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A characteristic feature of vertebrate sensory cortex (and midbrain) is 
the existence of multiple two-dimensional map representations. Some 
workers have considered single-map classification (e.g. Kohonen 1984) 
but little work has focused on the use of multiple maps. We have 
constructed a multiple-map classifier, which permits abstraction of the 
computational properties of a multiple-map architecture. We identify 
three problems which characterize a multiple-map classifier: classifica- 
tion in two dimensions, mapping from high dimensions to two dimen- 
sions, and combination of multiple maps. We demonstrate component 
solutions to each of the problems, using Parzen-window density esti- 
mation in two dimensions, a generalized Fisher discriminant function 
for dimensionality reduction, and splivmerge methods to construct a 
"tree of maps" for the multiple-map representation. The combination 
of components is modular and each component could be improved 
or replaced without affecting the other components. The classifier 
training procedure requires time linear in the number of training ex- 
amples; classification time is independent of the number of training 
examples and requires constant space. Performance of this classifier 
on Fisher's iris data, Gaussian clusters on a five-dimensional simplex, 
and digitized speech data is comparable to competing algorithms, such 
as nearest-neighbor, back-propagation and Gaussian classifiers. This 
work provides an example of the computational utility of multiple- 
map representations for classification. It is one step towards the goal 
of understanding why brain areas such as visual cortex utilize multiple 
map-like representations of the world. 

1 Introduction 

One of the most prominent features of the vertebrate sensory system is 
the use of multiple two-dimensional maps to represent the world. The 
observational data base for cortical maps is excellent, and this area rep- 
resents one of the better-understood aspects of large-scale brain archi- 
tecture. Recently, through the use of a system for computer-aided neu- 
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roanatomy, we have been able to obtain high-precision reconstructions of 
primary visual cortex map and column architectures, have constructed 
accurate models of both columnar and topographic architecture of pri- 
mary visual cortex, and have suggested several computational algorithms 
which are contingent on the specific forms of column and map architec- 
ture which occur in this first visual area of monkey cortex (Schwartz et 
al. 1988). We expect to be able to extend these methods and ideas to 
other cortical areas. There is thus good progress in the areas of measur- 
ing, modeling, and computing with single-map representations. How- 
ever, the problem of how to make use of multiple maps has been little 
explored. 

Other workers have considered the application of single-map repre- 
sentations to classification. Kohonen (1984) has developed an algorithm 
for representing a feature space in a map; this algorithm constructs a 
space-variant representation, in rough analogy to the space-variant na- 
ture of primate visual cortex. However, this work does not provide a 
computational model for computing with multiple maps. 

We believe that a classifier utilizing a multiple-map architecture must 
incorporate the following modules: 

An efficient algorithm for classification in two dimensions. 

A projection of high dimensional data into a two-dimensional rep- 
resentation. 

An algorithm for combining multiple two-dimensional representa- 
tions. 

Our strategy in this work has been to use simple components to con- 
struct our multiple-map classifier. In particular, we were seeking al- 
gorithms which require one pass through the data and which are not 
sensitive to convergence issues (e.g. local minima in an energy function). 
We are interested in the overall properties of the classifier, and we are 
trying to deemphasize the role of the individual components, which are 
modular and hence subject to improvement or replacement. 

2 Classification in Two Dimensions 

We assume that the items, or instances, we wish to classify are represented 
as vectors z E Rd, where each component of 2 is a feature measurement. 
Each instance belongs to a class k .  We also have a training set, a set 
of instances of known class (training examples). We refer to the set of 
training examples in class k as xk. Our problem is to construct a set of 
discriminant functions fk : Rd + R, k = 1,. . . , c. An arbitrary instance x 
is assigned to the class k for which f&) is maximal. 

Because the instances are represented as vectors, we can refer to the 
distance between an instance and a training example as 115 - 2’11. We 
compute discriminant functions 
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where g(r )  is some function which decreases as T increases. If we let 
g be a probability density (i.e. nonnegative and integrating to one over 
its support) this is the Parzen-window estimate (Parzen 1962) for the a 
posteriori density; i.e. f&) = p(klz).  Since this is the same term which is 
maximized in the Bayes classifier, our classifier performance approaches 
the Bayesian limit as the approximation above approaches the actual 
probability density. This algorithm is related to the nearest-neighbor 
classifier. Its principal novelty is to use maps to store fk(z). Then, given 
the training examples, we can compute fk(x> by convolution in one pass. 

For illustration, see figure 1. We depict a two-class, one-dimensional 
classifier. The "map" is simply a segment of the real line. The training 
examples are shown on the z-axis as boxes. The weighting function g(z) 
is a Gaussian function. The individual convolutions g(x) * 6(z - z') are 
shown as dotted lines. The class-specific density estimates, which are 
also the discriminant functions, are shown as a solid and broken line, 
respectively. 

We consider a two-dimensional, three-class problem in figure 2 and 
figure 3. The weighting function is a circular two-dimensional Gaus- 
sian function. The instances have been drawn from prespecified two- 
dimensional multivariate normal distributions; this permits construction 
of a Bayes classifier to determine minimal error rate. In figure 2, we 
show a comparison between the Parzen-window density estimates f k ( l c )  

and the actual probability density functions for each class. In figure 3, 
the classifier is compared to a Bayesian classifier. The visual compar- 
ison indicates that the classifier is capturing much of the character of 
the Bayesian classifier. When the classifier was trained on 400 samples 
from each class, and tested on 300 (different) instances, its error rate was 
16.0%, which may be compared to 14.4% for the Bayesian classifier. 

One important issue in the application of this method is the choice 
of the weighting function (or kernel). We have typically used Gaussian 
kernels, in which case we need to choose the kernel variance CT* (or co- 
variance matrix x,,, in higher dimensions). This is a difficult problem 
in general; we have used heuristic algorithms. For example, if we de- 
sire an isotropic kernel, we might use CT = N-'/"&, where X I  is the 
largest eigenvalue of the covariance matrix resulting from the projection 
of the data into an rn-dimensional map. The factor N-'/" arises from 
the heuristic decision to give each training instance an equal amount of 
map volume; since the kernel is m-dimensional, the volume scales as cP. 
More generally, we could use C, = h P C ,  where P is the projection into 
the map (see below). In experimental studies, we have found that the 
performance of the classifier is insensitive to small changes in the kernel 
size or shape. 
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Figure 1: A one-dimensional two-class classifier. Class 0 instances are shown 
as solid boxes; class 1 instances are shown as open boxes. The estimated a 
posteriori density p ( k l z )  (here, for one-dimensional z) is shown as a solid line for 
class 0, and a broken line for class 1. The Parzen-window function g(11z - 2'11) 
for each paradigm x' is shown as a dotted line. The classifier operates by 
choosing the class for which the estimated a posteriori density is maximized. 
Thus, samples drawn with feature measurements below 0.7 would be assigned 
to class 0. Samples drawn with z > 0.7 would be assigned to class 1. 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/1/1/104/811809/neco.1989.1.1.104.pdf by guest on 07 Septem
ber 2023



108 Alan Rojer and Eric Schwartz 

Binormal densities 

Map estimates 

Figure 2: Comparison of actual binormal density against estimated density f&) 
computed by our classifier. Here a higher density corresponds to a darker region 
of the plot. The top row shows density plots for three binormal distributions 
in R2. The bottom row shows the estimates fk(x) computed by the classifier 
for 400 samples drawn from each of these three distributions. The weighting 
function used is a circular Gaussian with a variance approximately 1/60 the 
width of the figure. 

3 From d Dimensions to Two Dimensions 

In the previous section, we showed that the performance (as measured by 
error rate) approaches that of the Bayesian classifier for two-dimensional 
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Bayesian classifier Map Classifier 

Figure 3: Comparison of decision regions computed by our classifier against 
decision regions of a hypothetical Bayes classifier which had complete knowl- 
edge of the underlying class distributions. Regions in the Bayes classifier are 
clipped due to round-off. 

data drawn from Gaussian distributions. Actually there is nothing in our 
derivation which restricts us to two dimensions; a d-dimensional classi- 
fier is defined as above, except that the density estimate p k ( z )  will require 
a d-dimensional map. In practice we limit ourselves to two dimensions 
for three reasons. First, our original motivation is to understand the 
functional utility of laminar structures such as neocortex for pattern clas- 
sification in the brain. Second, two-dimensional maps can be processed 
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by conventional image processing software and hardware, and the user of 
the classifier gets the benefit of visual displays of the intermediate struc- 
tures in the classifier (e.g. P k ( Z )  and the computed partition). Finally, 
the number of bins required to store the maps P k ( Z )  grows exponentially 
with the dimensionality d, and thus favors small d. 

Restriction to two dimensions introduces an interesting aspect to the 
classification problem. Although our original data is in d dimensions, i.e. 
the data is composed of d measurements, we must somehow extract only 
two measurements or combinations of measurements with which to con- 
struct our classifier. The classification problem then spawns a problem of 
feature derivation. We can formulate the dimensionality reduction prob- 
lem as construction of a function P : Rd .+ R2 which maps d-dimensional 
instances to two-dimensional map positions. The two dimensions of the 
map constitute the two derived features. We need to specify what kind 
of function P we will allow. To date, we have only considered linear 
projections, but nonlinear functions could also be used (e.g. Kohonen's 
self-organizing feature map; Kohonen 1984). 

We apply the generalized Fisher discriminant which was first intro- 
duced for a projection to R (Fisher 1936) and later generalized to a domain 
of arbitrary dimensionality (Bryan 1951). A discussion of the technique 
may be found in (Duda and Hart 1973). The two vectors which com- 
prise P turn out to be the eigenvectors associated with the two largest 
eigenvalues in the generalized eigenvalue system 

sbu = XSwu, (3.1) 

where S, is the "within-class" scatter matrix, given by 

(3.2) 

with c k  the class mean and N k  the number of training examples repre- 
senting class k ,  and sb is the "between-class" scatter matrix, given by 

(3.3) 

Here, z is the mean over all the training examples. In practice, we have 
found that S, is nonsingular, so the system can be reduced to a standard 
eigenvalue problem 

S i ' s b U  = Xu. (3.4) 

The extraction of the principal eigenvalue and its eigenvector are real- 
izable using a typical Hebb synapse model with a fixed-length weight 
vector (Oja 1982). 

The performance of the discriminant can be observed with Fisher's 
classical iris data. This data describes a four-dimensional, three-class 
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problem. Figure 4 depicts the classifier constructed from the projection 
of the iris data into the two-dimensional subspace which maximizes the 
ratio described above. The classes can be seen to be fairly well sep- 
arated. The classifier was tested by splitting the 150 instances into a 
100-instance training set and a 50-instance test set. After training on the 
100 instances, the classifier achieved 98% correct classification on the 50 
instances in the test set. By comparison, the nearest-neighbor classifier 
operating on the same training and test sets achieved 98% correct clas- 
sification, the Gaussian classifier achieved 94% correct classification, and 
a multilayer perceptron trained using back-propagation' achieved 96% 
correct classification. 

4 Using Multiple Maps: A Tree of Maps 

The previous example showed that for a relatively easy four-dimensional 
three-class problem, the generalized Fisher discriminant analysis was ad- 
equate to obtain a map which permitted good classifier performance. But 
in general, the discriminant analysis does not yield enough separation. 
For example, consider a regular five-dimensional simplex; this is a set of 
six equidistant points on the unit sphere in R5. Locate a spherical multi- 
variate normal distribution at each vertex of the simplex. This is a point 
swarm whose density declines as exp(-r2), where T is the distance from 
the vertex. We construct the classifier by utilizing discriminant analysis 
to find a projection P : R5 + R2. With 600 training points and 300 test 
points, the error rate is 36%. 

Fortunately, we are not confined to one map. One method of using 
multiple maps utilizes a split/merge technique to reduce one many-class 
problem to several problems, each with fewer classes. We merge the 
original base classes into superclasses, each of which is represented by the 
union of training examples from its underlying base classes. We then 
apply discriminant analysis to the newly formed superclasses. If we can 
achieve an adequate separation, we proceed as above with a separate map 
for each superclass. If necessary, we can again perform merges among 
the elements of a superclass, until we have divided each superclass into 
component base classes. 

The consequence of this approach is to create a tree of maps. From the 
root of the tree, we project instances into a superclass. If the superclass is 
a base class, we assign that class to the instance. Otherwise, the instance 
is assigned to a superclass, which has its own map. We project the 
instance into that map, and continue as above, until the instance lands 
in a region assigned to a base class. In the training phase, we construct 

'A multilayer perceptron with 4 hidden units was trained using back-propagation 
(Rumelhart et al. 1986) with 5000 iterations through the training set, with E = 0.02 and 
a = 0. 
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Figure 4: Iris classifier constructed from 100 training points drawn from the 
iris data (shaded background). Projection of four-dimensional iris data points 
into the two-dimensional subspace which maximizes the ratio of between-class 
variance to within-class variance (foreground data points). 

a classifier in R2 for each internal node in the tree to classify instances 
into one of the superclasses for that node. 

We can illustrate this algorithm with the simplex data. We partition 
the classes so that three maps are used to classify. In the first map, we 
merge classes 2-5 into a superclass, letting classes 0 and 1 remain as base 
classes. In the second map, we will resolve the superclass composed 
of classes 2-5 into classes 2 and 3 and a superclass formed of 4 and 5. 
Finally, in the third map, we will resolve the superclass formed from 4 
and 5 above into component base classes. The error rate of the three-map 
classifier is found to be 4.7%, a dramatic improvement over the single- 
map classifier (36% error rate). This may be compared to error rates 
of 2%, 6% and 2.7% respectively for the Gaussian, nearest-neighbor and 
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multilayer perceptron classifiem2 We have also applied our classifier to 
real-world data which consisted of 22 cepstral parameters from digitized 
~ p e e c h . ~  Each of 16 data sets represented one speaker; seven classes 
(monosyllabic words) were present in each data set. Each set consisted of 
70 training instances and 112 test instances. The results are summarized: 

Nearest- Multilayer 
Classifier: Multiple-map Gaussian4 neighbor perceptron5 

Average 
error 
rate(% 1: 6.5 6.0 5.9 6.3 

Range (%): 1.8-12.5 3.6-10.7 1.8-15.2 1.8-11.6 

from which it may be seen that all four classifiers under consideration 
had closely comparable performance. 

5 Automatic Generation of the Map Tree 

In the preceding examples of multiple map usage, we interactively chose 
a map tree. In this section we explore a simple approach to automatic 
generation of the map tree. This is a clustering problem; we want to 
group classes into superclasses which in some way reflect the natural 
similarity between classes. 

We introduce the distance matrix A for the classes. For any interclass 
distance measure dist(i,j), A,, = A,, = dist(i, j ) .  We use a very simple tree 
generation algorithm. we treat A as a graph with each class represented 
by a node, and each edge weighted according to interclass distance. We 
then compute the minimal spanning tree. We form superclasses by re- 
cursively removing the largest edge in the tree, yielding two subtrees, 
each of which forms a superclass. We can use a variety of interclass 
distance measures; we have experimented with distances between class 
means, overlap of the one-dimensional Fisher discriminant projections, 
and overlap of the two-dimensional Fisher discriminant projections. 

2A multilayer perceptron with 7 hidden units was trained using back-propagation 
(Rumelhart et al. 1986) with 5000 iterations through the training set, with E = 0.02 and 
N = 0. 

3We are grateful to R. Lippmann of MIT Lincoln Laboratory for providing this data. 
4Covariance matrix estimates were obtained by pooling data from all 16 speakers 

5Multilayer perceptrons for each speaker used 15 hidden units. 
for each class. 
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6 Discussion 

Our classifier is inspired by the prevalence of maps in the vertebrate 
brain. Its components are two-dimensional map units which implement 
Parzen-window density estimation, a dimensionality reduction method- 
ology, and a scheme for decomposing a problem so that it can be solved 
by a system of maps. The training and running costs are favorably low. It 
admits an easy formal description. The intermediate results of classifier 
construction, e.g. the density estimates p&) and the partition computed 
by the classifier, are easily observed by a human user. This allows insight 
into the structure of the data that is hard to gain from other algorithms. 
Many of the operations can be implemented with conventional image 
processing operations (and thus can take advantage of special-purpose 
image processing hardware). The error rate is comparable to popular 
parametric, nonparametric, and neural network classifiers. 

Only a few other workers have considered the role of maps in pattern 
classification. In particular, Kohonen (1984) has considered iterative al- 
gorithms for "self-organizing feature maps." We wish to distinguish his 
work from ours. In our classifier, the map function comprises a linear 
projection of a data instance to determine a position in the map followed 
by a reference to that position. Kohonen maps an instance via a distance 
computation at each node of his map, followed by a winner-take-all cycle 
to obtain the nearest-neighbor to the instance among all the map nodes. 
The projection we use is computed with one pass through the training 
set to compute second-order statistics, which are diagonalized in a step 
which has a cost related only to the dimensionality of the data, but not 
the number of samples. Kohonen uses a very large number of iterations 
through the training set. Most importantly, we emphasize the use of 
multiple maps, which is not considered in (Kohonen 1984). We could 
use a Kohonen-type feature map as a module in our classifier (replacing 
the Fisher discriminant analysis) although we would then sacrifice these 
advantages. 

Tree classifiers have been considered at length in Breiman et al. (1984). 
There are similarities between their classifiers and ours at classification 
time, although the training algorithms are quite distinct. The principal 
difference in classifier operation is that we use two-dimensional density 
estimation at each node, while they use one-dimensional linear discrim- 
inants. Their discriminant is typically a threshold comparison of one 
feature value, although they also describe an iterative technique for ob- 
taining a discriminant from a linear combination of a subset of the feature 
variables. There are much larger differences in the classifier training algo- 
rithms; we present an example of a simple heuristic for generating map 
trees (based on minimal spanning trees) whereas they examine a large set 
of possible splits in the data to generate trees. We wish to emphasize that 
our tree classifier is one possible technique for utilizing multiple maps; 
examination of alternative approaches is an important research problem. 
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Perceptual (and probably cognitive) functions of the brain are medi- 
ated by laminar cortical systems. Three carefully investigated systems 
(monkey vision, bat echolocation, and auditory localization in the owl) 
are committed to multiple two-dimensional spatial maps. The present pa- 
per describes the first attempt to construct a pattern classification system 
which has high performance and which is based on a multiple parallel 
map-like representation of feature vectors. The algorithms described in 
this paper allow us to begin to investigate the pattern classification and 
perceptual performance of such map-based architectures. 
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