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We address the question of when a network can be expected to general- 
ize from m random training examples chosen from some arbitrary prob- 
ability distribution, assuming that future test examples are drawn from 
the same distribution. Among our results are the following bounds on 
appropriate sample vs, network size. Assume 0 < E 5 1/8. We show 
that if  m 2 0($209!) random examples can be loaded on a feedforward 
network of linear threshold functions with N nodes and W weights, 
so that at least a fraction 1 - 5 of the examples are correctly classi- 
fied, then one has confidence approaching certainty that the network 
will correctly classify a fraction 1 - E of future test examples drawn 
from the same distribution. Conversely, for fully-connected feedfor- 
ward nets with one hidden layer, any learning algorithm using fewer 
than O ( F )  random training examples will, for some distributions of ex- 
amples consistent with an appropriate weight choice, fail at least some 
fixed fraction of the time to find a weight choice that will correctly 
classify more than a 1 - E fraction of the future test examples. 

1 Introduction 

In the last few years, many diverse real-world problems have been at- 
tacked by back propagation. For example ”expert systems” have been 
produced for mapping text to phonemes (Sejnowski and Rosenberg 19871, 
for determining the secondary structure of proteins (Qian and Sejnowski 
19881, and for playing backgammon (Tesauro and Sejnowski 1988). In 
such problems, one starts with a training database, chooses (by making 
an educated guess) a network, and then uses back propagation to load as 
many of the training examples as possible onto the network. The hope 
is that the network so designed will generalize to predict correctly on 
future examples of the same problem. This hope is not always realized. 
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We address the question of when valid generalization can be expected. 
Given a training database of m examples, what size net should we at- 
tempt to load these on? We will assume that the examples are drawn 
from some fixed but arbitrary probability distribution, that the learner is 
given some accuracy parameter E ,  and that his goal is to produce with 
high probability a feedforward neural network that predicts correctly at 
least a fraction 1 - 6  of future examples drawn from the same distribution. 
These reasonable assumptions are suggested by the protocol proposed by 
Valiant for learning from examples (Valiant 1984). However, here we do 
not assume the existence of any "target function"; indeed the underly- 
ing process generating the examples may classify them in a stochastic 
manner, as in e.g. (Duda and Hart 1973). 

Our treatment of the problem of valid generalization will be quite 
general in that the results we give will hold for arbitrary learning algo- 
rithms and not just for backpropagation. The results are based on the 
notion of capacity introduced by Cover (Cover 1965) and developed by 
Vapnik and Chervonenkis (Vapnik and Chervonekis 1971; Vapnik 1982). 
Recent overviews of this theory are given in (Devroye 1988; Blumer et 
al. 198%; Pollard 1984), from the various perspectives of pattern recog- 
nition, Valiant's computational learning theory, and pure probability the- 
ory, respectively. This theory generalizes the simpler counting arguments 
based on cardinality and entropy used in (Blumer et al. 1987a; Denker et 
al. 1987), in the latter case specifically to study the question of general- 
ization in feedforward nets (see Vapnik 1982 or Blumer et al. 1987b). 

The particular measures of capacity we use here are the maximum 
number of dichotomies that can be induced on m inputs, and the Vupnik- 
Chervonenkis (VC)  Dimension, defined below. We give upper and lower 
bounds on these measures for classes of networks obtained by varying 
the weights in a fixed feedforward architecture. These results show that 
the VC dimension is closely related to the number of weights in the 
architecture, in analogy with the number of coefficients or "degrees of 
freedom" in regression models. One particular result, of some interest 
independent of its implications for learning, is a construction of a near 
minimal size net architecture capable of implementing all dichotomies on 
a randomly chosen set of points on the n-hypercube with high probability. 

Applying these results, we address the question of when a network 
can be expected to generalize from m random training examples chosen 
from some arbitrary probability distribution, assuming that future test 
examples are drawn from the same distribution. Assume 0 < t 5 1/8. 
We show that if m 1 O(:logT) random examples can be loaded on a 
feedforward network of linear threshold functions with N nodes and W 
weights, so that at least a fraction 1 - f of the examples are correctly clas- 
sified, then one has confidence approaching certainty that the network 
will correctly classify a fraction 1 - E of future test examples drawn from 
the same distribution. Conversely, for fully-connected feedforward nets 
with one hidden layer, any learning algorithm using fewer than O ( 5 )  
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random training examples will, for some distributions of examples con- 
sistent with an appropriate weight choice, fail at least some fixed fraction 
of the time to find a weight choice that will correctly classify more than 
a 1 - E fraction of the future test examples. 

Ignoring the constant and logarithmic factors, these results suggest 
that the appropriate number of training examples is approximately the 
number of weights times the inverse' of the accuracy parameter, E .  Thus, 
for example, if we desire an accuracy level of 90%, corresponding to 
E = 0.1, we might guess that we would need about 10 times as many 
training examples as we have weights in the network. This is in fact 
the rule of thumb suggested by Widrow (1987), and appears to work 
fairly well in practice. At the end of Section 3, we briefly discuss why 
learning algorithms that try to minimize the number of non-zero weights 
in the network (Rumelhart 1987; Hinton 1987) may need fewer training 
examples. 

2 Definitions 

We use In to denote the natural logarithm and log to denote the logarithm 
base 2. We define an example as a pair ( 2 , u ) , 2  E P , a  E {-l,+l}. We 
define a random sample as a sequence of examples drawn independently 
at random from some distribution D on Sn x { -1, +1}. Let f be a function 
from RR into {-1, +l}. We define the errur of f ,  with respect to D, as the 
probability a + f (2) for (2, a )  a random example. 

Let F be a class of { -1, +I}-valued functions on Rn and let S be a 
set of m points in Rn. A dichotomy of S induced by f E F is a partition 
of S into two disjoint subsets S' and S- such that f(2) = +1 for 2 E S' 
and f (2)  = -1 for 2 E S-. By A,(S) we denote the number of distinct 
dichotomies of S induced by functions f E F ,  and by A,(m) we denote 
the maximum of AF(S) over all S c Sn of cardinality m. We say S is 
Shattered by F if A&5') = 21'1, i.e. all dichotomies of S can be induced 
by functions in F. The Vapnik-Chervonenkis WC) dimension of F ,  denoted 
VCdinz(F), is the cardinality of the largest S c Xn that is shattered by F ,  
i.e. the largest m such that A&n) = 2". 

A feedforward net with input from !JIn is a directed acyclic graph G 
with an ordered sequence of n source nodes (called inputs) and one sink 
(called the output). Nodes of G that are not source nodes are called com- 
putation nodes, nodes that are neither source nor sink nodes are called 
hidden nodes. With each computation node n, there is associated a func- 
tion ji pndegreeh , )  + {-1, +I}, where indegree(n,) is the number of 
incoming edges for node n,. With the net itself there is associated a func- 

'It should be noted that our bounds differ significantly from those given in (Devroye 
1988) in that the latter exhibit a dependence on the inverse of 6'. This is because we de- 
rive our results from Vapnik's theorem on the uniform relative deviation of frequencies 
from their probabilities (Vapnik 1982; see Appendix A3 of Blumer et al. 1987b), giving 
sharper bounds as c approaches 0. 
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tion f : W -+ { -1, +1} defined by composing the Zfs in the obvious way, 
assuming that component i of the input 2 is placed at the ith input node. 

A feedforward architecture is a class of feedforward nets all of which 
share the same underlying graph. Given a graph G we define a feedfor- 
ward architecture by associating to each computation node n, a class of 
functions F, from Pndegree(nt) to {-1, +1}. The resulting architecture con- 
sists of all feedforward nets obtained by choosing a particular function 
f, from F, for each computation node n,. We will identify an architecture 
with the class of functions computed by the individual nets within the 
architecture when no confusion will arise. 

3 Conditions Sufficient for Valid Generalization 

Theorem 1. Let F be a feedforward architecture generated by an underlying 
graph G with N 2 2 computation nodes and Fi be the class of  functions asso- 
ciated with computation node n, of  G, 1 5 i 5 N .  Let d = XE, VCdim(Fi). 
Then A,(m) 5 @, A,(m) 5 (Nem/d)d for m 2 d ,  where e is the base of  
the natural logarithm. 

Proof. Assume G has n input nodes and that the computation nodes of 
G are ordered so that node ni receives inputs only from input nodes and 
from computation nodes nj, 1 5 j 5 i - 1. Let S be a set of m points 
in $I2". The dichotomy induced on S by the function in node nl can be 
chosen in at most A , ( m )  ways. This choice determines the input to 
node n 2  for each of the m points in S. The dichotomy induced on these 
m inputs by the function in node n2 can be chosen in at most A,(m) 
ways, etc. Any dichotomy of S induced by the whole network can be 
obtained by choosing dichotomies for each of the ni's in this manner, 
hence Adm) 5 n:, A,(rn). 

By a theorem of Sauer (1972), whenever VCdim(F) = k < 03, A,(m) 5 
(em/k)k for all m 2 k (see also Blumer et al. 198%). Let d, = VCdim(Fi), 
1 5 i 5 N .  Thus d = C,"=, di. Then nEl A,(m) 5 nE,(em/di)d* for 
m 2 d.  Using the fact that C,"=, -critogai 5 logN whenever ai > 0, 
1 5 i 5 N ,  and X,"=, cri = 1, and setting ai = d i / d ,  it is easily verified that 
n:, did, 2 (d /N)d .  Hence n,"=,(em/di)dc 5 (Nem/dId. I 

Corollary 3. Let F be the class of  all functions computed by feedforward nets 
defined on a fixed underlying graph G with E edges and N 2 2 computation 
nodes, each of which computes a linear threshold function. Let W = E + N 
(the total number of  weights in the network, including one weight per edge 
and one threshold per computation node). Then A&n) 5 (Nem/W)w for 
all m 2 W and VCdim(F) 5 2Wlog(eN). 

Proof. The first inequality follows directly from Theorem 1 using the fact 
that VCdim(F) = k + l  when F is the class of all linear threshold functions 
on rJZk (see e.g. Wenocur and Dudley 1981). For the second inequality, it 
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is easily verified that for N 2 2 and m = 2Wlog(eN), ( N e m / m  < 2". 
Hence this is an upper bound on VCdim(F). I 

Using VC dimension bounds given in (Wenocur and Dudley 19811, 
related corollaries can be obtained for nets that use spherical and other 
types of polynomial threshold functions. These bounds can be used in 
the following. 

Theorem 2. (Vapnik 1982) (see Blumer et al. 1987b; Theorem A3.3): Let F 
be a class o f  function2 on %In, 0 < y 5 1, 0 < E ,  6 < 1. Let S be a random 
sequence o f  m examples drawn independently according to the distribution 
D. The probability that there exists a function in F that disagrees with at 
most a fraction (1 - 7 ) ~  o f  the examples in S and yet has error greater than 
t (w.r.t. D )  is less than 

8AF(2m)e-72e"i4. 

From Corollary 2 and Theorem 3, we get: 

Corollary 4. Given a fixed graph G with E edges and N linear threshold 
units (i.e. W = E + N weights), fixed 0 < E 5 112, and m random training 
examples, where 

32W 32N 
m 2 -En-, 

E t 

i f  one can find a choice of  weights so that at least a fraction 1 - €12 o f  the 
m training examples are correctly loaded, then one has confidence at least 
1 - 8e-1.sw that the net will correctly classify all but a fraction E of  future 
examples drawn from the same distribution. For 

64W 64N 
m 2 -En-, 

E E 

the confidence is at least 1 - 8e-em/32 

Proof. Let y = 112 and apply Theorem 3, using the bound on AF(m) 
given in Corollary 2. This shows that the probability that there exists a 
choice of the weights that defines a function with error greater than E 

that is consistent with at least a fraction 1 - €12 of the training examples 
is at most 

8( 2 N em/ W)w e-'"/16. 

When m = ?En?, this is 8(2e&Eny)W,  which is less than 8e-1.5w 
for N 2 2 and t 5 112. When m 2 ?En?, ( 2 N e m / W ) w  5 efm/32, so 
8(2Nem/W)we-'m/'6 < - 8e-cm/32. I 

The constant 32 is likely an overestimate. No serious attempt has 
been made to minimize it. Further, we do not know if the log term 
is unavoidable. Nevertheless, even without these terms, for nets with 

2We assume some measurability conditions on the class F. See (Pollard 1984; Blumer 
et al. 198%) for details. 
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many weights this may represent a considerable number of examples. 
Such nets are common in cases where the complexity of the rule being 
learned is not known in advance, so a large architecture is chosen in order 
to increase the chances that the rule can be represented. To counteract 
the concomitant increase in the size of the training sample needed, one 
method that has been explored is the use of learning algorithms that try 
to use as little of the architecture as possible to load the examples, e.g. by 
setting as many weights to zero as possible, and by removing as many 
nodes as possible (a node can be removed if all its incoming weights 
are zero.) (Rumelhart 1987; Hinton 1987). The following shows that the 
VC dimension of such a ”reduced architecture is not much larger than 
what one would get if one knew a priori what nodes and edges could be 
deleted. 

Corollary 5. Let F be the class of all functions computed by linear thresh- 
old feedforward nets defined on a fixed underlying graph G with N‘ > 2 
computation nodes and E’ 2 N’ edges, such that at  most E 2 2 edges have 
non-zero weights and a t  most N 2 2 nodes have at  least one incoming edge 
with a non-zero weight. Let W = E + N .  Then the conclusion of Corollary 
4 holds for sample size 

m 2 ---In-. 

Proof sketch. We can bound A,(m) by considering the number of ways 
the N nodes and E edges that remain can be chosen from among those in 
the initial network. A crude upper bound is (N’)N(E’)E. Applying Corol- 
lary 2 to the remaining network gives A,(m) 5 (N’)N(E’)E(Nern/W)W. 
This is at most (NE’em/W)W. The rest of the analysis is similar to that 
in Corollary 4. I 

This indicates that minimizing non-zero weights may be a fruitful 
approach. Similar approaches in other learning contexts are discussed in 
(Haussler 1988) and (Littlestone 1988). 

32W 32NE‘ 
E E 

4 Conditions Necessary for Valid Generalization 

The following general theorem gives a lower bound on the number of ex- 
amples needed for distribution-free learning, regardless of the algorithm 
used. 

Theorem 3. (Ehrenfeucht et al. 1987; see also BJumer et aJ. 1987b): Let F 
be a class of {-1, +l}-valued functions on Xn with VCdzm(F) 2 2. Let A 
be any learning algorithm that takes as input a sequence of {-1, +I}-labeled 
examples over W and produces as output a function from Xn into {-1, +l}. 
Then for any 0 < E 5 1/8, 0 < 6 5 6 and 

I - E  1 VCdim(F)-l  
m < max[---ln-, I ,  € 6  326 
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there exists (1) a function f E F ,  and (2) a distribution D on X n  x {-1, +1} 
for which Prob((2, a )  : a # f (2)) = 0,  such that given a random sample of size 
m chosen according to D ,  with probability at least 6, A produces a function 
with error greater than E .  

This theorem can be used to obtain a lower bound on the number of 
examples needed to train a net, assuming that the examples are drawn 
from the worst-case distribution that is consistent with some function 
realizable on that net. We need only obtain lower bounds on the VC di- 
mension of the associated architecture. In this section we will specialize 
by considering only fully-connected networks of linear threshold units 
that have only one hidden layer. Thus each hidden node will have an 
incoming edge from each input node and an outgoing edge to the out- 
put node, and no other edges will be present. In (Baum 1988) a slicing 
construction is given that shows that a one hidden layer net of threshold 
units with n inputs and 2 j  hidden units can shatter an arbitrary set of 
2jn vectors in general position in %In. A coroIlary of this result is: 

Theorem 4. The class of  one hidden layer linear threshold nets taking input 
from Xn with k hidden units has VC dimension at least 21$]n. 

Note that for large k and n, 2LSJn is approximately equal to the total 
number W of weights in the network. 

A special case of considerable interest occurs when the domain is 
restricted to the hypercube: {+1, -1)". Lemma 6 of (Littlestone 1988) 
shows that the class of Boolean functions on {+l, represented by 
disjunctive normal form expressions with k terms, k < O(Z"/'/fl, where 
each term is the conjunction of n/2 literals, has VC dimension at least 
kn/4. Since these functions can be represented on a linear threshold net 
with one hidden layer of k units, this provides a lower bound on the VC 
dimension of this architecture. We also can use the slicing construction of 
(Baum 1988) to give a lower bound approaching kn/2. The actual result 
is somewhat stronger in that it shows that for large n a randomly chosen 
set of approximately kn/2 vectors is shattered with high probability. 

Theorem 5. With probability approaching 1 exponentially in n, a set S of 
m 5 P I 3  vectors chosen randomly and uniformly from {+l,-l}n can be 
shattered by the one hidden layer architecture with 2[m/L(n(l - $)-))]I 
linear threshold units in its hidden layer. 

Proof sketch. With probability approaching 1 exponentially in n no pair 
of vectors in S are negations of each other. Assume n 2 e". Let r = 
Ln(1- &I]. Divide S at random into [ m / ~ l  disjoint subsets St,. . . , Srm/rl 
each containing no more than T vectors. We will describe a set T of 
3 ~ 1  vectors as sliceable if the vectors in T are linearly independent and 
the subspace they span over the reals does not contain any i l  vector 
other than the vectors in T and their negations. In (Odlyzko 1988) it 
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is shown, for large n, that any random set of r vectors has probability 
P = 4($)(:)" + O((&)") of not being sliceable. Thus the probability that 
some S, is not sliceable is O(rnn2(:)"), which is exponentially small for 
rn 5 2n/3. Hence with probability approaching 1 exponentially in R, each 
S, is sliceable, 1 5 i 5 [rn/rl. 

Consider any Boolean function f on S and let Sl = ( 2  E S, : f(2) = 
+1}, 1 5 i 5 [m/r1. If S, is sliceable and no pair of vectors in S are 
negations of each other then we may pass a plane through the points in 
S,+ that doesn't contain any other points in S. Shifting this plane parallel to 
itself slightly we can construct two half spaces whose intersection forms 
a slice of !R" containing S,+ and no other points in S.  Using threshold 
units at the hidden layer recognizing these two half spaces, with weights 
to the output unit +1 and -1 appropriately, the output unit receives input 
+2 for any point in the slice and 0 for any point not in the slice. Doing 
this for each 5': and thresholding at 1 implements the function f. I 

We can now apply Theorem 6 to show that any neural net learning 
algorithm using too few examples will be fooled by some reasonable 
distributions. 

Corollary 6. For any learning algorithm training a net with k linear thresh- 
old functions in its hidden layer, and 0 < E < 118, if the algorithm uses (a) 
fewer than examples to learn a function from F' to {-l,+l}, or 

examples to learn a function from (b) fewer than Lnlk/Z] (max(l/2,1-10/(ln "I))] -1 

{-l,+l}" to {-l,+l}, for k 5 O(2"I3), then there exist distributions D 
for which (i) there exists a choice of weights such that the network exactly 
classifies its inputs according to D ,  but (ii) the learning algorithm will have 
probability a t  least .01 of finding a choice of weights which in fact has error 
greater than E .  

326 

5 Conclusion 

We have given theoretical lower and upper bounds on the sample size vs. 
net size needed such that valid generalization can be expected. The exact 
constants we have given in these formulae are still quite crude; it may be 
expected that the actual values are closer to 1. The logarithmic factor in 
Corollary 4 may also not be needed, at least for the types of distributions 
and architectures seen in practice. Widrow's experience supports this 
conjecture (Widrow 1987). However, closing the theoretical gap between 
the O(5log:) upper bound and the R ( 7 )  lower bound on the worst 
case sample size for architectures with one hidden layer of threshold 
units remains an interesting open problem. Also, apart from our upper 
bound, the case of multiple hidden layers is largely open. Finally, our 
bounds are obtained under the assumption that the node functions are 
linear threshold functions (or at least Boolean valued). We conjecture 
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that similar bounds also hold for classes of real valued functions such as 
sigmoid functions, and hope shortly to establish this. 
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