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Visual object recognition is a difficult problem that has been solved 
by biological visual systems. An approach to object recognition is 
described in which the image is segmented into parts using two simple, 
biologically-plausible mechanisms: a filtering operation to produce a 
large set of potential object "parts," followed by a new type of network 
that searches among these part hypotheses to produce the simplest, 
most likely description of the image's part structure. 

1 Introduction 

In order to recognize objects one must be able to compute a stable, canon- 
ical representation that can be used to index into memory (Binford 1971; 
Marr and Nishihara 1978; Hoffman and Richards 1985). The most widely 
accepted theory on how people recognize objects seems to be that they 
first segment the object into its component parts and then recognition 
occurs by using this part description to classify the object, perhaps by 
use of an associative network. 

Despite the importance of object recognition, most vision research - 
and especially neural network research -has been aimed at understand- 
ing early visual processing. In part this focus on early vision is because 
the uniform, parallel operations typical of early vision are easily mapped 
onto neural networks, and are more easily understood than the nonho- 
mogeneous, nonlinear processing required to segment an object into parts 
and then recognize it. As a consequence, the process of object recognition 
is little understood. 

The goal of this research is to automatically recover accurate part 
descriptions for object recognition. I have approached this objective by 
developing a system that segments an imaged object into convex parts 
using a neural network that is similar to that described by Hopfield and 
Tank (Hopfield and Tank 19851, but which uses a temporally-decaying 
feedback loop to achieve considerably better performance. For the sake 
of efficiency and simplicity I have used silhouettes, obtained from grey- 
scale images by intensity, motion, and texture thresholding, rather than 
operating on the grey-scale images directly. 
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2 A Computational Theory of Segmentation 

Many machine vision systems employ matched filters to find particular 
2-D shapes in an image, typically using a multiresolution approach that 
allows efficient search over a wide range of scales. Thus, in machine 
vision, a natural way to locate the parts of a silhouetted object is to make 
filter patterns that cover the spectrum of possible 2-D part-shapes (as is 
shown in figure l(a)), match these 2-D patterns against the silhouette, 
and then pick the best matching filter. If the match is sufficiently good, 
then we register the detection of a part whose shape is roughly that of 
the best-matching filter. 

A biological version of this approach might use many hypercolumns 
each containing receptive fields with excitatory regions shaped as in fig- 
ure 1. The cell with the best-matching excitatory field would be selected 
by introducing strong lateral inhibition within the hypercolumn in or- 
der to suppress all but the best-responding cells. This arrangement of 
receptive fields and within-hypercolumn inhibition produces receptive 
fields with oriented, center-surround spatial structure, such as is shown 
in figure l(b). 

The major problem with such a filtering/receptive field approach is 
that all such techniques incorporate a noise threshold that balances the 
number of false detections against the number of missed targets. Thus 
we will either miss many of the object’s parts because they don’t quite 
fit any of our 2-D patterns, or we will have a large number of false 
detections. 

This false-alarm versus miss problem occurs in almost every image 
processing domain, and there are only two general approaches to over- 
coming the problem. The first is to improve the discriminating power of 
the filter so as to improve the false-alarm/miss tradeoff. The success of 
this approach depends upon precise characterization of the target and so 
is not applicable to this problem. 

In the second approach, each non-zero response of a filter/receptive 
field is considered as an hypothesis about the object’s part structure rather 
than being considered as a detection. One therefore uses a very low 
threshold to obtain a large number of hypotheses, and then searches 
through them to find the “real” detections. This approach depends upon 
having some method of measuring the likelihood of a set of hypotheses, 
i.e., of measuring how good a particular segmentation into parts is as 
an explanation of the image data. It is this second, “best explanation” 
approach that I have adopted in this paper. 

2.1 Global Optimization: The Likelihood Principle and Occam’s 
Razor. The notion that vision problems can be solved by optimizing 
some “goodness of fit” measure is perhaps the most powerful paradigm 
found in current computational research (Hopfield and Tank 1985; BalIard 
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Figure 1: (a) Two-dimensional binary patterns used to segment silhouettes into 
parts. (b) Spatial structure of a receptive field corresponding to one of these 
binary patterns. 

et al. 1983; Hummel and Zucker 1983; Poggio et al. 1985). Although 
heuristic measures are sometimes employed, the most attractive schemes 
have been based on the likelihood principle (the scientific principle that 
the most likely hypothesis is the best one), i.e., they have posed the 
problem in terms of an a priori model with unknown parameter values, 
and then searched for the parameter settings that maximize the likelihood 
of the model given the image data. 

Recently it has been proven (Rissanen 1983) that one method of find- 
ing this maximum likelihood estimate is by use of the formal, information- 
theoretic version of Occam’s Razor: the scientific principle that the sim- 
plest hypothesis is the best one. In information theory the simplicity or 
complexity of a description is measured by the number of bits (binary 
digits) needed to encode both the description and remaining residual 
noise. This new result tells us that both the likelihood principle and Oc- 
cam’s Razor agree that the best description of image data is the one that 
provides the bitwise shortest encoding. 

This method of finding the maximum likelihood estimate is partic- 
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ularly useful in vision problems because it gives us a simple way to 
produce maximum likelihood estimates using image models that are too 
complex for direct optimization (Leclerc 1988). In particular, to find the 
maximum likelihood estimate of an object's part structure one needs only 
to find the shortest description of the image data in terms of parts. 

2.2 A Computational Procedure. How can the shortest/most likely 
image description be computed? Let { H }  be a set of n part hypotheses 
h, produced by our filters/receptive fields, and let { H ' }  be a subset of 
{ H }  containing m hypotheses. The particular elements which comprise 
{ H * }  can be indicated by a vector F consisting of n - m zeros and m 
ones, with a one in slot L indicating that hypothesis h, is an element of 

The presence of part hypothesis h, in the set {H} indicates that a 
particular pattern from among those illustrated in figure l(a) has at least 
a minimal correspondence to the image data at some particular image 
location. Let us designate the number of image pixels at which h, and 
the image agree (have the same value) by a,,, and the number of image 
pixels at which h, and the image disagree (have different values) by 
e?,. Then h, provides an encoding of the image which saves S(h,) bits as 
compared to simple pixel-by-pixel description of the image pixel values. 
The amount of this savings, in bits, is: 

{H*}- 

S(h,)  = klutz - k2ezz - k3 (2.1) 

where kl is the average number of bits needed to specify a single image 
pixel value, k2 is the average number of bits needed to specify that a par- 
ticular pixel is erroneously encoded by h,, and k3 is the cost of specifying 
h, itself. The ratio between kl and kz is our a priori estimate of the signal 
to noise ratio, including both image noise and noise from quantization of 
the set of 2-D shape patterns. The parameter k3 is equal to the minus log 
of the probability of a particular part hypothesis. By default we make k3 

equal for all h,; however, we can easily incorporate a priori knowledge 
about the likelihood of each h, by setting k3 to the minus log probability 
associated with each h,. 

Equation 2.1 allows us to find the single hypothesis which provides the 
best image description by simply maximizing S(h,) over all the hypothe- 
ses h,. To find the overall maximum-likelihood/simplest description, 
however, we must search from among the power set of { H }  to find that 
subset { H * }  which maximizes S(2). Thus we must be able to account for 
interactions between the various h, in {If*}. 

be the number of image pixels at which h,, h,, and the image 
all agree, and e,, be number of image pixels at which both h, and h, 
disagree with the image. We then define a matrix A with values a,, on 
the diagonal, and values -1/2u,, for z # 3 ,  and similarly a matrix E with 
values e,, on the diagonal, and values -1/2eZJ for L + 1. Ignoring points 

Let 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/1/1/82/811831/neco.1989.1.1.82.pdf by guest on 07 Septem
ber 2023



86 Alex Pentland 

where three or more hi overlap, the savings generated by encoding the 
image data using { H * }  (as specified by the vector i?) is simply 

(2.2) 

Equation 2.2 can easily be extended to include overlaps between three 
or more parts by adding in additional terms that express these higher- 
order overlaps. However, these higher-order overlaps are expensive to 
calculate. Moreover, such high-order overlaps seem to be infrequent 
in real imagery. I have chosen, therefore, to assume that in the final 
solution that there are a negligible number of image points covered by 
three or more hi. Note that we are not assuming that this is true of the 
entire set { H } ,  where such high-order overlaps will be common. The 
important consequence of this assumption is that the maximum of the 
savings function S ( 3  over all Z is also the maximum of equation 2.2. 

The solution to equation 2.2 is straightforward when the matrix Q 

S(2) = klZAZT - kzZEZT - k3ZZT. 

Q = klA - kzE - k3I (2.3) 

is positive (or negative) definite. Unfortunately, this is not the case in this 
problem. As a consequence, relaxation techniques (Hummel and Zucker 
1983) such as the Hopfield-Tank network (Hopfield and Tank 1985) give 
a very poor solution. 

I have therefore devised a new method of solution (and correspond- 
ing network) which can provide a good solution to equation 2.2. This 
new technique is a type of continuation method: one first picks a problem 
related to the original problem that can be solved, and then iteratively 
solves a series of problems that are progressively closer to the original 
problem, each time using the last solution as the starting point for the 
next iteration. 

In the problem at hand, Q is easily solved when k3 is large enough, 
as then Q is diagonally dominant and thus negative definite. Therefore, 
I can obtain a globally good solution by first solving using a large k3, and 
then - using that answer as starting point - progressively resolve using 
smaller and smaller values of k3 until the desired solution is obtained. 
Because k j  is the cost of adding a model to our description, the effect 
of this continuation technique is to solve for the largest, most prominent 
parts first, and then to progressively add in smaller and smaller parts 
until the entire figure is accounted for. 

The neural network interpretation of this solution method is a Hop- 
field-Tank network placed in a feedback loop where the diagonal weights 
are initially quite large and decay over time until they finally reach the 
desired values. In each "time step" the Hopfield-Tank network stabilizes, 
the diagonal weights are reduced, and the network outputs are fed back 
into the inputs. When the diagonal weights reach their final values, the 
desired outputs are obtained. 

It can be shown that for many well-behaved problems (for example, 
when the largest eigenvalues are all of one sign, with opposite-signed 
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eigenvalues of much smaller magnitude) this feedback technique will 
produce an answer that is on average substantially better than that ob- 
tained by Hopfield-Tank or relaxation methods. As with relaxation tech- 
niques (Hummel and Zucker 19831, this feedback method can be applied 
to problems with asymmetric weights. 

A biological equivalent of our solution method is to use a set of hyper- 
columns (each containing cells with the excitatory subfields illustrated in 
figure 1) that are tied together by a Hopfield-Tank network augmented by 
a time-decaying feedback loop. The action of this network is to suppress 
activity in all but a small subset of the hypercolumns. After this network 
has stabilized, each of the remaining active cells correspond exactly to 
one part of the imaged object. The characteristics of that cell's excitatory 
subfield correspond to the shape of the imaged part. 

3 Segmentation Examples 

This technique has been tested on over two hundred synthetic images, 
with widely varying noise levels (Pentland 1988). In these tests the 
number of visible parts was correctly determined 85-95% of the time 
(depending on noise level), with largely obscured or very small parts 
accounting for almost all of the errors. Estimates of part shape were sim- 
ilarly accurate. The following three examples illustrate this segmentation 
performance. 

The first example uses synthetic range data with a dynamic range of 
4 bits. In this example, only 72 2-D shape patterns were employed in 
order to illustrate the effects of coarse quantization in both orientation 
and size. The intent of this example is to demonstrate that a high-quality 
segmentation into parts can be achieved despite coarse quantization in 
both orientation, size, and range values, and despite wide variation in 
the weights. In the remaining examples, the 2-D shape patterns shown 
in figure l(a) were employed. 

Figure 2(a) shows an intensity image of a CAD model; synthetic range 
data from this model is shown in figure 2(b). These range data were 
histogrammed and automatically thresholded, producing the silhouette 
shown in figure 2(c). 

Figure 2(d) shows the operation of our new solution method. The 
parameter k3 is initially set to a large value, thus making equation 2.2 
diagonally dominant. In this first step only the very largest parts are 
recovered, as is shown in the first frame of figure 2(d). The parameter k3 

is then progressively reduced and the equation resolved, allowing smaller 
and smaller parts to be recovered. This is shown in the remaining frames 
of figure 2(d). This solution method therefore constructs a scale hierarchy 
of object parts, with the largest and most visible at the top of the hierarchy 
and the smallest parts on the bottom. This scale hierarchy can be useful 
in matching and recognition processes. 
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Figure 2: (a) Intensity image of a CAD model. (b) Range image of this model. 
(c) Silhouette of the range data. (d) This sequence of images illustrates how 
our continuation method constructs a scale-space description of part structure, 
first recovering only large, important parts and then recovering progressively 
smaller part structure. (el Final segmentation into parts obtained using only 
very coarsely quantized 2-D patterns; 3-D models corresponding to recovered 
parts are used to illustrate the recovered structure. (f) Segmentations for a 5 : 1 
ratio of the parameters ki, showing that the segmentation is stable. 

The final segmentation for this figure is shown in figure 2(e); here 
3-D volumetric models have been substituted for their Corresponding' 2- 
D shapes in order to better illustrate how the silhouette was segmented 
into parts. The z dimension of these 3-D models is arbitrarily set equal 
to the smaller of the 5 and y dimensions. It can be seen that, apart from 
coarse quantization in orientation and size, the part segmentation is a 
good one. 

'That is, for each 2-D pattern we substituted a 3-D CAD model whose outline cor- 
responds exactly to the 2-D shape pattern. 
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One important question is the stability of segmentation with respect 
to the parameters k,. Figure 2(f) shows the results of varying the ratio 
of parameters k , ,  k2, and kj over a range of 5 : 1. It can be seen that the 
part segmentation is stable, although as the relative cost of each model 
increases (the final value of k3 becomes large) small details (such as the 
feet) disappear. 

The second example of segmenting a silhouette into parts uses a real 
image of a person, shown in figure 3(a). A silhouette was produced by 
automatic thresholding of a fractal measure of texture smoothness; this 
silhouette is shown in figure 3(b). The resulting segmentation into parts 
is shown in figure 3(c). 

An example of segmenting a more complex silhouette into parts uses 
the Rites of Spring, a drawing by Picasso, shown in figure 3(c). The area 
within the box was digitized and the intensity thresholded to produce a 

Figure 3: (a) Image of a person. (b) Silhouette produced by thresholding a 
fractal texture measure. (c) Automatic segmentation into parts. (d) The Rites of 
Spring, by Picasso. (e) Digitized version. (f) The automatic segmentation into 
parts. 
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coarse silhouette, as shown in figure 3(d). The automatic segmentation 
is shown in figure 3(e). It is surprising that such a good segmentation 
can be produced from this hand-drawn, coarsely digitized image (note 
that very small details, e.g., the goat’s horns, were missed because they 
were smaller than any of the 2-D patterns). 

4 Summary 

I have described a method for segmenting 2-D images into their com- 
ponent parts, a critical stage of processing in many theories of object 
recognition. This method uses two stages: a detection stage which uses 
matched filters to extract hypotheses about part structure, and an opti- 
mization stage, where all hypotheses about the object’s part structure are 
combined into a globally optimum (i.e., simplest, most likely) explana- 
tion of the image data. The first stage is implemented by local competi- 
tion among the filters illustrated in figure l(a), and the second stage is 
implemented by a new type of neural network that gives substantially 
better answers than previously suggested optimization networks. This 
new network may be described as a relaxation or Hopfield-Tank network 
augmented by time-decaying feedback. For additional details the reader 
is referred to reference (Pentland 1988). 
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