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The performance of current speech recogition systems is far below 
that of humans. Neural nets offer the potential of providing massive 
parallelism, adaptation, and new algorithmic approaches to problems 
in speech recognition. Initial studies have demonstrated that multi- 
layer networks with time delays can provide excellent discrimination 
between small sets of pre-segmented difficult-to-discriminate words, 
consonants, and vowels. Performance for these small vocabularies has 
often exceeded that of more conventional approaches. Physiological 
front ends have provided improved recognition accuracy in noise and 
a cochlea filter-bank that could be used in these front ends has been 
implemented using micro-power analog VLSI techniques. Techniques 
have been developed to scale networks up in size to handle larger 
vocabularies, to reduce training time, and to train nets with recurrent 
connections. Multilayer perceptron classifiers are being integrated into 
conventional continuous-speech recognizers. Neural net architectures 
have been developed to perform the computations required by vec- 
tor quantizers, static pattern classifiers, and the Viterbi decoding al- 
gorithm. Further work is necessary for large-vocabulary continuous- 
speech problems, to develop training algorithms that progressively 
build internal word models, and to develop compact VLSI neural net 
hardware. 

1 State of the Art for Speech Recognition 

Speech is the most natural form of human communication. Compact 
implementations of accurate, real-time speech recognizers would find 
widespread use in many applications including automatic transcription, 
simplified man-machine communication, and aids for the hearing im- 
paired and physically disabled. Unfortunately, current speech recogniz- 
ers perform poorly on talker-independent continuous-speech recognition 
tasks that people perform without apparent difficulty. Although children 
learn to understand speech with little explicit supervision and adults take 
speech recognition ability for granted, it has proved to be a difficult task 
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2 Richard P. Lippmann 

to duplicate with machines. As noted by Klatt (1986), this is due to 
variability and overlap of information in the acoustic signal, to the need 
for high computation rates (a human-like system must match inputs to 
50,000 words in real time), to the multiplicity of analyses that must be 
performed (phonetic, phonemic, syntactic, semantic, and pragmatic), and 
to the lack of any comprehensive theory of speech recognition. 

The best existing speech recognizers perform well only in artificially 
constrained tasks. Performance is generally better when training data is 
provided for each talker, when words are spoken in isolation, when the 
vocabulary size is small, and when restrictive language models are used 
to constrain allowable word sequences. For example, talker-dependent 
isolated-word recognizers can be trained to recognize 105 words with 99% 
accuracy (Paul 1987). Large-vocabulary talker-dependent word recogni- 
tion accuracy with sentence context can be as high as 95% for 20,000 
words from sentences in office memos spoken with pauses between 
words (Averbuch et al. 1987). 

Accuracy for a difficult 997-word talker-independent continuous- 
speech task using a strong language model (an average of only 20 dif- 
ferent words possible after any other word) can be as high as 96% (Lee 
and Hon 1988). This word accuracy score translates to an unacceptable 
sentence accuracy of roughly 50%. In addition, the word accuracy of 
this high-performance recognizer when tested with no grammar model is 
typically below 70% correct. Results such as these illustrate the poor low- 
level acoustic-phonetic matching provided by current recognizers. These 
recognizers depend heavily on constraining grammars to achieve good 
performance. Humans do not suffer from this problem. We can recognize 
clearly spoken but contextually inappropriate words in anomalous sen- 
tences such as “John drank the guitar” almost perfectly (Marslen-Wilson 
1987). 

The current best performing speech recognition algorithms use Hid- 
den Markov Model (HMM) techniques. Good introductions to these tech- 
niques and to digital signal processing of speech are available in (Lee and 
Hon 1988; Parsons 1986; Rabiner and Juang 1986; Rabiner and Schafer 
1978). The HMM approach provides a framework which includes an ef- 
ficient decoding algorithm for use in recognition (the Viterbi algorithm) 
and an automatic supervised training algorithm (the forward-backward 
algorithm). New neural-net approaches to speech recognition must have 
the potential to overcome the limitations of current HMM systems. These 
limitations include poor low-level and poor high-level modeling. Poor 
low-level acoustic-phonetic modeling leads to confusions between acous- 
tically similar words while poor high-level speech understanding or se- 
mantic modeling restricts applications to simple situations where finite 
state or probabilistic grammars are acceptable. In addition, the first-order 
Markov assumption makes it difficult to model coarticulation directly 
and HMM training algorithms can not currently learn the topological 
structure of word and sub-word models. Finally, HMM theory does not 
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Figure 1: Block diagram of an isolated word recognizer. 

specify the structure of implementation hardware. It is likely that high 
computation and memory requirements of current algorithms will re- 
quire new approaches to parallel hardware design to produce compact, 
large-vocabulary, continuous-speech recognizers. 

2 The Potential of Neural Nets 

Neural nets for speech recognition have been explored as part of the 
recent resurgence of. interest in this area. Research has focused on evalu- 
ating new neural net pattern classification and training algorithms using 
real speech data and on determining whether parallel neural net archi- 
tectures can be designed which perform the computations required by 
important speech recognition algorithms. Most work has focused on 
isolated-word recognition. 

A block diagram of a simple isolated word recognizer is shown in 
figure 1. Speech is input to this recognizer and a word classification 
decision is output on the right. Three major operations are required. 
First, a preprocessor must extract important information from the speech 
waveform. In most recognizers, an input pattern containing spectral in- 
formation from a frame of speech is extracted every 10 msec using Fast 
Fourier Transform (FFT) or Linear Predictive Coding (LPC) (Parsons 1986; 
Rabiner and Schafer 1978) techniques. Second, input patterns from the 
preprocessor must be compared to stored exemplar patterns in word 
models to compute local frame-to-frame distances. Local distances are 
used in a third step to time align input pattern sequences to stored exem- 
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4 Richard P. Lippmann 

plar pattern sequences that form word models and arrive at whole-word 
matching scores. Time alignment compensates for variations in talking 
rate and pronunciation. Once these operations have been performed, 
the selected word to output is that word with the highest whole-word 
matching score. 

This paper reviews research on complete neural net recognizers and 
on neural nets that perform the above three operations. Auditory pre- 
processors that attempt to mimic cochlea and auditory nerve processing 
are first reviewed. Neural net structures that can compute local distance 
scores are then described. Classification results obtained using static 
speech patterns as inputs are then followed by results obtained with dy- 
namic nets that allow continuous-time inputs. Techniques to integrate 
neural net and conventional approaches are then described followed by 
a brief review of psychological and physiological models of temporal 
pattern sequence recognition. The paper ends with a summary and sug- 
gestions for future research. Emphasis throughout is placed on studies 
that used large public-domain speech data bases or that first presented 
new approaches. 

3 Auditory Preprocessors 

A preprocessor extracts important parameters from the speech wave- 
form to compress the amount of data that must be processed at higher 
levels and provide some invariance to changes in noise, talkers, and the 
acoustic environment. Most conventional preprocessors are only loosely 
modeled on the cochlea and perform simple types of filtering and data 
compression motivated by Fourier analysis and information theory. Re- 
cent physiological studies of cochlea and auditory nerve responses to 
complex stimuli have led to more complex physiological preprocessors 
designed to closely mimic many aspects of auditory nerve response char- 
acteristics. Five of these preprocessors and the VLSI cochlea filter listed 
in table 1 are reviewed in this section. Good reviews of many of these 
preprocessors and of response properties of the cochlea and auditory 
nerve can be found in (Greenberg 1988a; 1988b). 

The five preprocessors in table 1 rely on periodicity or synchrony in- 
formation in filter-bank outputs. Synchrony information is related to the 
short-term phase of a speech signal and can be obtained from the arrival 
times of nerve spikes on the auditory nerve. It could increase recognition 
performance by supplementing the spectral magnitude information used 
in current recognizers. Synchrony information is typically obtained by 
filtering the speech input using sharp bandpass filters with characteristics 
similar to those of the mechanical filters in the cochlea. The resulting fil- 
tered waveforms are then processed using various types of time domain 
analyses that could be performed using analog neural net circuitry. 
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Study 

Deng and 
Geisler (1987) 

Ghitza (1988) 

Hunt and 
Lefebvre 
(1988) 

Lyon and Mead 
(1988) 

Seneff (1988) 

Sharnrna (1988) 

Processing 

Cross-Channel 
Correlation 
of Neural Outputs 

Create Histogram 
of Time Intervals 
Between Threshold 
Crossings of 
Filter Outputs 

Periodicity and 
Onset Detection 

Tapped Transmission 
Line Filter with 
49 outputs 

Provides Periodicity 
and Spectral 
Magnitude Outputs 

Lateral Inhibition 
Across Cochlea 
Filter Outputs 

Comments 

Physiologically Plausible 
(Untested for Speech 
Recognition) 

Improved Speech 
Recognition In Noise 

Improved Speech 
Recognition In Noise and 
with Spectral Tilt 

Implemented Using 
Micropower VLSI 
Techniques 

Synchrony Spectrograms 
Provide Enhanced Spectral 
Resolution (Untested for 
Speech Recognition) 

Physiologically Plausible 
(Untested for Speech 
Recognition) 

Table 1: Recent Physiological Preprocessors. 

Spectrograms created using physiological preprocessors for steady 
state vowels and other speech sounds illustrate an  improvement in abil- 
ity to visually identify vowel formants (resonant frequencies of the vo- 
cal tract) in noise (Deng and Geisler 1987; Ghitza 1988; Seneff 1988; 
Shamma 1988). Comparisons to more conventional front ends using 
existing speech recognizers have been performed by Beet (Beet et al. 
19881, Ghitza (19881, and by Hunt and Lefebvre (1988). These com- 
parisons demonstrated significant performance improvements in noise 
(Ghitza 1988; Hunt and Lefebvre 1988) and with filtering that tilts the 
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6 Richard P. Lippmann 

input spectrum up at high frequencies (Hunt and Lefsbvre 1988). Ex- 
tensive comparisons have not, however, been made between physiologi- 
cal preprocessors and conventional preprocessors when the conventional 
preprocessors incorporate current noise and stress compensation tech- 
niques. Positive results from such comparisons and more detailed the- 
oretical analyses would do much to foster the acceptance of these new 
and computationally intensive front ends. 

Lyon and Mead (1988) describe a filter bank that could be used in a 
physiological preprocessor. This filter bank was carefully modeled after 
the cochlea, provides 49 analog outputs, and has been implemented using 
micropower analog VLSI CMOS processing. Extra circuitry would be 
required to provide synchrony or spectral magnitude information for a 
speech recognizer. This recent work demonstrates how preprocessors 
can be miniaturized using analog VLSI techniques. The success of this 
approach is beginning to demonstrate that ease of implementation using 
VLSI techniques may be more important when comparing alternative 
neural net approaches than computational requirements on serial Von 
Neuman machines. 

4 Computing Local Distance Scores 

Conventional speech recognizers compute local frame-to-frame distances 
by comparing each new input pattern (vector of parameters) provided by 
a preprocessor to stored reference patterns. Neural net architectures can 
compute local frame-to-frame distances using fine-grain parallelism for 
both continuous-observation and discrete-observation recognizers. New 
neural net algorithms can also perform vector quantization and reduce 
the dimensionality of input patterns. 

Local distances for continuous-observation recognizers are functions 
related to log likelihoods of probability distributions. Simple log like- 
lihood functions such as those required for independent Gaussian or 
binomial distributions can be calculated directly without training us- 
ing single-layer nets with threshold-logic nonlinearities (Lippmann 1987; 
Lippmann et al. 1987). More complex likelihood functions can be com- 
puted using multilayer perceptrons (Cybenko 1988; Lapedes and Farber 
1988; Lippmann et al. 1987), hierarchical nets that compute kernel func- 
tions (Albus 1981; Broomhead and Lowe 1988; Hanson and Burr 1987; 
Huang acd Lippmann 1988; Moody 1988; Moody and Darken 1988), 
or high-order nets (Lee et al. 1986; Rumelhart et al. 1986a). Training 
to produce these complex functions is typically longest with multilayer 
perceptrons. These nets, however, often provide architectures with fewer 
nodes, simpler nodal processing elements, and fewer weights. They also 
may develop internal hidden abstractions in hidden layers that can be 
related to meaningful acoustic-phonetic speech characteristics such as for- 
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Review of Neural Networks for Speech Recognition 7 

mant transitions and that also could be applied to many different speech 
recognition tasks. 

Discrete-observation recognizers first perform vector quantization and 
label each input with one particular symbol. Symbols are used to calcu- 
late local distances via look-up tables that contain symbol probabilities for 
each reference pattern. The look-up table calculation can be performed 
by simple single-layer perceptrons. The perceptron for any reference 
pattern must have as many inputs as there are symbols. Weights must 
equal symbol probabilities and all inputs must be equal to zero except 
for that corresponding to the current input symbol. Alternatively, a mul- 
tilayer perceptron could be used to store probabilities for symbols that 
have been seen and interpolate between these probabilities for unseen 
symbols. The vector quantization operation can be performed using an 
architecture similar to that used by Kohonen’s feature-map net (Kohonen 
1984). Inputs to the feature-map net feed an array of codebook nodes 
containing one node for each symbol. Components of the Euclidean dis- 
tance between the input and the reference pattern represented by weights 
to each node are computed in each node. The codebook node with the 
smallest Euclidean distance to the input is selected using lateral inhibi- 
tion or other maximum-picking techniques (Lippmann et al. 1987). This 
process guarantees that only one node with the minimum Euclidean dis- 
tance to the input has a unity output as required. Weights used in this 
architecture can be calculated using the feature-map algorithm or any 
other standard vector quantization algorithm based on Euclidean dis- 
tances such as k-means clustering (Duda and Hart 1973). 

Kohonen’s feature-map vector quantizer is an alternative sequentially- 
trained neural net algorithm. It has been tested successfully in an exper- 
imental speech recognizer (Kohonen 1988; Kohonen et al. 1984) but not 
evaluated with a large public speech data base. A version with a small 
number of nodes but including training logic has been implemented in 
VLSI (Mann et al. 1988). Experiments with a discrete-observation HMM 
recognizer (Mann et al. 1988) and with a template-based recognizer (Nay- 
lor and Li 1988) demonstrated that this algorithm provides performance 
similar to that provided by conventional clustering procedures such as 
k-means clustering (Duda and Hart 1973). The feature-map algorithm 
incrementally trains weights to a two-dimensional grid of nodes such 
that after training, nodes that are physically close in the grid correspond 
to input patterns that are close in Euclidean distance. One advantage of 
this topological organization is that averaging outputs of nodes that are 
physically close using nodes at higher levels corresponds to a probabil- 
ity smoothing technique often used in speech recognizers called Parzen 
smoothing (Duda and Hart 1973). This averaging can be performed by 
nodes with limited fan-in and short connections. 

The auto-associative multilayer perceptron (Elman and Zipser 1987; 
Hinton 1987) is a neural net algorithm that reduces the dimensionality 
of continuous-valued inputs. It is a multilayer perceptron with the same 
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8 Richard P. Lippmann 

number of input and output nodes and one or more layers of hidden 
nodes. This net is trained to reproduce the input at the output nodes 
through a small layer of hidden nodes. Outputs of hidden nodes after 
training can be used as reduced dimensional inputs for speech processing 
as described in (Elman and Zipser 1987; Fallside et al. 1988). Recent 
theoretical analyses have demonstrated that auto-associative networks 
are closedly related to a standard statistical technique called principal 
components analysis (Baldi and Hornik 1989; Bourlard and Kamp 1988). 
Auto-associative nets are thus not a new analytical tool but instead a 
technique to perform the processing required by principal components 
analysis. 

5 Static Classification of Speech Segments 

Many neural net classifiers have been applied to the problem of classify- 
ing static input patterns formed from a spectral analysis of pre-segmented 
words, phonemes, and vowels. Table 2 summarizes results of some rep- 
resentative studies. Introductions to many of the classifiers listed in this 
table and to neural net training algorithms are available in (Cowan and 
Sharp 1988; Hinton 1987; Lippmann et al. 1987). Unless otherwise noted, 
error rates in this and other tables refer to talker-dependent training 
and testing, multilayer perceptrons were trained using back-propagation 
(Rumelhart et al. 1986a), and systems were trained and tested on differ- 
ent data sets. The number of tokens in this and other tables refers to 
the total number of speech samples available for both training and test- 
ing and the label "multi-talker" refers to results obtained by testing and 
training using data from the same group of talkers. The label "talker- 
independent" refers to results obtained by training using one group of 
talkers and testing using a separate group with no common members. 

Input patterns for studies in table 2 were applied at once as one whole 
static spectrographic (frequency versus time) pattern. Neural nets were 
static and didn't include internal delays or recurrent connections that 
could take advantage of the temporal nature of the input for real-time 
processing. This approach might be difficult to incorporate in real-time 
speech recognizers because it would require long delays to perform seg- 
mentation and form the input patterns in an input storage buffer. It 
would also require accurate pre-segmentation of both testing and train- 
ing data for good performance. This pre-segmentation was performed 
by hand in many studies. 

Multilayer perceptrons and hierarchical nets such as the feature-map 
classifier and Kohonen's learning vector quantizer (LVQ) have been used 
to classify static patterns. Excellent talker-dependent recognition accu- 
racy near that of experimental HMM and commercial recognizers has 
been provided by multilayer perceptrons using small sets of words and 
digits. Hierarchical nets have provided performance similar to that of 
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Speech 
Study Network Materials Error Rate 

Elman and Multilayer 1 Talker, CV's Cons. - 5% 
Zipser Perceptron /b,d,g/ /i,a,u/ Vowels - 0.5% 
(1987) ( M W  505 Tokens 

16 x 20 Inputs 

Huang and MLP, Feature 67 Talkers Gaussian, 
Lippmann, Map Classifier 10 Vowels FMC,MLP- 20% 
(1988) (FMC) 671 Tokens FMC Trains Fastest 

2 Inputs 

Kammerer MLP 11 Talkers Talker Dep. - 0.4% 
and Kupper 16 x 16 Inputs 20 Words Talker Indep. - 2.7% 
(1988) 5720 Tokens 

Kohonen Learning Vector Labeled Gaussian - 12.9% 
(1988) Quantizer (LVQ) Finish Speech k" - 12.0% 

15 Inputs 3010 Tokens LVQ - 10.9% 

Lippmann MLP 16 Talkers Gaussian - 8.7% 

(1987) 2,912 Tokens MLP - 7.6% 
and Gold 11 x 2 Inputs 7 Digits k" - 6% 

Peeling MLP 40 Talkers Talker Dep. - 0.3% 
and Moore 19 x 60 Inputs 10 Digits Multi Talker - 1.9% 
(1987) 16,000 Tokens 

Table 2: Recognition of Speech Patterns Using Static Neural Nets. 

multilayer perceptrons but with greatly reduced training times and typ- 
ically more connection weights and nodes. 

5.1 Multilayer Perceptrons. Multilayer perceptron classifiers have 
been applied to speech problems more often than any other neural net 
classifier. A simple example from Huang and Lippmann (1988) presented 
in figure 2 illustrates how these nets can form complex decision regions 
with speech data. Input data obtained by Peterson and Barney (1952) 
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10 Richard P. Lippmann 

consisted of the first two formants from vowels spoken by men, women, 
and children. Decision regions shown in the right side of figure 2 were 
formed by the two-layer perceptron with 50 hidden nodes trained using 
back-propagation shown on the left. Training required more than 50,000 
trials. Decision region boundaries are near those that are typically drawn 
by hand to separate vowel regions and the performance of this net is near 
that provided by commonly used conventional k-nearest neighbor (k") 
and Gaussian classifiers (Duda and Hart 1973). 

A more complex experiment was performed by Elman and Zipser 
(1987) using spectrographic-like inputs. Input patterns formed from 16 
filter-bank outputs sampled 20 times over a time window of 64 msec were 
fed to nets with one hidden layer and 2 to 6 hidden nodes. The analysis 
time window was centered by hand on the consonant voicing onset. 
Networks were trained to recognize consonants or vowels in consonant- 
vowel (CV) syllables composed of the consonants /b,d,g/ and the vowels 
/i,a,u/. Error rates were roughly 5% for consonant recognition and 0.5% 
for vowel recognition. An analysis indicated that hidden nodes often 
become feature detectors and differentiate between important subsets of 
sound types such as consonants versus vowels. This study demonstrated 
the importance of choosing a good data representation for speech and 
of normalizing speech inputs. It also raised the important question of 
training time because many experiments on this small data base required 
more than 100,000 training trials. 

Lippmann and Gold (1987) performed another early study to compare 
multilayer perceptrons and conventional classifiers on a digit classifica- 
tion task. This study was motivated by single-talker results obtained 
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Figure 2: 
propagation training and vowel formant data. 

Decision regions formed by a 2-layer perceptron using back- 
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by Burr (1988a). Inputs were 22 cepstral parameters from two speech 
frames located automatically by finding the maximum-energy frame for 
each digit. One- to three-layer nets with from 16 to 256 nodes in each 
hidden layer were evaluated using digits from the Texas Instruments (TI) 
20-Word Speech Data Base (Doddington and Schalk 1981). Multilayer 
perceptron classifiers outperformed a Gaussian but not a k" classifier. 
Hidden layers were required for good performance. A single-layer per- 
ceptron provided poor performance, much longer training times, and 
sometimes never converged during training. Most rapid training (less 
than 1000 trials) was provided by all three-layer perceptrons. These re- 
sults demonstrate that the simple hyperplane decision regions provided 
by single-layer perceptrons are sometimes not sufficient and that rapid 
training and good performance can be obtained by tailoring the size of 
a net for a specific problem. The digit data used in these experiments 
was also used to test a multilayer perceptron chip implemented in VLSI 
(Raffel et al. 1987). This chip performed as well as computer simulations 
when down-loaded with weights from those simulations. 

Kammerer and Kupper obtained surprisingly good recognition re- 
sults for words from the TI 20-word data base (Kammerer and Kupper 
1988). A single-layer perceptron with spectrogram-like input patterns 
performed slightly better than a DTW template-based recognizer. Words 
were first time normalized to provide 16 input frames with 16 2-bit spec- 
tral coefficients per frame. Expanding the training corpus by tempo- 
rally distorting training tokens reduced the error slightly and best per- 
formance was provided by single and not multilayer perceptrons. Talker- 
dependent error rates were 0.4% (14/3520) for the single-layer perceptron 
and 0.7% (25/3520) for the DTW recognizer. These error rates are better 
than all but one of the commercial recognizers evaluated in (Doddington 
and Schalk 1981) and demonstrate good performance for a single-layer 
perceptron without hidden nodes. Talker-independent performance was 
evaluated by leaving out the training data for each talker, one at a time, 
and testing using that talker's test data. Average talker-independent er- 
ror rates were 2.7% (155/5720) for the single-layer perceptron and 2.5% 
(145/5720) for the DTW recognizer. Training time was 6 to 25 minutes 
per talker on an array processor for the talker-dependent studies and 5 
to 9 hours for the talker-independent studies. 

Peeling and Moore (1987) obtained extremely good recognition results 
for digit classification. A multilayer perceptron with one hidden layer 
and 50 hidden nodes provided best Performance. Its talker-dependent 
performance was low and near that provided by an advanced HMM 
recognizer. Spectrogram-like input patterns were generated using a 19- 
channel filter-bank analyzer with 20 msec frames. Nets could accom- 
modate 60 input frames (1.2 seconds) which was enough for the longest 
duration word. Shorter words were padded with zeros and positioned 
randomly in the 60 frame input buffer. Nets were trained using differ- 
ent numbers of layers and hidden units and speech data from the RSRE 
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12 Richard I? Lippmann 

40-speaker digit data base. Multi-talker experiments explored perfor- 
mance when recognizers were tested and trained using data from all 
talkers. Error rates were near zero for talker-dependent experiments 
0.25% (5/2000) and low for multi-talker experiments 1.9% (78/4000). Er- 
ror rates on an advanced HMM recognizer under the same conditions 
were 0.2% (4/2000) and 0.6% (25/4000) respectively. The computation 
required for recognition using multilayer perceptrons was typically more 
than five times less than that required for the HMM recognizer. 

The good small-vocabulary word recognition results obtained by both 
Kammerer and Kupper (1988) and Peeling and Moore (1987) suggest that 
back-propagation can develop internal feature detectors to extract impor- 
tant invariant acoustic events. These results must be compared to those 
of other experiments which attempted to classify digits without time 
alignment. Burton, Shore, and Buck (Burton et al. 1985; Shore and Bur- 
ton 1983) demonstrated that talker-dependent error rates using the TI 
20-Word Data Base can be as low as 0.3% (8/2560) for digits and 0.8% 
(40/5120) for all words using simple vector-quantization recognizers that 
do not perform time alignment. These results suggest that digit recogni- 
tion is a relatively simple task where dynamic time alignment is not nec- 
essary and talker-dependent accuracy remains high even when temporal 
information is discarded. The good performance of multilayer percep- 
trons is thus not surprising. These studies and the multilayer perceptron 
studies do, however, suggest designs for implementing computationally- 
efficient real-time digit and small-vocabulary recognizers using analog 
neural-net VLSI processing. 

5.2 Hierarchical Neural Nets that Compute Kernel Functions. Hi- 
erarchical neural net classifiers which use hidden nodes that compute 
kernel functions have also been used to classify speech patterns. These 
nets have the advantage of rapid training and the ability to use combined 
supervised/unsupervised training data. 

Huang and Lippmann (1988) described a net called a feature-map 
classifier and evaluated the performance of this net on the vowel data 
plotted in figure 2 and on difficult artificial problems. A block diagram 
of the feature-map classifier is shown in figure. 3. Intermediate codebook 
nodes in this net compute kernel functions related to the Euclidean dis- 
tance between the input and cluster centers represented by these nodes. 
The lower feature map net is first trained without supervision to form 
a vector quantizer and the upper perceptron-like layer is then trained 
with supervision using a modified version of the LMS algorithm. This 
classifier was compared to the multilayer perceptron shown in figure 2 
and to a k" classifier. All classifiers provided an error rate of roughly 
20%. The 2-layer perceptron, however, required more than 50,000 super- 
vised training trials for convergence. The feature map classifier reduced 
the amount of supervised training required by three orders of magni- 
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Figure 3: Block diagram of the hierarchical feature-map classifier. 

tude to fewer than 50 trials. Similar results were obtained with artificial 
problems. 

Kohonen and co-workers (Kohonen et al. 1988) compared a neural-net 
classifier called a learning vector quantizer (LVQ) to Bayesian and kNN 
classifiers. The structure of the learning vector quantizer is similar to that 
of the feature-map classifier shown in figure 3. Training differs from that 
used with the feature-map classifier in that a third stage of supervised 
training is added which adjusts weights to intermediate codebook nodes 
when a classification error occurs. Adjustments alter decision region 
boundaries slightly but maintain the same number of codebook nodes. 

Bayesian, k" and LVQ classifiers were used to classify 15-channel 
speech spectra manually extracted from stationary regions of Finnish 
speech waveforms. All classifiers were tested and trained with separate 
sets of 1550 single-frame patterns that were divided into 18 phoneme 
classes (Kohonen et al. 1988). A version of the LVQ classifier with 
117 codebook nodes provided the lowest error rate of 10.9% averaging 
over results where training and testing data sets are interchanged. The 
Bayesian classifier and kNN classifiers had slightly higher error rates 
of 12.9% and 12.0% respectively. Training time for the LVQ classifier 
was roughly 10 minutes on an IBM PC/AT. These results and those of 
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14 Richard I? Lippmann 

Huang and Lippmann (1988) demonstrate that neural nets that use kernel 
functions can provide excellent performance on speech tasks using prac- 
tical amounts of training time. Other experiments on artificial problems 
described in (Kohonen et al. 1988) illustrate trade-offs in training time. 
Boltzmann machines provided near optimal performance on these prob- 
lems followed by the LVQ classifier and multilayer perceptrons. Training 
times were 5 hours on an array processor for the Boltzmann machine, 1 
hour on a Masscomp MC 5600 for the multilayer perceptron, and roughly 
20 minutes on the Masscomp for the LVQ classifier. 

Two recent studies (Niranjan and Fallside 1988; Bridle 1988) have 
begun to explore a hierarchical net where nodes in a hidden layer com- 
pute kernel functions called radial basis functions (Broomhead and Lowe 
1988). These nets are similar to previous classifiers that use the method of 
potential functions (Duda and Hart 1973). They have an advantage over 
multilayer perceptrons in that once the locations of the kernel functions 
are established, weights to the output nodes are determined uniquely by 
solving a least squares problem using matrix-based approaches. Initial 
results with small amounts of speech data consisting of vowels (Niran- 
jan and Fallside 1988) and words (Bridle 1988) have been encouraging. 
Further work must explore techniques to assign the locations of kernel 
functions and adjust scale factors that determine the range of influence 
of each kernel function. 

6 Dynamic Classification of Speech Segments 

New dynamic neural net classifiers that incorporate short delays, tempo- 
ral integration, or recurrent connections have been developed specifically 
for speech recognition. Spectral inputs for these classifiers are applied 
to input nodes sequentially, one frame at a time. These classifiers could 
thus be integrated into real time speech recognizers more easily than 
static nets because accurate pre-segmentation is typically not required 
for good performance and only short delays are used. 

Both multilayer nets with delays and nets with recurrent connections 
have been used to classify acoustically similar words, consonants, and 
vowels. Excellent performance has been obtained using time delay nets in 
many studies including those by Lang and Hinton (1988) and by Waibel 
et al. (1987; 1988). Performance for small vocabularies often slightly 
exceeded that provided by high-performance experimental HMM recog- 
nizers. Techniques have also been developed to scale nets up for larger 
vocabularies and to speed up training times both for feed-forward and 
recurrent nets. Rapid training has been demonstrated using a hierar- 
chical learning vector quantizer with delays and good performance but 
extremely long training times has been provided by Boltzmann machines. 
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6.1 Time-Delay Multilayer Perceptrons. Some of the most promis- 
ing neural-net recognition results have been obtained using multilayer 
perceptrons with delays and some form of temporal integration in out- 
pu t  nodes (Lang and Hinton 1988; Waibel et al. 1987; Waibel et al. 1988). 
Table 3 summarizes results of six representative studies. 

Early results on consonant and vowel recognition were obtained by 
Waibel and co-workers (Waibel e t  al. 1987) using the multilayer percep- 

Study Network 

Lang and Time Delay 
Hinton MLP 
(1988) 16 Inputs 

Unnikrishnan, Time Concen- 
Hopfield, and tration Net 
Tank (1988) 32 Inputs 

Waibel et al. Time Delay 
(1987) MLP 

16 Inputs 

Waibel, Sawai, Time Delay 
and Shikano MLP 
(1988) 16 Inputs 

Watrous Temporal Flow 
(1988) Structured 

MLP 
16 Inputs 

McDermott Time Delay 
and Katagiri LVQ 
(1988) 16 Inputs 

Speech 
Materials Error Rate 

100 Talkers 
”B,D,E,V” 
768 Tokens 

Multi Talker - 7.8% 

1 Talker 
Digits 

432 Tokens 

0.7% 

3 Japanese /b,d,g/ - 1.5% 
Talkers, /b,d,g/, 
Many Contexts 
> 4,000 Tokens 

1 Japanese /b,d,g,p,t,k/ - 1.4% 
Talker, 18 Cons., 
5 Vowels 
> 10,000 Tokens 

18 Cons. - 4.1% 
5 Vowels - 1.4% 

1 Talker /b,d,g/ - 0.8% 
Phonemes, Words rapid/rabid - 0.8% 
> 2,000 Tokens 

/i,a,u/ - 0.0% 

3 Japanese /b,d,g/ - 1.7% 
Talkers, /b,d,g/ 
> 4,000 Tokens 

Table 3: Recognition of Speech Using Time-Delay Neural Nets. 
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16 Richard P. Lippmann 

tron with time delays shown in figure 4. The boxes labeled r in this figure 
represent fixed delays. Spectral coefficients from 10 msec speech frames 
(16 per frame) are input on the lower left. The three boxes on the bot- 
tom thus represent an input buffer containing a context of three frames. 
Outputs of the nodes in these boxes (16 x 3 spectral coefficients) feed 8 
hidden nodes in the first layer. Outputs from these nodes are buffered 
across the five boxes in the first hidden layer to form a context of five 
frames. Outputs from these boxes (8 x 5 node outputs) feed three hidden 
nodes in the second hidden layer. Outputs from these three nodes are 
integrated over time in a final output node. 

In initial experiments (Waibel et al. 1987), the time-delay net from fig- 
ure 4 was trained using back-propagation to recognize the voiced stops 
/b,d,g/. Separate testing and training sets of 2000 voiced stops spoken 
by three talkers were excised manually from a corpus of 5260 Japanese 
words. Excised portions sampled the consonants in varying phonetic 
contexts and contained 15 frames (150 msec) centered by hand around 
the vowel onset. The neural net classifier provided an error rate of 1.5% 
compared to an error rate 6.5% provided by a simple discrete-observation 
HMM recognizer. Training the time-delay net took several days on a four- 
processor Alliant computer. More recent work (Waibel et al. 1988) has led 
to techniques that merge smaller nets designed to recognize small sets of 

"G" 
OUTPUT - 

: COEFFICIENTS 

Figure 4: A time-delay multilayer perceptron. 
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consonants and vowels into large nets which can recognize all consonants 
at once. These techniques greatly reduce training time, improve perfor- 
mance and are a practical approach to the scaling problem. Experiments 
resulted in low error rates of 1.4% for the consonants /b,d,g,p,t,k/ and 
1.4% for the vowels /i,a,u,e,o/. The largest net designed from smaller 
subnets provided a talker-dependent error rate for one talker of 4.1% for 
18 consonants. An advanced discrete-observation HMM recognizer pro- 
vided an error rate of 7.3% on this task. These two studies demonstrate 
that good performance can be provided by time-delay nets when the net- 
work structure is tailored to a specific problem. They also demonstrate 
how small nets can be scaled up to solve large classification problems 
without scaling up training times substantially. 

Lang and Hinton (1988) describe an extensive series of experiments 
that led to a similar high-performance time-delay net. This net was de- 
signed to classify four acoustically similar isolated words “B”, “ D ,  ”E”, 
and “V” that are the most confusable subset from the spoken alphabet. A 
multi-talker recognizer for 100 male talkers was first trained and tested 
using pre-segmented 144 msec speech samples taken from around the 
vowel onset in these words. A technique called multi-resolution train- 
ing was developed to shorten training time. This involved training nets 
with smaller numbers of hidden nodes, splitting weight values to hid- 
den nodes to create larger desired nets, and then re-training the larger 
nets. A multiresolution trained net provided an error rate of 8.6%. This 
result, however, required careful pre-segmentation of each word. Pre- 
segmentation was not required by another net which allowed continu- 
ous speech input and classified the input as that word corresponding to 
the output node whose output value reached the highest level. Training 
used simple automatic energy-based segmentation techniques to extract 
216 msecs of speech from around the vowel onset in each word. This 
resulted in an error rate of 9.5%. Outputs were then trained to be high 
and correct for the 216 msec speech segments as before, but also low for 
counter-example inputs selected randomly from the left-over background 
noise and vowel segments. Inclusion of counter-examples reduced the 
error rate to 7.8%. This performance compares favorably with the 11% 
error rate estimated for an enhanced HMM recognizer on this data base 
and based on performance with the complete E-set (Bahl et al. 1988; Lang 
and Hinton 1988). 

Watrous (1988) also explored multilayer perceptron classifiers with 
time delays that extended earlier exploratory work on nets with recurrent 
connections (Watrous and Shastri 1987). These multilayer nets differed 
from those described above in that recurrent connections were provided 
on output nodes, target outputs were Gaussian-shaped pulses, and delays 
and the network structure were carefully adjusted by hand to extract 
important speech features for each classification task. Networks were 
tested using hand-segmented speech and isolated words from one talker. 
Good discrimination was obtained for many different recognition tasks. 
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18 Richard P. Lippmann 

For example, the error rate was 0.8% for the consonants /b,d,g/, 0.8% for 
the word pair “rapid/rabid,” and 0.0% for the vowels /i,a,u/. Watrous 
has also explored the use of gradient methods of nonlinear optimization 
to decrease training time (Watrous 1986). 

Rossen et al. (1988) recently described another time delay classifier. It 
uses more complex input data representations than the time-delay nets 
described above and a brain-state-in-a-box neural net classifier to inte- 
grate information over time from lower-level networks. Good classifica- 
tion performance was obtained for six stop consonants and three vow- 
els. Notable features of this work are training to reject noise inputs as in 
(Lang and Hinton 1988) and the use of modular techniques to build large 
nets from smaller trained modules as in (Waibel et al. 1988). Other re- 
cent work demonstrating good phoneme and syllable classification using 
structured multilayer perceptron nets with delays is described in (Har- 
rison and Fallside 1988; Homma et al. 1988; Irino and Kawahara 1988; 
Kamm et al. 1988; Leung and Zue 1988). 

Unnikrishnan, Hopfield, and Tank (1988) obtained low error rates on 
digit classification using a time-concentration neural net that does not 
use only simple delays. This net, described in (Tank and Hopfield 1987), 
uses variable length delay lines designed to disperse impulsive inputs 
such that longer delays result in more dispersion. Impulsive inputs to 
these delay lines are formed by enhancing spectral peaks in the outputs 
of 32 bandpass filters. Outputs of delay lines are multiplied by weights 
and summed to form separate matched filters for each word. These 
matched filters concentrate energy in time and produce a large output 
pulse at the end of the correct word. Limited evaluations reported in 
(Unnikrishnan et al. 1988) for digit strings from one talker demonstrated 
good performance using a modified form of back-propagation training. 
A prototype version of this recognizer using discrete analog electronic 
devices was also constructed (Tank and Hopfield 1987). Tests performed 
by Gold with a large speech data base and a hierarchical version of the 
time concentration net that included both allophone and word models 
yielded performance that was no better than that of an existing HMM 
recognizer (Gold 1988). 

6.2 Hierarchical Nets that Compute Kernel Functions. McDermott 
and Katagiri (1988) used Kohonen’s LVQ classifier on the same /b,d,g/ 
speech data base used by Waibel et al. (1987). They were able to obtain an 
error rate of 1.7% which is not statistically different from the 1.5% error 
rate obtained by Waibel et al. using the time-delay net shown in figure 4 
(Waibel et al. 1987). Inputs for the LVQ classifier consisted of a 7-frame 
window of 16 filterbank outputs. The nearest of 150 codebook nodes 
were determined as the 15-frame speech samples were passed through 
this 7-frame window. The normalized distances between nearest nodes 
and 112-element input patterns were integrated over time and used to 
classify speech inputs. The error rate without the final stage of LVQ train- 
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ing was high (7.3%). It dropped to 1.7% after LVQ training was complete. 
This result demonstrates that nets with kernel functions and delays can 
perform as well as multilayer perceptrons with delays. These nets train 
faster but require more computation and memory during use. In this ap- 
plication, for example, the LVQ classifier required 17,000 weights which 
was more than 30 times as many required for the time-delay net used 
in (Waibel et al. 1987). If memory is not an important limitation, rapid 
search techniques such as hashing and k-d trees described in (Omohun- 
dro 1987) can be applied to the LVQ classifier to greatly reduce the time 
required to find nearest-neighbors. This would make the differences in 
computation time between these alternative approaches small on existing 
serial Von Neuman computers. 

6.3 Nets with Recurrent Connections. Nets with recurrent connec- 
tions have not been used as extensively for speech recognition problems 
as feed-forward nets because they are more difficult to train, analyze, and 
design. Table 4 summarizes results of three representative studies. Ini- 
tial work explored the use of recurrent Boltzmann machines. These nets 
typically provided good performance on small problems but required ex- 
tremely long training times. More recent studies have focused on mod- 
ified back-propagation training algorithms described in (Almeida 1987; 
Jordan 1986; Pineda 1987; Rohwer and Forrest 1987; Rumelhart et al. 
1986a; Watrous 1988) that can be used with recurrent nets and time vary- 
ing inputs. 

Speech 
Studv Network Materials Error Rate 

Anderson, Recurrent Net 20 Talkers, Cv's Talker Indep. - 13.1% 
Merrill, and 36 Inputs /b,d,g,p,t,k/, /a/  
Port (1988) 561 Tokens 

Prager, Boltzmann 6 Talkers Multi Talker - 15% 
Harrison, and Machine 11 Vowels 
Fallside (1986) 2048 Inputs 264 Tokens 

Robinson and Recurrent Net 7 Talkers Multi Talker - 30.8% 
Fallside 20 Inputs 27 Phonemes 
(1988b) 558 Sentences Talker Dep. - 22.7% 

Table 4: Recognition of Speech Using Recurrent Neural Nets. 
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Figure 5: A recurrent neural net classifier. 

Prager, Harrison, and Fallside (Prager et al. 1986) performed one of the 
first experiments to evaluate the use of Boltzmann machines for speech 
recognition. At the time this study was performed, the Boltzmann ma- 
chine training algorithm described in (Ackley et al. 1985) was the only 
well-known technique that could be used to train nets with recurrent 
connections. This training algorithm is computationally intensive be- 
cause simulated annealing procedures (Kirkpatrick et al. 1983) are used 
to perform a probabilistic search of connection weights. Binary input 
and output data representations were developed to apply Boltzmann 
machines to an 11-vowel recognition task. One successful net used 2048 
input bits to represent 128 spectral values and 8 output bits to specify 
the vowel. Nets typically contained 40 hidden nodes and 7320 links. 
Training used 264 tokens from 6 talkers and required 6 to 15 hours of 
processing on a high-speed array processor. The resulting multi-talker 
error rate was 15%. 

Prager, Harrison, and Fallside (Prager et al. 1986) also explored the 
use of a Boltzmann machine recognizer inspired by single-order Markov 
Model approaches to speech recognition. A block diagram of this recur- 
rent net is presented in figure 5. The output of this net is delayed and 
fed back to the input to "carry" nodes that provide information about 
the prior state. This net was trained to identify words in two sentences 
spoken by one talker. Training time required 4 to 5 days of processing 
on a VAX 11/750 computer and performance was nearly perfect on the 
training sentences. Other recent work on Boltzmann machines (Bengio 
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and De Mori 1988; Kohonen et al. 1988; Prager and Fallside 1987) demon- 
strates that good performance can be provided at the expense of exces- 
sive training time. Preliminary work on analog VLSI implementations 
of the training algorithm required by Boltzmann machines has demon- 
strated practical learning times for small hardware networks (Alspector 
and Allen 1987). 

Many types of recurrent nets have been proposed that can be trained 
with modified forms of back-propagation. Jordan (1986) appears to have 
been the first to study nets with recurrent connections from output to 
input nodes as in figure 5. He used these nets to produce pattern se- 
quences. Bourlard and Wellekens (1988) recently proved that such nets 
could be used to calculate local probabilities required in HMM recog- 
nizers and Robinson and Fallside (1988a) pointed out the relationship 
between these nets and state space equations used in classical control 
theory. Nets with recurrent self-looping connections on hidden and out- 
put nodes were studied by Watrous and Shastri (1987) for a speech recog- 
nition application. Nets with recurrent connections from hidden nodes 
to input nodes were studied by Elman (1988) and by Servan-Schreiber, 
Cleeremans, and McClelland (1 988) for natural language applications. 

Two recent studies have explored recurrent nets similar to the net 
shown in figure 5 when trained with modified forms of back-propagation. 
Robinson and Fallside (1988b) used such a net to label speech frames with 
one of 27 phoneme labels using hand-marked testing and training data. 
Training used an algorithm suggested by Rumelhart et al. (1986a) that, 
in effect, replicates the net at every time step during training. Talker- 
dependent error rates were 22.7% for the recurrent net and 26.0% for 
a simple feed-forward net with delays between input nodes to provide 
input context. Multi-talker error rates were 30.8% for the recurrent net 
and 40.8% for the feed-forward net. A 64 processor array of transputers 
provided practical training times in these experiments. 

Anderson, Merrill, and Port (1988) also explored recurrent nets similar 
to the net in figure 5.  Stimuli were CV syllables formed from six stop 
consonants and the vowel /a/  that were hand segmented to contain 120 
msecs of speech around the vowel onset. Nets were trained on data 
from 10 talkers, tested on data from 10 other talkers, and contained from 
one to two hidden layers with different numbers of hidden nodes. Best 
performance (an error rate of 13.1%) was provided by a net with two 
hidden layers. 

7 Integrating Neural Net and Conventional Approaches 

Researchers are beginning to combine conventional HMM and DTW 
speech recognition algorithms with neural net classification algorithms 
and also to design neural net architectures that perform computations 
required by important speech recognition algorithms. This may lead 
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Studv Avvroach Comments 

Bourlard and 
Wellekens 
(1987) 

Burr (1988a) 

Huang and 
Lippmann 
(1988) 

Lippmann 
and Gold 
(1987) 

Sakoe and 
Is0 (1987) 

MLP Provides Allophone 
Distance Scores 
for DTW Recognizer 

MLP Classifier After 
Energy-Based DTW 

Second-Stage MLP 
Discrimination After 
HMM Recognizer 

"Viterbi-Net" Neural 
Net Architecture for 
HMM Viterbi Decoder 

MLP Provides Distance 
Scores for DTW 
Recognizer 

Good Performance on 
918-Word, Talker- 
Dependent, Contin- 
uous-Speech Task 

Tested on Single- 
Talker E-Set 

Improved Performance 
for "B,D,G from TI 
Alpha-Digit Data Base 

Same Good Perform- 
ance on Large Data 
Base as Robust HMM 
Recognizer 

No Hand Labeling 
Required, Untested 

Table 5: Studies Combining Neural Net and Conventional Approaches. 

to improved recognition accuracy and also to new designs for compact 
real-time hardware. Combining the good discrimination of neural net 
classifiers with the automatic scoring and training algorithms used in 
HMM recognizers could lead to rapid advances by building on exist- 
ing high-performance recognizers. Studies that have combined neural 
net and conventional approaches to speech recognition are listed in ta- 
ble 5. Many (Bourlard and Wellekens 1987; Bun 1988b; Huang et al. 
1988; Sakoe and Is0 1987) integrate multilayer perceptron classifiers with 
conventional DTW and HMM recognizers and one (Lippmann and Gold 
1987) provides a neural-net architecture that could be used to implement 
an HMM Viterbi decoder. One study (Bourlard and Wellekens 1987) 
demonstrated how a multilayer perceptron could be integrated into a 
DTW continuous-speech recognizer to improve recognition performance. 
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7.1 Integrating Multilayer Perceptron Classifiers with DTW and 
HMM Recognizers. At least three groups have proposed recognizers 
where multilayer perceptrons compute distance scores used in DTW or 
HMM recognizers (Bourlard and Wellekens 1987; Burr 1988a; Sakoe and 
Is0 1987). Bourlard and Wellekens (1987) demonstrated how the multi- 
layer perceptron shown in figure 6 could be used to calculate allophone 
distance scores required for phoneme and word recognition in a DTW 
discrete-observation recognizer. One net had inputs from 15 frames of 
speech centered on the current frame, 50 hidden nodes, and 26 output 
nodes. Outputs corresponded to allophones in a 10-digit German vo- 
cabulary. Inputs were from 60 binary variables per frame. One input 
bit was on in each frame to specify the codebook entry that represented 
that frame. The multilayer perceptron was trained using hand-labeled 
training data to provide a high output only for that output node corre- 
sponding to the current input allophone. Recognition then used dynamic 
time warping with local distances equal to values from output nodes. 
This provides good discrimination from the neural net and integration 
over time from the DTW algorithm. Perfect recognition performance was 
provided for recognition of 100 tokens from one talker. 

Bourlard and Wellekens (1987) also used a multilayer perceptron with 
contextual input and DTW to recognize words from a more difficult 919- 
word talker-dependent continuous-speech task. The net covered an in- 
put context of 9 frames, used one of 132 vectors to quantize each frame, 
had 50 or 200 hidden nodes, and had 50 output nodes corresponding to 
50 German phonemes. This net was trained using 100 hand-segmented 
sentences and tested on 188 other sentences containing roughly 7300 
phonemes. The phoneme error rate was 41.6% with 50 hidden nodes 
and 37% with 200 hidden nodes. These error rates were both lower than 
the 47.5% error rate provided by a simple discrete-observation HMM 
recognizer with duration modeling and one probability histogram per 
phoneme. Bourlard and Wellekens suggested that performance could be 
improved and the need for hand-segmented training data could be elim- 
inated by embedding muitilayer perceptron back-propagation training 
in an iterative Viterbi-like training loop. This loop could progressively 
improve segmentation for DTW or HMM recognizers. Iterative Viterbi 
training was not performed because the simpler single-pass training re- 
quired roughly 200 hours on a SUN-3 workstation. As noted above, 
Bourlard and Wellekens (1 988) also recently proved that recurrent neural 
nets could calculate local probabilities required in HMM recognizers. 

Sakoe and Is0 (1987) suggested a recognition structure similar to that 
of Bourlard and Wellekens (1987) where a multilayer perceptron with de- 
lays between input nodes computes local distance scores. They, however, 
do not require output nodes of the multilayer perceptron to represent 
sub-word units such as phonemes. Instead, a training algorithm is de- 
scribed that is similar to the iterative Viterbi-like training loop suggested 
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by Bourlard and Wellekens (1987) but for continuous input parameters. 
No results were presented for this approach. 

Burr (1988a) gave results for a recognizer where words were first 
aligned based on energy information to provide a fixed 20 input frames of 
spectral information. These inputs were fed to nine outputs representing 
members of the E-set ("B,C,D,E,G,P,T,V,Z). This recognizer was trained 
and tested using 180 tokens from one talker. Results were nearly perfect 
when the initial parts of these words were oversampled. 

Huang and Lippmann demonstrated how a second-stage of analysis 
using a multilayer perceptron could decrease the error rate of an HMM 
recognizer (Huang and Lippmann 1988). The Viterbi backtraces from an 
HMM recognizer were used to segment input speech frames and average 
HMM log probability scores for segments were provided as inputs to 
single- and multilayer perceptrons. Performance was evaluated using 
the letters "B,D,G" spoken by the 16 talkers in the TI alpha-digit data 
base. Ten training tokens per letter were used to train the HMM and 
neural net recognizer for each talker and the 16 other tokens were used 
for testing. Best performance was provided by a single-layer perceptron 
which almost halved the error rate. The error rate dropped from 7.2% 
errors with the HMM recognizer alone to 3.8% errors with the neural net 
postprocessor. 

LOCAL ALLOPHONE DISTANCE SCORES 

I HIDDENNODES I 

CONTEXT CURRENT CONTEXT 
FRAME 

Figure 6: A feed-forward multilayer perceptron that was used to compute allo- 
phone distance scores for a DTW recognizer. 
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Figure 7 A recurrent neural net called a Viterbi net that performs the calcula- 
tions required in an HMM Viterbi decoder. 

7.2 A Neural Net Architecture to Implement a Viterbi Decoder. 
Lippmann and Gold (1987) described a neural-net architecture called a 
Viterbi net that could be used to implement the Viterbi decoder used 
in many continuous observation HMM recognizers using analog VLSI 
techniques. This net is shown in figure 7. Nodes represented by open 
triangles correspond to nodes in a left-to-right HMM word model. Each 
of these triangles represents a threshold-logic node followed by a fixed 
delay. Small subnets in the upper part of the figure select the maximum 
of two inputs as described in (Lippmann et al. 1987) and subnets in the 
lower part sum all inputs. A temporal sequence of input vectors is pre- 
sented at the input and the output is proportional to the log probability 
calculated by a Viterbi decoder. The structure of the Viterbi net illustrates 
how neural net components can be integrated to design a complex net 
which performs the calculations required by an important conventional 
algorithm. 

The Viterbi net differs from the Viterbi decoding algorithm normally 
implemented in software and was thus evaluated using 4000 word to- 
kens from the 9-talker 35-word Lincoln Stress-Style speech data base. 
Connection strengths in Viterbi nets with 15 internal nodes (one node 
per HMM model state) were adjusted based on parameter estimates ob- 
tained from the forward-backward algorithm. Inputs consisted of 12 me1 
cepstra and 13 differential me1 cepstra that were updated every 10 msec. 
Performance was good and almost identical to that of current Robust 
HMM isolated-word recognizers (Lippmann and Gold 1987). The error 
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rate was 0.56% or only 23 out of 4095 tokens wrong. One advantage an 
analog implementation of this net would have over digital approaches 
is that the frame rate could be increased to provide improved temporal 
resolution without requiring higher clock rates. 

8 Other Nets for Pattern Sequence Recognition 

In addition to the neural net models described above, other nets moti- 
vated primarily by psychological and physiological findings and by past 
work on associative memories have been proposed for speech recognition 
and pattern sequence recognition. Although some of these nets represent 
new approaches to the problem of pattern sequence recognition, few have 
been integrated into speech recognizers and none have been evaluated 
using large speech data bases. 

8.1 Psychological Neural Net Models of Speech Perception. Three 
neural net models have been proposed which are primarily psychological 
models of speech perception (Elman and McClelland 1986; MacKay 1987; 
Marslen-Wilson 1987; Rumelhart et al. 1986b). The COHORT model de- 
veloped by Marslen-Wilson (1987) assumes a left-to-right real-time acous- 
tic phonetic analysis of speech as in current recognizers. It accounts for 
many psychophysical results in speech recognition such as the existence 
of a time when a word becomes unambiguously recognized (recogni- 
tion point), the word frequency effect, and recognition of contextually 
inappropriate words. This model, however, is descriptive and is not 
expressed as a computational model. 

Hand crafted versions of the TRACE and Interactive Activation mod- 
els developed by Elman, McClelland, Rumelhart, and co-workers were 
tested with small speech data bases (Elman and McClelland 1986; Rumel- 
hart et al. 1986b). These models are based on neuron-like nodes, include 
both feed-forward and feed-back connections, use nodes with multiplica- 
tive operations, and emphasizes the benefits that can be obtained by us- 
ing co-articulation information to aid in word recognition. These models 
are impractical because the problems of time alignment and training are 
not addressed and the entire network must be copied on every new time 
step. The Node Structure Theory developed by MacKay (1987) is a qual- 
itative neural theory of speech recognition and production. It is similar 
in many ways to the above models, but considers problems related to 
talking rate, stuttering, internal speech, and rhythm. 

8.2 Physiological Models For Temporal Pattern Recognition. Neu- 
ral net approaches motivated primarily by physiological and behavioral 
results have also been proposed to perform some component of the time 
alignment task (Cohen et al. 1987; Dehaene et al. 1987; Wong and Chen 
1986). Wong and Chen (1986) and Dehaene et al. (1987) describe similar 
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models that have been tested with a small amount of speech data. These 
models include neurons with shunting or multiplicative nodes similar 
to those that have been proposed in the retina to compute direction of 
motion (Poggio and Koch 1987). Three neurons can be grouped to form 
a ”synaptic triad” that can be used to recognize two component pattern 
sequences. This triad will have a strong output only if the modulator 
input goes ”high” and then, a short time later, the primary input goes 
”high.” 

Synaptic triads can be arranged in sequences and in hierarchies to rec- 
ognize features, allophones and words (Wong and Chen 1986). In limited 
tests, hand crafted networks could recognize a small set of words spo- 
ken by one talker (Wong and Chen 1986). More interesting is a proposed 
technique for training such networks without supervision (Dehaene et al. 
1987). If effective, this could make use of the large amount of unlabeled 
speech data that is available and lead to automatic creation of sub-word 
models. Further elaboration is necessary to describe how networks with 
synaptic triads could be trained and used in a recognizer. 

Cohen and Grossberg proposed a network called a masking field that 
has not yet been tested with speech input (Cohen and Grossberg 1987). 

CAT TAC 

MASKING FIELD 

SHORT-TERM 

(Only One Node ”High”) 

INPUT 

~~ ~ 

Figure 8: A model called a masking field that can be used to detect pattern 
sequences. 
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This network is shown in figure 8. Inputs are applied to the bottom sub- 
net which is similar to a feature map net (Kohonen et al. 1984). Typically, 
only one node in this subnet has a “high output at any time. Subnet 
node outputs feed short-term storage nodes whose outputs decay slowly 
over time. Different input pattern sequences thus lead to different ampli- 
tude patterns in short term storage. For example the input C-A-T sam- 
pled at the end of the word will yield an intensity pattern in short-term 
storage with node C low, node A intermediate, and node T high. The 
input T-A-C will yield a pattern with node C high, node A intermediate, 
and node T low. These intensity patterns are weighted and fed to nodes 
in a masking field with weights adjusted to detect different patterns. 
The masking field is designed such that all nodes compete to be active 
and nodes representing longer patterns inhibit nodes representing shorter 
patterns. This approach can recognize short isolated pattern sequences 
but has difficulty recognizing patterns with repeated sub-sequences be- 
cause nodes in short-term storage corresponding to those sub-sequences 
can become saturated. Further elaboration is necessary to describe how 
masking fields should be integrated into a full recognizer. Other recent 
studies (Jordan 1986; Stornetta et al. 1988; Tattersall et al. 1988) have also 
proposed using slowly-decaying nodes as short-term storage to provide 
history useful for pattern recognition and pattern sequence generation. 

8.3 Sequential Associative Memories. A final approach to pattern 
sequence recognition is to build a sequential associative memory for 
pattern sequences as described in (Amit 1988; Buhmann and Schulten 
1988; Hecht-Nielsen 1987; Kleinfield 1986; Sompolinsky and Kanter 1986). 
These nets extend past work on associative memories by Hopfield and 
Little (Hopfield 1982; Little 1974) to the case where pattern sequences 
instead of static patterns can be restored. Recognition in this approach 
corresponds to the net settling into a desired sequence of stable states, 
one after the other, when driven by an input temporal pattern sequence. 

Dynamic associative memory models developed by Amit, Kleinfield, 
Sompolinsky, and Kanter (Amit 1988; Kleinfield 1986; Sompolinsky and 
Kanter 1986) use long and short delays on links to generate and recognize 
pattern sequences. Links with short delays mutually excite a small set 
of nodes to produce stable states. Links with long delays excite nodes 
in the next expected stable state. Transitions between states thus oc- 
cur at predetermined times that depend on the delays in the links. A 
net developed by Buhmann and Schulten (1988) uses probabilistic nodes 
to produce sequencing behavior similar to that produced by a Markov 
chain. Transitions in this net occur stochastically but at some average 
rate. A final net described by Hecht-Nielsen (1987) is a modified version 
of Grossberg’s avalanche net (Grossberg 1988). The input to this net is 
similar in structure to Kohonen’s feature map. It differs in that nodes 
have different rise and fall time constants and overall network activity is 
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controlled such that only the outputs of a few nodes are “high” at any 
time. 

A few relatively small simulations have been performed to explore 
the behavior of the sequential associative memories. Simulations have 
demonstrated that these nets can complete pattern sequences given the 
first element of a sequence (Buhmann and Schulten 1988) and also per- 
form such functions as counting the number of input patterns presented 
to a net (Amit 1988). Although this approach is theoretically very inter- 
esting and may be a good model of some neural processing, no tests have 
been performed with speech data. In addition, further work is necessary 
to develop training procedures and useful decoding strategies that could 
be applied in a complete speech recognizer. 

9 Summary of Past Research 

The performance of current speech recognizers is far below that of hu- 
mans. Neural nets offer the potential of providing massive parallelism, 
adaptation, and new algorithmic approaches to speech recognition prob- 
lems. Researchers are investigating: 

1. New physiological-based front ends, 

2. Neural net classifiers for static speech input patterns, 

3. Neural nets designed specifically to classify temporal pattern se- 

4. Combined recognizers that integrate neural net and conventional 

5. Neural net architectures that implement conventional algorithms, 

6. VLSI hardware neural nets that implement both neural net and 

Physiological front ends have provided improved recognition accu- 
racy in noise (Ghitza 1988; Hunt and LefPbvre 1988) and a cochlea filter- 
bank that could be used in these front ends has been implemented us- 
ing micro-power VLSI techniques (Lyon and Mead 1988). Many nets 
can compute the complex likelihood functions required by continuous- 
distribution recognizers and perform the vector quantization required by 
discrete-observation recognizers. Kohonen’s feature map algorithm (KO- 
honen et al. 1984) has been used successfully to vector quantize speech 
and preliminary VLSI hardware versions of this net have been built 
(Mann et al. 1988). 

Multilayer perceptron networks with delays have provided excellent 
discrimination between small sets of difficult-to-discriminate speech in- 
puts (Kammerer and Kupper 1988; Lang and Hinton 1988; Peeling and 

quences, 

recognition approaches, 

and 

conventional algorithms. 
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Moore 1987; Waibel et al. 1987; Waibel et al. 1988; Watrous 1988). Good 
discrimination was provided for a set of 18 consonants in varying pho- 
netic contexts (Waibel et al. 1988), similar E-set words such as "B,D,E,V" 
(Lang and Hinton 1988), and digits and words from small-vocabularies 
(Kammerer and Kupper 1988; Peeling and Moore 1987; Watrous 1988). 
In some cases performance was similar to or slightly better than that pro- 
vided by a more conventional HMM or DTW recognizer (Kammerer and 
Kupper 1988; Lang and Hinton 1988; Peeling and Moore 1987; Waibel et 
al. 1987; 1988). In almost all cases, a neural net approach performed as 
well as or slightly better than conventional approaches but provided a 
parallel architecture that could be used for implementation and a com- 
putationally simple and incremental training algorithm. 

Approaches to the problem of scaling a network up in size to discrim- 
inate between members of a large set have been proposed and demon- 
strated (Waibel et al. 1988). For example, a net that classifies 18 conso- 
nants accurately was constructed from subnets trained to discriminate 
between smaller subsets of these consonants. Algorithms that use com- 
bined unsupervised/supervised training and provide high performance 
and extremely rapid training have also been demonstrated (Huang and 
Lippmann 1988; Kohonen et al. 1988). New training algorithms are un- 
der development (Almeida 1987; Jordan 1986; Pineda 1987; Rohwer and 
Forrest 1987; Watrous 1988) that can be used with recurrent networks. 

Preliminary studies have explored recognizers that combine conven- 
tional and neural net approaches. Promising continuous-speech recog- 
nition results have been obtained by integrating multilayer perceptrons 
into a DTW recognizer (Bourlard and Wellekens 1987) and a multilayer 
perceptron post processor has improved the performance of an isolated- 
word HMM recognizer (Huang et al. 1988). Neural net architectures 
have also been designed for important conventional algorithms. For ex- 
ample, recurrent neural net architectures have been developed to imple- 
ment the Viterbi decoding algorithm used in many HMM speech rec- 
ognizers (Lippmann and Gold 1987) and also to compute local proba- 
bilities required in discrete-observation HMM recognizers (Bourlard and 
Wellekens 1988). 

Many new neural net models have been proposed for recognizing 
temporal pattern sequences. Some are based on physiological data and 
attempt to model the behavior of biological nets (Dehaene et al. 1987; 
Cohen et al. 1987; Wong and Chen 1986) while others attempt to ex- 
tend existing auto-associative networks to temporal problems (Amit 1988; 
Buhmann and Schulten 1988; Kleinfield 1986; Sompolinsky and Kanter 
1986). New learning algorithms and net architectures will, however, be 
required to provide the real-time response and automatic learning of in- 
ternal word and phrase models required for high-performance continu- 
ous speech recognition. This is still a major unsolved important problem 
in the field of neural nets. 
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10 Suggestions for Future Work 

Further work should emphasize networks that provide rapid response 
and could be used with real-time speech input. They must include in- 
ternal mechanisms to distinguish speech from background noise and to 
determine when a word has been presented. They also must operate with 
continuous acoustic input and not require hand marking of test speech 
data, long internal delays, or duplication of the network for new inputs. 

Short-term research should focus on a task that current recognizers 
perform poorly on such as accurate recognition of difficult sets of isolated 
words. Such a task wouldn’t require excessive computation resources 
or extremely large data bases. A potential initial problem is talker- 
independent recognition of difficult E-set words or phonemes as in (Lang 
and Hinton 1988; Waibel et al. 1988). Techniques developed using small 
difficult vocabularies should be extended to larger vocabularies and con- 
tinuous speech as soon as feasible. Efforts should focus on: developing 
training algorithms to construct sub-word and word models automati- 
cally without excessive supervision, developing better front-end acoustic- 
phonetic feature extraction, improving low-level acoustic/phonetic dis- 
crimination, integrating temporal sequence information over time, and 
developing more rapid training techniques. Researchers should continue 
integrating neural net approaches to classification with conventional ap- 
proaches to training and scoring. Longer-term research on continuous- 
speech recognition must address the problems of developing high-level 
speech-understanding systems that can learn and use internal models 
of the world. These systems must be able to learn and use syntactic, 
semantic, and pragmatic constraints. 

Efforts on building neural net VLSI hardware for speech recognition 
should also continue. The development of compact real-time speech rec- 
ognizers is a major goal of neural net research. Parallel neural-net ar- 
chitectures should be designed to perform the computations required 
by successful algorithms and then these architectures should be imple- 
mented and tested. Recent developments in analog VLSI neural nets 
suggest that this approach has the potential to provide the high compu- 
tation rates required for both front-end acoustic analysis and high-level 
pattern matching. 

All future work should take advantage of the many speech data bases 
that currently exist and use results obtained with experimental HMM and 
DTW recognizers with these data bases as benchmarks. Descriptions of 
some common data bases and comments on their availability are in (Pal- 
lett 1986; Price et al. 1988). Detailed evaluations using large speech data 
bases are necessary to guide research and permit comparisons between al- 
ternative approaches. Results obtained on a few locally-recorded speech 
samples are often misleading and are not informative to other researchers. 

Research should also build on the current state of knowledge in neural 
networks, pattern classification theory, statistics, and conventional HMM 
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and DTW approaches to speech recognition. Researchers should become 
familiar with these areas and not duplicate existing work. Introductions 
to current HMM and DTW approaches are available in (Dixon and Martin 
1979; Lee and Hon 1988; Parsons 1986; Rabiner and Juang 1986; Rabiner 
et al. 1978) and introductions to statistics and pattern classification are 
available in many books including (Duda and Hart 1973; Fukunaga 1972; 
Nilsson 1965). 
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