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For nonconvex optimization in machine learning, this article proves that
every local minimum achieves the globally optimal value of the per-
turbable gradient basis model at any differentiable point. As a result,
nonconvex machine learning is theoretically as supported as convex ma-
chine learning with a handcrafted basis in terms of the loss at differen-
tiable local minima, except in the case when a preference is given to the
handcrafted basis over the perturbable gradient basis. The proofs of these
results are derived under mild assumptions. Accordingly, the proven re-
sults are directly applicable to many machine learning models, includ-
ing practical deep neural networks, without any modification of practical
methods. Furthermore, as special cases of our general results, this article
improves or complements several state-of-the-art theoretical results on
deep neural networks, deep residual networks, and overparameterized
deep neural networks with a unified proof technique and novel geomet-
ric insights. A special case of our results also contributes to the theoretical
foundation of representation learning.

1 Introduction

Deep learning has achieved considerable empirical success in machine
learning applications. However, insufficient work has been done on the-
oretically understanding deep learning, partly because of the nonconvexity
and high-dimensionality of the objective functions used to train deep mod-
els. In general, theoretical understanding of nonconvex, high-dimensional
optimization is challenging. Indeed, finding a global minimum of a gen-
eral nonconvex function (Murty & Kabadi, 1987) and training certain types

Neural Computation 31, 2293–2323 (2019) © 2019 Massachusetts Institute of Technology.
Published under a Creative Commons

Attribution 4.0 International (CC BY 4.0) license.
https://doi.org/10.1162/neco_a_01234

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/31/12/2293/1865165/neco_a_01234.pdf by guest on 07 Septem
ber 2023



2294 K. Kawaguchi, J. Huang, and L. Kaelbling

of neural networks (Blum & Rivest, 1992) are both NP-hard. Considering
the NP-hardness for a general set of relevant problems, it is necessary to
use additional assumptions to guarantee efficient global optimality in deep
learning. Accordingly, recent theoretical studies have proven global opti-
mality in deep learning by using additional strong assumptions such as
linear activation, random activation, semirandom activation, gaussian in-
puts, single hidden-layer network, and significant overparameterization
(Choromanska, Henaff, Mathieu, Ben Arous, & LeCun, 2015; Kawaguchi,
2016; Hardt & Ma, 2017; Nguyen & Hein, 2017, 2018; Brutzkus & Glober-
son, 2017; Soltanolkotabi, 2017; Ge, Lee, & Ma, 2017; Goel & Klivans, 2017;
Zhong, Song, Jain, Bartlett, & Dhillon, 2017; Li & Yuan, 2017; Kawaguchi,
Xie, & Song, 2018; Du & Lee, 2018).

A study proving efficient global optimality in deep learning is thus
closely related to the search for additional assumptions that might not hold
in many practical applications. Toward widely applicable practical theory,
we can also ask a different type of question: If standard global optimal-
ity requires additional assumptions, then what type of global optimality
does not? In other words, instead of searching for additional assumptions
to guarantee standard global optimality, we can also search for another type
of global optimality under mild assumptions. Furthermore, instead of an ar-
bitrary type of global optimality, it is preferable to develop a general theory
of global optimality that not only works under mild assumptions but also
produces the previous results with the previous additional assumptions,
while predicting new results with future additional assumptions. This type
of general theory may help not only to explain when and why an exist-
ing machine learning method works but also to predict the types of future
methods that will or will not work.

As a step toward this goal, this article proves a series of theoretical re-
sults. The major contributions are summarized as follows:

• For nonconvex optimization in machine learning with mild assump-
tions, we prove that every differentiable local minimum achieves
global optimality of the perturbable gradient basis model class. This
result is directly applicable to many existing machine learning mod-
els, including practical deep learning models, and to new models to
be proposed in the future, nonconvex and convex.

• The proposed general theory with a simple and unified proof tech-
nique is shown to be able to prove several concrete guarantees that
improve or complement several state-of-the-art results.

• In general, the proposed theory allows us to see the effects of the
design of models, methods, and assumptions on the optimization
landscape through the lens of the global optima of the perturbable
gradient basis model class.

Because a local minimum θ inR
dθ only requires the θ to be locally optimal

in R
dθ , it is nontrivial that the local minimum is guaranteed to achieve the
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globally optimality in R
dθ of the induced perturbable gradient basis model

class. The reason we can possibly prove something more than many worst-
case results in general nonconvex optimization is that we explicitly take
advantage of mild assumptions that commonly hold in machine learning
and deep learning. In particular, we assume that an objective function to
be optimized is structured with a sum of weighted errors, where each error
is an output of composition of a loss function and a function of a hypothe-
sis class. Moreover, we make mild assumptions on the loss function and a
hypothesis class, all of which typically hold in practice.

2 Preliminaries

This section defines the problem setting and common notation.

2.1 Problem Description. Let x ∈ X and y ∈ Y be an input vector and
a target vector, respectively. Define ((xi, yi))m

i=1 as a training data set of size
m. Let θ ∈ R

dθ be a parameter vector to be optimized. Let f (x; θ ) ∈ R
dy be

the output of a model or a hypothesis, and let � : Rdy × Y → R≥0 be a loss
function. Here, dθ , dy ∈ N>0. We consider the following standard objective
function L to train a model f (x; θ ):

L(θ ) =
m∑

i=1

λi�( f (xi; θ ), yi).

This article allows the weights λ1, . . . , λm > 0 to be arbitrarily fixed. With
λ1 = · · · = λm = 1

m , all of our results hold true for the standard average loss
L as a special case.

2.2 Notation. Because the focus of this article is the optimization of the
vector θ , the following notation is convenient: �y(q) = �(q, y) and fx(q) =
f (x; q). Then we can write

L(θ ) =
m∑

i=1

λi�yi ( fxi (θ )) =
m∑

i=1

λi(�yi ◦ fxi )(θ ).

We use the following standard notation for differentiation. Given a
scalar-valued or vector-valued function ϕ : Rd → R

d′
with components

ϕ = (ϕ1, . . . , ϕd′ ) and variables (v1, . . . , vd̄ ), let ∂vϕ : Rd → R
d′×d̄ be the

matrix-valued function with each entry (∂vϕ)i, j = ∂ϕi
∂v j

. Note that if ϕ is a
scalar-valued function, ∂vϕ outputs a row vector. In addition, ∂ϕ = ∂vϕ if
(v1, . . . , vd ) are the input variables of ϕ. Given a function ϕ : Rd → R

d′
, let

∂kϕ : Rd → R be the partial derivative ∂kϕ with respect to the kth variable of
ϕ. For the syntax of any differentiation map ∂ , given functions ϕ and ζ , let
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∂ϕ(ζ (q)) = (∂ϕ)(ζ (q)) be the (partial) derivative ∂ϕ evaluated at an output
ζ (q) of a function ζ .

Given a matrix M ∈ R
d×d′

, vec(M) = [M1,1, . . . , Md,1, M1,2, . . . , Md,2, . . . ,

M1,d′ , . . . , Md,d′ ]T represents the standard vectorization of the matrix M.
Given a set of n matrices or vectors {M( j)}n

j=1, define [M( j)]n
j=1 = [M(1),

M(2), . . . , M(n)] to be a block matrix of each column block being
M(1), M(2), . . . , M(n). Similarly, given a set I = {i1, . . . , in} with (i1, . . . , in) in-
creasing, define [M( j)] j∈I = [M(i1 ) · · · M(in )].

3 Nonconvex Optimization Landscapes for Machine Learning

This section shows our first main result that under mild assumptions, ev-
ery differentiable local minimum achieves the global optimality of the per-
turbable gradient basis model class.

3.1 Assumptions. Given a hypothesis class f and data set, let � be
a set of nondifferentiable points θ as � = {θ ∈ R

dθ : (∃i ∈ {1, . . . , m})[ fxi

is not differentiable at θ ]}. Similarly, define �̃ = {θ ∈ R
dθ : (∀ε > 0)(∃θ ′ ∈

B(θ, ε))(∃i ∈ {1, . . . , m})[ fxi is not differentiable at θ ′]}. Here, B(θ, ε) is the
open ball with the center θ and the radius ε. In common nondifferentiable
models f such as neural networks with rectified linear units (ReLUs) and
pooling operations, we have that � = �̃, and the Lebesgue measure of
�(= �̃) is zero.

This section uses the following mild assumptions.

Assumption 1 (Use of Common Loss criteria). For all i ∈ {1, . . . , m},
the function �yi : q 	→ �(q, yi) ∈ R≥0 is differentiable and convex (e.g., the
squared loss, cross-entropy loss, or polynomial hinge loss satisfies this
assumption).

Assumption 2 (Use of Common Model Structures). There exists a function
g : Rdθ → R

dθ such that fxi (θ ) = ∑dθ

k=1 g(θ )k∂k fxi (θ ) for all i ∈ {1, . . . , m} and
all θ ∈ R

dθ \ �.

Assumption 1 is satisfied by simply using common loss criteria that
include the squared loss �(q, y) = ‖q − y‖2

2, cross-entropy loss �(q, y) =
−∑dy

k=1 yk log exp(qk )∑
k′ exp(qk′ ) , and smoothed hinge loss �(q, y) = (max{0, 1 −

yq})p with p ≥ 2 (the hinge loss with dy = 1). Although the objective func-
tion L : θ 	→ L(θ ) used to train a complex machine learning model (e.g., a
neural network) is nonconvex in θ , the loss criterion �yi : q 	→ �(q, yi) is usu-
ally convex in q. In this article, the cross-entropy loss includes the softmax
function, and thus fx(θ ) is the pre-softmax output of the last layer in related
deep learning models.

Assumption 2 is satisfied by simply using a common architecture in
deep learning or a classical machine learning model. For example, consider
a deep neural network of the form fx(θ ) = Wh(x; u) + b, where h(x; u) is
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Every Local Minimum Value Is the Global Minimum Value 2297

an output of an arbitrary representation at the last hidden layer and θ =
vec([W, b, u]). Then assumption 2 holds because fxi (θ ) = ∑dθ

k=1 g(θ )k∂k fxi (θ ),
where g(θ )k = θk for all k corresponding to the parameters (W, b) in the last
layer and g(θ )k = 0 for all other k corresponding to u. In general, because g
is a function of θ , assumption 2 is easily satisfiable. Assumption 2 does not
require the model f (x; θ ) to be linear in θ or x.

Note that we allow the nondifferentiable points to exist in L(θ ); for
example, the use of ReLU is allowed. For a nonconvex and nondifferen-
tiable function, we can still have first-order and second-order necessary
conditions of local minima (e.g., Rockafellar & Wets, 2009, theorem 13.24).
However, subdifferential calculus of a nonconvex function requires careful
treatment at nondifferentiable points (see Rockafellar & Wets, 2009; Kakade
& Lee, 2018; Davis, Drusvyatskiy, Kakade, & Lee, 2019), and deriving guar-
antees at nondifferentiable points is left to a future study.

3.2 Theory for Critical Points. Before presenting the first main result,
this section provides a simpler result for critical points to illustrate the ideas
behind the main result for local minima. We define the (theoretical) objec-
tive function Lθ of the gradient basis model class as

Lθ (α) =
m∑

i=1

λi� ( fθ (xi;α), yi) ,

where { fθ (xi;α) = ∑dθ

k=1 αk∂k fxi (θ ) : α ∈ R
dθ } is the induced gradient basis

model class. The following theorem shows that every differentiable crit-
ical point of our original objective L (including every differentiable local
minimum and saddle point) achieves the global minimum value of Lθ . The
complete proofs of all the theoretical results are presented in appendix A.

Theorem 1. Let assumptions 1 and 2 hold. Then for any critical point θ ∈ (Rdθ \
�) of L, the following holds:

L(θ ) = inf
α∈Rdθ

Lθ (α).

An important aspect in theorem 1 is that Lθ on the right-hand side is
convex, while L on the left-hand side can be nonconvex or convex. Here,
following convention, inf S is defined to be the infimum of a subset S of R
(the set of affinely extended real numbers); that is, if S has no lower bound,
inf S = −∞ and inf ∅ = ∞. Note that theorem 1 vacuously holds true if
there is no critical point for L. To guarantee the existence of a minimizer
in a (nonempty) subspace S ⊆ R

dθ for L (or Lθ ), a classical proof requires
two conditions: a lower semicontinuity of L (or Lθ ) and the existence of a
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Figure 1: Illustration of gradient basis model class and theorem 1 with θ ∈ R
2

and fX (θ ) ∈ R
3 (dy = 1). Theorem 1 translates the local condition of θ in the pa-

rameter space R
2 (on the left) to the global optimality in the output space R

3 (on
the right). The subspace TfX (θ ) is the space of the outputs of the gradient basis
model class. Theorem 1 states that fX (θ ) is globally optimal in the subspace as
fX (θ ) ∈ argminf∈TfX (θ )

dist(f, y) for any differentiable critical point θ of L.

q ∈ S for which the set {q′ ∈ S : L(q′) ≤ L(q)} (or {q′ ∈ S : Lθ (q′) ≤ Lθ (q)}) is
compact (see Bertsekas, 1999, for different conditions).

3.2.1 Geometric View. This section presents the geometric interpretation
of theorem 1 that provides an intuitive yet formal description of gradient
basis model class. Figure 1 illustrates the gradient basis model class and
theorem 1 with θ ∈ R

2 and fX (θ ) ∈ R
3. Here, we consider the following map

from the parameter space to the concatenation of the output of the model
at x1, x2, . . . , xm:

fX : θ ∈ R
dθ 	→ ( fx1 (θ )�, fx2 (θ )�, . . . , fxm (θ )�)� ∈ R

mdy .

In the output spaceRmdy of fX , the objective function L induces the notion
of distance from the target vector y = (y�

1 , . . . , y�
m)� ∈ R

mdy to a vector f =
(f�

1 , . . . , f�
m)� ∈ R

mdy as

dist(f, y) =
m∑

i=1

λi�(fi, yi).

We consider the affine subspace TfX (θ ) of Rmdy that passes through the point
fX (θ ) and is spanned by the set of vectors {∂1 fX (θ ), . . . , ∂dθ

fX (θ )},
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TfX (θ ) = span({∂1 fX (θ ), . . . , ∂dθ
fX (θ )}) + { fX (θ )},

where the sum of the two sets represents the Minkowski sum of the
sets.

Then the subspace TfX (θ ) is the space of the outputs of the gradient ba-
sis model class in general beyond the low-dimensional illustration. This is
because by assumption 2, for any given θ ,

TfX (θ ) =
{

dθ∑
k=1

(g(θ )k + αk)∂k fX (θ ) : α ∈ R
dθ

}

=
{

dθ∑
k=1

αk∂k fX (θ ) : α ∈ R
dθ

}
, (3.1)

and
∑dθ

k=1 αk∂k fX (θ ) = ( fθ (x1;α)�, . . . , fθ (xm;α)�)�. In other words, TfX (θ )
= span({∂1 fX (θ ), . . . , ∂dθ

fX (θ )}) � ( fθ (x1;α)�, . . . , fθ (xm;α)�)�.
Therefore, in general, theorem 1 states that under assumptions 1 and 2,

fX (θ ) is globally optimal in the subspace TfX (θ ) as

fX (θ ) ∈ argmin
f∈TfX (θ )

dist(f, y),

for any differentiable critical point θ of L. Theorem 1 concludes this global
optimality in the affine subspace of the output space based on the local
condition in the parameter space (i.e., differentiable critical point). A key
idea behind theorem 1 is to consider the map between the parameter space
and the output space, which enables us to take advantage of assumptions 1
and 2.

Figure 2 illustrates the gradient basis model class and theorem 1 with a
union of manifolds and a tangent space. Under the constant rank condition,
the image of the map fX locally forms a single manifold. More precisely, if
there exists a small neighborhood U(θ ) of θ such that fX is differentiable in
U(θ ) and rank(∂ fX (θ ′)) = r is constant with some r for all θ ′ ∈ U(θ ) (the con-
stant rank condition), then the rank theorem states that the image fX (U(θ ))
is a manifold of dimension r (Lee, 2013, theorem 4.12). We note that the rank
map θ 	→ rank(∂ fX (θ )) is lower semicontinuous (i.e., if rank(∂ fX (θ )) = r,
then there exists a neighborhood U(θ ) of θ such that rank(∂ fX (θ ′)) ≥ r for
any θ ′ ∈ U(θ )). Therefore, if ∂ fX (θ ) at θ has the maximum rank in a small
neighborhood of θ , then the constant rank condition is satisfied.

For points θ where the constant rank condition is violated, the image of
the map fX is no longer a single manifold. However, locally it decomposes
as a union of finitely many manifolds. More precisely, if there exists a small
neighborhood U(θ ) of θ such that fX is analytic over U(θ ) (this condition
is satisfied for commonly used activation functions such as ReLU, sigmoid,
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1

Figure 2: Illustration of gradient basis model class and theorem 1 with man-
ifold and tangent space. The space R

2 � θ on the left is the parameter space,
and the space R

3 � fX (θ ) on the right is the output space. The surface M ⊂ R
3

on the right is the image of fX , which is a union of finitely many manifolds.
The tangent space TfX (θ ) is the space of the outputs of the gradient basis model
class. Theorem 1 states that if θ is a differentiable critical point of L, then fX (θ )
is globally optimal in the tangent space TfX (θ ).

and hyperbolic tangent at any differentiable point), then the image fX (U(θ ))
admits a locally finite partition M into connected submanifolds such that
whenever M �= M′ ∈ M with M̄ ∩ M′ �= ∅ (M̄ is the closure of M), we have

M′ ⊂ M̄, dim(M′) < dim(M).

See Hardt (1975) for the proof.
If the point θ satisfies the constant rank condition, then TfX (θ ) is exactly

the tangent space of the manifold formed by the image fX (U(θ )). Otherwise,
locally the image decomposes into a finite union M of submanifolds. In this
case, TfX (θ ) belongs to the span of the tangent space of those manifolds in
M as

TfX (θ ) ⊂ {TpM : p = fX (θ ), M ∈ M},

where TpM is the tangent space of the manifold M at the point p.

3.2.2 Examples. In this section, we show through examples that theorem
1 generalizes the previous results in special cases while providing new the-
oretical insights based on the gradient basis model class and its geometric
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view. In the following, whenever the form of f is specified, we require only
assumption 1 because assumption 2 is automatically satisfied by a given f .

For classical machine learning models, example 1 shows that the gradi-
ent basis model class is indeed equivalent to a given model class. From the
geometric view, this means that for any θ , the tangent space TfX (θ ) is equal
to the whole image M of fX (i.e., TfX (θ ) does not depend on θ ). This reduces
theorem 1 to the statement that every critical point of L is a global minimum
of L.

Example 1: Classical Machine Learning Models. For any basis func-
tion model f (x; θ ) = ∑dθ

k=1 θkφ(x)k in classical machine learning with any
fixed feature map φ : X → R

dθ , we have that fθ (x;α) = f (x;α), and hence
infθ∈Rdθ L(θ ) = infα∈Rdθ Lθ (α), as well as � = ∅. In other words, in this spe-
cial case, theorem 1 states that every critical point of L is a global minimum
of L. Here, we do not assume that a critical point or a global minimum exists
or can be attainable. Instead, the statement logically means that if a point is
a critical point, then the point is a global minimum. This type of statement
vacuously holds true if there is no critical point.

For overparameterized deep neural networks, example 2 shows that the
induced gradient basis model class is highly expressive such that it must
contain the globally optimal model of a given model class of deep neural
networks. In this example, the tangent space TfX (θ ) is equal to the whole
output space R

mdy . This reduces theorem 1 to the statement that every criti-
cal point of L is a global minimum of L for overparameterized deep neural
networks.

Intuitively, in Figure 1 or 2, we can increase the number of parameters
and raise the number of partial derivatives ∂k fX (θ ) in order to increase the
dimensionality of the tangent space TfX (θ ) so that TfX (θ ) = R

mdy . This is in-
deed what happens in example 2, as well as in the previous studies of sig-
nificantly overparameterized deep neural networks (Allen-Zhu, Li, & Song,
2018; Du, Lee, Li, Wang, & Zhai, 2018; Zou et al., 2018). In the previous
studies, the significant overparameterization is required so that the tangent
space TfX (θ ) does not change from the initial tangent space TfX (θ (0) ) = R

mdy

during training. Thus, theorem 1, with its geometric view, provides the
novel algebraic and geometric insights into the results of the previous stud-
ies and the reason why overparameterized deep neural networks are easy
to be optimized despite nonconvexity.

Example 2: Overparameterized Deep Neural Networks. Theorem 1 im-
plies that every critical point (and every local minimum) is a global mini-
mum for sufficiently overparameterized deep neural networks. Let n be the
number of units in each layer of a fully connected feedforward deep neu-
ral network. Let us consider a significant overparameterization such that
n ≥ m. Let us write a fully connected feedforward deep neural network with
the trainable parameters (θ, u) by f (x; θ ) = Wφ(x; u), where W ∈ R

dy×n is
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the weight matrix in the last layer, θ = vec(W ), u contains the rest of the
parameters, and φ(x; u) is the output of the last hidden layer. Denote xi =
[(x(raw)

i )�, 1]� to contain the constant term to account for the bias term in the
first layer. Assume that the input samples are normalized as ‖x(raw)

i ‖2 = 1
for all i ∈ {1, . . . , m} and distinct as (x(raw)

i )�x(raw)
i′ < 1 − δ with some δ > 0

for all i′ �= i. Assume that the activation functions are ReLU activation func-
tions. Then we can efficiently set u to guarantee rank([φ(xi; u)]m

i=1) ≥ m (e.g.,
by choosing u to make each unit of the last layer to be active only for each
sample xi).1 Theorem 1 implies that every critical point θ with this u is a
global minimum of the whole set of trainable parameters (θ, u) because
infα Lθ (α) = inf f1,..., fm

∑m
i=1 λi�( fi, yi) (with assumption 1).

For deep neural networks, example 3 shows that standard networks have
the global optimality guarantee with respect to the representation learned at
the last layer, and skip connections further ensure the global optimality with
respect to the representation learned at each hidden layer. This is because
adding the skip connections incurs new partial derivatives {∂k fX (θ )}k that
span the tangent space containing the output of the best model with the
corresponding learned representation.

Example 3: Deep Neural Networks and Learned Representations. Con-
sider a feedforward deep neural network, and let I (skip) ⊆ {1, . . . , H} be the
set of indices such that there exists a skip connection from the (l − 1)th layer
to the last layer for all l ∈ I (skip) ; that is, in this example,

f (x; θ ) =
∑

l∈I (skip)

W (l+1)h(l)(x; u),

where θ = vec([[W (l+1)]l∈I (skip) , u]) ∈ R
dθ with W (l+1) ∈ R

dy×dl and u ∈ R
du .

The conclusion in this example holds for standard deep neural networks
without skip connections too, since we always have H ∈ I (skip) for standard
deep neural networks. Let assumption 1 hold. Then theorem 1 implies that
for any critical point θ ∈ (Rdθ \ �) of L, the following holds:

L(θ ) = inf
α∈Rdθ

L(skip)
θ (α),

1
For example, choose the first layer’s weight matrixW (1) such that for all i ∈ {1, . . . , m},

(W (1)xi )i > 0 and (W (1)xi )i′ ≤ 0 for all i′ �= i. This can be achieved by choosing the ith row
of W (1) to be [(x(raw)

i )�, ε − 1] with 0 < ε ≤ δ for i ≤ m. Then choose the weight matrices

for the lth layer for all l ≥ 2 such that for all j, W (l)
j, j �= 0 and W (l)

j′, j = 0 for all j′ �= j. This
guarantees rank([φ(xi; u)]m

i=1) ≥ m.
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where

L(skip)
θ (α) =

m∑
i=1

λi�yi

⎛
⎝ ∑

l∈I (skip)

α(l+1)
w h(l)(xi; u) +

du∑
k=1

(αu)k∂uk fxi (θ )

⎞
⎠ ,

with α = vec([[α(l+1)]l∈I (skip) , αu]) ∈ R
dθ with α(l+1) ∈ R

dy×dl and αu ∈ R
du .

This is because f (x; θ ) = (∂vec(W (H+1) ) f (x; θ ))vec(W (H+1) ), and thus assump-
tion 2 is automatically satisfied. Here, h(l)(xi; u) is the representation learned
at the l-layer. Therefore, infα∈Rdθ L(skip)

θ (α) is at most the global minimum
value of the basis models with the learned representations of the last layer
and all hidden layers with the skip connections.

3.3 Theory for Local Minima. We are now ready to present our first
main result. We define the (theoretical) objective function L̃θ of the per-
turbable gradient basis model class as

L̃θ (α, ε, S) =
m∑

i=1

λi�( f̃θ (xi;α, ε, S), yi),

where f̃θ (xi;α, ε, S) is a perturbed gradient basis model defined as

f̃θ (xi;α, ε, S) =
dθ∑

k=1

|S|∑
j=1

αk, j∂k fxi (θ + εSj ).

Here, S is a finite set of vectors S1, . . . , S|S| ∈ R
dθ and α ∈ R

dθ ×|S|. Let V[θ, ε]
be the set of all vectors v ∈ R

dθ such that ‖v‖2 ≤ 1 and fxi (θ + εv ) = fxi (θ )
for any i ∈ {1, . . . , m}. Let S ⊆fin S′ denote a finite subset S of a set S′. For an
Sj ∈ V[θ, ε], we have fxi (θ + εSj ) = fxi (θ ), but it is possible to have ∂k fxi (θ +
εSj ) �= ∂k fxi (θ ). This enables the greater expressivity of f̃θ (xi;α, ε, S) with a
S ⊆fin V[θ, ε] when compared with fθ (xi;α).

The following theorem shows that every differentiable local minimum
of L achieves the global minimum value of L̃θ :

Theorem 2. Let assumptions 1 and 2 hold. Then, for any local minimum θ ∈
(Rdθ \ �̃) of L, the following holds: there exists ε0 > 0 such that for any ε ∈ [0, ε0),

L(θ ) = inf
S⊆ f inV[θ,ε],

α∈Rdθ ×|S|

L̃θ (α, ε, S). (3.2)

To understand the relationship between theorems 1 and 2, let us consider
the following general inequalities: for any θ ∈ (Rdθ \ �̃) with ε ≥ 0 being
sufficiently small,
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2304 K. Kawaguchi, J. Huang, and L. Kaelbling

L(θ ) ≥ inf
α∈Rdθ

Lθ (α) ≥ inf
S⊆ f inV[θ,ε ],

α∈Rdθ ×|S|

L̃θ (α, ε, S).

Here, whereas theorem 1 states that the first inequality becomes equality as
L(θ ) = infα∈Rdθ Lθ (α) at every differentiable critical point, theorem 2 states
that both inequalities become equality as

L(θ ) = inf
α∈Rdθ

Lθ (α) = inf
S⊆ f inV[θ,ε],

α∈Rdθ ×|S|

L̃θ (α, ε, S)

at every differentiable local minimum.
From theorem 1 to theorem 2, the power of increasing the number of pa-

rameters (including overparameterization) is further improved. The right-
hand side in equation 3.2 is the global minimum value over the variables
S ⊆fin V[θ, ε] and α ∈ R

dθ ×|S|. Here, as dθ increases, we may obtain the global
minimum value of a larger search space R

dθ ×|S|, which is similar to theorem
1. A concern in theorem 1 is that as dθ increases, we may also significantly
increase the redundancy among the elements in {∂k fxi (θ )}dθ

k=1. Although this
remains a valid concern, theorem 2 allows us to break the redundancy by
the globally optimal S ⊆fin V[θ, ε] to some degree.

For example, consider f (x; θ ) = g(W (l)h(l)(x; u); u), which represents a
deep neural network, with some lth-layer output h(l)(x; u) ∈ R

dl , a trainable
weight matrixW (l), and an arbitrary function g to compute the rest of the for-
ward pass. Here, θ = vec([W (l), u]). Let h(l)(X; u) = [h(l)(xi; u)]m

i=1 ∈ R
dl×m

and, similarly, f (X; θ ) = g(W (l)h(l)(X; u); u) ∈ R
dy×m. Then, all vectors v cor-

responding to any elements in the left null space of h(l)(X; u) are in V[θ, ε]
(i.e., vk = 0 for all k corresponding to u and the rest of vk is set to perturb
W (l) by an element in the left null space). Thus, as the redundancy increases
such that the dimension of the left null space of h(l)(X; u) increases, we have
a larger space of V[θ, ε], for which a global minimum value is guaranteed
at a local minimum.

3.3.1 Geometric View. This section presents the geometric interpretation
of the perturbable gradient basis model class and theorem 2. Figure 3 illus-
trates the perturbable gradient basis model class and theorem 2 with θ ∈ R

2

and fX (θ ) ∈ R
3. Figure 4 illustrates them with a union of manifolds and tan-

gent spaces at a singular point. Given a ε (≤ ε0), define the affine subspace
T̃fX (θ ) of the output space R

mdy by

T̃fX (θ ) = span({f ∈ R
mdy : (∃v ∈ V[θ, ε])[f ∈ TfX (θ+εv )]}).
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Figure 3: Illustration of perturbable gradient basis model class and theorem 2
with θ ∈ R

2 and fX (θ ) ∈ R
3 (dy = 1). Theorem 2 translates the local condition of

θ in the parameter space R
2 (on the left) to the global optimality in the output

space R
3 (on the right). The subspace T̃fX (θ ) is the space of the outputs of the

perturbable gradient basis model class. Theorem 2 states that fX (θ ) is globally
optimal in the subspace as fX (θ ) ∈ argminf∈T̃ fX (θ )

dist(f, y) for any differentiable

local minima θ of L. In this example, T̃fX (θ ) is the whole output space R
3, while

TfX (θ ) is not, illustrating the advantage of the perturbable gradient basis over the
gradient basis. Since T̃fX (θ ) = R

3, fX (θ ) must be globally optimal in the whole
output space R

3.

Then the subspace T̃fX (θ ) is the space of the outputs of the perturbable gra-
dient basis model class in general beyond the low-dimensional illustration
(this follows equation 3.1 and the definition of the perturbable gradient ba-
sis model). Therefore, in general, theorem 2 states that under assumptions
1 and 2, fX (θ ) is globally optimal in the subspace T̃fX (θ ) as

fX (θ ) ∈ argmin
f∈T̃fX (θ )

dist(f, y)

for any differentiable local minima θ of L. Theorem 2 concludes the global
optimality in the affine subspace of the output space based on the local con-
dition in the parameter space—that is, differentiable local minima. Here, a
(differentiable) local minimum θ is required to be optimal only in an ar-
bitrarily small local neighborhood in the parameter space, and yet fX (θ ) is
guaranteed to be globally optimal in the affine subspace of the output space.
This illuminates the fact that nonconvex optimization in machine learning
has a particular structure beyond general nonconvex optimization.
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Figure 4: Illustration of perturbable gradient basis model class and theorem 2
with manifold and tangent space at a singular point. The surface M ⊂ R

3 is
the image of fX , which is a union of finitely many manifolds. The line TfX (θ )

on the left panel is the space of the outputs of the gradient basis model class.
The whole space T̃fX (θ ) = R

3 on the right panel is the space of the outputs of the
perturbable gradient basis model class. The space T̃fX (θ ) is the span of the set of
the vectors in the tangent spaces TfX (θ ), TfX (θ ′ ), and TfX (θ ′′ ). Theorem 2 states that
if θ is a differentiable local minimum of L, then fX (θ ) is globally optimal in the
space T̃fX (θ ).

4 Applications to Deep Neural Networks

The previous section showed that all local minima achieve the global op-
timality of the perturbable gradient basis model class with several direct
consequences for special cases. In this section, as consequences of theorem
2, we complement or improve the state-of-the-art results in the literature.

4.1 Example: ResNets. As an example of theorem 2, we set f to be the
function of a certain type of residual networks (ResNets) that Shamir (2018)
studied. That is, both Shamir (2018) and this section set f as

f (x; θ ) = W (x + Rz(x; u)), (4.1)

where θ = vec([W, R, u]) ∈ R
dθ with W ∈ R

dy×dx , R ∈ R
dx×dz , and u ∈ R

du .
Here, z(x; u) ∈ R

dz represents an output of deep residual functions with
a parameter vector u. No assumption is imposed on the form of z(x; u),
and z(x; u) can represent an output of possibly complicated deep resid-
ual functions that arise in ResNets. For example, the function f can rep-
resent deep preactivation ResNets (He, Zhang, Ren, & Sun, 2016), which
are widely used in practice. To simplify theoretical study, Shamir (2018) as-
sumed that every entry of the matrix R is unconstrained (e.g., instead of R
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representing convolutions). We adopt this assumption based on the previ-
ous study (Shamir, 2018).

4.1.1 Background. Along with an analysis of approximate critical points,
Shamir (2018) proved the following main result, proposition 1, under the
assumptions PA1, PA2, and PA3:

PA1: The output dimension dy = 1.
PA2: For any y, the function �y is convex and twice differentiable.
PA3: On any bounded subset of the domain of L, the function Lu(W, R),

its gradient ∇Lu(W, R), and its Hessian ∇2Lu(W, R) are all Lipschitz
continuous in (W, R), where Lu(W, R) = L(θ ) with a fixed u.

Proposition 1 (Shamir, 2018). Let f be specified by equation 4.1, Let assumptions
PA1, PA2, and PA3 hold. Then for any local minimum θ of L,

L(θ ) ≤ inf
W∈Rdy×dx

m∑
i=1

λi�yi (Wxi).

Shamir (2018) remarked that it is an open problem whether proposi-
tion 1 and another main result in the article can be extended to networks
with dy > 1 (multiple output units). Note that Shamir (2018) also provided
proposition 1 with an expected loss and an analysis for a simpler decou-
pled model, Wx + Vz(x; u). For the simpler decoupled model, our theo-
rem 1 immediately concludes that given any u, every critical point with
respect to θ−u = (W, R) achieves a global minimum value with respect
to θ−u as L(θ−u) = inf {∑m

i=1 λi�yi (Wxi + Rz(xi; u)) : W ∈ R
dy×dx , R ∈ R

dx×dz}
(≤ infW∈Rdy×dx

∑m
i=1 λi�yi (Wxi)). This holds for every critical point θ since any

critical point θ must be a critical point with respect to θ−u.

4.2 Result. The following theorem shows that every differentiable local
minimum achieves the global minimum value of L̃(ResNet)

θ (the right-hand
side in equation 4.2), which is no worse than the upper bound in propo-
sition 1 and is strictly better than the upper bound as long as z(xi, u) or
f̃θ (xi;α, ε, S) is nonnegligible. Indeed, the global minimum value of L̃(ResNet)

θ

(the right-hand side in equation 4.2) is no worse than the global minimum
value of all models parameterized by the coefficients of the basis x and
z(x; u), and further improvement is guaranteed through a nonnegligible
f̃θ (xi;α, ε, S).

Theorem 3. Let f be specified by equation 4.1. Let assumption 1 hold. As-
sume that dy ≤ min{dx, dz}. Then for any local minimum θ ∈ (Rdθ \ �̃) of L, the
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following holds: there exists ε0 > 0 such that for any ε ∈ (0, ε0),

L(θ ) = inf
S⊆ f inV[θ,ε],
α∈Rdθ ×|S|,

αw∈Rdy×dx ,αr∈Rdy×dz

L̃(ResNet)
θ (α, αw, αr, ε, S), (4.2)

where

L̃(ResNet)
θ (α, αw, αr, ε, S) =

m∑
i=1

λi�yi (αwxi + αrz(xi; u) + f̃θ (xi;α, ε, S)).

Theorem 3 also successfully solved the first part of the open problem in
the literature (Shamir, 2018) by discarding the assumption of dy = 1. From
the geometric view, theorem 3 states that the span T̃fX (θ ) of the set of the
vectors in the tangent spaces {TfX (θ+εv ) : v ∈ V[θ, ε]} contains the output of
the best basis model with the linear feature x and the learned nonlinear
feature z(xi; u). Similar to the examples in Figures 3 and 4, T̃fX (θ ) �= Tf (θ ) and
the output of the best basis model with these features is contained in T̃fX (θ )
but not in Tf (θ ).

Unlike the recent study on ResNets (Kawaguchi & Bengio, 2019), our the-
orem 3 predicts the value of L through the global minimum value of a large
search space (i.e., the domain of L̃(ResNet)

θ ) and is proven as a consequence of
our general theory (i.e., theorem 2) with a significantly different proof idea
(see section 4.3) and with the novel geometric insight.

4.2.1 Example: Deep Nonlinear Networks with Locally Induced Partial Linear
Structures. We specify f to represent fully connected feedforward networks
with arbitrary nonlinearity σ and arbitrary depth H as follows:

f (x; θ ) = W (H+1)h(H)(x; θ ), (4.3)

where

h(l)(x; θ ) = σ (l)(W (l)h(l−1)(x; θ )),

for all l ∈ {1, . . . , H} with h(0)(x; θ ) = x. Here, θ = vec([W (l)]H+1
l=1 ) ∈ R

dθ with
W (l) ∈ R

dl×dl−1 , dH+1 = dy, and d0 = dx. In addition, σ (l) : Rdl → R
dl repre-

sents an arbitrary nonlinear activation function per layer l and is allowed
to differ among different layers.

4.2.2 Background. Given the difficulty of theoretically understanding
deep neural networks, Goodfellow, Bengio, and Courville (2016) noted that
theoretically studying simplified networks (i.e., deep linear networks) is
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worthwhile. For example, Saxe, McClelland, and Ganguli (2014) empiri-
cally showed that deep linear networks may exhibit several properties anal-
ogous to those of deep nonlinear networks. Accordingly, the theoretical
study of deep linear neural networks has become an active area of research
(Kawaguchi, 2016; Hardt & Ma, 2017; Arora, Cohen, Golowich, & Hu, 2018;
Arora, Cohen, & Hazan, 2018; Bartlett, Helmbold, & Long, 2019; Du & Hu,
2019).

Along this line, Laurent and Brecht (2018) recently proved the following
main result, proposition 2, under the assumptions PA4, PA5, and PA6:

PA4: Every activation function is identity as σ (l)(q) = q for every l ∈
{1, . . . , H} (i.e., deep linear networks).

PA5: For any y, the function �y is convex and differentiable.
PA6: The thinnest layer is either the input layer or the output layer as

min{dx, dy} ≤ min{d1, . . . , dH}.

Proposition 2 (Laurent & Brecht, 2018). Let f be specified by equation 4.3. Let
assumptions PA4, PA5, and PA6 hold. Then every local minimum θ of L is a global
minimum.

4.2.3 Result. Instead of studying deep linear networks, we now consider
a partial linear structure locally induced by a parameter vector with nonlin-
ear activation functions. This relaxes the linearity assumption and extends
our understanding of deep linear networks to deep nonlinear networks.

Intuitively, Jn,t[θ ] is a set of partial linear structures locally induced
by a vector θ , which is now formally defined as follows. Given a θ ∈ R

dθ ,
let Jn,t[θ ] be a set of all sets J = {J(t+1), . . . , J(H+1)} such that each set J =
{J(t+1), . . . , J(H+1)} ∈ Jn,t[θ ] satisfies the following conditions: there exists
ε > 0 such that for all l ∈ {t + 1, t + 2, . . . , H + 1},

1. J(l) ⊆ {1, . . . , dl} with |J(l)| ≥ n.
2. h(l)(xi, θ

′)k = (W (l)h(l−1)(xi, θ
′))k for all (k, θ ′, i) ∈ J(l) × B(θ, ε) ×

{1, . . . , m}.
3. W (l+1)

i, j = 0 for all (i, j) ∈ ({1, . . . , dl+1} \ J(l+1)) × J(l) if l ≤ H − 1.

Let �n,t be the set of all parameter vectors θ such that Jn,t[θ ] is nonempty.
As the definition reveals, a neural network with a θ ∈ �dy,t can be a standard
deep nonlinear neural network (with no linear units).

Theorem 4. Let f be specified by equation 4.3. Let assumption 1 hold. Then for
any t ∈ {1, . . . , H}, at every local minimum θ ∈ (�dy,t \ �̃) of L, the following
holds. There exists ε0 > 0 such that for any ε ∈ (0, ε0),

L(θ ) = inf
S⊆ f inV[θ,ε],

α∈Rdθ ×|S|,αh∈Rdt

L̃( f f )
θ,t (α, αh, ε, S),
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where

L̃( f f )
θ,t (α, αh, ε, S) =

m∑
i=1

λi�yi

(
H∑

l=t

α
(l+1)
h h(l)(xi; u) + f̃θ (xi;α, ε, S)

)
,

with αh = vec([α(l+1)
h ]H

l=t ) ∈ R
dt , α

(l+1)
h ∈ R

dy×dl and dt = dy
∑H

l=t dl .

Theorem 4 is a special case of theorem 2. A special case of theorem 4
then results in one of the main results in the literature regarding deep
linear neural networks, that is, every local minimum is a global min-
imum. Consider any deep linear network with dy ≤ min{d1, . . . , dH}.
Then every local minimum θ is in �dy,0 \ �̃ = �dy,0. Hence, theorem
4 is reduced to the statement that for any local minimum, L(θ ) =
infαh∈Rdt

∑m
i=1 λi�yi (

∑H
l=0 α

(l+1)
h h(l)(xi; u)) = infαx∈Rdx

∑m
i=1 λi�yi (αxxi), which

is the global minimum value. Thus, every local minimum is a global
minimum for any deep linear neural network with dy ≤ min{d1, . . . , dH}.
Therefore, theorem 4 successfully generalizes the recent previous result in
the literature (proposition 2) for a common scenario of dy ≤ dx.

Beyond deep linear networks, theorem 4 illustrates both the benefit of
the locally induced structure and the overparameterization for deep non-
linear networks. In the first term,

∑H
l=t α

(l+1)
h h(l)(xi; u), in L(ff)

θ,t , we bene-
fit by decreasing t (a more locally induced structure) and increasing the
width of the lth layer for any l ≥ t (overparameterization). The second term,
f̃θ (xi;α, ε, S) in L(ff)

θ,t , is the general term that is always present from theorem
2, where we benefit from increasing dθ because α ∈ R

dθ ×|S|.
From the geometric view, theorem 4 captures the intuition that the span

T̃fX (θ ) of the set of the vectors in the tangent spaces {TfX (θ+εv ) : v ∈ V[θ, ε]}
contains the best basis model with the linear feature for deep linear net-
works, as well as the best basis models with more nonlinear features as
more local structures arise. Similar to the examples in Figures 3 and 4,
T̃fX (θ ) �= Tf (θ ) and the output of the best basis models with those features
are contained in T̃fX (θ ) but not in Tf (θ ).

A similar local structure was recently considered in Kawaguchi, Huang,
and Kaelbling (2019). However, both the problem settings and the obtained
results largely differ from those in Kawaguchi et al. (2019). Furthermore,
theorem 4 is proven as a consequence of our general theory (theorem 2),
and accordingly, the proofs largely differ from each other as well. Theo-
rem 4 also differs from recent results on the gradient decent algorithm for
deep linear networks (Arora, Cohen, Golowich, & Hu, 2018; Arora, Cohen,
& Hazan, 2018; Bartlett et al., 2019; Du & Hu, 2019), since we analyze the
loss surface instead of a specific algorithm and theorem 4 applies to deep
nonlinear networks as well.
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4.3 Proof Idea in Applications of Theorem 2. Theorems 3 and 4 are
simple consequences of theorem 2, and their proof is illustrative as a means
of using theorem 2 in future studies with different additional assumptions.
The high-level idea behind the proofs in the applications of theorem 2 is
captured in the geometric view of theorem 2 (see Figures 3 and 4). That is,
given a desired guarantee, we check whether the space T̃fX (θ ) is expressive
enough to contain the output of the desired model corresponding to the
desired guarantee.

To simplify the use of theorem 2, we provide the following lemma. This
lemma states that the expressivity of the model f̃θ (x;α, ε, S) with respect
to (α, S) is the same as that of f̃θ (x;α, ε, S) + f̃θ (x;α′, ε, S′) with respect to
(α, α′, S, S′). As shown in its proof, this is essentially because f̃θ is linear in
α, and a union of two sets S ⊆fin V[θ, ε] and S′ ⊆fin V[θ, ε] remains a finite
subset of V[θ, ε].

Lemma 1. For any θ , any ε ≥ 0, any S′ ⊆ f in V[θ, ε], and any x, it holds that
{ f̃θ (x;α, ε, S) : α ∈ R

dθ ×|S|, S ⊆ f in V[θ, ε]} = { f̃θ (x;α, ε, S) + f̃θ (x;α′, ε, S′) :
α ∈ R

dθ ×|S|, α′ ∈ R
dθ ×|S′ |, S ⊆ f in V[θ, ε]}.

Based on theorem 2 and lemma 1, the proofs of theorems 3 and
4 are reduced to a simple search for finding S′ ⊆fin V[θ, ε] such that
the expressivity of f̃θ (xi;α′, ε, S′) with respect to α′ is no worse than
the expressivity of αwxi + αrz(xi; u) with respect to (αw, αr) (see theo-
rem 3) and that of

∑H
l=t α

(l+1)
h h(l)(xi; u) with respect to α

(l+1)
h (see theorem

4). In other words, { f̃θ (xi;α′, ε, S′) : α′ ∈ R
dθ ×|S′ |} ⊇ {αwxi + αrz(xi; u) : αw ∈

R
dy×dx , αr ∈ R

dy×dz} (see theorem 3) and { f̃θ (xi;α′, ε, S′) : α′ ∈ R
dθ ×|S′ |} ⊇

{∑H
l=t α

(l+1)
h h(l)(xi; u) : αh ∈ R

dt } (see theorem 4). Only with this search for
S′, theorem 2 together with lemma 1 implies the desired statements for the-
orems 3 and 4 (see sections A.4 and A.5 in the appendix for further details).
Thus, theorem 2 also enables simple proofs.

5 Conclusion

This study provided a general theory for nonconvex machine learning
and demonstrated its power by proving new competitive theoretical re-
sults with it. In general, the proposed theory provides a mathematical tool
to study the effects of hypothesis classes f , methods, and assumptions
through the lens of the global optima of the perturbable gradient basis
model class.

In convex machine learning with a model output f (x; θ ) = θ�x with a
(nonlinear) feature output x = φ(x(raw)), achieving a critical point ensures
the global optimality in the span of the fixed basis x = φ(x(raw)). In noncon-
vex machine learning, we have shown that achieving a critical point en-
sures the global optimality in the span of the gradient basis ∂ fx(θ ), which
coincides with the fixed basis x = φ(x(raw)) in the case of the convex machine
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learning. Thus, whether convex or nonconvex, achieving a critical point en-
sures the global optimality in the span of some basis, which might be ar-
bitrarily bad (or good) depending on the choice of the handcrafted basis
φ(x(raw)) = ∂ fx(θ ) (for the convex case) or the induced basis ∂ fx(θ ) (for the
nonconvex case). Therefore, in terms of the loss values at critical points,
nonconvex machine learning is theoretically as justified as the convex one,
except in the case when a preference is given to φ(x(raw)) over ∂ fx(θ ) (both
of which can be arbitrarily bad or good). The same statement holds for local
minima and perturbable gradient basis.

Appendix: Proofs of Theoretical Results

In this appendix, we provide complete proofs of the theoretical results.

A.1 Proof of Theorem 1. The proof of theorem 1 combines lemma 2 with
assumptions 1 and 2 by taking advantage of the structure of the objective
function L. Although lemma 2 is rather weak and assumptions 1 and 2 are
mild (in the sense that they usually hold in practice), a right combination of
these with the structure of L can prove the desired statement.

Lemma 2. Assume that for any i ∈ {1, . . . , m}, the function �yi : q 	→ �(q, yi) is
differentiable. Then for any critical point θ ∈ (Rdθ \ �) of L, the following holds:
for any k ∈ {1, . . . , dθ },

m∑
i=1

λi∂�yi ( fxi (θ ))∂k fxi (θ ) = 0.

Proof of Lemma 2. Let θ be an arbitrary critical point θ ∈ (Rdθ \ �) of
L. Since �yi : Rdy → R is assumed to be differentiable and fxi ∈ R

dy is
differentiable at the given θ , the composition (�yi ◦ fxi ) is also differen-
tiable, and ∂k(�yi ◦ fxi ) = ∂�yi ( fxi (θ ))∂k fxi (θ ). In addition, L is differentiable
because a sum of differentiable functions is differentiable. Therefore, for
any critical point θ of L, we have that ∂L(θ ) = 0, and, hence, ∂kL(θ ) =∑m

i=1 λi∂�yi ( fxi (θ ))∂k fxi (θ ) = 0, for any k ∈ {1, . . . , dθ }, from linearity of dif-
ferentiation operation. �

Proof of Theorem 1. Let θ ∈ (Rdθ \ �) be an arbitrary critical point
of L. From assumption 2, there exists a function g such that fxi (θ ) =∑dθ

k=1 g(θ )k∂k fxi (θ ) for all i ∈ {1, . . . , m}. Then, for any α ∈ R
dθ ,

Lθ (α) ≥
m∑

i=1

λi�yi ( fxi (θ )) + λi∂�yi ( fxi (θ ))( fθ (xi;α) − f (xi; θ ))
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=
m∑

i=1

λi�yi ( fxi (θ )) +
dθ∑

k=1

αk

m∑
i=1

λi∂�yi ( fxi (θ ))∂k fxi (θ )

︸ ︷︷ ︸
=0 from Lemma 2

−
m∑

i=1

λi∂�yi ( fxi (θ )) f (xi; θ )

=
m∑

i=1

λi�yi ( fxi (θ )) −
dθ∑

k=1

g(θ )k

m∑
i=1

λi∂�yi ( fxi (θ ))∂k fxi (θ )

︸ ︷︷ ︸
=0 from Lemma 2

,

= L(θ ),

where the first line follows from assumption 1 (differentiable and convex
�yi ), the second line follows from linearity of summation, and the third line
follows from assumption 2. Thus, on the one hand, we have that L(θ ) ≤
infα∈Rdθ Lθ (α). On the other hand, since f (xi; θ ) = ∑dθ

k=1 g(θ )k∂k fxi (θ ) ∈
{ fθ (xi;α) = ∑dθ

k=1 αk∂k fxi (θ ) : α ∈ R
dθ }, we have that L(θ ) ≥ infα∈Rdθ Lθ (α).

Combining these yields the desired statement of L(θ ) = infα∈Rdθ Lθ (α). �

A.2 Proof of Theorem 2. The proof of theorem 2 uses lemma 3, the
structure of the objective function L, and assumptions 1 and 2.

Lemma 3. Assume that for any i ∈ {1, . . . , m}, the function �yi : q 	→ �(q, yi)
is differentiable. Then for any local minimum θ ∈ (Rdθ \ �̃) of L, the following
holds: there exists ε0 > 0 such that for any ε ∈ [0, ε0), any v ∈ V[θ, ε], and any
k ∈ {1, . . . , dθ },

m∑
i=1

λi∂�yi ( fxi (θ ))∂k fxi (θ + εv ) = 0.

Proof of Lemma 3. Let θ ∈ (Rdθ \ �̃) be an arbitrary local minimum of L.
Since θ is a local minimum of L, by the definition of a local minimum,
there exists ε1 > 0 such that L(θ ) ≤ L(θ ′) for all θ ′ ∈ B(θ, ε1). Then for any
ε ∈ [0, ε1/2) and any ν ∈ V[θ, ε], the vector (θ + εv ) is also a local minimum
because

L(θ + εv ) = L(θ ) ≤ L(θ ′)

for all θ ′ ∈ B(θ + εv, ε1/2) ⊆ B(θ, ε1) (the inclusion follows from the tri-
angle inequality), which satisfies the definition of a local minimum for
(θ + εv ).
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Since θ ∈ (Rdθ \ �̃), there exists ε2 > 0 such that fx1 , . . . , fxm are differen-
tiable in B(θ, ε2). Since �yi : Rdy → R is assumed to be differentiable and
fxi ∈ R

dy is differentiable in B(θ, ε2), the composition (�yi ◦ fxi ) is also dif-
ferentiable, and ∂k(�yi ◦ fxi ) = ∂�yi ( fxi (θ ))∂k fxi (θ ) in B(θ, ε2). In addition, L is
differentiable in B(θ, ε2) because a sum of differentiable functions is differ-
entiable.

Therefore, with ε0 = min(ε1/2, ε2), we have that for any ε ∈ [0, ε0) and
any ν ∈ V[θ, ε], the vector (θ + εv ) is a differentiable local minimum, and
hence the first-order necessary condition of differentiable local minima im-
plies that

∂kL(θ + εv ) =
m∑

i=1

λi∂�yi ( fxi (θ ))∂k fxi (θ + εv ) = 0,

for any k ∈ {1, . . . , dθ }, where we used the fact that fxi (θ ) = fxi (θ + εv ) for
any v ∈ V[θ, ε]. �

Proof of Theorem 2. Let θ ∈ (Rdθ \ �̃) be an arbitrary local minimum of
L. Since (Rdθ \ �̃) ⊆ (Rdθ \ �), from assumption 2, there exists a function g
such that fxi (θ ) = ∑dθ

k=1 g(θ )k∂k fxi (θ ) for all i ∈ {1, . . . , m}. Then from lemma
3, there exists ε0 > 0 such that for any ε ∈ [0, ε0), any S ⊆fin V[θ, ε] and any
α ∈ R

dθ ×|S|,

L̃θ (α, ε, S) ≥
m∑

i=1

λi�yi ( fxi (θ )) + λi∂�yi ( fxi (θ ))( f̃θ (xi;α, ε, S) − f (xi; θ ))

=
m∑

i=1

λi�yi ( fxi (θ )) +
dθ∑

k=1

|S|∑
j=1

αk, j

m∑
i=1

λi∂�yi ( fxi (θ ))∂k fxi (θ + εSj )︸ ︷︷ ︸
=0 from Lemma 3

−
m∑

i=1

λi∂�yi ( fxi (θ )) f (xi; θ )

=
m∑

i=1

λi�yi ( fxi (θ )) −
dθ∑

k=1

g(θ )k

m∑
i=1

λi∂�yi ( fxi (θ ))∂k fxi (θ )

︸ ︷︷ ︸
=0 from Lemma 3

,

= L(θ ),

where the first line follows from assumption 1 (differentiable and con-
vex �yi ), the second line follows from linearity of summation and the
definition of f̃θ (xi;α, ε, S), and the third line follows from assumption 2.
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Thus, on the one hand, there exists ε0 > 0 such that for any ε ∈ [0, ε0),
L(θ ) ≤ inf{L̃θ (α, ε, S) : S ⊆fin V[θ, ε], α ∈ R

dθ ×|S|}. On the other hand, since
f (xi; θ ) = ∑dθ

k=1 g(θ )k∂k fxi (θ ) ∈ { f̃θ (xi;α, ε, S) : α ∈ R
dθ , S = 0}, we have that

L(θ ) ≤ inf{L̃θ (α, ε, S) : S ⊆fin V[θ, ε], α ∈ R
dθ ×|S|}. Combining these yields

the desired statement. �

A.3 Proof of Lemma 1. As shown in the proof of lemma 1, lemma 1 is
a simple consequence of the following facts: f̃θ is linear in α and a union of
two sets S ⊆fin V[θ, ε] and S′ ⊆fin V[θ, ε] is still a finite subset of V[θ, ε].

Proof of Lemma 1. Let S′ ⊆fin V[θ, ε] be fixed. Then,

{ f̃θ (x;α, ε, S) : α ∈ R
dθ ×|S|, S ⊆fin V[θ, ε]}

= { f̃θ (x;α, ε, S ∪ S′) : α ∈ R
dθ ×|S∪S′ |, S ⊆fin V[θ, ε]}

= { f̃θ (x;α, ε, S \ S′) + f̃θ (x;α′, ε, S′) : α ∈ R
dθ ×|S\S′ |, α′ ∈ R

dθ ×|S′ |,

S ⊆fin V[θ, ε]}
= { f̃θ (x;α, ε, S ∪ S′) + fθ (x;α′, ε, S′) : α ∈ R

dθ ×|S∪S′ |, α′ ∈ R
dθ ×|S′ |,

S ⊆fin V[θ, ε]}
= { f̃θ (x;α, ε, S) + fθ (x;α′, ε, S′) : α ∈ R

dθ ×|S|, α′ ∈ R
dθ ×|S′ |,

S ⊆fin V[θ, ε]},

where the second line follows from the facts that a finite union of finite sets
is finite and hence S ∪ S′ ⊆fin V[θ, ε] (i.e., the set in the first line is a superset
of ⊇, the set in the second line), and that α ∈ R

dθ ×|S∪S′ | can vanish the extra
terms due to S′ in f̃θ (x;α, ε, S ∪ S′) (i.e., the set in the first line is a subset
of, ⊆, the set in the second line). The last line follows from the same facts.
The third line follows from the definition of f̃θ (x;α, ε, S). The fourth line
follows from the following equality due to the linearity of f̃θ in α:

{ f̃θ (x;α′, ε, S′) : α′ ∈ R
dθ ×|S′ |}

=
⎧⎨
⎩

dθ∑
k=1

|S|∑
j=1

(α′
k, j + ᾱ′

k, j )∂k fx(θ + εS′
j ) : α′ ∈ R

dθ ×|S′ |, ᾱ′ ∈ R
dθ ×|S′ |

⎫⎬
⎭

= { f̃θ (x;α′, ε, S′) + f̃θ (x; ᾱ′, ε, S′) : α′ ∈ R
dθ ×|S′ |, ᾱ′ ∈ R

dθ ×|S′ |}.
�

A.4 Proof of Theorem 3. As shown in the proof of theorem 3, thanks to
theorem 2 and lemma 1, the remaining task to prove theorem 3 is to find a set
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S′ ⊆fin V[θ, ε] such that { f̃θ (xi;α′, ε, S′) : α′ ∈ R
dθ ×|S′ |} ⊇ {αwxi + αrz(xi; u) :

αw ∈ R
dy×dx , αr ∈ R

dy×dz}. Let Null(M) be the null space of a matrix M.

Proof of Theorem 3. Let θ ∈ (Rdθ \ �̃) be an arbitrary local mini-
mum of L. Since f is specified by equation 4.1, and hence f (x; θ ) =
(∂vec(W ) f (x; θ ))vec(W ), assumption 2 is satisfied. Thus, from theorem 2,
there exists ε0 > 0 such that for any ε ∈ [0, ε0),

L(θ ) = inf
S⊆finV[θ,ε],α∈Rdθ ×|S|

m∑
i=1

λi�( f̃θ (xi;α, ε, S), yi),

where

f̃θ (xi;α, ε, S) =
|S|∑
j=1

αw, j(xi + (R + εvr, j )zi, j ) + (W + εvw, j )αr, jzi, j

+ (∂u fxi (θ + εSj ))αu, j,

with α = [α·1, . . . , α·|S|] ∈ R
dθ ×|S|, α· j = vec([αw, j, αr, j, αu, j]) ∈ R

dθ , Sj =
vec([vw, j, vr, j, vu, j]) ∈ R

dθ , and zi, j = z(xi, u + εvu, j ) for all j ∈ {1, . . . , |S|}.
Here, αw, j, vw, j ∈ R

dy×dx , αr, j, vr, j ∈ R
dx×dz , and αu, j, vu, j ∈ R

du . Let ε ∈ (0, ε0)
be fixed.

Consider the case of rank(W ) ≥ dy. Define S̄ such that |S̄| = 1 and S̄1 =
0 ∈ R

dθ , which is in V[θ, ε]. Then by setting αu,1 = 0 and rewriting αr,1 such
that Wαr,1 = α

(1)
r,1 − αw,1R with an arbitrary matrix αr,1 ∈ R

dy×dz (this is pos-
sible since rank(W ) ≥ dy), we have that

{ f̃θ (xi;α, ε, S̄) : α ∈ R
dθ ×|S̄|}

⊇ {αw,1xi + α
(1)
r,1 zi,1 : αw,1 ∈ R

dy×dx , α
(1)
r,1 ∈ R

dy×dz}.

Consider the case of rank(W ) < dy. SinceW ∈ R
dy×dx and rank(W ) < dy ≤

min(dx, dz) ≤ dx, we have that Null(W ) �= {0}, and there exists a vector a ∈
R

dx such that a ∈ Null(W ) and ‖a‖2 = 1. Let a be such a vector. Define S̄′

as follows: |S̄′| = dydz + 1, S̄′
1 = 0 ∈ R

dθ , and set S̄′
j for all j ∈ {2, . . . , dydz +

1} such that vw, j = 0, vu, j = 0, and vr, j = ab�
j where b j ∈ R

dz is an arbitrary
column vector with ‖b j‖2 ≤ 1. Then S̄′

j ∈ V[θ, ε] for all j ∈ {1, . . . , dydz + 1}.
By setting αr, j = 0 and αu, j = 0 for all j ∈ {1, . . . , dydz + 1} and by rewriting

αw,1 = α
(1)
w,1 − ∑dydz+1

j=2 αw, j and αw, j = 1
ε
q jaT for all j ∈ {2, . . . , dydz + 1} with

an arbitrary vector q j ∈ R
dy (this is possible since ε > 0 is fixed first and αw, j

is arbitrary), we have that
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{ f̃θ (xi;α, ε, S̄′) : α ∈ R
dθ ×|S̄′ |}

⊇
⎧⎨
⎩α

(1)
w,1xi +

⎛
⎝α

(1)
w,1R +

dydz+1∑
j=2

q jb�
j

⎞
⎠ zi,1 : q j ∈ R

dy , b j ∈ R
dz

⎫⎬
⎭ .

Since q j ∈ R
dy and b j ∈ R

dz are arbitrary, we can rewrite
∑dydz+1

j=2 q jb j =
α

(2)
w,1 − α

(1)
w,1R with an arbitrary matrix α

(2)
w,1 ∈ R

dy×dz , yielding

{ f̃θ (xi;α, ε, S̄′) : α ∈ R
dθ ×|S̄′ |}

⊇ {α(1)
w,1xi + α

(2)
w,1zi,1 : α

(1)
w,1 ∈ R

dy×dx , α
(2)
w,1 ∈ R

dy×dz}.

By summarizing above, in both cases of rank(W ), there exists a set S′ ⊆fin
V[θ, ε] such that

{ f̃θ (xi;α, ε, S) : α ∈ R
dθ ×|S|, S ⊆fin V[θ, ε]}

= { f̃θ (xi;α, ε, S) + f̃θ (xi;α′, ε, S′)

: α ∈ R
dθ ×|S|, α′ ∈ R

dθ ×|S′ |, S ⊆fin V[θ, ε]}
⊇ { f̃θ (xi;α, ε, S) + αwxi + αrz(xi, u)

: α ∈ R
dθ ×|S|, α(1)

w ∈ R
dy×dx , α(2)

r ∈ R
dy×dz , S ⊆fin V[θ, ε]},

where the second line follows from lemma 1. On the other hand, since
the set in the first line is a subset of the set in the last line, { f̃θ (xi;α, ε, S) :
α ∈ R

dθ ×|S|, S ⊆fin V[θ, ε]} = { f̃θ (xi;α, ε, S) + αwxi + αrz(xi, u) : α ∈ R
dθ ×|S|,

α
(1)
w ∈ R

dy×dx , α
(2)
r ∈ R

dy×dz , S ⊆fin V[θ, ε]}. This immediately implies the
desired statement from theorem 2. �

A.5 Proof of Theorem 4. As shown in the proof of theorem 4, thanks
to theorem 2 and lemma 1, the remaining task to prove theorem 4
is to find a set S′ ⊆fin V[θ, ε] such that { f̃θ (xi;α′, ε, S′) : α′ ∈ R

dθ ×|S′ |} ⊇
{∑H

l=t α
(l+1)
h h(l)(xi; u) : αh ∈ R

dt }. Let M(l′ ) · · · M(l+1)M(l) = I if l > l′.

Proof of Theorem 4. Since f is specified by equation 4.3 and, hence,

f (x; θ ) = (∂vec(W (H+1) ) f (x; θ ))vec(W (H+1) ),

assumption 2 is satisfied. Let t ∈ {0, . . . , H} be fixed. Let θ ∈ (�dy,t \
�̃) be an arbitrary local minimum of L. Then from theorem 2, there
exists ε0 > 0 such that for any ε ∈ [0, ε0), L(θ ) = infS⊆finV[θ,ε],α∈Rdθ ×|S|∑m

i=1 λi�( f̃θ (xi;α, ε, S), yi), where f̃θ (xi;α, ε, S) = ∑dθ

k=1

∑|S|
j=1 αk, j∂k fxi (θ +

εSj ).
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Let J = {J(t+1), . . . , J(H+1)} ∈ Jn,t[θ ] be fixed. Without loss of generality,
for simplicity of notation, we can permute the indices of the units of each
layer such that J(t+1), . . . , J(H+1) ⊇ {1, . . . , dy}. Let B̃(θ, ε1) = B(θ, ε1) ∩ {θ ′ ∈
R

dθ : W (l+1)
i, j = 0 for all l ∈ {t + 1, . . . , H − 1} and all (i, j) ∈ ({1, . . . , dl+1} \

J(l+1)) × J(l)}. Because of the definition of the set J, in B̃(θ, ε1) with ε1 > 0
being sufficiently small, we have that for any l ∈ {t, . . . , H},

fxi (θ ) = A(H+1) · · · A(l+2)[A(l+1) C(l+1)]h(l)(xi; θ ) + ϕ(l)
xi

(θ ),

where

ϕ(l)
xi

(θ ) =
H−1∑
l′=l

A(H+1) · · · A(l′+3)C(l′+2)h̃(l′+1)(xi; θ )

and

h̃(l)(xi; θ ) = σ (l)(B(l)h̃(l−1)(xi; θ )),

for all l ≥ t + 2 with h̃(t+1)(xi; θ ) = σ (t+1)([ξ (l) B(l)] h(t)(xi; θ )). Here,

[
A(l) C(l)

ξ (l) B(l)

]
= W (l)

with A(l) ∈ R
dy×dy , C(l) ∈ R

dy×(dl−1−dy ), B(l) ∈ R
(dl−dy )×(dl−1−dy ), and ξ (l) ∈

R
(dl−dy )×dy . Let ε1 > 0 be a such number, and let ε ∈ (0, min(ε0, ε1/2)) be

fixed so that both the equality from theorem 2 and the above form of fxi

hold in B̃(θ, ε). Let R(l) = [A(l) C(l)].
We will now find sets S(t), . . . , S(H) ⊆fin V[θ, ε] such that

{ f̃θ (xi;α, ε, S(l) ) : α ∈ R
dθ } ⊇ {α(l+1)

h h(l)(xi; u) : α
(l+1)
h ∈ R

dy×dl }.

Find S(l) with l = H: Since

(∂vec(R(H+1) ) fxi (θ ))vec(α(H+1)
h ) = α

(H+1)
h h(H)(xi; θ ),

S(H) = {0}⊆finV[θ, ε] (where 0 ∈ R
dθ ) is the desired set.

Find S(l) with l ∈ {t, . . . , H − 1}: With α
(l+1)
r ∈ R

dl+1×dl , we have that

(∂vec(R(l+1) ) fxi (θ ))vec(α(l+1)
r ) = A(H+1) · · · A(l+2)α(l+1)

r h(l)(xi; θ ).

Therefore, if rank(A(H+1) · · · A(l+2) ) ≥ dy, since {A(H+1) · · · A(l+2)α
(l+1)
r :

α
(l+1)
r ∈ R

dl+1×dl } ⊇ {α(l+1)
h ∈ R

dy×dl }, S(l) = {0} ⊆fin V[θ, ε] (where 0 ∈ R
dθ )
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is the desired set. Let us consider the remaining case: let rank(A(H+1)

· · · A(l+2) ) < dy and let l ∈ {t, . . . , H − 1} be fixed. Let l∗ = min{l′ ∈ Z
+ :

l + 3 ≤ l′ ≤ H + 2 ∧ rank(A(H+1) · · · A(l′ ) ) ≥ dy}, where A(H+1) · · · A(H+2) �
Idy and the minimum exists since the set is finite and contains
at least H + 2 (nonempty). Then rank(A(H+1) · · · A(l∗ ) ) ≥ dH+1 and
rank(A(H+1) · · · A(l′ ) ) < dH+1 for all l′ ∈ {l + 2, l + 3, . . . , l∗ − 1}. Thus,
for all l′ ∈ {l + 1, l + 2, . . . , l∗ − 2}, there exists a vector al′ ∈ R

dy such that

al′ ∈ Null(A(H+1) · · · A(l′+1)) and ‖al′ ‖2 = 1.

Let al′ denote such a vector. Consider S(l) such that the weight matrices W
are perturbed with θ̄ + εS(l)

j as

Ã(l′ )
j = A(l′ ) + εal′b�

l′, j and R̃(l+1)
j = R(l+1) + εal+1b�

l+1, j

for all l′ ∈ {l + 2, l + 3, . . . , l∗ − 2}, where ‖bl′, j‖2 is bounded such that
‖S(l)

j ‖2 ≤ 1. That is, the entries of Sj are all zeros except the entries cor-

responding to A(l′ ) (for l′ ∈ {l + 2, l + 3, . . . , l∗ − 2}) and R(l+1). Then S(l)
j ∈

V[θ, ε], since A(H+1) · · · A(l′+1)Ã(l′ )
j = A(H+1) · · · A(l′+1)A(l′ ) for all l′ ∈ {l +

2, l + 3, . . . , l∗ − 2} and A(H+1) · · · A(l+2)R̃(l+1)
j = A(H+1) · · · A(l+2)R(l+1). Let

|S(l)| = 2N with some integer N to be chosen later. Define S(l)
j+N for j =

1, . . . , N by setting S(l)
j+N = S(l)

j except that bl+1, j+N = 0 whereas bl+1, j is
not necessarily zero. By setting α j+N = −α j for all j ∈ {1, . . . , N}, with α j ∈
R

dl∗ ×dl∗−1 ,

f̃θ (xi;α, ε, S(l) )

=
N∑

j=1

A(H+1) · · · A(l∗ )(α j + α j+N )Ã(l∗−2) · · · Ã(l+2)R(l+1)h(l)(xi; θ )

+
N∑

j=1

(∂vec(A(l∗−1) )ϕ
(l)
xi

(θ + εSj ))vec(α j + α j+N )

+ ε

N∑
j=1

A(H+1) · · · A(l∗ )α jÃ(l∗−2) · · · Ã(l+2)al+1b�
l+1, jh

(l)(xi; θ )

= ε

N∑
j=1

A(H+1) · · · A(l∗ )α jÃ(l∗−2) · · · Ã(l+2)al+1b�
l+1, jh

(l)(xi; θ ),

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/31/12/2293/1865165/neco_a_01234.pdf by guest on 07 Septem
ber 2023



2320 K. Kawaguchi, J. Huang, and L. Kaelbling

where we used the fact that ∂vec(A(l∗−1) )ϕ
(l)
xi (θ + εSj ) does not contain bl+1, j.

Since rank(A(H+1) · · · A(l∗ ) ) ≥ dy and {A(H+1) · · · A(l∗ )α j : α j ∈ R
dl∗ ×dl∗−1} =

{ 1
ε
α′

j : α′
j ∈ R

dy×dl∗−1}, we have that ∀α′
j ∈ R

dy×dl∗−1 , ∃α ∈ R
dθ ×|S|,

f̃θ (xi;α, ε, S(l) ) =
N∑

j=1

α′
jÃ

(l∗−2) · · · Ã(l+2)al+1b�
l+1, jh

(l)(xi; θ ).

Let N = 2N1. Define S(l)
j+N1

for j = 1, . . . , N1 by setting S(l)
j+N1

= S(l)
j except

that bl∗−2, j+N1 = 0, whereas bl∗−2, j is not necessarily zero. By setting α′
j+N1

=
−α′

j for all j ∈ {1, . . . , N1},

f̃θ (xi;α, ε, S(l) ) = ε

N1∑
j=1

α′
jal∗−2b�

l∗−2, jÃ
(l∗−3) · · · Ã(l+2)al+1b�

l+1, jh
(l)(xi; θ ).

By induction,

f̃θ (xi;α, ε, S(l) ) = εt
Nt∑
j=1

α′
jal∗−2bl∗−2, jal∗−3bl∗−3, j · · · al+1b�

l+1, jh
(l)(xi; θ ),

where t = (l∗ − 2) − (l + 2) + 1 is finite. By setting α′
j = 1

εt q ja�
l∗−2 and bl, j =

al−1 for all l = l∗ − 2, . . . , l (ε > 0),

f̃θ (xi;α, ε, S(l) ) =
Nt∑
j=1

q jb�
l+1, jh

(l)(xi; θ ).

Since q jbl+1, j are arbitrary, with sufficiently large Nt (Nt = dydl suffices), we
can set

∑Nt
j=1 q jbl+1, j = α

(l)
h for any α

(l)
h ∈ R

dθ ×dl , and hence

{ f̃θ (xi;α, ε, S(l) ) : α ∈ R
dθ ×|S(l)|} ⊇ {α(l)

h h(l)(xi; θ ) : α
(l)
h ∈ R

dθ ×dl }.

Thus far, we have found the sets S(t), . . . , S(H) ⊆fin V[θ, ε] such that
{ f̃θ (xi;α, ε, S(l) ) : α ∈ R

dθ } ⊇ {α(l+1)
h h(l)(xi; u) : α

(l+1)
h ∈ R

dy×dl }. From lemma
1, we can combine these, yielding

{ f̃θ (xi;α, ε, S) : α ∈ R
dθ , S ⊆fin V[θ, ε]}

=
{

H∑
l=t

f̃θ (xi;α(l), ε, S(l) ) + f̃θ (xi;α, ε, S) : α(t), . . . , α(H) ∈ R
dθ ,
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α ∈ R
dθ , S ⊆fin V[θ, ε]

}
⊇

{
H∑

l=t

α
(l+1)
h h(l)(xi; u) + f̃θ (xi;α, ε, S) : α

(l+1)
h ∈ R

dy×dl ,

α ∈ R
dθ ×|S|, S ⊆fin V[θ, ε]

}
.

Since the set in the first line is a subset of the set in the last line, the equality
holds in the above equation. This immediately implies the desired state-
ment from theorem 2. �
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