; and firing threshold
¥; evolve according to

du;
fm,aT; = —U + urest,a + Ralext,uz (t) + Ralsyn.i(t); (44)
t
Vi(t) = Uphg +/ O, (t — t)s;(t') dt'. (4.5)

Here, 6, is the adaptation kernel for population « and e, the external
input to that population. For this work, we used an exponential adaptation
kernel,

O () = ]f)—’“e*’/fo, (4.6)

T,
which allows us to rewrite equation 4.5 as

re%lii(t) = —0i(t) + tno + Jo,aSi(t). 4.7)
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Inference of a Mesoscopic Population Model 1469

Spikes are generated stochastically with an escape rate (also called condi-
tional intensity or hazard rate), calculated with the inverse link function f:

Ai(t) = f(ui(t) — 0i(t)). (4.8)

For this work, we used

Ai(t) = ca exp((ui(t) — 9i(t))/ Aua), (4.9)

where A, parameterizes the amount of noise (or, equivalently, the softness
of the threshold) and c is the firing rate when u(t) = ¥ (t).

Once a spike is emitted, a neuron’s potential is reset to u, and clamped
to this value for a time t,.¢ corresponding to its absolute refractory period.
It then evolves again according to equation 4.4. All model parameters are
summarized in Table 2.

4.2 Mesoscopic Model. The mesoscopic equations describe the interac-
tion of population activities (total number of spikes per second per neuron)
in closed form: they can be integrated without the need to simulate indi-
viual neurons. This is achieved by identifying each neuron i by its age t;
and making the assumptions stated in section 2.1: that each population is
homogeneous, that neurons are all-to-all connected with effective weights
PapWap, and that dynamics are well approximated as a quasi-renewal pro-
cess. Under these conditions, it is possible to rewrite the dynamical equa-
tions in terms of the refractory densities p, (t, 7): the proportion of neurons
with age 7; € [7, T + d7) in each population «. With very large populations
N,, we can neglect finite-size fluctuations and p satisfies the transport equa-
tion (Chizhov & Graham, 2008; Gerstner, 2000; Gerstner et al., 2014; Wilson
& Cowan, 1972):

0 P 0 P
ot aT

= _)"a(tv f)pv IOO((O’ t) = Aa(t) (410)

Neuronal dynamics and synaptic interactions are captured within the func-
tional form of the hazard rate A, (t, v), which depends only on t and on the
history of population activities. In the limit N, — oo, the evolution of A(t)
matches its expectation a(t) and is obtained by integrating over all neurons:

Ny = 00:  Ag(t) = ag(t) = /w Aa(t, T)pel(t, T)dr. (4.11)
0

For finite N, the expression for the expected activity becomes (Schwalger &
Chizhov, 2019; Schwalger et al., 2017)

d-ajo11B/008U/NPa W I08IIP//:d1Y WOy papeojumoq

0 & 008U/Er05981/8FYL/8/ZENP

€20z Jequisideg g0 uo isenb Aq jpd'z6z |



1470 A.René, A. Longtin, and J. Macke

au(t) = /0 et D)put )T + Ault) (1 - /O " el r)) RT)

where A(t) is a rate function that accounts for finite-size effects in the re-
fractory density. The activity then follows a stochastic process described by

M (t)

Adl) = Nt ’

g (t) ~ Binom(Na(t)dt; Ny). (4.13)

For this work, we discretize time into steps of length At, and instead

of the refractory density work with the vector mka), where m((yk), is formally
defined as the expected number of neurons of age t € [IAt, (I +1)):

T+At™
m®) = / Noepo(te, 1 At)dr,  (I=1,...,K < 00). (4.14)

Here the superscript (k) indicates the simulation time step and / the age bin.
Since refractory effects are negligible for sufficiently old neurons, m® only
needs to be computed for a finite number of age bins K (see appendix E, as
well as equation 86 from Schwalger et al., 2017).

We similarly compute the firing rates at time f; as a vector
1,..., K. The expected number of spikes in a time bin,

k7 _
v =

(
a,

a® = E [n<k>] , (4.15)
can then be computed in analogy with equation 4.12, by summing the prod-
ucts 1Y) lm l over [ and adding a finite size correction; the precise equations

used to evaluate m(k A® T and na are listed in appendix E. We can convert
spike counts to act1v1t1es by dividing by N, At:

w._ e w._ "
a® = % AR 4.16
« T NLAT « T NLAT (4.16)

For the following, it will be convenient to define the single-neuron firing
probability,

)
P, = 2, (4.17)

where the subscript n makes explicit the dependence on the model param-
eters. This allows us to rewrite equation 2.4 as
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Inference of a Mesoscopic Population Model 1471
n((xk) ~ Binom (pgff)n; Na) , (4.18)

where pka,),, = Pon(tc|Hs,) depends on the activity history #;, (see equation
2.7). Because K is finite, we can replace H;, by a finite state-vector S®, ob-
tained by concatenating all variables required to update n%) (see appendix
E, especially equation E.1):

gk — (n(io, m® 2® ) . (4.19)

The update equations for S® are Markovian by construction, which simpli-
fies the expression of the model’s likelihood presented in the next section.

4.3 Likelihood for the Mesoscopic Model. As stated in section 4.2, the
mesoGIF model can be cast in a Markovian form, which allows us to ex-
pand the probability of observing a sequence of spike counts as a recursive
product. If that sequence has length L and an initial time point ko, then that
probability is

M L+ko—1
p({nka)} by gLt ) =11 I1 p(nka)|5(k)). (4.20)

a=1 k=ko

The likelihood of this sequence then follows directly from the probability

mass function of a binomial, using the definitions for n) and pf,k)n defined
above:

=TT TT () ()™ (=)™ )

a=1 k=ko

We note that the 1 are observed data points and are thus constant when
maximizing the likelihood.
Expanding the binomial coefficient, the log likelihood becomes

M ko+L—-1
logLi(m) =Y. Y. log(Na!) - log (ng‘)!) —log ((N. —n)1)
a=1 k=ky

g () (. g (1 72). 42

where we clipped the probability pa) to avoid writing separate expressions
for pa 2€0,1,
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1472 A.René, A. Longtin, and J. Macke

Algorithm 1: Silent initialization scheme.

1: ng + 0

20 N, Uayi <= Urest i

3: x4 — N,

4: Aayir Areesas Jar Mais Vo, YaBs Za < 0

€ if pka)n <€,

PO =1 P ife<pl) <1-e, (4.23)

1—¢ ifpgi),,zl—e.

Clipping also avoids issues where the firing probability pg,k) exceeds one,
which occurs when one explores the parameter space. (This can happen
when parameters are such that the chosen At is no longer small enough
for the underlying Poisson assumption to be valid, although it should not
occur around the true parameters. (See the discussion by Schwalger et al.,
2017, p. 48.) We found that with double precision, a tolerance € = 1 x 1078
worked well.

For numerical stability, logarithms of factorials are computed with a ded-
icated function such as SciPy’s gammaln (Jones, Oliphant, & Peterson, 2001).
For optimization, the term log (N,!) can be omitted from the sum since it is
constant.

4.4 Initializing the Model. Although the updates to the state S are de-
terministic (see section 4.2), only the components n%) of the initial state
S%) are known; unobserved components can easily number in the thou-
sands. We get around this problem in the same manner as in Schwalger
et al. (2017): by making an initial guess that is consistent with model as-
sumptions (e.g., survival counts sum to N, ) and letting the system evolve
until it has forgotten its initial condition. We note that the same problem
is encountered when training recurrent neural networks, whereby the first
data points are used to burn-in unit activations before training can begin.
For the results we presented, we used a variation of the initialization scheme
used by Schwalger et al. (2017), which we call the “silent initialization.” In
this scheme, neurons are assumed to have never fired, and thus they are all
“free” (see algorithm 1). This results in large spiking activity in the first few
time bins, which then relaxes to realistic levels.

This initialization scheme has the advantage of being simple and needing
no extra computation, but with the high-dimensional internal state S, it also
requires a large burn-in time of around 10 s. This can be largely mitigated
by using sequential batches (see algorithm 2).
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Algorithm 2: Training with sequential mini-batches. The gradient is normalized before

computing Adam updates. Note that the state is not reinitialized within the inner loop.

1: repeat

2: S < initialize state

3: k" ~ Uniform(0, vy, B)

4: ko < Liumin + &

5: while kg < L — B do

6:

7: if any(|g| > gerip) then
8: Gmax ¢ max(|An])
9: g %An
10: end if
11: n < Adam(g)
12: k' ~ Uniform(Byurmin, (1 + v5) Bbumin)
13: ko < ko + K
14: end while

> Randomize initialization burn-in

> Scan data sequentially

g Vlog L(n, Akyko+B) > Log-likelihood gradient on the mini-batch

15: until converged.

> Normalize gradients with L*° norm

> Update parameters updates with Adam
> Randomize batch burn-in

Table 3: Fitting Parameters for Adam.

Fitting Parameter ~ Value

Comment

Learning rate 0.01
B 0.1
B2 0.001
8clip 100
Lburnin 10s
Bburni.n 0.3s
YL 1

VB 0.1

Adam parameter
Adam parameter
Adam parameter
Clipping threshold
Data burn-in
Minibatch burn-in
Lburnin noise factor
Bpurnin NOIse factor

Note: Learning rate, 1 and B, are as defined in

Kingma and Ba (2014).

We also experimented with intializing the model at a stationary point

(see appendix C), but in the cases we considered, it did not provide a notable
improvement in computation time.

4.5 Estimating Parameters. To maximize the likelihood, we used Adam

(Kingma & Ba, 2014), a momentum-based stochastic gradient descent al-
gorithm, for which gradients were computed automatically with Theano
(Team et al., 2016) (see section 4.9). Training parameters are listed in Table 3.
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1474 A.René, A. Longtin, and J. Macke

Despite the similarities, there remain important practical differences be-
tween fitting the mesoscopic model and training a recurrent neural network
(RNN). Notably, RNN weights are more freely rescaled, allowing the use
of single precision floating-point arithmetic. In the case of the mesoscopic
model, the dynamic range is wider, and we found it necessary to use double
precision.

Compared to a neural network, the mesoscopic update equations (see
equations E.1 to E.23) are also more expensive to compute, in our case slow-
ing parameter updates by at least an order of magnitude.

The sub-sequences of data (“minibatches”) used to train an RNN are usu-
ally selected at random: at each iteration, a random time step ky is selected,
from which the next Byymin data points are used for burn-in and the fol-
lowing B data points form the minibatch. This becomes problematic when
long burn-in times are required, not only because it requires long com-
putation times but also because it wastes a lot of data. We addressed this
problem by keeping the state across iterations (see algorithm 2), since this
is a good guess of what it should be after updating the parameters, it re-
duces the required burn-in time by an order of magnitude. However, this
requires batches to follow one another, breaking the usual assumption that
they are independently selected. In practice, this seemed not to be a prob-
lem; in anecdotal comparisons, we found that training with either randomly
selected batches and stationary initialization (see appendix C) or sequen-
tial batches and silent initialization (see algorithm 1) required comparable
numbers of iterations to converge to similar parameter values. Computa-
tion time in the case of random batches, however, was much longer.

We also found that bounding the gradient helped make inference more
robust. We set maximum values for each gradient component and rescaled
the gradient so that no component exceeded its maximum (see algorithm 2,
lines 7 to 10).

Maximizing the posterior rather than the likelihood by multiplying the
latter by parameter priors (to obtain the MAP estimate rather than the MLE)
helped prevent the fit from getting stuck in unphysical regions far from
the true parameters, where the likelihood may not be informative. We used
noninformative priors (see Table 7) so as to ensure that they did not artifi-
cially constrain the fits. Fits were also initialized by sampling from the prior.

Choosing adequate external inputs may also affect fit performance, as
in general, sharp stimuli exciting transients on multiple timescales tend
to be more informative than constant input (lolov, Ditlevsen, & Longtin,
2017). That said, even under constant input, the fluctuations in a finite-sized
neuron population still carry some information, and anecdotal evidence
suggests that these can be sufficient to infer approximate model parame-
ters. In this article, we used a sinusoidal input with frozen white noise to
train the mesoGIF model; with only one dominant timescale, this input is
more informative than constant input but far from optimal for the purpose
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Inference of a Mesoscopic Population Model 1475

Table 4: Specification of the MCMC Sampler.

Algorithm HamiltonianMC (PyMCS3; Salvatier et al., 2016)
Step scale 0.0025

Path length 0.1

Tuning steps 20

Initialization jitter+adapt_diag

Start nMmap estimate

Number of samples 2000

Total run time 201 h

of fitting. This made it a reasonable choice for computing baseline perfor-
mance measures.

Finally, to allow fits to converge, it is essential to avoid fitting any ill-
defined or degenerate parameters. For example, as explained in section 2.2,
we fixed the parameters u,es¢ and uy, because the mesoGIF model is invari-
ant under a rescaling of the voltage; for simplicity we also fixed u, and R
even though this was not strictly necessary. The parameters w and p are sim-
ilarly degenerate (see equation E.7), and we fixed p. The parameters N, A,
and t,f are effectively discrete (either in numbers of neurons or time bins),
and they were also fixed to simplify the implementation. Table 2 summa-
rizes the inferred and noninferred parameters.

4.6 Estimating the Posterior. The posteriors in section 2.5 were ob-
tained using Hamiltonian Monte Carlo (Betancourt & Girolami, 2013;
Neal, 2012) (HMC). Having expressed the likelihood with Theano made it
straightforward to use the implementation in PyMC3 (Salvatier, Wiecki, &
Fonnesbeck, 2016)—HamiltonianMC—to sample the likelihood; the sam-
pling parameters we used are listed in Table 4.

Although straightforward, this approach pushes the limit of what can
be achieved with currently implemented samplers: because the likelihood
of this model is expensive to evaluate, even coarse distributions can take
hours to obtain. In addition, the large state vector required sufficiently large
amounts of memory to make the automatically tuned NUTS (Hoffman &
Gelman, 2014) sampler impractical. (NUTS stores the most recent states in
order to tune the sampling parameters.) In an application with experimen-
tal data, one would want to reserve sufficient computational resources to
perform at least basic validation of the obtained that posterior, using, for
example, the methods described in Gelman et al. (2014) and Talts, Betan-
court, Simpson, Vehtari, and Gelman (2018).

In order for samplers to find the high-probability-density region in fi-
nite time, we found it necessary to initialize them with the MAP estimate.
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1476 A.René, A. Longtin, and J. Macke

This also ensured that their mass matrix was tuned on an area of the pos-
terior with appropriate curvature. In applications where the posterior has
multiple modes, one should be able to identify them from the collection of
fits. The high-probability-density region around each mode should then be
sampled separately, integrated, and combined with the others to obtain the
full posterior. (See, e.g., van Haasteren, 2014, for integration methods for
MCMC chains.)

Finally, as with parameter optimization, we found that the use of at least
double-precision floats was required in order to obtain consistent results.

4.7 Measuring Performance. In order to assess the performance of our
inference method, we quantified the discrepancy between a simulation us-
ing ground-truth parameters and another using inferred parameters; the
same input was used for both simulations and was different from the one
used for training. Following Augustin et al. (2017), discrepancy was quanti-
tied using both correlation (p) and root mean square error (RMSE); these are
reported according to the amount of data L used to train the model, which
may be given in either time bins or seconds.

The correlation between activity traces from the ground-truth and in-
ferred models, respectively, A™¢(t) and A (t), was obtained by computing
the per trial Pearson coefficient for each of the M populations and averaging
the results across populations to report a single value:

(A — ) (AP - AD))),

M
(Atrue A(L)) _ l Z
1Y s = M

(4.24)
a=1 \/<(A£[rue _ (Ague>k)2(A((¥L) _ (A&L)>k)2>

k
Here, brackets indicate averages over time,

ko+L'

1
— (k)
(A == T E A",
k=ko

with k a discretized time index. The initial time point ky sets the burn-in
period; in all calculations that follow, we set it to correspond to 10 s to ensure
that any artifacts due to the initialization have washed away. The value of
L’ need not be the same as L, and we set it to 9000 (corresponding to 9 s) for
all discrepancy estimates.

As with correlation, the per trial RMSE was averaged across populations:

M

~ 1 n 2

RMSE(A™, AV := | — ) :<<A((,L) —Ague) > . (4.25)
k

a=1
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Inference of a Mesoscopic Population Model 1477

Because the models are stochastic, equation 4.24 and 4.25 describe ran-
dom variables. Thus, for each of our results, we generated ensembles of real-
izations {Atrue*’}lrzl, {Am‘e*'/}fil, and {A’}fil, each with a different set of ran-
dom seeds. We compute the p and RMSE for the Ry x R, pairs (A™¢", ANy,
as well the R; x R3 combinations (A", A™e"") from which we empiri-
cally estimate the mean and standard deviation of those measures. Values
for the pairs (A™", A™ue"") provide an estimate of the best achievable value
for a given measure.

Another way to address the stochasticity of these measures is to use trial-
averaged traces:

A(L) = p(Ate, A), (4.26)
RMSE(L) = RMSE(A'™e, A); (4.27)

where the trial-averaged activity,

R

_ 1
AB = R > AutlHy).
r=1

is as in equation 2.5. Because trial-averaged measures only provide a point
estimate, we used bootstrapping to estimate their variability. We resampled
the ensemble of realizations with replacement to generate a new ensemble
of same size R and repeated this procedure 100 times. This yielded a set of
R measures (either p or RMSE), for which we computed the sample stan-
dard deviation. Note that in contrast to per trial measures, errors on trial-
averaged measurements vanish in the limit of large number of trials R and
thus are not indicative of the variability between traces.

We found the pair of measures (o, RMSE) (see equations 4.25 and 4.26) to
provide a good balance between information and conciseness (see section
2.3). We generally used R; = R, = 50 and R3 = 100 for the ensembles, with
the exception of Figure 4, where R; = R, = R3 = 20. We also ensured that
sets of trial-averaged measures use the same number of trials, to ensure
comparability.

4.8 Stimulation and Integration Details. All external inputs used in
this article are shared within populations and frozen across realizations.
They are distinct from the escape noise (see equations 2.1 and 2.4), which is
not frozen across realizations.

4.8.1 Sine-Modulated White Noise Input. For inferring parameters in all
our work, we generated training data with a sine-modulated stimulus of
the form
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1478 A.René, A. Longtin, and J. Macke

Table 5: Parameters for the Sine-Modulated Input.

Two-Population Model Four-Population Model
E I L2/3e L2/3i L4e L4i Unit
B 025 0.1 0.0 0.0 025 01 mA
o 20 2.0 2.0 2.0 2.0 2.0 -
q 4.0 4.0 4.0 4.0 4.0 40 mA

Table 6: Parameters for the OU-Process Input (Equation 4.29).

Two-Population Model Four-Population Model Unit
E I L2/3e L2/3i Lde L4i
1ou 0.1 0.05 1 1 0 1 mA
0U 1 1 2 2 - 2 s
q 0.125 0.125 0.5 0.5 0 05 mA
liest(0) 0.1 0.05 0.5 0.5 0 05 mA
Lokt (t) = Bsin(wt) - (1 + g&(t)), (4.28)

where &(t) is the output of a white noise process with (£ (t)&(t")) = 8(t — t').
This input was chosen to be weakly informative in order to provide a base-
line for the inference procedure. The values of B, w and g are listed in Table
5. The integration time step was set to 0.2 ms for microscopic simulations
and 1 ms for mesoscopic simulations. We then tested the fitted model with
the inputs described below.

4.8.2 OU Process Input. Fit performance in sections 2.3 and 2.6 was mea-
sured using an input produced by an Ornstein-Uhlenbeck (OU) process de-
fined by

dI{-est _ (Itest - MOU) dr + q idw (429)
dt Tou V' ou

Here uou, tou and g, respectively, set the mean, correlation time, and noise
amplitude of the input, while dW denotes increments of a Wiener process.
The parameter values and initial condition (Iiest(0)) are listed in Table 6.

4.8.3 Impulse Input. We further tested the generalizability of the four-
population model using an input composed of sharp, synchronous ramps.
As the transient response is qualitatively different from the sinusoidal os-
cillations used to fit the model, this is a way of testing the robustness of the
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Inference of a Mesoscopic Population Model 1479

inferred parameters to extrapolation. The input had the following form:

L(t) =) Tt (4.30)

toeT

B(1-15e) i it —tol <d,
'~7to(t) = (4.31)

0 otherwise.

The input was generated withd = 0.15s, B = (0, 0, 0.6, —0.6) mA. Impulses
were placed at

T =1{11.0,11.7,12.2,12.9,14.1, 14.5,15.5,15.8, 16.2, 16.8} s.

4.8.4 Numerical Integration. For all simulations of the mesoGIF model,
we used a time step of 1 ms. We also used a 1 ms time step when inferring
parameters. Simulations of the microscopic GIF model require finer tempo-
ral resolution, and for those we used time steps of 0.2 ms. In order to have
the same inputs at both temporal resolutions, they were generated using
the finer time step and coarse-grained by averaging.

We used the Euler-Maruyama scheme to integrate inputs; the GIF and
mesoGIF models are given as update equations of the form A(t + At) =
F(A(t)), and thus already define an integration scheme.

4.9 Software. We developed software for expressing likelihoods of
dynamical systems by building on general-purpose machine learning li-
braries: Theano_shim (https://github.com/mackelab/theano_shim)is a thin
layer over the numerical back-end, allowing one to execute the same code
either using Theano (Team et al., 2016) or Numpy (Jones et al., 2001). Sinn
(https://github.com/mackelab/sinn) makes use of theano_shim to provide
a back-end-agnostic set of high-level abstractions to build dynamical mod-
els. Finally, a separate repository (https://github.com/mackelab/fsGIF)
provides the code specific to this article.

Appendix A: Priors and Parameter Values

For both microscopic and mesoscopic models, unless otherwise specified
in the text, we used the same parameter values as our ground-truth values.
Values are listed in Table 7 and are based on those given in Schwalger et al.
(2017), and we follow the recommendation there of adjusting resting po-
tentials 1. to maintain realistic firing rates. To facilitate simulations, we
also reduced the population sizes by a factor of 50 and correspondingly up-
scaled the connectivity weights by a factor of +/50, to maintain a balanced
E-I network (Vogels, Rajan, & Abbott, 2005).
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Inference of a Mesoscopic Population Model 1481

Table 8: Distribution Parameters for the Heterogeneous Model.

Distribution Parameter

Heterogeneous Model Parameter m o

logyo T, -1.6 0.5
logy Tt —-1.8 0.5
logo 7.E -0.7 0.5

Notes: Each parameter was sampled from a log-normal dis-
tribution log;y N (1, 02) with mean p and variance 2. No
adaptation was modeled in the inhibitory population, so 7
was not sampled.

Table 9: Inferred Parameters for a Heterogeneous Population.

Parameter Inferred Value Average Heterogeneous Value  Unit

159 -5.05 2482 —4.964
w mV
0.73 —3.43 1.245 —4.964
T (0.011, 0.008) (0.056, 0.046) s
c (5.05, 5.22) (10, 10) Hz
Ay (5.09, 4.09) (5,5) mV
75 (0.0046, 0.0109) (0.003, 0.006) s
Jo (0.538, 0) (1.0,0) mV
79 (0.131,-) (0.380, -) s

Notes: Values are given in vector format, as (g, ;). Corresponding aver-
age values for the heterogeneous microscopic model are given for com-
parison. (The heterogeneous model was homogeneous in all parameters
except 7, and 75.)

Prior distributions on inferred parameters were set sufficiently broad to
be considered noninformative. Prior distributions are independent of the
population so as to ensure that any inferred feature (e.g., excitatory versus
inhibitory connections) is due to the data.

The two-population heteregeneous model was obtained by sampling
similar but tighter distributions as the prior (see Table 8). Only membrane
and adaptation time constants were sampled; other parameters were as in
Table 7.

Appendix B: Inferred Parameters

The inferred parameters for the heteregeneous two-population model
(see section 2.4) show an overall reduction of connection strengths and
time constants, compared with ground-truth values (see Table 9). For the
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1482 A.René, A. Longtin, and J. Macke

Table 10: Inferred Values for the Four-Population Model.

MAP Theory
L2/3e L2/3i Lde L4i L2/3e L2/3i Lde L4i

wiame—. 0734 5629 1546 5292 1245 —4964 1245 —4.964
wiasie. 1181 —5406 1419 —4294 1245 —4964 1245 —4.964

Wlee. 1.528 —0.637 2.058 —4.213 1.245 —4.964 2482 —4.964
W4j<. 0.174 1112 1.046 —3.994 1.245 —4.964 1.245 —4.964
T 0.016 0.015  0.008 0.009 0.010 0.010 0.010 0.010
c 16.717 18170  9.020 9.680 10.000  10.000  10.000  10.000
Au 7.435 6.453  4.750 4.420 5.000 5.000 5.000 5.000
T 0.001 0.006  0.002 0.009 0.003 0.006 0.003 0.006
Jo 0.232 — 0.967 — 1.000 — 1.000 —

T9 0.425 — 1.596 — 1.000 — 1.000 —

Notes: The values for the homogeneous microscopic model used in Figures 7 and 8 are
listed on the right. Theory predicts these to be the best parameterizations for the meso-
scopic model and thus should be recovered by maximizing the posterior (MAP values).
Since L2/3 receives no external input in the training data, the inferred parameters for
those populations are understandably further from theory.

homogeneous four-population model (see section 2.6), the tendency is less
systematic (see Table 10).

Appendix C: Alternative Initialization Scheme

Compared to the silent initialization (see section 4.4), the stationary initial-
ization described by algorithm 3 finds a more realistic initial state, which
reduces the burn-in time required by about an order of magnitude. This
makes it more practical when minibatches are selected at random, and we
used this scheme to validate algorithm 2 (see section 4.5). However, in gen-
eral, we found the computational gain to be offset by the added cost of solv-
ing a self-consistent equation for each batch.

Algorithm 3: Stationary initialization scheme.

1: A} <+ Solve Equation (69)
2: ng — AL N, At
3t Ry YaBs Yasis Jar Afree,as Aais Las Zas Mais Va,i < Evaluate Eqs. (47-63) with A%,

C.1 Stationary Initialization. Assuming zero external input, we find
a self-consistent equation for the stationary activity A* (see appendix I).
After solving numerically for A*, the other state variables are then easily
computed.
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Inference of a Mesoscopic Population Model 1483

Table 11: Definition of Parameter Subsets for the Two-Population Model.

Subset Label  Included Parameters

m {wEE, wEer, wiE, Wi}
m {t0.E. Jo.E}
n3 m Unz U{cg, cr, Ay e, Auls Tn,Es Tin,Is Ts,Es Ts, I}

Note: There are only two adaptation parameters because in-
hibitory populations have no adaptation in this model.

Appendix D: Data Requirements for Different Parameter Sets

In section 2.3, we showed that less than 10 s of data were sufficient to infer
the parameters of the two-population mesoGIF model. Of course, the exact
data requirements will depend on how many parameters we need to infer
and which they are (e.g., w versus t,,).

To explore this issue, we repeated the inference procedure for the pa-
rameter subsets listed in Table 11, performing 24 fits for each subset using
different amounts of data. Subsets ; and 1, parameterize, respectively, the
connectivity and the adaptation, while 73 is the full set used for Figure 4. A
similar figure to Figure 4 with all three subsets is shown in Figure 9A.

With the smaller subsets (11, 1712), 1.25 s of data was sufficient to get good
accuracy of the inferred dynamics (see Figure 9A). However working with
such small amounts of data incurs a substantial computational cost. First,
the fits converge less consistently, thus requiring more fits to find a good
estimate of the MAP (see Figures 9B-D, left). Second, the algorithm opti-
mizations making use of the longer traces (see section 4.5) are no longer as
effective, making each iteration slower on average.

Since we know the ground-truth parameters, we can further estimate
the expected error by computing the relative difference between true and
inferred parameter values. For a parameter 1 and its estimate 7" obtained
by using L seconds of data, this is calculated as

Arel (ﬁ(L)> =

The number of fits required to achieve this performance will vary accord-
ing to the nature and number of parameters; indeed, with more parame-
ters to infer, we found that fits terminated further from the true values. A
simple way to quantify the uncertainty of any one particular fit is the sam-
ple standard deviation o, of the set of found optima from a collection of fits.
In order to make the o, comparable between parameters, we normalized by
the parameter mean 1, to obtain the coefficient of variation:

"(L)_”l . (D.1)

n

V)| € oy /o] (D2)
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Figure 9: Fits of many parameters are less consistent. (A) As the number of in-
ferred parameters is increased, more data are required to estimate them. »;, 7,
are parameter sets corresponding, respectively, to connectivity and adaptation.
13 D (m U 1) is the set of all parameters. Definitions in Table 11. (B) Results from
24 fits for subsets 1, (left) and n; (right) for different amounts L of data. The star
indicates the true parameters and gray boxes the 5% and 10% relative errors
A Fits cluster around the MAP, which for finite amounts of data will not ex-
actly coincide with the ground-truth values. Darker dots indicate the fit with the
highest likelihood. The consistency of estimates for the adaptation parameters,
with 7, g = 1’5, is particularly improved with longer data traces. (C) Same as in
panel B but all parameters were simultaneously inferred. The reduced consis-
tency is noticeable by the change of scale, at which the 5% and 10% relative error
boxes are not visible. (D) When going from inferring smaller (1, 1,) to larger (n3)
subsets of parameters, the increase in relative error for the same number of fits
is relatively modest (right) compared to the wider area in parameter space to
which fits converge (left). Figure traces statistics for different parameters as a
function of the amount of data (L) and the subset of parameters that were fit
simultaneously (17:-73). Values for all data and subset combinations are given
in Tables 12 and 13.
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Inference of a Mesoscopic Population Model 1485

Table 12: Relative Error for the Fits Shown in Section 2.3.

L
Subset Parameter 1.25 2.00 3.00 5.00 7.00 9.00
m WEE 0.047 0.023 0.045 0.034 0.029 0.027
wWE[ 0.040 0.018 0.046 0.033 0.035 0.032
wE 0.013 0.038 0.000 0.001 0.005 0.024
wyr 0.018 0.005 0.022 0.018 0.012 0.005
m Jo.E 0.002 0.000 0.011 0.004 0.010 0.009
T E 0.283 0.370 0.009 0.108 0.030 0.045
73 WEE 0345 0.348 0.151 0.001 0.084 0.067
WE[ 0238 0.043 0.079 0.132 0.067 0.072
wIE 0.017 0556 0.630 0.427 0.244 0.178
wyy 0.070 0495 0503 0326 0.180 0.136
Jo.E 0.016 0.094 0369 0.385 0.092 0.016
T E 0267 0.054 0450 0586 0.248 0.213
CE 0420 0376 0469 0382 0.239 0.160
cr 2.825 0.006 0.133 0.142 0.128 0.161
Aug 0215 0.182 0.090 0.086 0.092 0.052
Aup 0.520 0.338 0466 0302 0.129 0.058
T E 0.190 0.117 0.057 0.177 0.052 0.037
Tl 2590 0.619 0430 0.393 0.235 0.219
T E 0.744 0.101 0.038 0.101 0.039 0.142
Ts 0271 0.119 0.138 0.132 0.081 0.081

Relative error and CV values for all parameter subsets are listed in Tables
12 and 13.

Appendix E: Mesoscopic Update Equations

This section first describes the quantities composing the state vector for the
mesoGIF model and then lists the equations used for this article. All equa-
tions are for discretized time, and we use a superscript (k) to indicate the kth
time step. For derivations and a fuller discussion of the variables involved,
see Schwalger et al. (2017).

E.1 Construction of the State Vector. In order to obtain a finite state
vector (see section 4.2), neurons are divided into two categories: free and
refractory; the assignment of neurons to either category changes over time,
following a discretized form of the transport equation, 4.10.

Refractory neurons are still in the absolute or relative refractory period
caused by their last spike, and thus have a higher firing threshold. Since
the height of the threshold is dependent on that spike’s time, we track a
vector m, indexed by the age I. We define the scalar mka)l as our estimate

of the number of neurons at time f that last fired at time t;_;. A vector v.f,k)
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1486 A.René, A. Longtin, and J. Macke

Table 13: Coefficients of Variation for the Collections of Fits Shown in Section
2.3.

L

Subset  Parameter 1.25 2.00 3.00 5.00 7.00 9.00
m WEE 1.33 1.05 0.95 0.72 0.61 0.82
wEp 0.69 0.63 0.43 0.62 0.40 0.48

wiE 1.38 1.48 1.53 1.75 1.90 1.36

wyy 0.40 0.46 0.56 0.39 0.61 0.65

2 Jo.E 2.56 1.49 1.50 1.13 1.13 1.42
T9E 7.70 10.33 8.75 11.11 5.64 6.82

73 WEE 31.63 31.73 29.26 37.84 38.29 31.49

WET 183.77  127.48 30.84 88.90 44.35 85.80
wIE 64.08 10098 1833.28 1143.47 1489.30  2405.89
wyy 53.90 65.92 36.25 78.14 37.70 55.10
Jo.E 94.03 82.51 30.99 59.25 40.58 53.40
T9.E 70.53  329.84 255.21 209.10 282.68 160.36
CE 83.08 65.81 37.16 39.42 48.50 47.80
cr 29.31 28.84 34.10 52.49 49.66 52.50
Aug 14.98 19.16 6.11 11.37 7.58 8.84
Aug 32.84 30.33 13.28 41.22 21.86 34.30
T, E 42943  420.71 428.10 431.68 441.05 444.64
Ty 25636 269.36 346.42 337.09 314.64 288.72
TS E 427.66  441.61 447.11 446.85 446.84 447.20
1 23826 240.74 65.92 262.20 71.13 295.76

similarly tracks the variance of that estimate. The adaptation of the neurons
depends on their age, such that their firing rate is also given by a vector, el
With an adaptation timescale 75 of 1 s and time steps of 1 ms, these vectors
each comprise around K = 1000 age bins. For a more detailed discussion on
properly choosing K, see equation 86 in Schwalger et al. (2017).

Free neurons, meanwhile, have essentially forgotten their last spike: their
firing threshold has relaxed back to its resting state, and so they can be

treated as identical, independent of when that last spike was. One scalar

per population, AEQ oo’
(k)

zy’ respectively track the estimated mean and variance of the number of
free neurons.
In the case of an infinite number of neurons, the firing rates Af,k) and

suffices to describe their firing rate. Scalars x,(lk) and

NG

free,a
would be exact, but for finite populations, a further correction Pl(\k)a must be

made to account for statistical fluctuations. Combining A® )\((Xk), and Pf\’f)a,

free,a’
one can compute ﬁka), the expected number of spikes at f;. The definition of
n® then follows as described in section 4.2.
For both refractory and free neurons, the dependency of their time
evolution on the spiking history of the network is taken into account by
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Refractory neurons

Finite-size
correction

(2
P
- (k—1)
Input @ED ) —0P)  (eir) Free neurons

Figure 10: Graphical representation of the mesoscopic model. An arrow x — y
indicates that x is required in order to compute y. Red (orange) boxes indicate
observed variables (input) with the external input shown in lighter orange. Vari-
ables in blue boxes must be stored until the next iteration, and along with the
activity A, they form the model’s state. Intermediate variables shown in purple
do not need to be stored. Indices in parentheses indicate the time step, Greek
letters the population index. During simulation, mesoscopic model parameters
(not shown, but determine the computations along arrows) are fixed, and meso-
scopic output variables A% are generated in a given time step; these values form
the input for the next time step. During inference, the input is obtained from the
training data and is used to compute the sequence of binomial means 1. These
outputs, along with the observed outputs in the training data, are used to com-
pute the likelihood. The gradient descent algorithm then changes the model pa-
rameters after each batch of training data to maximize the likelihood. See also
Schwalger et al. (2017, Figure 12).

convolving the population activities (one per population) with synaptic,
membrane, and adaptation kernels. Following Schwalger et al. (2017), we
express these as exponential filters; this allows the associated convolutions
to be respectively replaced by three additional dynamic variables y, i, and
g making forward simulations more efficient. Replacing temporal filters by
dynamic variables has the additional important benefit of making the dy-
namics Markovian when we consider them as updates on a state S®), com-
posed of the concatenation of the blue variables in Figure 10:

5k .— (n(k)’y(k)’g(k)’ ORISR )\Ek) m® p®. x(k),z(k)) _ (E.1)

Tee’
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1488 A.René, A. Longtin, and J. Macke

For clarity, we have here typeset in bold the components of S® with both
population and age dimensions.

E.2 Kernels and Link Function. The equations below follow from
Schwalger et al. (2017) after setting the synaptic filter to an exponential:
€ap(3) = O(s — Agp)e =28 /7 (B). They depend on the inverse link func-
tion f, relating membrane potential to spiking probability and a refrac-
tory/adaptation kernel 6. Throughout this work we used

fa (”/) = Cq eXP(”//Au,a) (E2)
and

oo ift < tref,a,
Oa (t) = (E3)

i‘;—"’e(t“'efﬂ)/”’-” otherwise.

The quasi-renewal kernel (Naud & Gerstner, 2012) used below is defined as
Bult) = Ay [1 = e O8], (E4)

State vectors assign the index 0 to the time At, such that they run from 6y =
O(At) to Ok = 6((K + 1)At), with K € N. We define k¢ to be the lengths of
the absolute refractory periods in time bins, that is, fyef ¢ = kref.o Af, for each
population «.

E.3 Update Equations. Total input

hED = Upest + (u(k) - urest)eiAf/rm + hiot s (E.5)
Y5 = Aplt — Bap) + [y — Aplti — Aug)] . (E.6)
M
ot = RIG} (1= €™ 2™) 4 000 Y~ pupNpwag {Aﬂ (t—Aap)
p=1

+
T, — Tm,a

(E.7)

EAG) e ()
Tope | Yup — Ap(ti—Dap) | — € ™ | Ts gYpp — TmaAp(tc — Aap) }
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Membrane potential, refractory neurons

(k+1) Uy 0 =< i< kref,ou
k .
Yot Upest,o t+ (u 4(31)1 1 urest,a) —A a4 hm[ « 1= kref,ov
Firing threshold
1 K
(k+1) _ o (k+1) 5o (k—j-1)
v, i - 0freea + Oui + N Z Q‘Vv]AnD‘ ’
j=it1
k+1 _
19f(rett)2 = Utha + ]G.Ote T/rg,ag(k—kl)’
gg(H oA/t (k +(1- — AT )A((kafK)_
Firing probabilities

0 0 =< i< kref.cu

)\(k) — f(hz(xk) _ ﬁ(k) ) )\(k) —

free,a free,a/’ ol

70
at PO 1 o At

5 (k)
—A
— _ free,
1 e “free 5 i

p®

free,a

where

3 (k k—1 k)
)\( : [)L( ) + )Ll(’ree a]/z’

free,a free,a

*k=1) | 50
=[5 292,

a,i—1

Survival counts

K-1
= (k (k) - k) (k) (k - (k) k
( )= ZPA il + Pfreea a + P <N - m,; — x( ))
i=0
_ (k)
g = M
* 7 N,At
where
K-1 p(k) k) (k)
P(k) _ Zi:O PA aiail +Pfree
Ao —

K-1
Zzovaz+z

o0
k 0 ®
xP =Y "ml) =1-P

free,a

)xka_l) + mglkll

k k .
f(ut(,,‘) - ﬁéi)) krefo <1< K.
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Table 14: Performance of Four Population Models: Per Trial RMSE, Equation

4.25.
RMSE
Input Model L2/3e L2/3i Lde L4i
Sine True — micro 1.39+£0.03 346+0.10 3.474+0.13 4.59+0.13
Theory -meso  1.39+0.04 3.37+0.10 3.76+0.15 4.51+0.13
MAP — meso 139 +£0.03 349+0.09 3464013 453+0.13
Oou True — micro 1.22+0.03 3.14+0.08 2264+0.07 5.13+£0.15
Theory —meso  1.21+0.03 3.06 £0.09 226+0.07 4.95+0.15
MAP - meso 1.22+0.03 3.11+£008 2254+0.06 530+£0.14
Impulse  True — micro 154 +£005 364+011 5324+046 5.11+0.23
Theory -meso  1.59+0.06 3.63+0.11 799+0.66 5.88+0.36
MAP — meso 1.70 £0.07 396+0.13 7.74+059 6.00+0.36
Note: Measures computed from 60 realizations of each model.
[ee)
" k k) 2 (k=1 K (k1)
z® = Z v;i) =(1- Pf(re)e,a) zD ¢ Pf(re)e axa )+ v (E.20)
i=K
© n ifi =0,
m,, = Y - (E.21)
[1- Pk( w] ‘L s ; otherwise;
0 ifi=0
o® = ’ (E.22)
az - (k) 2 (k—1) (k) - (k—1) . :
[1- Py wil Vgi TP iy, otherwise.
Spike generation
B ~ Binom(7®/N,: N,). (E.23)

This last equation is the one identified as equation 4.18 in the main text.

Appendix F: Performance of Four Population Models

Per population performance measures for the four-population model (see
section 2.6) are compiled in Tables 14 and 15.

Appendix G: Posterior for the Two-Population Mesoscopic Model _____

In section 2.5, we estimated a 14-dimensional posterior over parameters
for the two-population mesoGIF model and showed a subset of its 2D
marginals. The complete set of these marginals is shown in Figure 11.
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Inference of a Mesoscopic Population Model 1491

Table 15: Performance of Four Population Models: Trial-Averaged Correlation,
Equation 4.26.

D
Input Model 12/3e L2/3i Lde L4i

Sine True — micro 0418  0.386  0.994 0948
Theory —meso  0.354 0.348  0.991 0.945
MAP — meso 0352 0455 0994 0951
ou True — micro 0.829  0.694 0977 0.905
Theory —meso  0.815 0.717 0978 0914
MAP - meso 0.855  0.756  0.977 0916
Impulse  True — micro 0914 0879  0.99 0927
Theory —meso  0.880 0.858 0979  0.870
MAP — meso 0912  0.896  0.9838 0.887

Note: Measures computed from 60 realizations of each model.

Appendix H: Fit Dynamics

When fitting to data produced with a homogeneous microscopic model,
inferred parameters are consistent with those predicted by the mesoscopic
theory (see Figures 12 and 13).

Appendix I: Self-Consistent Equation for the Mesoscopic Stationary
State

We derive the stationary state for the case where I, = 0. For analytical
tractability, we assume that finite-size fluctuations are negligible (effec-
tively, that N, is very large), such that in the stationary state, the activity
is constant. We denote this activity A*.

Having no fluctuations means that expected and observed spikes are in-
terchangeable and equal to a constant:

n® =a® = A*N, At. (L1)

This means that the number of spikes never overshoots or undershoots 7i,,
and the correction factor P, is zero. Equivalently, we can state that

K-1
N=> mi+x. (1.2)
i=0
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Figure 11: Full posterior for the two-population mesoscopic model. Red points
indicate the true values, and ellipses trace the two-standard-deviation isoline
assuming a gaussian model. Many parameter pairs show noticeable correlation,
such as 75 and Jy g, or wig and Ay .

Substituting the stationary values A*, h*, ... into the equations of ap-
pendix H, we obtain equations for the stationary state—for instance,

M
h* = Upest,a + T Z paﬂNﬂwaﬁAZﬂ» (13)
p=1

Yap = Aup: (L4)
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Figure 12: Fit dynamics for the two-population model. Shown are the 25 fits
used to infer parameters for the two-population model in section 2.2. The fit in
red is the one that found the local optimum with the highest likelihood. Four-
teen parameters were inferred; black lines indicate theoretical values.

and so on. Combining these with equation 1.2, we obtain a self-consistency
relation,

K-1 i—1
1=AJA ket +1+ D exp|— Y flaaj+ bﬁjA; — ¢ jAL) AL
izkref.a j:ktef,rx +1

exp [— S Flauj + VA — e ]-Aj;)At]
1—exp[—f(@o + V8 - Az)AL]

: (L5)

where ki o is the number of bins corresponding to the absolute refractory
period of that population. The terms there are given by

aaj = e_(j_krd'a_’_l)At/rm‘d (”r,oz - urest,oz) + urest,a - uthA,a - eotja (16)
. 1— e—At/rm”g
B _ —(j—Kref. o +1) At/ Tin0
baj = (1 — ¢ U ot DAL )1_6_—&/%1'"1}751\7’3105, (L7)
K

Caj = ]e’aefT/Te,a 4+ At Z éaj,, (18)
j'=j+1

a; = Urest, 0 — Uth,a> (19)

bl =1 —e /™), p’NPwP, (1.10)
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Figure 13: Fit dynamics for the four-population model. Shown are the 622 fits
used to infer parameters for the four-population model in section 2.6. Although
certain parameters would benefit from more iterations (e.g., c), most have con-
verged within4 x 10* iterations. Thirty-six parameters were inferred; black lines
indicate theoretical values.

= Joe /M, (L11)

and the inverse link function f and the kernels 6 and 6 are as in
appendix E.
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Equation I.5 can be solved numerically for A*, after which the other state
variables are easily calculated from the expressions in appendix E. We used
SciPy’s (Jones, Oliphant, & Peterson, 2001) root function with an initial
guess of A} =1 to solve for A*. Since the stationary initialization was ul-
timately only used this to validate algorithm 1 (see appendix C), we did no
further analysis of equation 1.5, and in particular leave the determination of
conditions for which its solutions are unique to future work.
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