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The Boltzmann machine learning procedure has been successfully ap- 
plied in deterministic networks of analog units that use a mean field ap- 
proximation to efficiently simulate a truly stochastic system (Peterson 
and Anderson 1987). This type of ”deterministic Boltzmann machine” 
(DBM) learns much faster than the equivalent ”stochastic Boltzmann 
machine” (SBM), but since the learning procedure for DBM’s is only 
based on an analogy with SBM‘s, there is no existing proof that it per- 
forms gradient descent in any function, and it has only been justified 
by simulations. By using the appropriate interpretation for the way in 
which a DBM represents the probability of an output vector given an 
input vector, it is shown that the DBM performs steepest descent in the 
same function as the original SBM, except at rare discontinuities. A 
very simple way of forcing the weights to become symmetrical is also 
described, and this makes the DBM more biologically plausible than 
back-propagation (Werbos 1974; Parker 1985; Rumelhart et al. 1986). 

1 Introduction 

The promising results obtained by Peterson and Anderson (Peterson and 
Anderson 1987) using a DBM are hard to assess because they present no 
mathematical guarantee that the learning does gradient descent in any 
error function (except in the limiting case of a very large net with small 
random weights). It is quite conceivable that in a DBM the computed 
gradient might have a small systematic difference from the true gradient 
of the normal performance measure for each training case, and when 
these slightly incorrect gradients are added together over many cases 
their resultant might bear little relation to the resultant of the true case- 
wise gradients (see Fig. 1). 

2 The Learning Procedure for Stochastic Boltzmann Machines ~ 

A Boltzmann machine (Hinton and Sejnowski 1986) is a network of sym- 
metrically connected binary units that asynchronously update their states 
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according to a sfochastic decision rule. The units have states of 1 or 0 and 
the probability that unit i adopts the state 1 is given by 

(2.1) 
1 

pi = o(- c SjWij )  
T i  

where s j  is the state of the jth unit, wij is the weight on the connection 
between the jth and the ith unit, T is the "temperature" and c is a smooth 
non-linear function defined as 

1 
o(z) = - 

1 + e-" 
(2.2) 

If the binary states of units are updated asynchronously and repeatedly 
using equation 2.1, the network will reach "thermal equilibrium" so that 
the relative probabilities of global configurations are determined by their 
energies according to the Boltzmann distribution: 

where Pa is the probability of a global configuration and E, is its energy 
defined by 

where s: is the binary state of unit i in the oth global configuration, and 
bias terms are ignored because they can always be treated as weights on 
connections from a permanently active unit. 

At any given temperature, T ,  the Boltzmann distribution is the one 
that minimizes the Helmholtz free energy, F ,  of the distribution. F is 
defined by the equation 

h a + b  

Figure 1: The true gradients of the performance measure are a and b for two 
training cases. Even fairly accurate estimates, 2 and 6, can have a resultant that 
points in a very different direction. 
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F = ( E )  - T H  (2.5) 

where ( E )  is the expected value of the energy given the probability dis- 
tribution over configurations and H is the entropy of the distribution. It 
can be shown that minima of F (which will be denoted by F') satisfy 
the equation 

a 

In a stochastic Boltzmann machine, the probability of an output vector, 
Op, given an input vector, I ,  is represented by 

(2.7) 

where F& is the minimum free energy with I ,  and Op clamped, and F,* 
is the minimum free energy with just I ,  clamped. A very natural way 
to observe P-(OplI,) is to allow the network to reach thermal equilib- 
rium with I ,  clamped, and to observe the probability of 00. The key to 
Boltzmann machine learning is the simple way in which a small change 
to a weight, w , ~ ,  affects the free energy and hence the log probability of 
an output vector in a network at thermal equilibrium. 

(2.8) 

where (s ,s j )  is the expected value of s,sj in the minimum free energy 
distribution. The simple relationship between weight changes and log 
probabilities of output vectors makes it easy to teach the network an 
input-output mapping. The network is "shown" the mapping that it 
is required to perform by clamping an input vector on the input units 
and clamping the required output vector on the output units (with the 
appropriate conditional probability). It is then allowed to reach thermal 
equilibrium at T = 1, and at equilibrium each connection measures how 
often the units it connects are simultaneously active. This is repeated 
for all input-output pairs so that each connection can measure (s,sJ)+, 
the expected probability, averaged over all cases, that unit i and unit 
j are simultaneously active at thermal equilibrium when the input and 
output vectors are both clamped. The network must also be run in just 
the same way but without clamping the output units to measure (s ,s j ) - ,  
the expected probability that both units are active at thermal equilibrium 
when the output vector is determined by the network. Each weight is 
then updated by 
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It follows from equation 2.7 and equation 2.8 that if E is sufficiently 
small this performs steepest descent in an information theoretic measure, 
G, of the difference between the behavior of the output units when they 
are clamped and their behavior when they are not clamped. 

(2.10) 

where I ,  is a state vector over the input units, Op is a state vector over the 
output units, P+ is a probability measured at thermal equilibrium when 
both the input and output units are clamped, and P- is a probability 
measured when only the input units are clamped. 

Stochastic Boltzmann machines learn slowly, partly because of the 
time required to reach thermal equilibrium and partly because the learn- 
ing is driven by the difference between two noisy variables, so these vari- 
ables must be sampled for a long time at thermal equilibrium to reduce 
the noise. If we could achieve the same simple relationships between log 
probabilities and weights in a deterministic system, learning would be 
much faster. 

3 Mean field theory 

Under certain conditions, a stochastic system can be approximated by a 
deterministic one by replacing the stochastic binary variables of equation 
2.1 by deterministic real-valued variables that represent their mean values 

We could now perform discrete, asynchronous updates of the pi using 
equation 3.1 or we could use a synchronous, discrete time approximation 
of the set of differential equations 

(3.2) 

We shall view the pi as a representation of a probability distribution 
over all binary global configurations. Since many different distributions 
can give rise to the same mean values for the pi we shall assume that 
the distribution being represented is the one that maximizes the entropy, 
subject to the constraints imposed on the mean values by the pi. Equiva- 
lently, it is the distribution in which the pi are treated as the mean values 
of independent stochastic binary variables. Using equation 2.5 we can cal- 
culate the free energy of the distribution represented by the state of a 
DBM (at T = 1). 
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F = - C ~ z ~ 3 ~ 2 3  + C[pz log(pa) + (1 - pz) lOg(1 - pz)l (3.3) 

Although the dynamics of the system defined by equation 3.2 do not 
consist in following the gradient of F ,  it can be shown that it always 
moves in a direction that has a positive cosine with the gradient of -F 
so it settles to one of the minima of F (Hopfield 1984). 

Mean field systems are normally viewed as approximations to systems 
that really contain higher order statistics, but they can also be viewed as 
exact systems that are strongly limited in the probability distributions 
that they can represent because they use only N real values to represent 
distributions over 2N binary states. Within the limits of their representa- 
tional powers, they are an efficient way of manipulating these large but 
constrained probability distributions. 

2<3 a 

4 Deterministic Boltzmann machine learning 

In a DBM, we shall define the representation of P-(OpII,) exactly as in 
equation 2.7, but now F& and F,* will refer to the free energies of the 
particular minima that the network actually settles into. Unfortunately, 
in a DBM this representation is no longer equivalent to the obvious way 
of defining P-(OplI,) which is to clamp I ,  on the input units, settle 
to a minimum of F,, and interpret the values of the output units as a 
representation of a probability distribution over output vectors, using the 
maximum entropy assumption. 

The reason for choosing the first definition rather than the second is 
this: Provided the stable states that the network settles to do not change 
radically when the weights are changed slightly, it can now be shown 
that the mean field version of the Boltzmann machine learning procedure 
changes each weight in proportion to the gradient of log P-(OgII,), which 
is exactly what is required to perform steepest descent in the performance 
measure G defined in equation 2.10. 

When zut3 is incremented by an infinitessimal amount cp,p3 two things 
happen to F* (see Fig. 2). First, the mean energy of the probability 
distribution represented by the state of the DBM is decreased by cpp2,p2, 
and, to first order, the mean energy of all nearby states of the DBM is 
decreased by the same amount. Second, the values of the p ,  at which F 
is minimized change slightly so the stable state moves slightly. But, to 
first order, this movement of the minimum has no effect on the value of 
F because we are at a stable state in which aF/dp ,  = 0 for all 2 .  Hence 
the effect of incrementing wZJ by epdp, is simply to create a new, nearby 
stable state which, to first order, has a free energy that is cp:p: lower than 
the old stable state. So, assuming T = 1, if all weights are incremented by 
cp:p; in the stable state that has ii, and 0 0  clamped and are decremented 
by ~ p ; p ;  in the stable state that has only I ,  clamped we have, from 
equation 2.7 
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This ensures that by making E sufficiently small the learning procedure 
can be made to approximate steepest descent in G arbitrarily closely. 

The derivation above is invalid if, with the same boundary condi- 
tions, a small change in the weights causes the network to settle to a 
stable state with a very different free energy. This can happen with en- 
ergy landscapes like the one shown in figure 3. A small weight change 
caused by some other training case can cause a free energy barrier that 
prevents the network finding the deeper minimum. In simulations that 
repeatedly sweep through a fixed set of training cases, it is easy to avoid 
this phenomenon by always starting the network at the stable state that 
was found using the same boundary conditions on the previous sweep. 
This has the added advantage of eliminating almost all the computation 
required to settle on a stable state, and thus making a settling almost as 
fast as a forward pass of the back-propagation procedure. 

Unfortunately, starting from the previous best state does not elimi- 
nate the possibility that a small free-energy bamer will disappear and a 
much better state will then be found when the network is running with 
the output units unclamped. This can greatly increase the denominator 
in equation 2.7 and thus greatly decrease the network’s representation of 
the probability of a correct output vector. It should also be noted that it 
is conceivable that, due to local minima in the free energy landscape, F,‘ 
may actually be higher than F&, in which case the network’s represen- 
tation of P-(OpIla) will exceed 1. In practice this does not seem to be a 
problem, and DBMs compare very favorably with back-propagation in 
learning speed. 

Figure 2 The effect of a small weight increment on a free energy minimum. 
To first order, the difference in free energy between A and C is equal to the 
difference between A and B. At a minimum, small changes in the distribution 
(sideways movements) have negligible effects on free energy, even though they 
may have significant (and opposite) effects on the energy and the entropy terms. 
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Figure 3: A small increase in the free energy of B can prevent a network from 
settling to the free energy minimum at C. So small changes in weights occa- 
sionally cause large changes in the final free energy. 

5 Symmetry of the Weights 

We have assumed that the weight of the connection from i to j is the 
same as the weight from j to i. If these weights are asymmetric, the 
learning procedure will automatically symmetrize them provided that, 
after each weight update, each weight is decayed slightly towards zero 
by an amount proportional to its magnitude. This favors “simple” net- 
works that have small weights, and it also reduces the energy barri- 
ers that create local minima. Weight-decay always reduces the differ- 
ence between wii and wji, and since the learning rule specifies weight 
changes that are exactly symmetrical in i and j ,  the two weights will 
always approach one another. Williams (1985) makes a similar argu- 
ment about a different learning procedure. Thus the symmetry that 
is required to allow the network to compute its own error derivatives 
is easily achieved, whereas achieving symmetry between forward and 
backward weights in back-propagation networks requires much more 
complex schemes (Parker 1985). 
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