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In the analog VLSI implementation of neural systems, it is sometimes 
convenient to build lateral inhibition networks by using a locally con- 
nected on-chip resistive grid to interconnect active elements. A serious 
problem of unwanted spontaneous oscillation often arises with these 
circuits and renders them unusable in practice. This paper reports on 
criteria that guarantee these and certain other systems will be stable, 
even though the values of designed elements in the resistive grid may 
be imprecise and the location and values of parasitic elements may be 
unknown. The method is based on a rigorous, somewhat novel math- 
ematical analysis using Tellegen’s theorem (Penfield et al. 1970) from 
electrical circuits and the idea of a Popov multiplier (Vidyasagar 1978; 
Desoer and Vidyasagar 1975) from control theory. The criteria are lo- 
cal in that no overall analysis of the interconnected system is required 
for their use, empirical in that they involve only measurable frequency 
response data on the individual cells, and robust in that they are insen- 
sitive to network topology and to unmodelled parasitic resistances and 
capacitances in the interconnect network. Certain results are robust 
in the additional sense that specified nonlinear elements in the grid do 
not affect the stability criteria. The results are designed to be applica- 
ble, with further development, to complex and incompletely modelled 
living neural systems. 

1 Introduction 

In the VLSI implementation of lateral inhibition and certain other types 
of networks, active cells are locally interconnected through an on-chip re- 
sistive grid. Linear resistors fabricated in, e g ,  polysilicon, could yield a 
very compact realization, and nonlinear resistive grids, made from MOS 
transistors, have been found useful for image segmentation (Hutchinson 
et al. 1988). Networks of this type can be divided into two classes: feed- 
back systems and feedforward-only systems. In the feedfonvard case 
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one set of amplifiers imposes signal voltages or currents on the grid and 
another set reads out the resulting response for subsequent processing, 
while the same amplifiers both ”write to” the grid and ”read from” it in a 
feedback arrangement. Feedforward networks of this type are inherently 
stable, but feedback networks need not be. 

A practical example is one of Mahowald and Mead’s retina chips 
(Mead and Mahowald 1988; Mead 1988) that achieve edge enhancement 
by means of lateral inhibition through a resistive grid. Figure l a  shows 
a single cell in an earlier version of this chip, and figure l b  illustrates the 
network of interconnected cells. Experiment has shown that the individ- 
ual cells in this system are open-circuit stable and remain stable when 
the output of amplifier #2 is connected to a voltage source through a 
resistor, but the interconnected system oscillates so badly that the earlier 
design is scarcely usable’ (Mahowald and Mead 1988). Such oscillations 
can readily occur in most resistive grid circuits with active elements and 
feedback, even when each individual cell is quite stable. Analysis of the 
conditions of instability by conventional methods appears hopeless, since 
the number of simultaneously active feedback loops is enormous. 

This paper reports a practical design approach that rigorously guar- 
antees such a system will be stable if the active cells meet certain criteria. 
The work begins with the naiv6 observation that the system would be 
stable if we could design each individual cell so that, although inter- 
nally active, it acts like a passive system as seen from the resistive grid. 
The design goal in that case would be that each cell’s output impedance 
should be a positive-real (Vidyasagar 1978; Desoer and Vidyasagar 1975; 
Anderson and Vongpanitlerd 1973) function. This is sometimes possible 
in practice; we will show that the original network in figure la would 
satisfy this condition in the absence of certain parasitic elements. Fur- 
thermore, it is a condition one can verify experimentally by frequency- 
response measurements. 

It is obvious that a collection of cells that appear passive at their 
terminals will form a stable system when interconnected through a pas- 
sive medium such as a resistive grid, and that the stability of such a 
system is robust to perturbations by passive parasitic elements in the net- 
work. The work reported here goes beyond that observation to provide 
(i) a demonstration that the passivity or positive-real condition is much 
stronger than we actually need and that weaker conditions, more easily 
achieved in practice, suffice to guarantee robust stability of the linear 
active network model, and (ii) an extension of the analysis to the nonlin- 
ear domain that furthermore rules out sustained large-signal oscillations 
under certain conditions. A key feature of the integrated circuit environ- 
ment that makes these results applicable is the almost total absence of 
on-chip inductance. While the cells can appear inductive, as in figure 3c, 

‘The later design reported in (Mead and Mahowald 1988) avoids stability problems 
altogether, at a small cost in performance, by redesigning the circuits to passively sense 
the grid voltage in a ”feedforward” style as described above. 
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Figure 1: (a) This photoreceptor and signal processor circuit, using two MOS 
amplifiers, realizes spatial lateral inhibition and temporal sharpening by com- 
municating with similar cells through a resistive grid. The resistors will often 
be nonlinear by design. (b) Interconnection of cells through a hexagonal resis- 
tive grid. Cells are drawn as 2-terminal elements with the power supply and 
signal output lines suppressed. The voltage on the capacitor in any given cell is 
affected both by the local light intensity incident on that cell and by the capaci- 
tor voltages on neighboring cells of identical design. The necessary ingredients 
for instability - active elements and signal feedback - are both present in this 
system. (c) Grid resistors with a nonlinear characteristic of the form i = tanh(v) 
can be useful in image segmentation (Hutchinson et al. 1988). 
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the absence of inductance in our grid models makes these theorems pos- 
sible. 

Note that these results do not apply directly to networks created by 
interconnecting neuron-like elements, as conventionally described in the 
literature on artificial neural systems. The ”neurons” in, e.g., a Hopfield 
network (Hopfield 1984) are unilateral 2-port elements in which the input 
and output are both voltage signals. The input voltage uniquely and 
instantaneously determines the output voltage of such a neuron model, 
but the output can only affect the input via the resistive grid. In contrast, 
the cells in our system are I-port electrical elements (temporarily ignoring 
the optical input channel) in which the port voltage and port current are 
the two relevant signals, and each signal affects the other through the 
cell’s internal dynamics (modeled as a Thevenin equivalent impedance) 
as well as through the grid’s response. 

It is apparent that uncontrolled spontaneous oscillation is a potential 
problem in living neural systems, which typically also consist of active 
elements arranged in feedback loops. Biological systems have surely 
solved the same problem we attack in this paper. It is reasonable to believe 
that stability has strongly constrained the set of network configurations 
nature has produced. Whatever Nature’s solutions may be, we suspect 
they have at least three features in common with the ones proposed here: 
(1) robustness in the face of wide component variation and the presence 
of parasitic network elements, (2) reliance on empirical data rather than 
anything we would recognize as a theory or analytic method, (3) stabil- 
ity strategies based on predominantly local information available to each 
network element. 

Several reports on this work have appeared and will appear in (Wyatt 
and Standley 1988; Standley 1989; Standley and Wyatt 1989; 1988a; 198813) 
during its development; a longer tutorial exposition will be given in the 
second printing of (Mead 1988). 

2 The Linear Theory 

2.1 Terminology. The output impedance of a linear system is a mea- 
sure of the voltage response due to a change in output current while the 
input (light intensity in this case) is held constant. This standard elec- 
trical engineering concept will play a key role here. Figure 2a illustrates 
one experimental method for measuring the output impedance, and fig- 
ure 2b is a standard graphical representation of an impedance, known as 
a Nyquist  diagram. Similar plots have been used in experimental physi- 
ology (Cole 1932). 

In the context of this work, an impedance is said to be positive-real 
(Vidyasagar 1978, Desoer and Vidyasagar 1975, Anderson and Vongpan- 
itlerd 1973) if it is stable (i.e., has no poles or zeroes in the right-half plane) 
and its Nyquist diagram lies entirely in the right-half plane (i.e., in the 
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Figure 2: (a) Simplified experimental measurement of the output impedance of a 
cell. A sinusoidal current i = Acos(wt) is injected into the output and the voltage 
response u = Bcos(wt + 4) is measured. The impedance, which has magnitude 
B/A and phase 4, is typically treated as a complex number Z(iw) that depends 
on the frequency w. (b) Example of the Nyquist diagram of an impedance. This 
is a plot in the complex plane of the value of the impedance, measured or 
calculated at purely sinusoidal frequencies, ranging from zero upward toward 
infinity. It is not essential to think of Nyquist diagrams as representing complex 
numbers: they are simply polar plots in which radius represents impedance 
magnitude and angle to the horizontal axis represents phase. The diagram 
shown here is the Nyquist plot of the positive-real impedance in equation (2.1). 
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Figure 3: (a) Elementary model for an MOS amplifier. These amplifiers have 
a relatively high output resistance, which is determined by a bias setting (not 
shown). (b) Linearity allows this simplification of the network topology for 
the circuit in figure la without loss of information relevant to stability. The 
capacitor in figure l a  has been absorbed into the output capacitance of amp #2. 
(c) Passive network realization of the output impedance given in equation (2.1) 
for the network in (b). 

language of complex numbers, Re{Z(iw)} 2 0 for all purely sinusoidal 
frequencies w). Figure 2a is an example, while the system represented in 
figure 4 is stable but not positive-real. 

A deep link between positive-real functions, physical networks and 
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Figure 4: Nyquist diagram of an impedance that satisfies the Popov criterion, 
defined as follows. A linear impedance Z(s) satisfies the Popov criterion if 
(1 + TS)Z(S) is positive-real for some T > 0. The “Popov multiplier” (1 + T S )  

modifies the Nyquist diagram by stretching and rotating it counterclockwise for 
w > 0. The impedance plotted here is active and thus is not positive-real, but 
the rotation due to the (1 + T S )  term can make it positive-real for an appropriate 
value of T.  The Popov criterion is a condition on the linear elements that is 
weaker than passivity: active elements satisfying this criterion are shown to 
pose no danger of instability even when nonlinear resistors and capacitors are 
present in the grid. 

passivity is established by the classical result in linear circuit theory 
which states that H ( s )  is positive-real if and only if it is possible to synthe- 
size a 2-terminal network of positive linear resistors, capacitors, induc- 
tors and ideal transformers that has H ( s )  as its driving-point impedance 
(Anderson and Vongpanitlerd 1973). 

This work was originally motivated by the following linear analysis 
of a model for the circuit in figure la .  For an initial approximation to 
the output impedance of the cell we use the elementary model shown 
in figure 3a for the amplifiers and simplify the circuit topology within a 
single cell as shown in figure 3b. 
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Straightforward calculations show that the output impedance is given 
by 

This is a positive-real impedance that could be realized by a passive 
network of the form shown in figure 3c, where 

Of course this model is oversimplified, since the circuit does oscillate. 
Transistor parasitics and layout parasitics cause the output impedance 
of the individual active cells to deviate from the form given in equa- 
tions (2.1) and (2.21, and any very accurate model will necessarily be 
quite high order. The following theorem shows how far one can relax 
the positive-real condition and still guarantee that the entire network is 
robustly stable. It obviously applies to a much wider range of linear 
networks than has been discussed here. 

A linear network is said to be stable if for any initial condition the 
transient response converges asymptotically to a constant. 

Theorem 1. Consider the class of linear networks of arbitrary topology, con- 
sisting of any number of positive 2-terminal resistors and capacitors and 
of N lumped linear impedances Z,(s), n = 1,2, .  . . , N, that are open- and 
short-circuit stable in isolation, i.e.. that have no poles or zeroes in the 
closed right-half plane. Everby such network is stable if at  each frequency 
w 2 0 there exists a phase angle O(w) such that 0 2 O(w) 2 -90" and 
ILZ,,(iw) - O(iw)l < 90",n = 1,2, .  . . , N. 

An equivalent statement of this last condition is that the Nyquist 
plot of each cell's output impedance for w 2 0 never intersects the 2nd 
quadrant of the complex plane (figure 4 is an example), and that no two 
cells' output impedance phase angles can ever differ by as much as 180". 
If all the active cells are designed identically and fabricated on the same 
chip, their phase angles should track fairly closely in practice, and thus 
this second condition is a natural one. 

The theorem is intuitively reasonable and serves as a practical design 
goal. The assumptions guarantee that the cells cannot resonate with one 
another at any purely sinusoidal frequency s = jw since their phase an- 
gles can never differ by as much as 180", and they can never resonate 
with the resistors and capacitors since they can never appear simultane- 
ously active and inductive at any sinusoidal frequency. A more advanced 
argument (Standley and Wyatt 1989) shows that exponentially growing 
instabilities are also ruled out. 
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3 Stability Result for Networks with Nonlinear Resistors and 
Capacitors 

The previous results for linear networks can afford some limited insight 
into the behavior of nonlinear networks. If a linearized model is stable, 
then the equilibrium point of the original nonlinear network must be 
locally stable. But the result in this section, in contrast, applies to the 
full nonlinear circuit model and allows one to conclude that in certain 
circumstances the network cannot oscillate or otherwise fail to converge 
wen if the initial state is arbitrarily fur from the equilibrium point. Figure 4 
introduces the Popov criterion, which is the basis of the following theorem. 
This is the first nonlinear result of its type that requires no assumptions 
on the network topology. 

Theorem 2. Consider any network consisting of nonlinear resistors and ca- 
pacitors and linear active cells with output impedances Zn(s),  n = 1,2,. . . , N .  
Suppose 

(a) the nonlinear resistor and capacitor characteristics, ij = g3(vj) and 
qk = hk(vk), respectively, are monotone increasing continuously differ- 
entiable functions, and 

(b) the impedances Z,(s> all satisfy the Popov criterion for some common 
value of r > 0. 

Then the network is stable in the sense that, for any initial condition 
at t = 0, 

(3.1) 
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