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Several strategies are described that overcome limitations of basic net- 
work models as steps towards the design of large connectionist speech 
recognition systems. The two major areas of concern are the prob- 
lem of time and the problem of scaling. Speech signals continuously 
vary over time and encode and transmit enormous amounts of human 
knowledge. To decode these signals, neural networks must be able 
to use appropriate representations of time and it must be possible to 
extend these nets to almost arbitrary sizes and complexity within finite 
resources. The problem of time is addressed by the development of 
a Time-Delay Neural Network, the problem of scaling by Modularity and 
Incremental Design of large nets based on smaller subcomponent nets. It 
is shown that small networks trained to perform limited tasks develop 
time invariant, hidden abstractions that can subsequently be exploited 
to train larger, more complex nets efficiently. Using these techniques, 
phoneme recognition networks of increasing complexity can be con- 
structed that all achieve superior recognition performance. 

1 Introduction 

Numerous studies have recently demonstrated powerful pattern recogni- 
tion capabilities emerging from connectionist models or “artificial neural 
networks” (Rumelhart and McClelland 1986; Lippmann 1987). Most are 
trained on mere presentations of suitable sets of inputjoutput training 
data pairs. Most commonly these networks learn to perform tasks by 
effective use of hidden units as intermediate abstractions or decisions in 
an attempt to create complex, non-linear, decision functions. While these 
properties are indeed elegant and useful, they are, in their most simple 
form, not easily applicable to decoding human speech. 
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2 Temporal Processing 

One problem in speech recognition is the problem of time. A human 
speech signal is produced by moving the articulators towards target po- 
sitions that characterize a particular sound. Since these articulatory mo- 
tions are subject to physical constraints, they commonly don’t reach clean 
identifiable phonetic targets and hence describe trajectories or signatures 
rather than a sequence of well defined phonetic units. Properly repre- 
senting and capturing the dynamic motion of such signatures, rather than 
trying to classify momentary snapshots of sounds, must therefore be a 
goal for suitable models of speech. 

Another consequence of the dynamic nature of speech is the general 
absence of any unambiguous acoustic cue that indicates when a particular 
sound occurs. As a solution to this problem, segmentation algorithms 
have been proposed that presegment the signal before classification is 
carried out. Segmentation, however, is an errorful classification problem 
in itself and, when in error, sets up subsequent recognition procedures 
for recognition failure. To overcome this problem, a suitable model of 
speech should instead simply scan the input for useful acoustic clues and 
base its overall decision on the sequence and co-occurrence of a sufficient 
set of detected lower level clues. This then presumes the existence of 
translation invariant feature detectors, i.e., detectors that recognize an 
acoustic event independent of its precise location in time. 

A “Time Delay Neural Network (TDNN) (Lang 1987; Waibel et al. 
1987) possesses both of these properties. It consists of TDNN-units that, 
in addition to computing the weighted sum of their current input fea- 
tures, also consider the history of these features. This is done by intro- 
ducing varying delays on each of the inputs and processing (weighting) 
each of these delayed versions of a feature with a separate weight. In 
this fashion each unit can learn the dynamic properties of a set of moving 
inputs. The second property, ”translation invariance” is implemented by 
TDNN-units that scan an input token over time, in search of important 
local acoustic clues, instead of applying one large network to the entire 
input pattern. Translation invariant learning in these units is achieved 
by forcing the network to develop useful hidden units regardless of posi- 
tion in the utterance. In our implementation this was done by linking the 
weights of time shifted instantiations of the net during a scan through 
the input token (thus removing relative timing information). Figure 1 il- 
lustrates a TDNN trained to perform the discrimination task between the 
voiced stop consonants /b, d, g/ (Waibel et al. 1987) for a more detailed 
description of its operation). 

The three-category TDNN shown here (Fig. 1) has been evaluated over 
a large number of phonetic tokens (/b,d,g/). These tokens were gener- 
ated by extracting the 150 msec intervals around pertinent phonemes 
from a phonetically handlabeled, large vocabulary database of isolated 
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Figure 1: The TDNN architecture (input: " B A ) .  Eight hidden units in hidden 
layer 1 are fully interconnected with a set of 16 spectral coefficients and two 
delayed versions illustrated by the window over 48 input units. Each of these 
eight units in hidden layer 1 produces patterns of activation as the window 
moves through input speech. A five frame window scanning these activation 
patterns over time then activates each of three units in hidden layer 2. These 
activations over time in turn are then integrated into one single output deci- 
sion. Note that the final decision is based on the combined acoustic evidence, 
independent of where in the given input interval (15 frames or 150 msecs) the 
/b, d or g /  actually occurred. 
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Japanese utterances (Waibel et al. 1987). While isolated pronunciation 
provided relatively well articulated tokens, the data nevertheless included 
significant variability due to different phonetic contexts (e.g., " D O  vs. 
"DI") and position in the utterance. Recognition experiments with three 
different male speakers showed that discrimination scores between 97.5% 
and 99.1% could be obtained.' These scores compare favorably with those 
obtained using several standard implementations of Hidden Markov Mo- 
del speech recognition algorithms (Waibel et al. 1987). 

To understand the operation of the TDNNs, the weights and activation 
patterns of trained /b,d,g/-nets have been extensively evaluated (Waibel 

. 1987). Several interesting properties were observed: 

The TDNNs developed linguistically plausible features in the hid- 
den units, such as movement detectors for first and second for- 
mants, segment boundary detectors, etc. 

The TDNN has developed alternate internal representations that can 
link quite different acoustic realizations to the same higher level 
concept (here: phoneme). This is possible due to the multilayer 
arrangement used. 

The hidden units fire in synchrony with detected lower layer events. 
These units therefore operate independent of precise time alignment 
or segmentation and could lead to translation invariant phoneme 
recognition. 

Our results suggest that the TDNN has most of the desirable proper- 
ties needed for robust speech recognition performance. 

3 The Problem of Scaling 

Encouraged by the good performance and the desirable properties of 
the model, we wanted to extend TDNNs to the design of large scale 
connectionist speech recognition systems. Some simple preliminary con- 
siderations, however, raise serious questions about the extendibility of 
connectionist design: Is it feasible, within limited resources and time, to 
build and train ever larger neural networks? Is it possible to add new 
knowledge to existing networks? With speech being one of the most 
complex and all encompassing human cognitive abilities, this question 
of scaling must be addressed. 

As a first step, let us consider the problem of extending the scope of 
our networks from tackling the three category task of all voiced stops 
(/b,d,g/) to the task of dealing with all stop consonants (/b,d,g,p,t,k/). 
The first row in table 1 shows the recognition scores of two individually 

was not included in training. 
'All recognition scores in this paper were obtained from evaluation on test data that 
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Method bdg ptk bdgptk 

Individual TDNNs 98.3% 98.7% 

TDNN: Max. Activation 60.5% 

Retrain BDGPTK 98.3% 

Retrain Combined Higher Layers 98.1% 

Retrain with V/W-units 98.4% 

Retrain with Glue 98.4% 

All-net Fine Tuning 98.6% 

Table 1: From /b,d,g/ to /b,d,g,p,t,k/; Modular Scaling Methods. 

trained three category nets, one trained on the voiced stop consonant dis- 
crimination task (/b,d,g/) and the other on the voiceless stop consonant 
discrimination task (/p,t,k/). A naive attempt of combining these two 
nets by simply choosing the maximally activated output unit from these 
two separately trained nets resulted in failure as seen by the low recogni- 
tion score (60.5%) in the second row. This is to be expected, since neither 
network was trained using other phonetic categories, and independent 
output decisions minimize the error for only small subsets of the task. 
A larger network (/b,d,g,p,t,k/-net) with six output units was therefore 
trained. Twenty hidden units (instead of eight) were used in Hidden 
layer 1 and six in hidden layer 2. Good performance could now be 
achieved (98.3%), but significantly more processing had to be expended 
to train this larger net. While task size was only doubled, the number 
of connections to be trained actually tripled. To make matters worse, 
more training data is generally needed to achieve good generalization 
in larger networks and the search complexity in a higher dimensional 
weight space increases dramatically as well. Even without increasing the 
number of training tokens in proportion to the number of connections, 
the complete /b,d,g,p,t,k/-net training run still required 18 days on a 
4-processor Alliant supermini and had to be restarted several times be- 
fore an acceptable solution had been found. The original /b,d,g/-net, by 
comparison, took only three days. It is clear that learning time increases 
more than linearly with task size, not to mention practical limitations 
such as available training data and computational capabilities. In sum- 
mary, the dilemma between performance and resource limitations must 
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be addressed if Neural Networks are to be applied to large real world 
tasks. 

Our proposed solutions are based on three observations: 

1. Networks trained to perform a smaller task may not produce out- 
puts that are useful for solving a more complex task, but the knowl- 
edge and internal abstractions developed in the process may indeed 
be valuable. 

2. Learning complex concepts in (developmental) stages based on pre- 
viously learned knowledge is a plausible model of human learning 
and should be applied in connectionist systems. 

3. To increase competence, connectionist learning strategies should 
build on existing distributed knowledge rather than trying to undo, 
ignore or relearn such knowledge. 

Four experiments have been performed: 

1. The previously learned hidden abstractions from the first layer of a 
/b,d,g/-net and a /p,t,k/-net were frozen by keeping their connec- 
tions to the input fixed. Only connections from these two hidden 
layers 1 to a combined hidden layer 2 and to the output layer were 
retrained. While only modest (a few hours of) additional train- 
ing was necessary at the higher layers, the recognition performance 
(98.1%) was found to be almost as good as for the monolithically 
trained /b,d,g,p,t,k/-net (see table I). The small difference in per- 
formance might have been caused by the absence of features needed 
to merge the two subnets (here, for example, the voicing feature 
distinguishing voiced from voiceless stops). 

2. Hidden features from hidden layer 1 are fixed as in the previous 
experiment, but four additional class-distinctive features are incor- 
porated at the first hidden layer. These four units were excised from 
a net that was exclusively trained to perform voiced/unvoiced dis- 
crimination. The voiced/unvoiced net could be trained in little 
more than one day and combination training at the higher layers 
was accomplished in a few hours. A high recognition rate of 98.4% 
was achieved. 

3. The hidden units from hidden layer 1 are fixed as before, and four 
additional free units are incorporated. These free units are called 
connectionist glue, since they are intended to fit or glue together two 
distinct, previously trained nets. This network is shown in figure 2. 
The four glue units can be seen to have free connections to the 
input that are trained along with the higher layer combinations. In 
this fashion they can discover additional features that are needed 
to accurately perform the larger task. In addition to training the 
original /b,d,g/- and /p,t,k/-nets, combination training using glue 
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units was accomplished in two days. The resulting net achieved a 
recognition rate of 98.4%. 

4. All-net fine tuning was performed on the previous network. Here, 
all connections of the entire net were freed once again for several 
hours of learning to perform small additional weight adjustments. 
While each of these learning iterations was indeed very slow, only 
few iterations were needed to fine tune the entire network for best 
performance of 98.6%. 

Only modest additional training beyond that required to train the 
subcomponent nets was necessary in these experiments. Performance, 
however, was as good or better than that provided by a monolithically 
trained net and as high as the performance of the original smaller sub- 
component nets. 

Free 
. _  c --= 

BDG 

Output Layer 

Hidden Layer 2 

Input Layer 

Figure 2: Combination of a /b,d,g/-net and a /p,t,k/-net using 4 additional 
units in hidden layer 1 as free "Connectionist Glue." 
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4 Conclusion 

We have described connectionist networks with delays that can represent 
the dynamic nature of speech and demonstrated techniques to scale these 
networks up in size for increasingly large recognition tasks. Our results 
suggest that it is possible to train larger neural nets in a modular, incre- 
mental fashion from smaller subcomponent nets without loss in recog- 
nition performance. These techniques have been applied successfully to 
the design of neural networks capable of discriminating all consonants 
in spoken isolated utterances (Waibel et al. 1988). With recognition rates 
of 96%, these nets were found to compare very favorably (Waibel et al. 
1988) with competing recognition techniques in use today. 
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