
Distributed Neural Systems Support Flexible Attention
Updating during Category Learning

Emily R. Weichart*, Daniel G. Evans*, Matthew Galdo,
Giwon Bahg, and Brandon M. Turner

Abstract

■ To accurately categorize items, humans learn to selectively
attend to the stimulus dimensions that are most relevant to
the task. Models of category learning describe how attention
changes across trials as labeled stimuli are progressively
observed. The Adaptive Attention Representation Model
(AARM), for example, provides an account in which categoriza-
tion decisions are based on the perceptual similarity of a new
stimulus to stored exemplars, and dimension-wise attention
is updated on every trial in the direction of a feedback-based
error gradient. As such, attention modulation as described by
AARM requires interactions among processes of orienting,
visual perception, memory retrieval, prediction error, and goal

maintenance to facilitate learning. The current study explored
the neural bases of attention mechanisms using quantitative
predictions from AARM to analyze behavioral and fMRI
data collected while participants learned novel categories.
Generalized linear model analyses revealed patterns of BOLD
activation in the parietal cortex (orienting), visual cortex
(perception), medial temporal lobe (memory retrieval), basal
ganglia (prediction error), and pFC (goal maintenance) that
covaried with the magnitude of model-predicted attentional
tuning. Results are consistent with AARM’s specification of
attention modulation as a dynamic property of distributed cog-
nitive systems. ■

INTRODUCTION

When grouping items into categories, humans are extraor-
dinarily adept at identifying regularities across dimensions
and mapping features to category labels. As we get to
know a new person, for example, we may be able to cate-
gorize theirmood as happy, sad, or angry based on specific
elements of their facial expression, tone of voice, or body
language. In an effort to explain how humans can learn
new categories quickly even when they are multivariate,
probabilistic, or nonlinearly separable, computational
models of categorization aim to formalize the processing
stream that links memories of previous experiences to
representations of new items (Galdo, Weichart, Sloutsky,
& Turner, 2021; Love, Medin, & Gureckis, 2004; Kruschke,
1992; Nosofsky, 1986). Across contemporary models, the
dynamic allocation of selective attention to goal-relevant
dimensions is often implicated as the critical mechanism
through which categorization accuracy improves across
trials.
Models differ considerably, however, in their descrip-

tions of how attention is distributed to facilitate categori-
zation accuracy. The influential Generalized Context

Model (GCM; Nosofsky, 1986), for example, describes
a static distribution of attention based on overall dimen-
sion diagnosticity across the items represented in
memory. Adaptive attention models, by contrast, suggest
that attention is updated on every trial according to a
feedback-based error gradient, requiring dynamic moni-
toring of attention-outcome contingencies (Love et al.,
2004; Kruschke, 1992). Although previous fMRI work
has provided evidence of representational reorganization
in the hippocampus that is consistent with an adaptive
attention account (specifically, SUSTAIN; Mack, Love, &
Preston, 2016), questions about the nature of attention,
its component processes, and the neural systems that
are recruited during attention deployment still remain.
The aim of our study, therefore, is to discuss the brain
functions that contribute to attentional updating in the
context of category learning, and to evaluate a theory of
dynamic, gradient-based attention through model-based
fMRI analyses.

The current study focuses specifically on the Adaptive
Attention Representation Model (AARM; Galdo et al.,
2021), an example of the class of adaptive attention
models described above. The conceptual basis of AARM
comes from context theory, which assumes previously
experienced items (i.e., exemplars) are stored in memory
as discrete episodic traces along with associated category
labels (Medin & Schaffer, 1978). As in GCM, AARM
describes how category representations are formed
according to the similarity between new stimuli and stored
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exemplars. An attention vector weights the influence of
plausible feature-to-category mappings when the observer
makes a choice. AARM additionally includes mechanisms
for feedback-based attention updates, which are intended
to optimize future responses with respect to the goals of
the learner. AARM’s attention updatingmechanisms there-
fore incorporates notions of prediction error in a manner
that is conceptually related to models of reinforcement
learning (RL). Whereas the equation that defines the pre-
diction error signal in standard RL models calculates a gra-
dient of reward as a function of time (Sutton & Barto,
2018), AARM computes the gradient as a function of atten-
tion during each individual trial.

Previous work provided support for AARM’s mecha-
nisms of attention allocation through fits to simultaneous
streams of choice and eye-tracking data that were col-
lected while participants learned novel categories (Galdo
et al., 2021). Across paradigms of varying complexity,
AARM accurately predicted increases in accuracy that coin-
cided with increased probability of selectively attending to
goal-relevant dimensions, as measured by trial-level gaze
fixations. Although these results provided support for
AARM by way of eye-tracking data as the terminal output
of human attention dynamics (Blair, Watson, Walshe, &
Maj, 2009; Rehder & Hoffman, 2005a, 2005b), the extent
to which AARM’s mechanisms reflect expected patterns
of neural activity remains to be determined. The current
study therefore investigates the neural plausibility of atten-
tion updating as described by AARM, given current knowl-
edge about the multifaceted neural loci of its theoretical
subprocesses. In particular, we expect the trial-level mag-
nitude of model-predicted attention updates to covary
with BOLD activation in five relevant functional clusters
(for a review, see Seger & Miller, 2010): 1) parietal cor-
tex (orienting); 2) visual cortex (perceptual processing);
3) hippocampus and medial temporal lobe (MTL; epi-
sodic memory and recognition); 4) midbrain dopami-
nergic systems and basal ganglia (prediction error); and
5) pFC (goal maintenance and representation).

For our purposes, we used behavioral and fMRI data that
were collected by Mack et al. (2016) and were made freely
available via the Open Science Foundation (OSF; https://
osf.io/5byhb/). In the task, participants were asked to cat-
egorize novel insects into two groups according to the fea-
tures contained in three dimensions: legs, antennae, and
mouth. Corrective feedback was provided on every trial,
allowing participants to effectively map features to cate-
gory labels. Given the layers of complexity provided by
the task paradigm in the form of multidimensional stimuli,
trial-and-error learning, unidimensional and exclusive-OR
categorization rules, and rule-switches, we deemed the
data set to be ideal for the purpose of identifying the
functional components of adaptive attention.

The current article is organized as follows. We begin by
providing a conceptual overview of AARM and highlighting
the brain regions that we hypothesized to contribute to
dynamic attentional tuning. Second, we will summarize

the methods related to data collection (as described by
Mack et al., 2016), model-fitting, and model-based fMRI
analyses. Finally, we relate the attentional tuning mecha-
nism in AARM to BOLD activation in the ROIs identified
in our analysis, and discuss our results in terms of canon-
ical category learning findings.

AARM

Figure 1 provides a conceptual overview of AARM’s com-
ponent mechanisms. Additional mathematical details will
be provided in the AARM Technical Specifications section
to follow. In general, AARM defines the processes through
which new items are represented in psychological space

Figure 1. Conceptual overview of the Adaptive Attention Representation
Model. Basic mechanisms that occur within each component during a
single trial are shown as a flowchart. Green text indicates information
that was provided to the observer during the trial, and all other
processes are considered to be latent. Red arrows indicate the direct
role of the attention gradient. Yellow markers indicate conceptually
associated neural functions. The dotted line indicates that attention
modulates the representation of stored exemplars despite not being
physically present at the time of stimulus processing. MTL = medial
temporal lobe; BG = basal ganglia.
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and mapped to category labels. Learning (i.e., increased
categorization accuracy across trials) is conceptualized as
a natural consequence of storing experiences of stimuli
and associated feedback as they occur, and preferentially
allocating attention to the most relevant dimensions.
Here, we will introduce the framework in terms of three
core components: representation, decision, and attention
(Weichart, Galdo, Sloutsky, & Turner, 2021; Turner, 2019).
The representation component of AARM specifies how

the low-level perceptual qualities of a new stimulus are
interpreted and contextualized by the observer’s goals
and experiences. At the beginning of a trial, attention
orients to spatial locations due to a combination of
salience and learned relevance. When a new stimulus is
introduced, the observer then samples information from
dimensions according to a learned trajectory of dimension
prioritization. This sampling process activates memories
of similar items with known category labels, which allow
the observer to form a representation of the stimulus that
is relevant to the task. Similarity is determined from the
feature-level comparison of the current stimulus to all stored
exemplars and is modulated by attention (Equation 1). As
such, an exemplar will be perceived to be more similar to
the current stimulus if its features match on highly
attended dimensions, or more dissimilar if its features
mismatch on highly attended dimensions.
The decision component describes how the observer

maps the representation of the current stimulus to a cate-
gory response. Because corrective feedback is typically
provided during category learning tasks, AARM presumes
that each stored exemplar carries an association to
a known category label. The observer therefore has
access to the necessary information for mapping the
similarity-based activation of each exemplar to its respec-
tive category. As such, the total activation across exemplars
that are associated with a common category label can be
interpreted as decision evidence in favor of the corre-
sponding response. When making a response, the
observer is presumed to select a category in proportion
to the relative decision evidence among the available
options (Equation 3).
After the observer makes a decision and corrective feed-

back is observed, the stimulus and the category label are
stored in memory for future use. Within the attention
component, AARM subsequently updates attention in a
manner that is intended to optimize for the goals of the
observer on future trials (e.g., improve accuracy, reduce
sampling; Equation 4) and occurs in consideration of the
predicted response probability relative to the observed
feedback. If a highly attended dimension provides evi-
dence in favor of the incorrect category label, for example,
attention to that dimension will be reduced. The newly
updated attention vector is fed back into the representa-
tion component in preparation for the next trial.
It is critical to highlight that the specifications of the rep-

resentation and decision components of AARM were
based on GCM, a model of categorization that assumes

attention is calculated retrospectively after all stimuli have
been observed (Turner, 2019; Nosofsky, 1986). GCM can
generate accurate categorization predictions using a stable
attention vector that preferentially considers task-relevant
dimensions when making decisions. The GCM conceptu-
alization of attention, however, does not naturally extend
to questions of category learning. When in a novel task
environment with novel stimuli, the observer cannot pos-
sibly know which dimensions are going to be relevant and
which to attend unless explicitly instructed. This insight
can only come from experience.

AARM’s innovation relative to GCM, therefore, lies in its
inclusion of a gradient-based mechanism for updating
attention according to feedback. Because attention is re-
distributed on every trial based only on what the observer
has experienced up until that point, AARM can account for
the gradual accrual of information that is required for iden-
tifying the task-relevant dimensions concurrent with learn-
ing (Galdo et al., 2021; Weichart et al., 2021).

Relative to other adaptive attention models like
ALCOVE (Kruschke, 1992) and SUSTAIN (Love et al.,
2004), AARM’s advancement is its specification of
gradient-based attention updating mechanisms that opti-
mize for the individual goals of the learner, rather than
error minimization alone. The gradient calculation allows
for the possibility that secondary computational goals bear
an impact on the representation of new items, such as an
implicit desire to maximize information sampling effi-
ciency. Given that it is often the case that multiple dimen-
sions provide similarly diagnostic information, the learner
could conceivably seek to reduce time or effort spent on
each individual trial by only attending to a subset of infor-
mative dimensions before making a response, with min-
imal detriment to overall accuracy. This idea has been
supported by our previous presentation of AARM. When
additional mechanisms were added to the model to opti-
mize for secondary computational goals, the expanded
variant outperformed a baseline unconstrained variant
when fit to behavioral and eye-tracking data (Galdo
et al., 2021). Although a strict error-reduction policy for
attention updating that is standard among contemporary
adaptive attention models was sufficient for predicting
accuracy across trials, accounting for individualized com-
putational goals in the gradient specification was neces-
sary for predicting trial-level information sampling
behavior via eye-tracking. Related mechanisms for
dimension reduction have been implemented in RL
models as well and have proven necessary for predicting
human-like attention operations in naturalistic multi-
dimensional environments (Leong, Radulescu, DeWoskin,
& Niv, 2017; Niv et al., 2015).

Hypothesized Neural Systems

As an extension to our previous results, the current study
investigates the neural plausibility of AARM’s attention
updating mechanism. In order for this mechanism to be
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considered theoretically viable, it should, at a minimum,
covary with neural activation in the distributed systems
that are hypothesized to contribute to continuous tuning
across trials. The neural systems that we expect to be
recruited during attentional tuning come directly from
the literature on the neural correlates of category and
RL. In particular, we discuss five functional clusters for
category learning that were defined by Seger and Miller
(2010) in an independent review.

The parietal cortex is involved in orientation of spatial
attention (Yin et al., 2012; Bisley &Goldberg, 2010), which
is instantiated in AARM via the connection between the
attention gradient and the mechanism for sampling infor-
mation from new stimuli (Point 1 in Figure 1). The visual
cortex is known to be involved in the formation of low-
level perceptual representations (Folstein & Palmeri,
2013; Point 2 in Figure 1). The hippocampus and MTL
are involved in themaintenance and retrieval of past learn-
ing instances (Cutsuridis & Yoshida, 2017; Seger & Miller,
2010; O’Reilly & Munakata, 2000), as well as modulation of
object representations during category learning (Mack
et al., 2016). We therefore expect these regions to be
involved in attention modulation in AARM, given the
mechanism’s critical reliance on activation of past exem-
plars (Point 3 in Figure 1). Themidbrain dopaminergic sys-
tems and basal ganglia have been implicated in behaviors
related to prediction error in RL (Averbeck & O’Doherty,
2022). Because category predictions and observed feed-
back are critical inputs to the attention updating mecha-
nisms in AARM,we expect attention to require the influence
of prediction error-based action selection functions in
these regions (Point 4 in Figure 1). The pFC is known to
be involved in goal-directed behaviors, particularly in
higher-level monitoring of rule-based performance
(Bogdanov, Timmermann,Glaescher,Hummel,& Schwabe,
2018), as would be expected for an update rule that opti-
mizes for the learner’s goals of reducing errors and main-
taining computational parsimony (Point 5 in Figure 1).

Althoughwe do notmake specific predictions about the
computations that are performed in each set of brain
regions, our study seeks to establish that attentional
tuning recruits the contributions of distributed systems
as described by AARM’s dynamic structure. Further review
of the candidate brain regions and how they relate to
category learning are provided in the Discussion.

EXPERIMENTAL METHODS

Data Set

The task paradigm fromMack et al. (2016) builds upon the
classic experiments of Shepard, Hovland, and Jenkins
(1961), which have become a benchmark test for models
of human category learning. The benchmark study used
stimuli that consisted of three binary dimensions to con-
struct six types of category delineations (referred to as
Types I–VI). The results, which have been replicated

several times (e.g., Crump, McDonnell, & Gureckis,
2013; Nosofsky, Gluck, Palmeri, McKinley, & Glauthier,
1994), showed a progression of learning difficulty from
Type I (one dimension was perfectly diagnostic of cate-
gory membership) to Type VI (all three dimensions
needed to be attended to produce a correct response).
The observed relative learning rates across category types
provide considerable empirical constraint that contem-
porary theories of category learning are expected to
account for to be regarded as viable (e.g., Galdo et al.,
2021; Goodman, Tenenbaum, Feldman, & Griffiths,
2008; Nosofsky et al., 1994; Kruschke, 1992).
The paradigm designed by Mack et al. (2016) presented

participants with three different categorization types within
the same task context, using a common set of stimulus
features. The paradigm therefore posed a unique challenge
to participants, such that they had to identify and adapt to
new categorization rules in order tomaintain high accuracy.
In the original study, the inclusion of rule-switches allowed
the authors to investigate the hypothesis that learning in a
dynamic task environment is made possible by continuous
modulation of object representations. Model-based fMRI
analyses using SUSTAIN (Mack et al., 2016; Love et al.,
2004) supported their hypothesis and provided evidence
that shifting attention to rule-relevant dimensions impacted
object representations in the hippocampus.
Our study builds upon these results, taking a more gen-

eral approach to understanding the functional correlates of
attention. In particular, we use a latent input approach to
analyze whole-brain fMRI data, which was described by
Turner, Forstmann, Love, Palmeri, and van Maanen (2017)
to be ideal for exploratory analysis. Given that the adaptive
attention mechanism specified by AARM requires dynamic
interactions among multiple cognitive systems, our study
tests for evidence of distributed system coactivation in the
brain during attentional tuning. Relevant details of the stim-
uli and procedures are provided in the following sections,
but the reader is directed to Mack et al. (2016) for more
information.

Stimuli

Stimuli were eight images of insects, each ofwhichwas com-
posed of a body, legs, antennae, and a mouth. Although all
insects had an identical body shape, each of the other
dimensions contained one of two possible features: legs
could be thick or thin, antennae could be thick or thin,
and mouths could be shovel- or pincer-shaped. Participants
were instructed to learn how to classify the insects according
to their features, using the corrective feedback that would
be provided after every trial as a guide. Examples of stimuli
are shown in the top of Figure 2.

Task Paradigm

Participants completed three subtasks during the experi-
ment, each with a different type of categorization
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rule (Types I, II, and VI; Shepard et al., 1961). From the
participants’ perspective, subtasks were delineated by a
change in the instructions. For example, a participant
may have been asked to categorize insects according to
their temperature preference (warm or cool) during the
first subtask, and according to the hemisphere in which
they are typically found (eastern or western) during the
second. Beyond the change in instructions, participants
were not informed of any potential change in rule
complexity.
In the Type I subtask, the category label of each stimulus

could be determined from the feature value of one dimen-
sion. For example, participants could learn to selectively
attend to the relevant “legs” dimension upon observing

that all insects with thick legs preferred warm tempera-
tures and all insects with thin legs preferred cool temper-
atures. The Type II subtask used an exclusive disjunction
(i.e., exclusive-OR) rule and required participants to
attend to two dimensions to categorize the insects cor-
rectly. Insects typically found in the eastern hemisphere,
for example, might have thick antennae with a pincer-
shaped mouth or thin antennae with a shovel-shaped
mouth, whereas insects found in the western hemisphere
might have thick antennae with a shovel-shaped mouth or
thin antennae with a pincer-shaped mouth. In this case,
the antennae and mouth dimensions were relevant and
the legs dimension was irrelevant. The Type VI subtask
extended the logic of Type II and required participants

Figure 2. Attention to dimensions affects accuracy. Circles overlaying the insect stimuli indicate which dimensions were relevant in each subtask.
In all panels, vertical black lines indicate transitions between subtasks. (A) Orange lines show mean model-generated gradient magnitude values
across participant-level simulations. (B) Purple, green, and yellow lines correspond to mean model-generated attention (α) quantities allocated to
leg, antennae, and mouth dimensions, respectively. (C) Lines show means of observed (black) and model-generated (orange) accuracy across
participants. Shaded gray regions show the 95% Bayesian posterior credible intervals assuming a Beta (1, 1) prior on the probability of responding
correctly.
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to learn the feature-category mappings and contingencies
among all three dimensions. As such, all three dimensions
were relevant for identifying category membership. All
participants completed the Type VI task first, and the sub-
sequent order of Types I and II was counterbalanced
between participants.

Participants completed the three subtasks in the MRI
scanner, and indicated category responses using a button
box. A subtask consisted of four functional runs, each with
32 trials. During a trial, the stimulus was presented for a
duration of 3.5 sec, followed by a 0.5- to 4.5-sec jittered
fixation. Participants were then presented with a feedback
screen containing the stimulus, accuracy information,
and the correct category label for 2 sec, followed by a
4- to 8-sec jittered fixation. Each functional run lasted
388 sec and included four repetitions of each unique
stimulus.

Data Description

The data set contains MRI and behavioral data from 23
right-handed participants (12 men, age 18–31 years) with
normal or corrected-to-normal vision. One participant’s
data were corrupted and were therefore excluded from
all analyses presented here. Participants completed four
consecutive runs corresponding to each of the three cate-
gorization rules (Types I, II, and VI, as previously
described). Out of all data files that were made available
by Mack et al. (2016) via OSF, the following were used in
the current study: 1) magnetization prepared rapid gradi-
ent echo T1 anatomical images (field of view = 256 mm,
1-mm isotropic voxels); 2) 12 functional timeseries
acquired with a T2*-weighted multiband EPI sequence
(repetition time = 2 sec, echo time = 31 msec, flip angle =
73°, field of view = 220 mm, 72 slices, 1.7-mm isotropic
voxels); and 3) behavioral data consisting of stimulus
and timing information, categorization responses, and
correct category feedback.

Modeling Procedures

As a complement to the conceptual overview of AARM
that was provided previously, we now provide the math-
ematical details of the model as it was specifically used
in our current model-based fMRI analyses. AARM was
originally presented by Galdo et al. (2021) as a general
framework designed to account for attention “shortcuts”
that humans often take when completing a classification
task. For example, if stimuli contain a large number of
dimensions, adult participants tend to consider only a
small subset of them when making decisions (Blanco,
Turner, & Sloutsky, Submitted). One interpretation of
this behavior is that in addition to the goal of achieving
high accuracy on a task, humans pursue secondary com-
putational goals like reducing the amount of time and
effort they spend on individual trials. The extent to

which these shortcuts impact behavior, however, varies
according to the demands of the task.
The full AARM framework contains various mecha-

nisms that instantiate biases for computational simplic-
ity. For our current purposes, we used the variant of
AARM that was identified in a switchboard analysis
conducted by Galdo et al. (2021) to provide the best fits
to five data sets, including Mack et al. (2016). The
model description provided here therefore includes
mechanisms for regularization (tendency toward low-
dimensional representations) and competition (increas-
ing attention to one dimension results in a decrease in
attention to the others). For more information on
AARM’s mechanisms for attentional shortcuts, the inter-
ested reader is directed to Galdo et al. (2021) for a
thorough investigation in various contexts of task com-
plexity with quantified comparisons to traditional atten-
tion constraints.

AARM Technical Specifications

When introducing model notation, we will use unbolded
symbols to represent scalar values, bold lowercase sym-
bols to represent vectors, and bold uppercase symbols
to represent matrices.
AARM describes how humans learn to categorize a

sequence of stimuli E ¼ e1; e2;…½ �. Each D-dimensional
stimulus belongs to one of C categories and is represented
as row vector et , where t denotes the trial number. The
model assumes that learning occurs via interactions
between two continuously updated processes: memory
acquisition and attention to task-relevant dimensions. To
acquire new memories, the model assumes that the stim-
ulus presented on Trial t, et, is stored as an episodic trace

xi ¼ xi;1 xi;2…xi;D
� �T

(i.e., an “exemplar”). Each exemplar
is associated with a memory strength mt;i and a category
label fi 2 1; 2;…;Cf g acquired by feedback. The feature
values, memory weights, and category labels associated
with the exemplars can be conceptualized as matrices that
are updated after each trial is completed. On Trial t, the full
history of exemplar feature values are contained within
Xt ¼ x1…xN½ �, memory strengths are contained within
Mt ¼ mt;1 mt;2…mt;N

� �
, and the relevant category labels

are contained within Ft ¼ f1…fN½ �.
When a new stimulus is presented, it activates memo-

ries for stored exemplars on the basis of perceived
similarity. Similarity is computed by way of a factorizable
exponential similarity kernel (Shepard, 1987; Nosofsky,
1986), such that activation at, i of the i-th exemplar in
response to the stimulus et on Trial t is given by

at;i ¼ exp −δ
XD

j¼1
αt;j et;j − xi;j

�� ��� �
mt;i (1)

where δ is the specificity of the similarity kernel function,
and αt, j is the attention applied to the j-th dimension on
Trial t. Attention to each dimension can be represented
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succinctly as a D-dimensional vector αt. The values of αt

modulate the observer’s perception of each exemplar’s
similarity to the current stimulus. For example, in the
extreme case where αt, j is 0, the differences across dimen-
sion j has no impact on exemplar activation. By contrast, as
αt, j approaches infinity, an exemplar must have identical
values to the stimulus et along the j-th dimension to
maintain activation of the exemplar. We account for lag-
based memory strength using a modified temporal decay
function that allows for different temporal weighting struc-
tures depending on three parameters (Pooley, Lee, &
Shankle, 2011):

mt;i ¼ 1− 1− �ip

� �
1− �Nt−iþ1

r

� �h i
1− ηð Þ þ η (2)

where �p and �r 2 [0,1] are primacy and recency weights,
η 2 [0,1] is a lower bound for memory weights, and Nt

is the number of exemplars stored on Trial t. After
computing each exemplar’s activation, a Luce choice
rule is used to compute categorization choice probability.
Specifically, the probability of making a Category c
response is

P ″c″jαt; et; Ft;Xt;Mtð Þ ¼
PN

i¼1 at;iI fi ¼ cð ÞPN
i¼1 at;i

(3)

here I fi ¼ cð Þ is an indicator function that returns a one if
the i-th exemplar xi is associated with Category c:

I fi ¼ cð Þ ¼ 1
0

fi ¼ c
otherwise

	

Therefore, the probability of choosing c is the summed
similarity of the exemplars associated with the c-th cate-
gory, normalized by the total activation of all exemplars.
AARM assumes αt changes according to a competitive

stochastic gradient-based update rule in an effort to
minimize error and is subject to attentional constraints
of regularization and competition. Although the AARM
framework supports other variations of attention update
rules (Galdo et al., 2021), the specification that is relevant
to the current article is as follows:

αtþ1 ¼ αt þ Γ ∇α log P ftjαt; et; Ft;Xt;Mtð Þð Þ− λ1½ � (4)

where log(P( ft|αt,et,Ft,Xt,Mt)) is the log likelihood of
making a choice that is consistent with Feedback ft on
Trial t, and 1 is a D-dimensional column vector whose
elements are all one. Here, ∇α is a shorthand denoting a
“gradient operator” for computing the set of partial
derivatives of a function f(a) with respect to each element
of the vector α = [α1,⋯,αD]T:

∇αf að Þ :¼ ∂
∂α1

f að Þ ∂
∂α2

f að Þ ⋯
∂

∂αD
f að Þ


 �T

The positive parameter λ determines the strength of
L1-norm or LASSO regularization and is related to atten-
tional capacity constraints and bias toward low-
dimensional representations. Γ is a matrix whose diagonal

elements contain the gradient step-size parameter γ0 and
off-diagonal elements are −β such that

Γ ¼

γ0 −β −β …: −β
−β γ0 −β …: −β
−β −β γ0 ⋱ −β
⋮ ⋮ ⋱ ⋱ ⋮

−β −β −β …: γ0

2
66664

3
77775

where β, γ0 2 (0,∞). β determines the strength of compe-
tition between dimensions during the attention update. In
other words, for objective function g(αt), β controls the
extent to which increasing attention to one dimension
results in a reciprocal decrease in attention to the other
dimensions.

To avoid negative values of attention, αt is constrained
to be positive. However, the attention update equation
may still propose negative values. To facilitate uncon-
strained optimization, attention is updated on the log
scale. Setting υt = log (αt) and using the change-of-
variable technique, we can rewrite the attention update
equation υt as

vtþ1 ¼ vt þ Γ½f∇α log P ftjαt; et; Ft;Xt;Mtð Þð Þ
−λ1g� exp vtð Þ�

(5)

where � is the element-wise multiplication or Hadamard
product operator. Because the logarithm is a one-to-one
monotonic function, finding the optimal υt is equivalent
to finding the optimal αt. Derivations of the attention
gradient and a parameter recovery study are provided in
the work of Galdo et al. (2021).

Model Fitting

The fits to behavioral data from Mack et al. (2016) that are
used in the current study were originally presented by
Galdo et al. (2021). The model was fit to data from each
participant independently, with the general goal of identi-
fying the set of parameters that maximized the likelihood
function provided in Equation 3. In an effort to ensure
robust optimization, a three-step algorithmic approach
was used. First, a Differential Evolution procedure using
the DEoptimR package was implemented for 100 itera-
tions using 13 particles (2κ + 1, where κ is the number
of free parameters) to effectively sample the parameter
space and identify reasonable initial values (Brest, Greiner,
Boskovic, Mernik, & Zumer, 2006; Storn & Price, 1997).
Second, the initial values were used as input in R’s base
implementation of the Nelder–Mead optimization algo-
rithm (Nelder & Mead, 1965). Third, in the event of failure
to meet the base convergence criterion after 1000 itera-
tions, R’s base implementation of simulated annealing
was used for 5000 iterations (Van Laarhoven & Aarts,
1987). The result of this procedure was a single set of
best-fitting parameters for each participant.
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A few constraints were imposed in an effort to maintain
parameter identifiability. The similarity kernel specificity
parameter was constrained to δ=1 for all participants. Ini-
tialized values for the three-dimensional attention vector
α0 = [α0,1,α0,2,α0,3]

T were constrained to be equivalent
such that α0;1 ¼ α0;2 ¼ α0;3 ¼ α�

0, and a single parameter
α�
0 was freely estimated. To initialize the representation,

two “background exemplars” per category were provided
with feature values of [0.5, 0.5, 0.5] (Turner, 2019;
Nosofsky, 1986). This setting assumes the observer begins
the task with equal evidence for each category response,
such that the initial state is uncertain rather than unin-
formed (Estes, 1994). The model contained a total of six
free parameters: learning rate (γ0), initial attention (α�

0),
competition (β), regularization (λ), primacy (�p), recency
(�r), and baseline memory strength (η).

To facilitate our model-based fMRI analyses, we input
each participant’s best-fitting parameters back into the
model, along with the corresponding participant’s unique
experience of trial-level stimuli and feedback. We were
therefore able to generate participant-level predictions
for changes in the attention gradient across trials in the
Mack et al. (2016) experiment. Because we were inter-
ested in observing which brain areas contribute to
dynamic changes in attention during learning, we calcu-
lated a single “attention gradient magnitude” value for
each trial, which was the Euclidean norm of model-

generated attention update values: uj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

j¼1 u2
j

q
;

where

u ¼ Γ ∇α log P ftjαt; et; Ft;Xt;Mtð Þð Þ−λ1f g� exp vtð Þ½ �
is the attention update vector shown in Equation 5. The
attention gradient magnitude was subsequently used as
a regressor in our fMRI analyses.

MRI Data Preprocessing and Analysis

Preprocessing and analysis of the fMRI data were per-
formed primarily using fMRI Expert Analysis Tool (Version
6.0.5), a tool within FSL (FMRIB’s Software Library; https://
fsl.fmrib.ox.ac.uk/fsl/). Functional EPI data were cor-
rected for excessive motion using MCFLIRT (Motion
Correction FMRIB's Linear Image Registration Tool;
Jenkinson, Bannister, Brady, & Smith, 2002), stripped
of nonbrain structures using BET (Brain Extraction Tool;
Smith, 2002), spatially smoothed with a 3.4-mm FWHM
Gaussian kernel, and temporally filtered with a high-pass
filter cutoff of 100 sec. Anatomical T1 images were regis-
tered to standard space using FNIRT (FMBRIB's Non-linear
Image Registration Tool), which generated a transforma-
tion matrix for each participant. To align a participant’s
functional and anatomical images, the functional data
were first registered to the participant’s T1 image using
the brain-boundary-based registration method in FLIRT
(FMRIB's Linear Image Registration Tool; Greve & Fischl,
2009; Jenkinson et al., 2002) and then transformed into a

standard space (MNI152 with 1-mm resolution) by apply-
ing the same transformation matrix generated from T1
registration. In addition, FAST (FMRIB's Automated Seg-
mentation Tool; Zhang, Brady, & Smith, 2001) was used
to segment the T1 image into three tissue types: gray mat-
ter, white matter, and cerebrospinal fluid (CSF). The CSF
mask from this segmentation was subsequently trans-
formed into the functional space to extract the timeseries
of mean CSF signal from each run.
After preprocessing, we used FSL’s FILM tool (FMRIB's

Improved LinearModel; Woolrich, Ripley, Brady, & Smith,
2001) to conduct a three-level whole-brain generalized
linear model (GLM) analysis. The goal was to identify the
brain areas involved in attentional tuning, as predicted by
AARM. Trial-wise attention gradient magnitudes were gen-
erated by AARM, time-locked to the onset of each trial’s
feedback period, and then concatenated to create the
regressor of interest.
At the first level of the analysis, a GLMwas fit to the time-

series of attention gradient magnitudes in each individual
run. Themodel included 32 trial-specific regressors, which
were time-locked to the onset of each stimulus and lasted
the duration of the decision period during each trial.
These trial-specific regressors were included to ensure
that any signal attributed to the attention gradient magni-
tude was not confounded by the influence of cognitive
processes involved in the decision period. In addition, to
isolate the effects of attentional updating from the effects
of error processing, trial-level accuracy was included as a
regressor during the feedback periods (correct trials =
1, incorrect trials = 0). The attention gradient magnitude,
accuracy, and trial-specific regressors for each of 32 trials
were convolved with a standard double-gamma hemo-
dynamic response function, temporally filtered with a
high-pass filter cutoff of 100 sec, and prewhitened.
The temporal derivatives of these 34 regressors were
also included in the GLM. Finally, nuisance regressors
representing the standard six motion parameters (pitch,
yaw, roll, and x,y,z shifts) andmean CSF signal were added
to themodel to control for signal, which does not originate
from the BOLD response. All columns of the design matrix
were demeaned before fitting the model. The effect of
attentional tuning on BOLD signal was calculated as a con-
trast of the gradientmagnitude regressor versus no activity
(i.e., gradient magnitude signal greater than zero).
At the second level of analysis, a fixed-effects model was

used to calculate the effect of attentional tuning across all
runs within participant. Because the attentional tuning
mechanism in AARM is a general cognitivemechanism that
is not constrained by the changing categorization rules of
the task, we collapsed across all runs for each participant.
The third level of analysis considered group-level effects

of attentional tuning. Group effects were identified
through a mixed effects GLM, which was fit by FSL’s
FLAME 1 + 2 algorithm (Woolrich, Behrens, Beckmann,
Jenkinson, & Smith, 2004). The algorithm combines an
approximation of the Bayesian posterior distribution and
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Markov Chain Monte Carlo methods to estimate coeffi-
cients for each voxel, and was identified by Eklund,
Nichols, and Knutsson (2016) to produce minimal false
positives (< 5%) across a battery of fMRI analyses.
The sample size of n = 22 from Mack et al. (2016) was

deemed sufficient for our purposes on the basis of three
factors: 1) Large-scale sensitivity and reliability examina-
tions of group fMRI studies with GLM analyses have indi-
cated that 20 or more participants should be included to
achieve sufficient reliability (Zandbelt et al., 2008; Thirion
et al., 2007); 2) several previous studies usingmodel-based
fMRI approaches have identified significant effects during
category learning using similar sample sizes (n = 18–22;
Mack, Preston, & Love, 2013; Davis, Love, & Preston,
2012; Nosofsky, Little, & James, 2012); and 3) recovery of
AARM’s parameters for fits to individual participants was
verified in previous work (Galdo et al., 2021), providing
assurance of regressor stability within our core analysis.

RESULTS

We now present our results in two sections. First, we show
the behavioral results from Mack et al. (2016) and the
corresponding predictions from AARM, including the tra-
jectory of latent attention across trials and rule-changes.
Second, we show the results of a model-based fMRI anal-
ysis that was designed to identify the brain regions that
contribute to attentional tuning, as specified by AARM.
Taken together, our results demonstrate that AARM can
accurately predict learning in a complex category learning
task via a gradient-based attentional tuning signal, and the
same signal fluctuates across trials in a manner that is
consistent with BOLD activation in regions with known
relevance to category learning.

Fits to Behavioral Data

After fitting AARM to data, best-fitting parameters were
used to generate a predicted progression of latent atten-
tional tuning and associated responses across trials for
each participant. Model-predicted category responses to
the unique set of stimuli experienced by each participant
were converted to “correct” or “incorrect” accuracy infor-
mation via comparison to the true category labels. A qual-
itative evaluation of model fits is shown in Figure 2C,
where model-predicted accuracy was aggregated across
participants and displayed as an orange line. Observed
group-level mean accuracy is shown as a black line, with
a 95% Bayesian credible interval (CI) shown as a gray
shaded region. Model predictions fall well within the
95% CI range and closely follow the trajectory of the
group-level mean across trials in both conditions of task
order (left: Task Order 1, Types VI–I–II; right: Task Order
2, Types VI–II–I). Whereas only qualitative fits are shown
here, quantitative comparisons conducted by Galdo et al.
(2021) showed that the current model provided the best
fits to behavioral data from a set of five studies (including

Mack et al., 2016) compared with all alternative specifica-
tions of AARM and a selection of competing models.

Figure 2B provides insight into how AARM was able to
predict learning across categorization rule types. By updat-
ing dimension-wise attention on every trial in response to
feedback, AARM gradually learns to prioritize information
from the most relevant dimensions. Figure 2B shows an
increase in attention that is allocated to the relevant
dimensions, as indicated by the corresponding categoriza-
tion rule type. For example, one group of participants
experienced Task Order 1, where Type VI blocks (all three
dimensions were relevant) were followed by Type I blocks
(one dimension was relevant, two were irrelevant), which
were followed by Type II blocks (two dimensions were rel-
evant, one was irrelevant). This information is indicated by
the stimuli pictured above Figure 2A, in which the relevant
dimensions for each subtask are highlighted in red.
Mapping the relevant dimensions to model-generated
attention shown in Figure 2B, we observe that the progres-
sion of attention mirrors the prescribed subtask order.
Purple, green, and yellow lines reflecting attention to the
legs, antennae, and mouth dimensions, respectively, all
increase during the first subtaskwhen all three dimensions
were relevant for determining category membership. In
the second subtask where only the legs dimension was
relevant, the corresponding purple line quickly increases
from the starting point, whereas the green and yellow lines
drop off to indicate reduced attention to the antennae and
mouth dimensions. In the third subtask, the antennae and
mouth dimensions become relevant, and the legs dimen-
sion becomes irrelevant. The green and yellow lines that
correspond to the newly relevant dimensions show an
increase in attention relative to the second subtask, and
the purple line decreases. A conceptually similar pattern
of predictions was observed for participants who experi-
enced Task Order 2, where the lines representing
dimension-wise attention in Figure 2B follow a trajectory
that is consistent with dimension relevance in each subtask.

Figure 2A shows the progression of latent attention gra-
dient magnitude across trials. We observe that the magni-
tude of between-trial attentional tuning is maximized
when choice accuracy is low. As the observer learns the
diagnosticity of each dimension, attention is optimally dis-
tributed toward the relevant dimension(s) and, therefore,
smaller changes of attention are required. Because there
is less tuning needed, the gradient magnitude tends to
diminish toward zero, but quickly rises again when the
categorization rule changes.

Neural Covariation of the Attention Gradient

Trial-level attention gradient magnitude was used as the
regressor of interest in our GLM analysis. Correct or
incorrect accuracy information was included as an addi-
tional regressor to isolate changes related to attention
from changes related to error processing. As shown in
Figure 2A, the largest magnitude of attentional change
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tended to coincide with rule-switches. Because AARMuses
a cross-entropy loss function to calculate the attention
gradient that is highly sensitive to errors, it is well in line
with expectation that moments of uncertainty about
which dimensions were relevant (Figure 2B) would result
in a high probability of predicted errors (orange line,
Figure 2C) and correspondingly large adjustments in
attention (Figure 2A). As such, our fMRI GLM analysis
identified ROIs where BOLD activation reflected changes
across trials that were consistent with learning and associ-
ated changes in attention.

Maps from the group-level GLM were converted to z
scores and were thresholded at Z ≥ 3.1 within each voxel.
Spatially contiguous voxel clusters were corrected for

family-wise error at p < .001 (Woo, Krishnan, & Wager,
2014) using FSL’s implementation of Gaussian Random
Field Theory. Smoothness was estimated using FSL’s
“smoothest” function on group-level residuals. This
resulted in 14 unique clusters where model-generated
attention gradient magnitude accounted for significant
variability in BOLD signal across trials. Figure 3 shows the
spatial location of each ROI in Montreal Neurological Insti-
tute (MNI152) standard space. Because some ROIs appear
to be noncontiguous when displayed as two-dimensional
slices, each ROI was randomly assigned a unique color to
properly visualize the spatial differentiation. Sagittal and
axial slices in Figure 3 were selected in an effort to display
all ROIs as parsimoniously as possible. Table 1 shows the

Figure 3. ROIs resulting from fMRI generalized linear model analysis. Each cluster is presented as a unique color rendered in MNI152 1-mm standard
space. Arrows in the sagittal slices indicate the position of corresponding axial slices.
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corresponding MNI coordinates and the peak z value of
each ROI, where ROIs are listed in descending order of
cluster size.
We observe a high degree of overlap between the ROIs

identified here and the five functional clusters of interest as
defined by Seger and Miller (2010). The largest ROI (ROI 1
in Table 1) is primarily reflective of the parietal cortex and
visual cortex functional clusters, which are thought to be
used for spatial orientation and low-level perceptual object
representations during category learning, respectively. The
hippocampus and MTL functional cluster consists of five
ROIs (ROIs 7, 10, 11, 13, and 14 in Table 1) and is thought
to form higher-level object representations in reference to
previously encoded stimuli in an effort to orthogonalize
experiences in memory. Two ROIs are consistent with
themidbrain dopaminergic systems and basal ganglia func-
tional cluster (ROIs 7 and 9 in Table 1), which is thought to
be involved in prediction error and converting information
inputs into actions. Seven ROIs overlap with the pFC func-
tional cluster (ROIs 2, 3, 4, 5, 6, 8, and 12 in Table 1), which
is involved in action policy updating in the presence of
rule-switches and changing environments. In consider-
ation of previous literature, these ROIs characterize a
diverse set of neural systems that reflect dynamic adjusting
of attentional weights upon observation of feedback,
beyond what is accounted for by error processing alone.

DISCUSSION

In the current study, we investigated the hypothesis that
adaptive attention mechanisms require the synchronized
involvement of orienting, visual processing, memory

retrieval, prediction error, and goal maintenance systems
to effectively facilitate learning of novel categories. Our
analytical approach focused specifically on the theoretical
predictions of one category learning model, AARM. As
illustrated in Figure 1, attention in AARM is influenced by
the decision component of the observer’s experience on
each trial and is then fed back into the representation com-
ponent to modulate category activations on subsequent
trials. As such, attention is conceptualized as the critical
mechanism for learning, while also being an emergent
property of the learning process itself. It therefore follows
that attentional tuning should engage a diverse distribu-
tion of neural systems during category learning that are
involved in components of representation, decision, and
attention (Figure 1).

In previous work, we demonstrated that AARM can pre-
dict human-like learning across several complex category
learning paradigms using simultaneous streams of behav-
ioral and eye-tracking data (Galdo et al., 2021). As origi-
nally demonstrated by Rehder and Hoffman (2005a),
humans gradually show a fixation preference for the most
relevant dimensions over the course of learning tasks, and
this fixation bias co-occurs with increasing accuracy. The
authors argued that learning is not simply a process of
pure stimulus-to-category association, but rather involves
a gradual acquisition of information about dimension rel-
evance that eventually allows the observer to categorize
items as efficiently as a model like GCM (Nosofsky,
1986). By fitting AARM to eye-tracking data in previous
work, we were able to show that AARM’s mechanisms of
attention predict learning not only at the level of response
accuracy but also at the level of information sampling

Table 1. ROIs Resulting from fMRI Generalized Linear Model Analysis

Region(s) x y z Cluster Size Max z Score

1. Bilateral visual pathways, superior parietal 12 −101 1 117004 11.00

2. Bilateral dorsal ACC, superior frontal gyrus 0 25 45 6283 6.43

3. L middle frontal and precentral gyrus −48 8 53 4142 6.79

4. R frontal pole 38 53 −5 3985 6.88

5. R superior middle frontal gyrus, premotor cortex 28 −4 49 2556 6.11

6. L superior middle frontal gyrus, premotor cortex −42 3 62 1432 6.78

7. Thalamus, hippocampus, superior colliculus −7 −33 −3 1249 5.10

8. R dorsolateral pFC 43 32 34 1212 6.67

9. R insular cortex, putamen, caudate 21 15 0 1124 5.19

10. L posterior middle temporal gyrus −58 −40 4 1120 6.05

11. R thalamus, parahippocampal gyrus 11 −44 −2 898 5.94

12. L frontal pole −28 54 9 812 5.70

13. hippocampus 21 −25 −8 747 5.00

14. R posterior middle temporal gyrus 47 −28 −1 392 5.55

Coordinates and clusters are in 1-mm MNI152 space. Spatially contiguous voxel clusters corrected for family-wise error at p < .001. ROIs are listed in
descending order of cluster size. L = left; R = right; ACC = anterior cingulate cortex.
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behaviors with increasing reliance on relevant dimensions
as the task proceeds. Additional work showed that AARM
extends towithin-trial dynamics, such that it can accurately
predict the order in which individuals will fixate to dimen-
sions after gaining sufficient experience with the structure
of the task (Weichart et al., 2021). Because gaze fixations
during goal-directed behaviors are often considered to be
a terminal output of latent attention processes (Blair et al.,
2009; Kuhn, Tatler, & Cole, 2009; Itti & Koch, 2000), dem-
onstrating accurate fixation predictions provided support
for AARM’s ability to capture how humans interact with
new stimuli during learning. The current study took an
alternative approach, investigating the dynamic processes
that give rise to adaptive attention rather than the behav-
iors that result from it.

As shown in Figure 2C, AARM predicts changes in
accuracy across task blocks that closely resemble the
aggregate behavior of human participants: observed
behavior and model predictions show a decrease in accu-
racy after each rule-switch that soon re-approaches ceiling-
level performance. Although the available feature values
are consistent throughout the task, AARM is able to predict
shifts in accuracy by way of feedback-informed attention
weights to each dimension (Figure 2B), which naturally
incur large update magnitudes immediately following a
rule-switch (Figure 2A). Using attention gradient magni-
tude as a regressor in a GLM, model-based fMRI analyses
identified statistically significant covariation in 14 ROIs.
Consistent with our hypothesis, our results provided evi-
dence that latent attention mechanisms in AARM indeed
covary with BOLD activation in neural systems canonically
involved in orienting, visual perception, memory retrieval,
prediction error, and goal maintenance aspects of cate-
gory learning (Seger & Miller, 2010). We additionally con-
sider our results to be consistent with findings from RL
modeling work, in which attention mechanisms are inves-
tigated as a vehicle for posterror changes in behavior and
neural activation. Niv et al. (2015), for example, provided
evidence that attentional tuning during an RL paradigm
facilitated interactions between the intraparietal sulcus,
precuneus, and dorsolateral PFC (dlPFC) to update the
task representation and provoke action selection via the
basal ganglia. Follow-up work by Leong et al. (2017)
showed that attention served dual purposes of biasing
value computations during the decision period and
value-updating across learning, as reflected by activation
in the ventromedial pFC and basal ganglia. Together with
the results of the current work, these findings support the
notion that attention and learning bear bidirectional influ-
ences on one another, in amanner that recruits operations
from widely distributed systems across the brain.

Although the results presented here provide prelimi-
nary neural support for AARM, our approach has several
limitations. AARM comprises a set of dynamicmechanisms
that are hypothesized to be involved in category learning,
but the analyses presented here were not intended to
make any claims about the computations that occur in

the regions identified. Instead, the interpretations that
we can draw from a GLM are limited to the notion that
model-generated attention gradient magnitude accounts
for significant variability in BOLD signal change in the
regions specified. We additionally opted not to conduct
similar analyses with attention signals generated by any
alternative theoretical accounts. We therefore do not claim
that our results could only be identified by AARM, as it is
likely that other adaptive attention models would also
recruit activation of similar brain regions. For our pur-
poses, it was sufficient to demonstrate that adaptive atten-
tion in AARM covaried with neural activation in a manner
that a model with stable attention across trials would not
be equipped to do. Finally, it is important to note that the
current data set and analysis cannot suitably arbitrate
between activation related to attention updating and acti-
vation related to traditional notions of prediction error as
described by RL accounts (Sutton & Barto, 2018). This is
because 1) prediction error is implicit to AARM’s mecha-
nisms for attention updating and 2) transitions between
subtasks of the Mack et al. (2016) design naturally give rise
to both a high probability of prediction error and the
necessity to redistribute attention to newly relevant
dimensions. Although we do not consider this distinction
to be antithetical to the conclusions presented here,
follow-up work will investigate AARM’s predictions in the
context of task paradigms that were designed to dissociate
between the respective roles of attention and error pro-
cessing (e.g., Calderon et al., 2021).
The relative simplicity of our analytical approach never-

theless provided us with the opportunity to explore the
potential reach of adaptive attention, without imposing
constraints on the particular nature of the connection
between the latent signal of interest and neural activation
in each region. Now that we have established a set of ROIs
that coactivate with attentional tuning, the findings pre-
sented here will serve as an impetus for future joint
modeling work using AARM as a tool to understand the
dynamic neural computations involved in learning
(Turner, Forstmann, & Steyvers, 2019; Turner et al., 2013,
2017). In the following sections, we discuss the ROIs shown
in Figure 3 in terms of the functional clusters for category
learning that were defined by Seger and Miller (2010).

Parietal Cortex

The largest ROI that was identified by our GLM analysis
contained the superior parietal lobe (ROI 1 in Table 1),
which is known to play a role in attention orienting and
prioritization (Bisley & Goldberg, 2010). In the context
of category learning, the process of tuning attention
weights can be understood as a matter of orienting
attention to the appropriate dimensions, similar to how
attention must reorient following an invalid cue in an
attentional cueing task (e.g., Posner cueing paradigm;
Posner, 1980). When a spatial location (or object) is cued
with an invalid cue, attention to the cued location must be
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diminished to facilitate detection of the target elsewhere,
which leads to slower response times on invalid trials (i.e.,
the cueing effect). In this context, BOLD activation in the
superior parietal lobe has been shown to track processing
differences between validly and invalidly cued targets
(Vossel, Weidner, Thiel, & Fink, 2009), and individuals
with parietal lesions demonstrate a disrupted ability to
inhibit invalid cues (Sapir, Hayes, Henik, Danziger, &
Rafal, 2004). Other work has suggested that the lateral
intraparietal area is critically involved in integrating
bottom–up (salience-based) and top–down (relevance-
based) influences on overt attention (for a review, see
Bisley & Goldberg, 2010). In particular, Bisley and
Goldberg (2010) argued that the lateral intraparietal area
serves as a “priority map,” whereby saccades occur in
proportion to behavioral relevance with influences from
rapid visual response. In connection to AARM’s mecha-
nisms for attention, the parietal cortex serves a function
that is conceptually consistent with allocation of atten-
tion to spatial locations according to a combination of
learned dimension relevance with potential influences
from secondary computational goals.

Visual Cortex

Along with superior parietal lobe, the largest ROI that we
identified also contained the bilateral visual pathways in
the visual cortex (ROI 1 in Table 1), which has been shown
to be involved in tasks that require visual processing of
spatial locations or visual features (Maunsell & Treue,
2006; for reviews, see the works of Ungerleider & Kastner,
2000; Posner & Gilbert, 1999). Important insights on the
role of visual cortex in attention, for example, came from
early single-cell recordings from macaques (Chelazzi,
Miller, Duncan, & Desimone, 2001; McAdams & Maunsell,
1999, 2000; Chelazzi, Duncan, Miller, & Desimone, 1998;
Luck, Chelazzi, Hillyard, & Desimone, 1997), which
broadly demonstrated neuronal firing preferences for
search targets that closely matched a cue. Some studies
have additionally shown that after sufficient training,
neurons in the inferior temporal gyrus can selectively
respond to targets that match a cue on the basis of a par-
ticular, task-relevant feature despite mismatching on
others (De Baene, Ons, Wagemans, & Vogels, 2008;
Bichot, Rossi, & Desimone, 2005; Sigala & Logothetis,
2002) and similar correlates of learned discriminability
have been observed via human fMRI (Braunlich & Love,
2019; Folstein & Palmeri, 2013; Reber, Gitelman, Parrish,
& Mesulam, 2003; Saenz, Buracas, & Boynton, 2002).
In general, the visual cortex is thought to represent

objects at the basic perceptual level (e.g., contrast sensitiv-
ity and spatial resolution) in a manner that connects to
orientation and can be modulated by covert attention
(Barbot & Carrasco, 2017; for a review, see Carrasco,
2011). It is therefore notable that model-generated atten-
tion covaries with low-level sensory processing in the
visual cortex.

Hippocampus and MTL

Five ROIs overlap with the hippocampus and MTL func-
tional cluster described by Seger and Miller (2010; ROIs
7, 10, 11, 13, and 14 in Table 1). The MTL is thought to
be responsible for functions related to the encoding and
maintenance of individual learning instances (Cutsuridis
& Yoshida, 2017; O’Reilly & Munakata, 2000). The CA3
field of the hippocampus is thought to be particularly
relevant to category learning, given its role in forming
autoassociative links between items. This mechanism is
characterized by the representational reactivation of previ-
ously observed items during encoding to properly orthog-
onalize cues that overlap on a subset of dimensions
(Becker & Wojtowicz, 2007; Gluck, Meeter, & Myers,
2003; O’Reilly & McClelland, 1994; Sutherland & Rudy,
1989). Learners therefore are able to quickly store activa-
tion patterns of similar items with minimal interference
(for a review, see Hunsaker & Kesner, 2013).

As expected, several studies have demonstrated MTL
recruitment during category learning tasks, both alongside
human fMRI (Seger & Cincotta, 2006; Poldrack et al., 2001;
Poldrack, Prabhakaran, Seger, &Gabrieli, 1999) andmonkey
neurophysiology methods (Hampson, Pons, Stanford, &
Deadwyler, 2004). Other work, however, has suggested that
the involvement of the MTL is contingent upon themode of
learning that is required to complete a particular task.
Whereas rule-based categorization (i.e., categories are disso-
ciable by a single dimension) tends to result in maximal
differential activation in the hippocampus, information inte-
gration (i.e., information from multiple dimensions is
required to identify the category) andparadigms that contain
unannounced rule-switches tend to additionally recruit the
basal ganglia (Seger & Cincotta, 2005; Poldrack et al., 1999)
and pFC (Nomura & Reber, 2008; Nomura et al., 2007).

The MTL is nevertheless consistently recruited during
initial training across paradigms (Poldrack et al., 1999,
2001). This suggests that the MTL is necessary for learning,
but that familiarity-based activation may be insufficient for
categorization in more complex tasks. Studies have shown
that item representations in the hippocampus are reorga-
nized in accordance with changing rule states when multi-
ple training periods occur within a single experiment (Aly
& Turk-Browne, 2016a, 2016b). Importantly, model-based
fMRI work using SUSTAIN additionally showed that this
reorganization is influenced by selective attention to
dimensions with learned relevance to the current task
state (Mack et al., 2016). In light of these results and the
fact that attention updating in AARM critically relies on
continuous comparisons of probes to stored exemplars,
identifying ROIs in the MTL that covary with model-
predicted attention was consistent with expectation.

Midbrain Dopaminergic Systems and the
Basal Ganglia

Two ROIs overlap with the midbrain dopaminergic
systems and basal ganglia functional cluster (ROIs 7 and
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9 in Table 1). The basal ganglia are thought to serve as a
hub for converting information inputs to actions, in the
form of selecting both movements (Humphries, Stewart,
& Gurney, 2006) and task strategies (Frank, 2005). As part
of the midbrain dopaminergic system (Schultz & Romo,
1992), their role in action selection is critically influenced
by reward-related influxes in dopamine (Seymour, Daw,
Dayan, Singer, & Dolan, 2007; Schultz, Apicella, Ljungberg,
Romo, & Scarnati, 1993). The superior colliculus, for
example, has been shown to be involved in RL by way of
biasing visual responses in a reward-seeking manner
(Shires, Joshi, & Basso, 2010).

Model-based RL accounts explain that this type of learn-
ing can arise from the continuous calculation of prediction
errors, which are the differences between expected and
observed rewards following particular sequences of actions
(Nasser, Calu, Schoenbaum, & Sharpe, 2017; Schultz, 2016;
Frank & Badre, 2012a, 2012b). More generally, RL com-
prises an iterative process of prediction, action selection,
observation of outcome, and error-based policy (i.e., strat-
egy) updating, such that observers use their experiences to
guide future behaviors. Although seemingly straightfor-
ward, RL implicitly raises the problem of balancing explo-
ration and exploitation: Is it better to exploit an action that
is already known to produce a reward, or to explore other
actions in the hopes of acquiring a larger, less effortful, or
more consistent reward? A compelling line of computa-
tional and neurophysiology work (Humphries, Khamassi,
& Gurney, 2012; Frank, Doll, Oas-Terpstra, & Moreno,
2009; Frank, Moustafa, Haughey, Curran, & Hutchinson,
2007; Frank, Seeberger, & O’Reilly, 2004) has suggested
that the explore versus exploit tradeoff is directly modu-
lated by striatal dopamine, such that increasing tonic stria-
tal dopamine decreases the probability of explorative
action selection output from the basal ganglia to the
superior colliculus. fMRI studies have additionally shown
that exploration tends to engage the frontal pole, whereas
exploitation engages the ventromedial pFC (Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006), suggesting
dissociable downstream executive effects of action selec-
tion via the basal ganglia (Averbeck & O’Doherty, 2022).

In the context of category learning, the basal ganglia are
involved in tasks that require learning by trial and error
(Cincotta & Seger, 2007). Similar to action selection in
RL, it has been suggested that the basal ganglia are
involved in the selection of category representations and
strategies for sampling information from various dimen-
sions (Seger & Miller, 2010; Seger, 2008) with the goal of
maximizing accuracy. Turner et al. (2021), for example,
provided evidence that observers may “exploit” dimen-
sions via fixations that are known to carry probabilistic
category information, or they may “explore” other dimen-
sions in the hopes of identifying the one that is most reli-
ably diagnostic of category membership. ROI results are
consistent with the expectation that model-generated
attention covaries with activation related to prediction
error and policy updating in these regions.

pFC

Seven ROIs overlap with the pFC functional cluster (ROIs
2, 3, 4, 5, 6, 8, and 12 in Table 1). pFC is broadly thought to
be involved in goal-directed behavior (for a review, see
Bogdanov et al., 2018). In category learning tasks where
the goal is to efficiently discriminate between categories,
goal-directed behaviors refer to the rapid identification
and exploitation of the categorization rule. Evidence from
monkey neurophysiology has shown robust learning-
related differences in neuronal firing between categories,
even when stimuli contain multiple overlapping irrelevant
features (Freedman, Riesenhuber, Poggio, & Miller, 2001,
2002, 2003). Similarly, human fMRI work has shown that
learned boundaries between categories as well as relevant
feature conjunctions in information integration tasks are
represented in pFC (Li, Mayhew, & Kourtzi, 2009; Jiang,
Bradley, & Rini, 2007).
pFC has been shown to be engaged during category

learning (Vogels, Sary, Dupont, & Orban, 2002; Reber,
Stark, & Squire, 1998), and pFC activation is the earliest
predictor of the choice after category distinctions have
been acquired (Antzoulatos&Miller, 2011, 2014; Pasupathy
& Miller, 2005; Djurfeldt, Eleberg, & Graybiel, 2001). pFC
has additionally been shown to be involved in error
monitoring and corrective behaviors, particularly in the
anterior cingulate cortex (ACC) and dlPFC (Antzoulatos &
Miller, 2014; Hadland, Rushworth, Gaffan, & Passingham,
2003; Carter et al., 1998).
Whereas the basal ganglia appear to be involved in tun-

ing the current stimulus-action policy from trial to trial,
pFC is responsible for higher-level monitoring to identify
rule-shifts and inhibit the newly ineffective policy as
needed (Bissonette, Powell, & Roesch, 2013). Interactions
between the ACC and dlPFC have therefore been fre-
quently identified in tasks that involve set-shifting, like
the Wisconsin Card Sorting Task (Monchi, Petrides, Petre,
Worsley, & Dagher, 2001). Because AARM predicts
attention updates in the direction of an error gradient, it
is consistent with expectation that the increased error
frequency that accompanied rule-shifts were associated
with both substantial changes to the distribution of
attention and increased activity in pFC.

Conclusions

AARM defines a mechanism of attentional tuning that
arises as a consequence of the observer’s categorization
decisions in relation to feedback and, in turn, directly
impacts the psychological representations of future stim-
uli. Therefore, attention is adaptive in that it adjusts to the
experiences of the individual, and facilitates learning in a
goal-directed manner. The current study demonstrated
that with its unique specification of attentional tuning,
AARMwas able to accurately predict behavior in a complex
task paradigm that required continuous monitoring of
goals and representations. Importantly, the attentional

1774 Journal of Cognitive Neuroscience Volume 34, Number 10

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/34/10/1761/2041825/jocn_a_01882.pdf by guest on 08 Septem
ber 2023



tuning mechanisms that made it possible for AARM to
predict human-like learning behaviors also covaried with
activation in distributed neural systems that have been
implicated in distinct aspects of category learning. Given
that learning is known to require complex interactions
among cognitive functions of orienting, visual perception,
memory retrieval, prediction error, and goal maintenance,
our results provide preliminary support for AARM as
a neurally plausible theory for how these interactions
occur, and are facilitated by continuous updates to
attention.
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