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We introduce a new form of computational unit for feedfoxward learn- 
ing networks of the backpropagation type. Instead of calculating a 
weighted sum this unit calculates a weighted product, where each in- 
put is raised to a power determined by a variable weight. Such a unit 
can learn an arbitrary polynomial term, which would then feed into 
higher level standard summing units. We show how learning operates 
with product units, provide examples to show their efficiency for vari- 
ous types of problems, and argue that they naturally extend the family 
of theoretical feedforward net structures. There is a plausible neurobi- 
ological interpretation for one interesting configuration of product and 
summing units. 

1 Introduction 

The success of multilayer networks based on generalized linear threshold 
units depends on the fact that many real-world problems can be well 
modeled by discriminations based on linear combinations of the input 
variables. What about problems for which this is not so? It is clear 
that for some tasks higher order combinations of some of the inputs, or 
ratios of inputs, may be appropriate to help form a good representation 
for solving the problem (for example cross-correlation terms can give 
translational invariance). This observation led to the proposal of ”sigma- 
pi units” which apply a weight not only to each input, but also to all 
second and possibly higher order products of inputs (Rumelhart, Hinton, 
and McClelland; Maxwell et al. 1987). The weighted sum of all these 
terms is then passed through a non-linear thresholding function. The 
problem with sigma-pi units is that the number of terms, and therefore 
weights, increases very rapidly with the number of inputs, and becomes 
unacceptably large for use in many situations. Normally only one or a 
few of the non-linear terms are relevant. We therefore propose a different 
type of unit, which represents a single higher order term, but learns 
which one to represent. The output of this unit, which we will call a 
product unit, is 
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Figure 1: Two suggested forms of possible network incorporating product units. 
Product units are shown with a II and summing units with a C. (a) Each 
summing unit gets direct connections from the input units, and also from a 
group of dedicated product units. (b) There are alternating layers of product 
and summing units, finishing with a summing unit. The output of all our 
summing units was squashed using the standard logistic function, 1/(1 + e-”); 
no non-linear function was applied to the output from product units. 

We will treat the pi in the same way as variable weights, training them 
by gradient descent on the output sum square error. In fact such units 
provide much more generality than just allowing polynomial terms, since 
the pi can take fractional and negative values, permitting ratios. How- 
ever, simple products can still be represented by setting the pi to zero or 
one. Related types of units were previously considered by Hanson and 
Burr (1987). 

There are various ways in which product units could be used in a 
network. One way is for a few of them to be made available as in- 
puts to a standard thresholded summing unit in addition to the original 
raw inputs, so that the output can now consider some polynomial terms 
(Fig. la). This approach has a direct neurobiological interpretation (see 
the discussion). Alternatively there could be a whole hidden layer of 
product units feeding into a subsequent layer of summing units (Fig. lb). 
We do not envision product units replacing summing units altogether; 
the attractions are rather in mixing them, particularly in alternating lay- 
ers so that we can form weighted sums of arbitrary products. This is 
analogous to alternating disjunctive and conjunctive layers in general 
forms for logical functions. 

2 Theory 

In order to discuss the equations governing learning in product units it is 
convenient to rewrite equation 1 in terms of exponentials and logarithms. 
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(2.1) 

In this form we can see that a product unit acts like a summing unit 
whose inputs are preprocessed by taking logarithms, and whose output 
is passed through an exponential, rather than a squashing function. If 
L,  is negative then log, zz = log, 12, I + Z T ,  which is complex, and so equa- 
tion (2.1) becomes 

= 1% J 1  

(2.2) 

We want to be able to consider negative inputs because the non-linear 
characteristics of product units, which we want to use computationally, 
are centered on the origin. There are two main alternatives to dealing 
with the resulting complex-valued expressions. One is to handle the 
whole network in the complex domain, and at the end fit the real com- 
ponent to the data (either ignoring the complex component or fitting it 
to 0). The other is to keep the system in the real domain by ignoring the 
imaginary component of the output from each product unit, restricting 
us to real-valued weights. For most problems the latter seems preferable. 
In the case where all the exponents pi are integral, as with a true polyno- 
mial term, then the approximation of ignoring the imaginary component 
is exact. Given this, it can be viewed that we are extending the space 
of polynomial terms to fractional exponents in a well behaved fashion, 
so as to permit smooth learning of the exponents. Additionally, in sim- 
ulations we seem to gain nothing for the added complexity of working 
in the complex domain (it doubles the number of equations and weight 
variables). On the other hand, for some physical problems it may be 
appropriate to consider complex-valued networks. 

In order to train the weights by gradient descent we need to be able 
to calculate two sets of derivatives for each unit. First we need the 
derivative of the output y with respect to each weight pi so as to be able 
to update the weights. Second we need the derivative with respect to 
each input zi so as to be able to propagate the error back to previous 
layers using the chain rule. Let us set I ,  equal to 1 if xi is negative, 
otherwise 0, and define U ,  V by 

N N 

Then the equations we need for the real-valued version are 

y = eucosTv (2.3) 
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It is possible to add an extra constant input to a product unit, correspond- 
ing to the bias for a summing unit. In this case the appropriate constant 
is -1, since a positive value would simply multiply the output by a scalar, 
which is irrelevant when there is a variable multiplicative weight from 
the output to a higher level summing unit. Although this multiplicative 
bias is often eventually redundant, we have found it to be important 
during the learning process for some tasks, such as the symmetry task 
(see below and Fig. 2). 

One property that we have lost with product units is that they are vul- 
nerable to translation and rotation of the input space, in the sense that 
a learnable problem may no longer be learnable after translation. Sum- 
ming units with a threshold are not vulnerable to such transformations. 
If desired, we can regain translational invulnerability by introducing new 
parameters pi to allow an explicit change of origin. This would replace 
xi by (xi - pi) in all the above equations. We can once again learn the pi 
by gradient descent. With the pi present a product unit can approximate 
a linear threshold unit arbitrarily closely, by working on only a small 
region of the exponential function. Alternatively, we can notice that ro- 
tational and translational vulnerability of single product units is in part 
compensated for if a number of them are being used in parallel, which 
will often be the case. This is because a single product transforms to a 
set of products in a rotated and translated space. In any case, there may 
be some benefit to the asymmetry of a product unit’s capabilities under 
affine transformation of the input space. For non-geometric sets of input 
variables this type of extra computational power may well be useful. 

3 Results 

Many of the problems that are studied using networks use Boolean input. 
For product units it is best to use Boolean values -1 and 1, in which case 
the exponential terms in equations (3) disappear, and the units behave 
like cosine summing units with 1 and 0 inputs. Examples of the use of 
product units for learning Boolean functions are provided by networks 
that learn the parity and symmetry functions. These functions are hard to 
learn using summing units: the parity function requires as many hidden 
units as inputs, while symmetry requires 2 hidden units, but often gets 
stuck in a local minimum unless more are given. Both functions are 
learned rapidly using a single product hidden unit (Fig. 2 a,b). A good 
example of a problem that multilayer nets with product units find good 
solutions for is the multiplexing task shown in figure 2c. Here two of the 
inputs code which of the four remaining inputs to output. This task has 
a biological interpretation as an attentional mechanism, and is therefore 
relevant for computational models of sensory information processing. 
Indeed, the neurobiological interpretation of just the type of hybrid net 
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Figure 2: Examples of product unit networks that solve "hard" binary problems. 
In each case there is a standard thresholded summing output unit (C) and one 
or more "hidden" product units (II). The weight values are shown by each 
arrow, and there is also a constant bias value shown inside each unit's circle. 
Product unit biases can be considered to have constant -1 input (see text). 
In each case the network was found by training from data. (a) Parity. The 
output is 1 if an even number of inputs is on, 0 if an odd number is on. (b) 
Symmetry. The output is 1 if the input pattern is mirror symmetric (as shown 
here), 0 otherwise. For summing unit network solutions to the symmetry and 
parity problems see (Rumelhart, Hinton, and Williams). (c) Multiplexer. Here 
the values of the two lefthand input units encode in binary fashion which of 
the four right hand inputs is transmitted to the output. Examples are shown. 
Where there is a dot the value of the input unit (1 or -1) is irrelevant. An "d' 
stands for either 1 or -1. 

used here (see below) suggests a substrate and mechanism for attentional 
processes in the brain. 

We can measure the informational capacity of a unit by the number 
of random Boolean patterns that it can learn (more precisely, the number 
a t  which the probability of storing them all perfectly drops to a haIf; 
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Product unit Summing unit 
Structure M percentage percentage 

6 1 12 92 18 
18 49 3 
20 28 1 

12 1 24 100 29 
36 66 0 
40 20 0 

6 2 1  24 100 2 
36 82 0 
40 58 0 

6 2 1  24 100 0 
fixed 36 45 0 

output 40 14 0 

Table 1: Results on storage of random data. The number of successful storage 
attempts in 100 trials is shown in the last two columns for various net structures 
and numbers of vectors, M .  Storage is termed successful if all input vectors 
produce output on the correct side of 0.5. Input vectors were random, q = -1 
or 1, and output values for each vector were random 0 or 1. The “6 1” and 
”12 1” nets had a single learning unit with 6 or 12 inputs. For these compar- 
isons the output of a product unit was passed through the standard summing 
unit squashing function, e”/(l + e”). The single summing units do not attain 
the M=2N theoretical limit (Cover 1965), presumably because the squashing 
function output creates local minima not present for a simple perceptron. The 
“6 2 1” nets had 2 hidden units (either product or summing) and one summing 
output unit, which was trainable for the first set of results, and fixed with all 
weights equal for the second set. These results indicate that storage capacity 
for product units is at least 3 bits per weight, as opposed to no more than 2 bits 
per weight for summing units, and that fixed output units do not drastically 
reduce computational power in multilayer networks. 

Mitchison and Durbin 1989). For a single summing unit with N inputs 
the capacity can be shown theoretically to be 2N (Cover 1965). The 
empirical capacity of a single product unit is significantly higher than 
this at around 3N (table 1). The relative improvement is maintained in a 
comparison of multilayer networks with product hidden units compared 
with ones consisting purely of summing units (table 11, indicating that 
product units cooperate well with summing units. 

We can also consider the performance of product units when the in- 
puts are real valued. An example is the ability of a network with two 
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Figure 3: Performance on a task with real-valued input: learning a circular do- 
main. In each case the network and a plot of its response function over the range 
-2.0 to 2.0 are shown. A variety of local minima were found using two product 
unit networks (which in theory could solve the problem exactly), whereas there 
was only one solution found using two summing units. Although non-optimal, 
the product unit solutions were always better than the summing units solutions. 
(a) The ideal product unit network, used to generate the data. (b) An example 
of a good empirical solution with product units (2% misclassified, MSE 0.03). 
(c) An example of a poor product unit local minimum (13% misclassified, MSE 
0.10). (d) The solution essentially always obtained with two summing hidden 
units (38% misclassified, MSE 0.24). 

puts 2, are real valued. An example is the ability of a network with two 
product hidden units to learn to respond to a circular region around the 
origin. In fact it appears that there are many local minima for this prob- 
lem, and although the network occasionally finds the "correct" solution 
(Fig. 3a), it more often finds other solutions such as those shown in fig- 
ure 3b,c. However these solutions are not bad: the average mean square 
error (MSE) for product unit networks is 0.09 (average of 10) with 88% 
correct data classification (whether the output is the correct side of 0.5) 
whereas the best corresponding summing unit network gives an MSE of 
0.24, and only 62% correct classification. 
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4 Discussion 

We have proposed a new type of computational unit to be used in layered 
networks along with standard thresholded summing units. The underly- 
ing idea behind this unit is that it can learn to represent any generalized 
polynomial term in the inputs. It can therefore help to form a better 
representation of the data in cases where higher order combinations of 
the inputs are significant. Unlike sigma-pi units, which to some extent 
perform the same task, product units do not increase the number of free 
parameters, since there is only one weight per input, as with summing 
units. Although we have been unable to prove that product units are 
guaranteed to learn a learnable task, as can be shown for a single simpli- 
fied summing unit (Rosenblatt 1962), we have shown that product units 
can be trained efficiently using gradient descent, and allow much simpler 
solutions of various standard learning problems. In addition, as isolated 
units they have a higher empirical learning capacity than summing units, 
and they act efficiently to create a hidden layer representation for an out- 
put summing unit (table 1). 

There is a natural neurobiological interpretation for this type of com- 
bination of product and summing units in terms of a single neuron. Local 
regions of dendritic arbor could act as product units whose outputs are 
summed at the soma. Equation (2.1) shows that a product unit acts like 
a summing unit with an exponential output function, whose inputs are 
preprocessed by passing them through a log function. Both these trans- 
fer functions are realistic. When there are voltage sensitive dendritic 
channels, such as NMDA receptors, the post-synaptic voltage response 
is qualitatively exponential around a critical voltage level (Collingridge 
and Bliss 1987); an effect that will be influenced by other local input 
apart from the specific input at the synapse. Presynaptically, there are 
saturation effects giving an approximately logarithmic form to the voltage 
dependency of transmitter release. In fact just these features have been 
presented as problems with the standard thresholded summing model 
of neurons. Standard summing inputs could still be made using neuro- 
transmitters that do not stimulate voltage sensitive channels. As far as 
learning in the biological model is concerned, it is acceptable that the sec- 
ond layer summing weights, corresponding to the degree of influence of 
dendritic regions at the soma, are not very variable. Systems with fixed 
summing output layers are nearly as computationally powerful as fully 
variable ones, both in theory (Mitchison and Durbin 19891, and simula- 
tions (table 1). Learning at the input synapses is still essentially Hebbian 
(equation 2.2b), with an additional term when the input 2, is negative. 
Although the periodic form of this term appears unbiological, some type 
of additional term is not unreasonable for inhibitory input, which may 
well have different learning characteristics. Alternatively, it might be that 
the learning model only applies to excitatory input. Further considera- 
tion of this neurobiological model is required, but it seems likely that this 
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approach will lead to a plausible new computational model of a neuron 
that is potentially much more powerful than the standard McCulloch- 
Pitts model. 

One possible criticism of introducing a new type of unit is that it 
is trivially going to improve the representational capabilities of the net- 
works: one can always improve a fit to data by making a model more 
complex, and this is rarely worth the price of throwing away elegance. 
The defence to this must be that the extension is in some sense natural, 
which we believe that it is. Product units provide the continuous analogy 
to general Boolean conjunctions in the same way that summing units are 
continuous analogs of Boolean disjunctions (although both continuous 
forms are much more powerful, sufficiently so that either can represent 
any arbitrary disjunction or conjunction on Boolean input). In fact many 
of the proofs of capabilities of networks to perform general tasks rely 
on the “abuse” of thresholded summing units to perform multiplicative 
or conjunctive tasks, often in alternating layers with units being used 
in an additive or disjunctive fashion. Such proofs will be much simpler 
for networks with both product and summing units, indicating that such 
networks are more appropriate for finding simple models of general data. 
It might be argued that in opening up such generality the special prop- 
erties of learning networks will be lost, because they no longer provide 
strong constraints on the type of model that is created. We feel that this 
misses the point. The real justification for layered network models ap- 
pears when a number of different output functions are fit to some set of 
data. By using a layered model the fit of each function influences and 
constrains the fit of all the others. If there is some underlying natural 
representation this will be modeled by the intermediate layers, since it 
will be appropriate for all the output functions. This cross-constraining 
of learning is not easily available in many other systems, which therefore 
miss out on a vast amount of data that is relevant, although indirectly so. 
Product units provide a natural extension of the use of summing units 
in this framework. 
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