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Abstract

■ Scene-selective regions of the human brain form allocentric
representations of locations in our environment. These represen-
tations are independent of heading direction and allow us to know
where we are regardless of our direction of travel. However, we
know little about how these location-based representations are
formed. Using fMRI representational similarity analysis and linear
mixedmodels, we tracked the emergence of location-based repre-
sentations in scene-selective brain regions. We estimated patterns
of activity for two distinct scenes, taken before and after partici-
pants learnt they were from the same location. During a learning
phase, we presented participants with two types of panoramic
videos: (1) an overlap video condition displaying two distinct
scenes (0° and 180°) from the same location and (2) a no-overlap
videodisplaying twodistinct scenes fromdifferent locations (which

served as a control condition). In the parahippocampal cortex
(PHC) and retrosplenial cortex (RSC), representations of scenes
from the same location became more similar to each other only
after they had been shown in the overlap condition, suggesting
the emergence of viewpoint-independent location-based repre-
sentations. Whereas these representations emerged in the PHC
regardless of task performance, RSC representations only emerged
for locations where participants could behaviorally identify the two
scenes as belonging to the same location. The results suggest that
we can track the emergence of location-based representations in
the PHC and RSC in a single fMRI experiment. Further, they
support computational models that propose the RSC plays a key
role in transforming viewpoint-independent representations into
behaviorally relevant representations of specific viewpoints. ■

INTRODUCTION

Rapidly learning the spatial layout of a new environment
is a critical function that supports flexible navigation.
This ability is thought to depend on the emergence of
location-based representations in scene-selective brain
regions that signal where we are irrespective of our cur-
rent heading direction. As we are unable to sample all
possible viewpoints from a given location simultaneously,
the formation of location-based representations requires
the integration of scenes from differing viewpoints.
Despite evidence for the existence of location-based rep-
resentations in scene-selective regions (e.g., Marchette,
Vass, Ryan, & Epstein, 2015; Vass & Epstein, 2013), we
know little about how such representations emerge.
Models of spatial navigation suggest that distinct brain

regions are responsible for supporting allocentric (viewpoint-
independent) and egocentric (viewpoint-dependent) repre-
sentations of our environment (Julian, Keinath, Marchette,
& Epstein, 2018; Byrne, Becker, & Burgess, 2007). Specifically,
the parahippocampal cortex (PHC) and hippocampus
are thought to encode allocentric spatial representations
related to navigational landmarks/boundaries (Epstein,
Patai, Julian, & Spiers, 2017; Burgess, Becker, King, &
O’Keefe, 2001) and spatial context more broadly (Epstein

& Vass, 2014). The hippocampus also supports a wider
variety of spatial and nonspatial associative/configural
functions in the service of memory and navigation (e.g.,
Henson & Gagnepain, 2010; Hannula & Ranganath, 2009;
Kumaran et al., 2007;O’Keefe&Burgess, 2005; Eichenbaum,
2004). Here, we focus on the PHC given its more specific
role in spatial allocentric processing relative to the hippo-
campus. In contrast, the parietal lobe is thought to support
egocentric representations of specific viewpoints that
underpin route planning (Calton & Taube, 2009; Byrne
et al., 2007). To enable efficient route planning, a transfor-
mation between allocentric and egocentric representations
is thought to occur in the retrosplenial cortex (RSC), cueing
allocentric representations from egocentric inputs and vice
versa (Bicanski & Burgess, 2018; Byrne et al., 2007).

In support of these models, human fMRI studies using
representational similarity analyses (RSA) have found
evidence for viewpoint-independent representations of
specific locations (henceforth referred to as “location-based
representations”) in a network of brain regions including the
PHC and RSC (Marchette, Vass, Ryan, & Epstein, 2014;
Vass & Epstein, 2013). More recently, panoramic videos
have been used to experimentally induce the formation
of location-based representations (Robertson, Hermann,
Mynick, Kravitz, & Kanwisher, 2016). Assessing pattern
similarity for distinct scenes taken from the same location,
Robertson et al. provided evidence for greater pattern sim-
ilarity in the RSC and occipital place area (OPA) after
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participants had seen a panoramic video showing that two
scenes were from the same location. This effect was not ev-
ident when participants could not learn that two sceneswere
from the same location. Interestingly, they also provided ev-
idence for an effect in the PHC that occurred inboth video
conditions—that is, regardless of whether participants could
learn the scenes were from the same location—suggesting a
more general associative role for the PHC.

Despite these results, we still know little about (1) how
quickly such representations are formed, (2) what types
of spatial information they encode, and (3) under what
conditions they are evoked. First, it remains unclear
whether location-based representations emerge rapidly
after short exposures to a new environment or whether
they only develop after prolonged experience. Robertson
et al. had participants watch videos outside the scanner,
over the course of 2 days, before assessing pattern simi-
larity inside the scanner. To test whether location-based
representations can form rapidly, we developed a proto-
col that permitted us to scan participants before and after
a short learning phase, allowing us to estimate changes in
pattern similarity as a function of learning in a single fMRI
experiment. Second, without tracking the formation of
location-based representations, it is difficult to determine
exactly what type of information they are representing.
For instance, shared representations across viewpoints
may relate to long-term semantic knowledge that is in-
voked when seeing different views of a well-known loca-
tion (see Marchette, Ryan, & Epstein, 2017). In contrast,
rapidly learning representations that are shared across
different viewpoints of a new environment implies that
the information being encoded is more likely to be spa-
tial rather than semantic in nature.

Third, we do not know whether location-based repre-
sentations are involuntary retrieved during visual pro-
cessing. Computational models of spatial navigation
predict that allocentric representations are automatically
activated and updated by egocentric viewpoints (Bicanski
& Burgess, 2018; Byrne et al., 2007). Furthermore, elec-
trophysiological studies in rodents have shown that allo-
centric representations are automatically activated and
updated during exploration (e.g., Monaco, Rao, Roth, &
Knierim, 2014; O’Keefe & Dostrovsky, 1971). However,
evidence in humans is lacking. Robertson et al. required
participants to recall whether scenes were presented on
the left or right of the screen, introducing a task that
explicitly required them to recall the panorama, and
the position of the specific scene within the panorama.
Suggesting some level of involuntary retrieval, one fMRI
study found that viewpoint-independent representations
of specific buildings may be activated when participants
judge whether the building is well known to them
(Marchette et al., 2014). In the current study, participants
performed an unrelated low-level attentional task as the
scenes were presented. The activation of location-based
representations under these conditions would suggest that
they can be retrieved in a relatively automatic manner.

Here, we test whether location-based representations of
novel environments can be learnt by integrating visual in-
formation across different scenes. Although location-based
representations are predicted bymodels of spatial navigation,
they may also be consistent with various other cognitive
models (see Discussion). As such, we define location-
based representations to be any type of information that
encodes the relationship between different, nonoverlap-
ping views of the same location. We recorded patterns of
BOLD activity as participants passively observed a number
of scenes depicting different views of novel locations.
Subsequently, using an experimental manipulation intro-
duced by Robertson et al. (2016), participants watched
videos showing these scenes as part of a wider panorama.
Half of the videos allowed participants to learn the spatial
relationship between two scenes from the same location
(overlap condition). The remaining videos acted as a
control by presenting scenes from different locations
(no-overlap condition). After the videos, we again recorded
patterns of activity for each of the scenes.Whereas Robertson
et al. (2016) only assessed scene representations after
video presentation, we also scanned before and during
the videos; see Clarke, Pell, Ranganath, and Tyler (2016)
for a similar preexperimental versus postexperimental
design focused on changes in object representations. This
allowed us to track the potential emergence of location-
based representations using RSAs as well as assess neural
activity when these representations were being formed.
Using generalized linear mixed models, we show that

patterns evoked by different scenes become more similar
in scene-selective regions of the PHC and RSC after the
presentation of the video panoramas. This increase in sim-
ilarity was specific to the “overlap” video condition, where
scenes from the same location were presented together,
and was not observed in the no-overlap condition. This
suggests the emergence of location-based representations
in the PHC and RSC. Importantly, whereas this increase in
pattern similarity emerged in the PHC regardless of behav-
ioral performance, the same pattern was only present in
the RSC when participants could remember which scenes
came from the same location. This finding supports
computational models that propose the RSC is critical in
translating viewpoint-independent representations in the
medial temporal lobe into more behaviorally relevant
egocentric representations.

METHODS

Participants

Twenty-eight right-handed participants were recruited
from theUniversity of York, United Kingdom. These partic-
ipants had no prior familiarity with the locations used as
stimuli in the experiment (see below). All participants gave
written informed consent and were reimbursed for their
time. Participants had either normal or corrected-to-
normal vision and reported no history of neurological or
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psychiatric illness. Data from five participants could not be
included in the final sample because of problemswith fMRI
data acquisition (one participant), excess ofmotion-related
artifacts in the imaging data (three participants), and a
failure to respond during one of the in-scanner tasks
(one participant). As such, analyses included 23 partici-
pants (10 men) with a mean age of 21.96 years (SD =
3.22 years). The study was approved by a local research
ethics committee at the University of York.

Stimuli

We generated 12 panoramic images of different urban
locations from the City of Sunderland, and Middlesbrough
town center, United Kingdom (Figure 1; osf.io/cgy97).
These panoramas spanned a 210° field-of-view horizontally
but were restricted in the vertical direction to limit the
appearance of proximal features (<2 m from the camera).
Throughout the experiment, 24 “endpoint images” display-
ing 30° scenes taken from either end of each panorama
were shown (i.e., centered at 0° and 180°; Figure 1A).
These images were shown both inside and outside the
scanner to assess participants’ spatial knowledge of the
depicted locations and for the RSA (see below).
Endpoints were also shown in a series of videos (see

osf.io/cgy97). In overlap videos, Images A1 and A2 (taken
fromopposite ends of the samepanorama) were presented
such that their spatial relationship could be inferred
(Figure 1B). Here, a camera panned from each endpoint
to the center of the panorama showing that A1 and A2

belonged to the same location. In contrast, a no-overlap
video featured endpoints from two unrelated panoramas
(Images B1 and C2). Again, these videos showed an end-
to-center camera pan from each image. However, because
there was no visual overlap between the video segments,
observers could only infer that Endpoints B1 and C2
belonged to different locations. The no-overlap condition
acted as a control condition, ensuring Endpoints B1 and
C2 were seen in a similar video to endpoints in the overlap
condition (A1 and A2), with the same overall exposure and
temporal proximity. To ensure that the occurrence of a
visual overlap was easily detectable, all videos alternated
the end-to-center sweep from each endpoint over two
repetitions.

Pairs of endpoints from the same panorama were
grouped into sets of three. The first pair in each set was
assigned to the overlap video condition (A1 and A2). Two
endpoints from different panoramas were assigned to the
no-overlap video condition (B1 and C2). The remaining
endpoints belonged to an “unseen video” condition as they
were not shown during any video (B2 and C1). These
assignments were counterbalanced across participants
such that each image appeared in all three conditions an
equal number of times. The order of camera pans during
videos (e.g., A1 first vs. A2 first) was also counterbalanced
both within and across participants. Analyses showed the
visual similarity of image endpoints was matched across
experimental conditions as measured by the Gist descrip-
tor (Oliva & Torralba, 2001) and local correlations in lumi-
nance and color information (osf.io/6sr9p/ ). Pilot data

Figure 1. Stimuli used during,
and analyses performed on,
the in-scanner tasks. (A) An
example location panorama
with two endpoint images.
Single endpoints were shown
during the in-scanner target
detection task. As in Robertson
et al. (2016), full panoramas
were never shown as whole
images but were presented
during the in-scanner videos.
(B) Depiction of the two video
conditions: overlap versus
no-overlap videos. Overlap
videos showed camera pans
from each endpoint of a given
panorama (denoted A1 and A2)
to the center of that panorama.
The central overlap allowed
participants to learn a spatially
coherent representation that
included both A1 and A2.
No-overlap videos involved
pans between endpoints from
two different locations (denoted B1 and C2), meaning that there was no visual overlap. (C) Similarity contrast matrices used to model changes in
representational similarity between endpoints (i.e., between A1, A2, B1, B2, C1, and C2). Red squares indicate positively weighted correlations, and
blue squares indicate zero-weighted correlations. From left to right, the matrices account for the representational similarity of endpoints: (1) from
the same location regardless of video condition, (2) that were seen in the same video (including overlap and no-overlap videos), (3) in the unseen
condition specifically, and (4) in the overlap condition specifically. Linear combinations of these matrices, along with their interactions with a session
regressor (pre-videos vs. post-videos), accounted for each RSA effect across all experimental conditions.
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revealed that participants could not reliably identify which
endpoints belonged to the same location without having
seen the videos (osf.io/kgv64/).

Procedure

Before entering the scanner, participants performed a
behavioral task to assess their ability to infer which image
endpoints were from the same location. Once in the scan-
ner, they undertook a functional localizer task to identify
scene-selective regions of the PHC and RSC. They were
then shown each image endpoint multiple times (per-
forming a low-level attentional task) to assess baseline
representational similarity between each image endpoint
(i.e., before learning). During a learning phase, overlap
and no-overlap videos were presented, with participants
instructed to identify whether the endpoints in each video
belonged to the same location or not. After this video
learning phase, each image endpoint was again presented
multiple times to assess postlearning representational
similarity between image endpoints. Finally, outside the
scanner, participants performed the same behavioral task
(as before scanning) to assess the extent to which partic-
ipants had learnt which image endpoints belonged to the
same location (and a further test of associative memory;
see below). A figure illustrating the order and approxi-
mate duration of each experimental task is available at
osf.io/zh8f2/.

Prescanner/Postscanner Tasks

Participants were tested on their ability to identify which
endpoints belonged to the same location both before
and after scanning (both outside the scanner). On each
trial, one endpoint surrounded by a red box was presented
for 3 sec. After this, five other endpoints were displayed
in a random sequence, each shown alongside a number
denoting the order of appearance (i.e., 1–5; Figure 2A;
2 sec per image, 500-msec ISI). One image in the sequence
(the target) was taken from the same panorama as the

cue. The remaining four endpoints (lures) belonged to
panoramas in the same set of stimuli. As such, if Endpoint
B1 was presented as the cue, B2 would be the target, and
A1, A2, C1, and C2 would be lures (i.e., a five-alternative
forced choice, 5-AFC). After the five alternatives had been
shown, participants were prompted to select the target using
a numeric key press (1–5). Across 24 trials, each endpoint
was used as a cue image.
After scanning and the second block of the location iden-

tity task described above, participants were also asked to
identify which images appeared together in the same video.
Note that this is slightly different to the previous task
because participants could have known that Endpoints B1
and C2 appeared in the same video, despite not knowing
which endpoints were from the same location (i.e., B2
and C1, respectively). Using a similar procedure to that
described above, endpoints from either the overlap or
no-overlap video conditions were cued and participants
were asked to select the appropriate endpoint from the
five alternatives in the same set.

In-scanner Tasks

Functional localizer. Before the main experimental
task, participants undertook a functional localizer scan with
the purpose of identifying four scene-selective ROIs—in
particular, the left and right PHC as well as the left and right
RSC. This involved presenting four blocks of scene images
(coasts, mountains, streets, and woodlands) interleaved
with four blocks of face images (male and female). In each
block, 10 unique images were shown in quick succession
with a display time of 700 msec per image and an ISI of
200 msec. Blocks were separated with a 9-sec interblock
interval, and their running order was counterbalanced
across participants. The scene images used here were
different to those in the main experiment, and none was
repeated during the localizer itself. All images were shown
in grayscale andwere presentedwith a visual angle of∼14°.
To ensure localizer images were being attended to, partic-
ipants were tasked with detecting an oddball target that

Figure 2. Behavioral task and
results (A) A schematic illustration
of the pre-video and post-video
behavioral task. One endpoint
was first presented as a cue
(enclosed by red box), followed
by five numbered alternatives.
Participants were then prompted
to select which one of the
alternatives belonged to the
same location as the cue. (B)
Performance on the pre-video
and post-video behavioral tasks
plotted by video condition.
Error bars represent 95%
confidence intervals, and the
dashed line at p = .2 reflects
5-AFC chance level.

448 Journal of Cognitive Neuroscience Volume 33, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/3/445/1862592/jocn_a_01654.pdf by guest on 08 Septem
ber 2023

https://osf.io/kgv64/
https://osf.io/kgv64/
https://osf.io/zh8f2/


was superimposed onto one of the images in each block.
The target was a small red dot with a 3-pixel radius. When
this was seen, participants were required to respond
with a simple button press as quickly as possible (mean
detection performance: d0 = 3.116, SD = 0.907).

Presentation of endpoint images. Participants were
shown all 24 endpoint images during an event-related
functional imaging task. The task was optimized to mea-
sure multivariate patterns of BOLD activity specific to in-
dividual endpoints and was run both before and after
participants had seen the panoramic videos (Session 1:
pre-videos; Session 2: post-videos). All endpoints were
presented nine times for both the pre-video and post-video
functional run. Images were displayed for 2.5 sec with
an ISI of 2 sec. The order of stimuli in each functional
run was optimized to facilitate the decoding of unique
BOLD patterns across endpoints (optimization algorithm
available at osf.io/eh78w/). No image was presented on
successive trials to avoid large adaptation effects, and
the design included 12 null events in each functional
run (i.e., 10% of all events). Like the functional localizer,
participants were tasked with detecting an oddball target
that was superimposed onto a small proportion of the
images. Here, the target was a group of three small red
dots (3-pixel radius, <0.2°), with each dot drawn at a ran-
dom position on the image. Targets were present on one
of every nine trials such that eight repetitions of each
endpoint image were target free (target trials were not
used to estimate BOLD patterns). As above, participants
were required to respond to these targets with a simple
button press (mean detection performance, d 0, were
3.362 [SD = 0.642, pre-videos] and 3.659 [SD = 0.485,
post-videos]).

Panoramic video task. Participants watched all video
clips from the overlap and no-overlap video conditions
while being scanned. Each video lasted 20 sec and was
followed by a 10-sec rest period. In the first 3 sec of this
rest period, participants were prompted to indicate
whether each video segment depicted scenes from the
same or different locations. Responses were recorded
with a left/right button press. This question was asked
to ensure that participants were attending to the visual
overlap across segments (mean discrimination perfor-
mance: d0 = 3.220, SD = 0.373). All videos were repeated
three times in a pseudorandom order to allow for suffi-
cient learning. Before entering the scanner, participants
were asked to remember which endpoints were seen
together in the same video, even if they appeared in a
no-overlap video. Participants were told that a test after
the scan would assess their knowledge of this.

MRI Acquisition

All functional and structural volumes were acquired on a
3-T Siemens MAGNETOM Prisma scanner equipped with

a 64-channel phased array head coil. T2*-weighted scans
were acquired with EPI, 35 axial slices (approximately 0°
to the AC–PC line; interleaved), and the following param-
eters: repetition time = 2000 msec, echo time = 30 msec,
flip angle = 80°, slice thickness = 3 mm, and in-plane
resolution = 3 × 3 mm. The number of volumes acquired
during (a) the functional localizer, (b) the video task, and
(c) each run of the endpoint presentation task was 75, 363,
and 274, respectively. To allow for T1 equilibrium, the first
three EPI volumes were acquired before the task started
and thendiscarded. Subsequently, a fieldmapwas captured
to allow the correction of geometric distortions caused by
field inhomogeneity (see the MRI Preprocessing section
below). Finally, for purposes of coregistration and image
normalization, a whole-brain T1-weighted structural scan
was acquired with a 1-mm3 resolution using a magnetiza-
tion prepared rapid gradient echo pulse sequence.

MRI Preprocessing

Image preprocessing was performed in SPM12 (www.fil.ion
.ucl.ac.uk/spm). This involved spatially realigning all EPI
volumes to the first image in the time series. At the same
time, images were corrected for field inhomogeneity based
geometric distortions (as well as the interaction between
motion and such distortions) using the Realign and Unwarp
algorithms in SPM (Hutton et al., 2002; Andersson, Hutton,
Ashburner, Turner, & Friston, 2001). For the RSA, multi-
variate BOLD patterns of interest were taken as t statistics
from a first-level general linear model (GLM) of un-
smoothed EPI data in native space. Aside from regressors
of interest, each first-level GLM included a set of nuisance
regressors: six affine motion parameters, their first-order
derivatives, regressors censoring periods of excessive
motion (rotations > 1° and translations > 1 mm), and a
Fourier basis set implementing a 1/128-Hz high-pass
filter. For the analyses of univariate BOLD activations, EPI
data were warped to Montreal Neurological Institute space
with transformation parameters derived from structural
scans (using the DARTEL toolbox; Ashburner, 2007).
Subsequently, the EPI data were spatially smoothed with
an isotropic 8-mm FWHM Gaussian kernel before GLM
analysis (regressors included the same nuisance effects
noted above).

ROIs

We generated four binary masks per participant to repre-
sent each ROI in native space. To do this, a first-level GLM
of the functional localizer datamodeled BOLD responses to
scene and face stimuli presented during the localizer task.
Each ROI was then defined as the conjunction between a
“scene > face” contrast and an anatomical mask of each
region that had been warped to native space (left/right
PHC sourced from Tzourio-Mazoyer et al., 2002; left/right
RSC sourced from Julian, Fedorenko, Webster, & Kanwisher,
2012). Thus, the ROIs were functionally defined but
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constrained to anatomical regions known to be spatially
selective. Normalized group averages of these ROIs are
available at osf.io/gbznp/ and neurovault.org/collections
/4819.

Recent evidence suggests that the RSC is composed of at
least two functionally distinct subregions, both of which
may be scene selective: (1) a retinotopically organized
medial place area in posterior sections of the RSC and (2)
a more anterior region corresponding to BAs 29 and 30
associated with more integrative mnemonic processes
(Silson, Steel, & Baker, 2016). In the current study, we
focus on the functionally defined RSC as a whole and do
not differentiate between these subregions. However,
the functional ROIs that we identified for each participant
principally cover anterior sections of the RSC corre-
sponding to BAs 29 and 30 and show little overlap with
the retinotopic areas identified by Silson et al.

The OPA has also been implicated as a critical scene-
selective region (e.g., Robertson et al., 2016; Marchette
et al., 2015). Recent research suggests that this region
is principally involved in representing environmental
boundaries and navigable paths during visual perception
(Malcolm, Silson, Henry, & Baker, 2018; Bonner & Epstein,
2017; Julian, Ryan, Hamilton, & Epstein, 2016). However,
computational models of spatial navigation do not predict
that the OPA maintains location-based representations that
are viewpoint invariant (Bicanski & Burgess, 2018; Byrne
et al., 2007). In addition, we were only able to reliably
delineate the OPA bilaterally in 6 of the 23 participants in
our sample. As such, we did not focus on this region in
the current study; instead, we restricted our main analyses
and family-wise error (FWE) corrections to the PHC and RSC
bilaterally. Nonetheless, for completeness, we generated an
OPAmask using a normalized group-level contrast and ran
the location-based RSA analyses reported below on this
region separately (statistical outputs available at osf.io
/d8ucj/). No effects of interest were identified in either
the left or right OPA.

RSAs

Our general approach to the RSA involved modeling the
observed similarity between different BOLD patterns as
a linear combination of effects of interest and nuisance
variables. Here, the similarity between BOLD responses
was taken as the correlation of normalized voxel intensi-
ties (t statistics) across all voxels in an ROI. The resulting
correlation coefficients were then Fisher-transformed
before being subjected to statistical analysis. This trans-
form ensures that the sampling distribution of similarity
scores is approximately normal to meet the assumption
of normality for statistical inference. We then entered all
the transformed similarity scores under test from each
participant and stimulus set into a general linear mixed-
effects regression model. Although underused in the
neurosciences (although see Motley et al., 2018), these
models are common in the psychological literature as

they offer a robust method of modeling nonindependent
observations with few statistical assumptions (Baayen,
Davidson, & Bates, 2008). Here, we used mixed-effects
models to predict observed representational similarity
between endpoints with a set of fixed-effects and random-
effects predictors (discussed below).
Importantly, mixed-effects models allow us to include

estimates of pattern similarity across individual items
(endpoints) and participants in the same statistical model.
The fixed-effects predictors in each model specified key
hypotheses of interest. The random effects accounted for
statistical dependencies between related observations at
both the item and participant levels. RSAs of fMRI data typ-
ically either assess patterns across all items (regardless of
condition) or average across items in the same condition,
meaning that important variation within conditions is
ignored. Our modeling approach allows us to examine
changes in representational similarity at the level of both
items and conditions simultaneously while controlling for
statistical dependencies between related observations.
Raw similarity data and mean similarity matrices are

available on the Open Science Framework (osf.io/cgy97).
This page also includes MATLAB functions for estimating
each statistical model as well as the model outputs.

Visual Representations of Specific Endpoints

We first examined whether the passive viewing of end-
point images evoked stimulus-specific visual representa-
tions in each of our four ROIs (left and right PHC and
RSC). Multivariate BOLD responses to the endpoints
were estimated for Session 1 (pre-videos) and Session 2
(post-videos) separately. We then computed the similar-
ity of these responses across sessions by correlating
BOLD patterns in Session 1 with patterns in Session 2.
This resulted in a nonsymmetric, 24 × 24 correlation ma-
trix representing the similarity between all BOLD pat-
terns observed in Session 1 and those observed in
Session 2. The correlation coefficients (n = 576 per par-
ticipant) were then Fisher-transformed and entered as a
dependent variable into a mixed-effects regression model
with random effects for participants and endpoints. The
main predictor of interest was a fixed effect that con-
trasted correlations between the same endpoints (e.g.,
A1–A1, B1–B1; n = 24 per participant) with correlations
between different endpoints (e.g., A1–A2, A1–B1; n =
552 per participant) across the two sessions.
As well as running this analysis in each ROI, we per-

formed a complementary searchlight analysis to detect
endpoint-specific representations in other brain regions.
Here, local pattern similarity was computed for each brain
voxel using spherical searchlights with a 3-voxel radius
(the mean number of voxels per searchlight was 105.56;
searchlights were not masked by gray-/white-matter tissue
probability maps). Fisher-transformed correlations for
same versus different endpoints were contrasted at the first
level before running a group-level random-effects analysis.
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Location-based Memory Representations

We next tested our principal hypothesis—whether repre-
sentations of Endpoints A1 and A2 became more similar to
one another as a result of watching the overlap videos—in
each ROI. Using the multivariate BOLD responses from
Sessions 1 and 2, we computed the neural similarity
between endpoints that were presented within the same
image set and the same session. This resulted in eight sym-
metric, 6 × 6 correlationmatrices for each participant—one
per set in Session 1 and one per set in Session 2. All the
correlation coefficients from the lower triangle of these
matrices (n = 15) were then Fisher-transformed and
entered as a dependent variable into a mixed-effects regres-
sion model (see Figure 1C). As such, the model included
120 correlation coefficients per participant (2 sessions ×
4 sets × 15 similarity scores).
One fixed-effects predictor modeled unspecific changes

in similarity between sessions (hereafter referred to the
session effect) by coding whether similarity scores were
recorded in Session 1 or Session 2. Similarly, a further three
fixed-effects predictors modeled similarity differences
attributable to (1) endpoints in the overlap condition
(i.e., A1–A2), (2) endpoints shown in the same video
(A1–A2, B1–C2), and (3) endpoints that were not shown
in any video (C1–B2)—shown in Figure 1C. Together,
these predictors and their interactions constituted a 2 ×
3 factorial structure (Session [1 vs. 2] × Condition [overlap
vs. no-overlap vs. unseen]) and so were tested with a
Session × Condition F test. Nonetheless, our principal
hypothesis holds that there will be a specific interaction
between the Session and Overlap predictors (referred to
as the Session × Overlap effect), which we report along-
side the F test. Themodel also included a predictor indicat-
ing whether endpoints were from the same location
(A1–A2, B1–B2, C1–C2), thereby allowing us to estimate
changes in similarity between them. This ensured that
variance loading onto the Session × Overlap effect was
properly attributable to the learning of spatially coherent
representations rather than some combination of other
factors (e.g., same location + seen in the same video).
Note that this model term quantifies similarity differences
between overlap endpoints and all other endpoints that
“change” between Session 1 and Session 2. A positive effect
may indicate either an increase in similarity in the overlap
condition or a decrease across all other similarity scores
regardless of condition (or both). As such, the model is
structured to account for any systematic change in the
baseline level of similarity across sessions (see Results).
Furthermore, the Session × Overlap term is only sensitive
to a learning effect that causes relative shifts in similarity
scores specific to the overlap condition and cannot be
attributed to any other combination of effects.
Finally, the model included a behavioral predictor spec-

ifying whether participants were able to match Endpoints
A1–A2 in the postscanner task (mean centered with three
levels: 0, 1, or 2 correct responses per pair). This examined

whether changes in representational similarity were
dependent on participants’ ability to identify that end-
points from the overlap condition belonged to the same
location after scanning (i.e., a three-way interaction:
Session × Overlap × Behavior). Random effects in the
model accounted for statistical dependencies across
image sets, sessions, and participants.

To complement the ROI analyses, we ran a searchlight
analysis that tested for RSA effects across the whole brain
(searchlight radius: 3 voxels). Here, first-level contrast esti-
mates compared the Fisher-transformed correlations
between overlap endpoints (i.e., A1–A2) and all other
endpoint correlations (e.g., B1–B2, B1–C1). A group-level
analysis then compared these similarity contrasts between
sessions to test the Session × Overlap interaction. To test
for a Session ×Overlap × Behavior interaction, the group-
level model also included a behavioral predictor specifying
a participant’s average performance in matching A1 to A2
during the postscanner task (mean centered). Note that
this searchlight analysis is not able to control for the poten-
tial contributions of other important factors (i.e., same
location, same video) that our mixed-effects approach
explicitly controls. It is complementary, but secondary, to
the ROI analyses.

Statistical Validation and Inference

To ensure that each mixed-effects regression model was
not unduly influenced by outlying data points, we systemat-
ically excluded observations that produced unexpectedly
large residuals more than 2.5 SDs above or below model
estimates. This was conducted regardless of condition
and so did not bias the analyses to finding an effect (if no
effect were present). Furthermore, a highly similar pattern
of results was seen when not excluding outliers, supporting
the robustness of our findings (see osf.io/dzy3p). Following
these exclusions, Kolmogorov–Smirnov tests indicated that
residuals were normally distributed across all the linear
mixed-effects models. In addition, visual inspection of scat-
terplots showing residual versus predicted scores indicated
no evidence of heteroscedasticity or nonlinearity. Where
effects size estimates are contrasted across different
models, we report the result as an unequal variance t test
with the degrees of freedom being approximated using
the Welch–Satterthwaite equation (Welch, 1947).

All p values are reported as two-tailed statistics. FWE cor-
rections related to the multiple comparisons across our
four ROIs are made for each a priori hypothesis (denoted
pFWE). In addition, we report whole-brain effects from
searchlight andmass univariate analyses when they survive
FWE-corrected thresholds ( pFWE < .05) at the cluster level
(cluster-defining threshold: p < .001 uncorrected). All
other p values are noted at uncorrected levels. As well as
reporting null hypothesis significance tests, we present
the results of complimentary Bayesian analyses. Unlike
the frequentist statistics, these indicate whether the null
is statistically preferred over the alternative hypothesis.

Berens, Joensen, and Horner 451

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/3/445/1862592/jocn_a_01654.pdf by guest on 08 Septem
ber 2023

https://osf.io/dzy3p


As such, we use the Bayesian analyses to determine
whether there is evidence for the null when frequentist
tests are nonsignificant. For each t test, a Bayes factor in
favor of the null hypothesis (BF01) was computed with a
Cauchy prior centered at zero (i.e., no effect) and a scale
parameter (r) of

ffiffiffiffiffiffiffi

0:5
p

(see Gelman, Jakulin, Pittau, & Su,
2008). Bayes factors greater than 3 are taken as evidence in
favor of the null hypothesis, whereas those less than 1/3 are
taken as evidence in favor of the alternative (Kass& Raftery,
1995). Finally, alongside the inferential statistics, we report
Cohen’s d effect sizes for each t test. When effects are
tested in the context of a mixed-effects model, estimates
of Cohen’s d are computed from the fixed effects only
and exclude variance attributed to random effects.

RESULTS

Behavioral Performance

We first analyzed behavioral responses to the prescanner
and postscanner tasks to determine (a) whether partici-
pants were able to identify which endpoints belonged to
the same location and (b) whether performance in-
creased as a result of watching the overlap videos. A gen-
eralized linear mixed-effects analysis modeled correct
versus incorrect matches between cue and target end-
points as a function of Session (pre-videos vs. post-
videos) and Experimental Condition (overlap, no overlap,
and unseen). As such, the model constituted a 2 × 3 fac-
torial design with random intercepts and slopes for both
participants and endpoints.

The results, displayed in Figure 2B, revealed significant
main effects of Session, F(1, 1098) = 47.302, p< .001, and
Condition, F(2, 1098) = 6.500, p = .002, as well as an in-
teraction between them, F(2, 1098) = 11.231, p < .001.
The interaction indicated that performance was at chance
level across all conditions before the videos (min: p =
.249, BF01 = 2.531, d = −0.241) but substantially in-
creased in the overlap video condition after the videos,
t(1098) = 6.867, p < .001, BF01 < 0.001, d = 1.432
(post-video > pre-video). This increase was not seen in
the no-overlap condition, t(1098) = 1.761, p = .079,
BF01 = 1.212, d = 0.3672; however, a significant increase
was seen in the unseen condition, t(1098) = 3.159, p =
.002, BF01 = 0.105, d= 0.659. The performance increases
in the control conditions (only significant in the unseen
condition) were likely the result of participants being able
to exclude overlap endpoints as nontarget alternatives in
the 5-AFC test (i.e., a recall-to-reject strategy, disregarding
A1 and A2 when cued with either B1, B2, C1, or C2).
Consistent with this, Session 2 performance in the no-
overlap andunseen conditionswas not significantly different
fromchance level in a 3-AFC test (0.33, as opposed to 0.2 in a
5-AFC test; no-overlap: t(1098) =−1.494, p= .135, BF01 =
1.729, d = −0.312; unseen: t(1098) = −0.054, p = .957,
BF01 = 4.567, d = −0.011). Nonetheless, performance in
the overlap condition did significantly differ from this

adjusted chance level, t(1098) = 4.514, p < .001, BF01
= 0.006, d = 0.941.
Participants’ increased ability to match endpoints in

the overlap condition was not characteristic of a general
tendency to match endpoints that appeared in the same
video (i.e., selecting B1 when cued with C2). This was ev-
ident because matches between no-overlap endpoints
were not more likely in Session 2 compared with
Session 1, t(366) = 0.646, p = .519, BF01 = 3.785, d =
0.135. In contrast, performance increases in the overlap
condition (i.e., the post-video > pre-video effect report-
ed above) were significantly larger than this general effect
of matching all endpoints that appeared in the same vid-
eo, t(949.20) = 5.027, p < .001, BF01 = 0.002, d = 1.048.
In addition, participants were unable to explicitly match
no-overlap endpoints shown in the same video during
the final behavioral task (comparison to 0.2 chance level:
t(334) = −0.467, p = .641, BF01 = 4.141, d = −0.097).
In summary, participants rapidly learnt which scenes
were from the same location; however, this was only
seen in the overlap condition (and not in the no-overlap
condition).

Visual Representations of Specific Endpoints

First, we report the results of the mixed-effects model
testing for representations of specific endpoints that re-
mained relatively unchanged across sessions (i.e., pre-
videos to post-videos). This revealed that correlations
between the same endpoints (e.g., A1–A1, B1–B1) were
greater than correlations between different endpoints
(e.g., A1–A2, A1–B1) in both the right PHC, t(13224) =
5.229, pFWE < .001, BF01 = 0.001, d = 1.090, and the left
PHC, t(13200) = 6.351, pFWE < .001, BF01 < 0.001, d =
1.324. This effect was not significant in either the right
or left RSC, t(13210) = 1.185, pFWE = .945, BF01 = 2.454,
d = 0.247, and t(13202) = −0.231, pFWE = .999, BF01 =
4.463, d = −0.048, respectively.
The searchlight analysis that tested for consistent rep-

resentations of specific endpoints across the whole brain
revealed representations in one large cluster that peaked
in the right occipital lobe (area V1; t(22) = 11.50, pFWE <
.001, k = 5202, BF01 < 0.001, d = 2.398) and extended
into the areas V2, V3, and V4 and the fusiform gyri bilat-
erally. Three smaller clusters were also detected in the
right precuneus, t(22) = 4.64, pFWE = .011, k = 44,
BF01 = 0.005, d = 0.968, right inferior parietal lobule,
t(22) = 4.40, pFWE = .028, k = 37, BF01 = 0.008, d =
0.918, and right RSC, t(22) = 4.32, pFWE = .025, k =
38, BF01 = 0.008, d = 0.901. The latter effect overlapped
considerably with the right RSC ROI identified for each
participant. However, the effect size estimated in the
ROI analysis was weaker than the peak searchlight effect,
principally because it was variable across endpoints and
as such largely accounted for by random effects in the
model. Unthresholded statistical maps of these effects
are available at neurovault.org/collections/4819.
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In summary, we find evidence that the PHC (bilaterally),
the right RSC, and a number of early visual areas main-
tained consistent representations of specific endpoints
across scanning sessions. Note that whether a region codes
such representations across scanning sessions is indepen-
dent of whether it may learn location-based memory rep-
resentations in the second session; these effects are, in
principle, dissociable.
As part of a supplementary analysis, we also tested for

visual representations of specific scenes that remained
stable within (but not necessarily across) scanning sessions
(see osf.io/exzba/). To quantify the BOLD similarity of spe-
cific scenes within each session, we required two indepen-
dent pattern representations per session. Thus, across
both sessions, we estimated voxel patters derived from
four distinct periods: (a) first half of Session 1 (pre-videos),
(b) second half of Session 1 (pre-videos), (c) first half of
Session 2 (post-videos), and (d) second half of Session 2
(post-videos). As a result, each of these voxel representa-
tions was only derived from four endpoint presentations.
Nonetheless, when similarity scores were modeled in a
mixed-effects regression, each ROI showed greater levels
of similarity between representations of the same endpoint
relative to the similarity between different endpoints
(weakest effect in the left PHC: t(26492) = 2.211, p =
.027, BF01 = 0.606, d = 0.461). Furthermore, this analysis
revealed that representations of the same endpoints be-
came more similar to one another after the videos in the
right RSC and left PHC (weakest effect: t(26492) = 2.598,
p = .009, BF01 = 0.308, d = 0.542). This latter effect was
insensitive in the right PHC and left RSC (weakest effect:
t(26492) = 1.671, p = .095, BF01 = 1.375, d = 0.348).

Location-based Memory Representations

Effects in the Right PHC

Next, we report the results of the mixed-effects model
examining whether pattern similarity between different

endpoints changed across sessions as a result of watching
the videos. This revealed a significant Session × Condition
interaction in the right PHC, F(2, 2739)= 6.827, pFWE= .004
(average similarity matrices shown in Figure 3; condition
estimates and confidence intervals plotted in Figure 4A).
Post hoc tests showed that this effect was driven by a
difference between pre-video to post-video sessions for
endpoints in the overlap condition, t(2739) = 2.923, p =
.004, BF01 = 0.167, d = 0.610. This difference was not ob-
served in any other condition (no overlap: t(2739) = 0.756,
p = .450, BF01 = 3.533, d = 0.156; unseen: t(2739) =
−0.970, p = .332, BF01 = 3.001, d = −0.202).
Furthermore, a significant Session × Overlap interaction
highlighted that the similarity differences in the overlap
condition were attributable to the video manipulation
alone rather than some combination of other factors, t
(2739) = 2.549, pFWE = .043, BF01 = 0.337, d= 0.532.

Importantly, before the videos were shown, pairs of
endpoints from the same location (i.e., A1–A2, B1–B2,
and C1–C2) were found to evoke neural patterns that
were more similar to each other than pairs of endpoints
from different locations in the right PHC (e.g., A1–B2,
B1–C2), t(2739) = 2.498, pFWE = .050, BF01 = 0.369,
d = 0.521 (see osf.io/uxhs9 for a plot of this effect). This
“same-location” effect suggests that, even before the spa-
tial relationship between scenes were known, the right
PHC encoded visual properties of those scenes that gen-
eralized across different views. These data demonstrate
that, despite controlling for similarity across stimuli using
both the GIST descriptor and a pixel-wise correlation,
and despite participants being unable to infer which end-
points were from the same location before watching the
videos, we still found evidence for a “same-location” ef-
fect in the right PHC. This underlies the critical role of
estimating pattern similarity before learning to identify
significant increases in similarity post-video relative to
pre-video (cf. Robertson et al., 2016). Note that this
“same-location” effect is only seen when collapsing across

Figure 3. Mean representational
similarity between endpoints in
the right PHC, averaged across all
participants and image sets. (A)
Similarity between endpoints
before the panoramic videos
were shown (i.e., in Session 1).
(B) Similarity between endpoints
after the panoramic videos were
shown (i.e., in Session 2). (C)
Change in similarity that followed
the panoramic videos (i.e.,
Session 2 minus Session 1). Color
bars indicate both raw and
baseline-adjusted Fisher z
statistics (above and below the
color bar, respectively). Adjusted
statistics account for trivial differences in similarity across scanning sessions caused bymotion and scanner drift. This is achieved by subtracting out a baseline
level of similarity between nonassociated endpoints (i.e., endpoints that were not from the same location, video, or experimental condition). Note that the
baseline-adjusted statistics are shown for illustrative purposes only; each RSA was conducted on the raw Fisher z statistics alone. Crosshatchings along the
diagonal elements represent perfect correlations between identical BOLD responses and so were not included in the analyses.
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all endpoint pairs and is not evident in the Session 1
Overlap condition alone (osf.io/uxhs9).

Effects in the Right RSC

The Session × Condition and Session × Overlap interac-
tions were not significant in any other ROI (Fs < 2.775,
pFWEs > .250; similarity estimates for the right RSC plotted
in Figure 4C). However, we saw a significant Session ×
Overlap × Behavior interaction in the right RSC, t(2728) =
2.886, pFWE = .016, BF01 = 0.179, d = 0.602 (Figure 4D).
This suggests that the RSC only encoded viewpoint-
independent representations when the spatial relation-
ships between endpoints could be retrieved during the
postscanner test. No other ROIs showed a significant
Session × Overlap × Behavior interaction (largest effect:
t = 0.050, pFWE = 1, BF01 = 4.567, d = −0.010).

Differentiating the PHC and RSC

We next assessed whether there was evidence for disso-
ciable roles of the right PHC and RSC, given that both

represented location-based information but were differ-
ently associated with behavioral performance. Specifically,
we assessed whether location-based representations in
the RSC were significantly more associated with partici-
pants’ ability to match endpoints from the same location
compared to representations in the PHC. This would sug-
gest that the RSC plays a greater role in guiding behavioral
performance than the PHC. We therefore tested whether
the Session × Overlap × Behavior (three-way) effect was
larger in the RSC than the PHC. A comparison of effect sizes
did show evidence for such a dissociation, t(5311.9) =
3.931, p < .001, BF01 = 0.021, d = 0.820.
This implies that the right PHC might have exhibited

above-baseline pattern similarity between A1 and A2
endpoints even when those endpoints were not subse-
quently remembered as belonging to the same location.
We directly tested this by rerunning the RSA having ex-
cluded A1–A2 pairs that were consistently remembered
as belonging to the same location (i.e., having two correct
responses during the postscanner test). Despite these
exclusions, pattern similarity differences in the overlap
condition remained significant, t(1188) = 2.364, p = .018,

Figure 4. Results of the RSAs in
the right PHC (rPHC; top row)
and right RSC (rRSC; bottom
row). (A) rPHC similarity
estimates of scenes in the pre-
video and post-video sessions,
plotted by experimental
condition. There was a significant
change in similarity estimates
between sessions in the overlap
condition, t(2739) = 2.923, p =
.004,BF01=0.167,d=0.610, that
was not present in the no-overlap
and unseen conditions, t(2739)=
0.756, p = .450, BF01 = 3.533,
d= 0.158, and t(2739) =−0.970,
p = .332, BF01 = 3.001, d =
−0.202, respectively. (B) In the
rPHC, pre-video to post-video
changes in representational
similarity for the overlap
condition plotted against the
number of correct matches
between overlap endpoints in the
post-video behavioral task. This
association was not significant,
t(2739) = −0.892, p = .373,
BF01= 3.199, d=−0.186. (C and
D) Same as A and B but for the
rRSC ROI. The rRSC showed no
overall similarity changes in any
of the experimental conditions
(t(2728) = 0.870, t(2728) =
1.419, and t(2728) = −1.059 for
the overlap, no-overlap, and
unseen conditions, respectively;
all ps > .156, BF01s > 1.895, ds < 0.296). Nonetheless, there was a significant association between behavioral performance and similarity changes in the
overlap condition, t(2728) = 2.886, p= .004, BF01= 0.179, d=0.602. All bars plot baseline-corrected similarity estimates having subtracted out correlations
between nonassociated endpoints (e.g., A1–B1, A1–B2). As such, the zero line in A and C denotes the average similarity of these nonassociated endpoints in
each session. Error bars indicate 95% confidence intervals.
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BF01 = 0.528, d = 0.493, and were not seen in any other
condition (no-overlap: t(1188) = 0.324, p = .746, BF01 =
4.359, d = 0.068; unseen: t(1188) = −0.585, p = .559,
BF01 = 3.915, d = −0.122; see Figure 4B that plots the
size of the Session × Overlap effect in the right PHC at
each level of behavioral performance. In contrast, the right
RSC only showed above-baseline pattern similarity
when the endpoints were consistently remembered as
belonging to the same location. Rerunning the RSA on
these remembered pairs alone revealed similarity increases
between consistently remembered endpoints in the
overlap condition, t(1538) = 2.449, p = .014, BF01 =
0.402, d = 0.511 (see Figure 4D), that were not seen in
any other condition (no-overlap: t(1538) = 1.107, p =
.269, BF01 = 2.651, d = 0.230; unseen: t(1538) = −1.316,
p = .188, BF01 = 2.134, d = −0.274).
In summary, we saw an increase in pattern similarity in

the right PHC and right RSC between different scenes of
the same location after they had beenpresented in an over-
lap video. Furthermore, we observed a dissociation
between the PHC and the RSC. Whereas the PHC showed
increased pattern similarity regardless of performance on
the postscanner test, the RSC only showed increased pat-
tern similarity when participants were able to subsequently
identify those scenes as belonging to the same location.

Across-Session Decreases in Pattern Similarity

Our mixed-effects regression models were conducted on
the raw Fisher z scores computed from each pair of
endpoints. This ensured that effects were not driven by
complex datamanipulation or scaling, and so the data were
not adjusted to account for across-session shifts in the
similarity of all multivariate patterns (see Methods).
Interestingly however, we did observe that Fisher z scores
decreased from pre-video to post-video across all pairs of
endpoints regardless of condition, in each ROI (see figure
at osf.io/2y3pm). This is reflected by a notable session
effect in each mixed-effects model indicating reduced
levels of similarity between nonassociated endpoints (i.e.,
endpoints not belonging to the same location, video, or
experimental condition; minimum effect size: t(2736) =
−1.529, p = .126, BF01 = 1.655, d = 0.319). As the size
of this session effect was relatively large, the Session ×
Overlap and Session × Overlap × Behavior interactions
involved less of a decrease in similarity scores relative to
all other conditions (see Figure 3).
Given that similarity scores decrease across all endpoint

pairs, it is unlikely that the Session effect was a direct result
of our video manipulation (i.e., learning-induced neural
differentiation). A mass differentiation on this scale would
imply implausibly large amounts of information gain as the
uniqueness (or entropy) of all neural representations
would have to increase. Instead, it is more likely that the
reduced levels of similarity were caused by systematically
higher levels of noise in the second session. Most signifi-
cantly, increases in temperature caused by radio frequency

absorption during scanning will shift the thermal equilib-
rium that governs how many hydrogen nuclei are aligned
to the external magnetic field (B0) and can therefore con-
tribute to the MR signal (see osf.io/8kns6/). In this case, we
would expect to see similar shifts in the level of similarity
across the entire brain. To test this, we measured pattern
similarity in the genu of the corpus callosum, a region that
should exhibit negligible levels of BOLD activity. On the ba-
sis of a seed voxel at Montreal Neurological Institute of [0,
26, 6],multivariate patternswere taken from the 122white-
matter voxels closest to that seed in native space. The size
of this ROI was chosen to reflect the average size of our a
priori ROIs. A mixed-effects regressionmodel of these data
did indeed show reduced levels of neural similarity from
Session 1 to Session 2, t(2739) = −2.167, p = .030, BF01 =
0.651, d = −0.452 (similar in magnitude to the session
effect in all other regions; see osf.io/p9qzx/).

In summary, we conclude that the overall decrease in
pattern similarity across sessions was not driven by any
meaningful change in neural representations and, once con-
trolled for, reveals a significant increase in pattern similarity
in both the right PHC and RSC in the overlap condition,
indicative of viewpoint-independent representations.

Laterality of RSA Effects

The above analyses identified location-based representa-
tions in both right-hemisphere ROIs but no similar effects
in the left hemisphere. Given this, we explored whether
each RSA effect was significantly stronger in the right versus
left hemisphere. Comparing the Session × Overlap effects
in the PHC did indeed reveal a significantly stronger effect in
the right hemisphere, t(5390.5) = 3.798, p < .001, BF01 =
0.028, d = 0.792. Similarly, comparing the Session ×
Overlap×Behavior interactions in the RSC revealed a signif-
icantly stronger effect in the right hemisphere, t(5427.4) =
2.708, p = .007, BF01 = 0.251, d = 0.565. Note that
Robertson et al. (2016) collapsed their analyses across hemi-
sphere, potentially masking laterality effects. These results
are consistent with observations and theoretical models that
the right hemisphere may preferentially process spatial in-
formation in humans as a consequence of predominantly
left-lateralized language function (Shulman et al., 2010;
Vallortigara & Rogers, 2005; Smith & Milner, 1981).

Searchlight RSA

The searchlight analysis that tested for a Session×Overlap
interaction across the whole brain revealed one small
cluster in the right inferior occipital gyrus (Area V4), t(21) =
4.78, pFWE= .010, k=38,BF01< 0.003, d=0.997. However,
when BOLD similarity in the cluster was modeled with the
full mixed-effects analysis described above, the Session ×
Overlap effect was found to not be significant, t(2740) =
1.734, p = .083 (uncorrected), BF01 = 1.259, d = 0.361.
Model parameter estimates suggested that the searchlight
effect was driven by below-baseline BOLD similarity in the
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overlap condition before the videos were shown (95% CI
[−0.116, −0.021]), a result that is not consistent with any
effect of interest. No other areas showed a significant
Session × Overlap or Session × Overlap × Behavior inter-
action in the searchlight analysis. Nonetheless, both of the
previously reported effects in the PHC and RSC are evi-
dent in the searchlight analysis at subthreshold levels,
t(21) > 2, d>0.417 (see neurovault.org/collections/4819/).

Univariate Responses to Endpoints

We investigated whether each of our ROIs produced uni-
variate BOLD activations consistent with a Session ×
Condition interaction or a three-way interaction with
behavior. No such effects were found, all Fs < 1.140,
ps > .288. Furthermore, a mass univariate analysis testing
for these effects at the whole-brain level yielded no sig-
nificant activations.

Univariate Responses to Videos

Finally, we investigated whether univariate BOLD re-
sponses to the video clips differed between the overlap
and no-overlap conditions or as a function of scene mem-
ory in the postscanner test. A group-level model was spec-
ified with predictors for (1) video type (overlap vs.
no-overlap), (2) post-video performance in matching A1
and A2 endpoints, and (3) the interaction between video
type and behavioral performance. This revealed two clus-
ters that produced significantly greater BOLD responses
during overlap versus no-overlap videos (Figure 5, hot
colors). The largest of these peaked in the medial pFC
and extended into the anterior cingulate, left frontal pole,
and left middle frontal gyrus, t(21)= 5.53, pFWE< .001, k=
600, BF01 < 0.001, d=1.153. The second cluster peaked in
the left supramarginal gyrus, t(21)= 5.40, pFWE= .004, k=
185, BF01 = 0.001, d = 1.126, adjacent to a smaller, sub-
threshold effect in the left angular gyrus.

No effects for the reverse contrast (i.e., no overlap >
overlap) reached statistical significance at the whole-brain

level (subthreshold effects shown in Figure 5, cool colors).
However, a small volume correction for the PHC and RSC
bilaterally revealed two clusters with a significant no-
overlap > overlap effect. These were found in the right
RSC, t(21) = −4.84, pFWE = .032, k = 26, BF01 = 0.003,
d = −1.001, and right PHC, t(21) = −4.77, pFWE = .026,
k= 30, BF01 = 0.003, d=−0.995, extending into the fusi-
form gyrus. Subthreshold effects for the no-overlap>over-
lap contrast were also evident in the left RSC and PHC.
These results were mirrored by a linear mixed-effects
model contrasting overlap and no-overlap video responses
averaged across each ROI in native space. Here, both the
right PHC and right RSC exhibited greater BOLD activity
in the no-overlap video condition relative to the overlap
condition, t(42) = −3.638, pFWE = .003, BF01 = 0.039,
d = −0.759, and t(42) = −3.499, pFWE = .004, BF01 =
0.052, d = −0.730, respectively. Effects in the left PHC
and left RSC were below threshold and considerably
weaker, t(42) = −1.828, pFWE = .299, BF01 = 1.101, d =
−0.381, and t(42) = −2.212, pFWE = .130, BF01 = 0.605,
d=−0.461, respectively. Neither the whole-brain analysis
nor the mixed-effects model identified BOLD responses
to the videos that significantly correlated with memory
performance in the postscanner test.
In summary, we saw greater activity in the medial pFC

during the overlap videos relative to the no-overlap videos.
In contrast, the PHC andRSC showed greater activity during
the no-overlap relative to overlap videos. In other words,
themedial posterior regions that showed increased pattern
similarity after presentation of the overlap video showed
decreased activity while participants were watching the
videos.

DISCUSSION

We show that scene-selective brain regions rapidly learn
location-based representations of novel environments by
integrating information across different viewpoints. Once
participants observed the spatial relationship between
two viewpoints from a given location, BOLD pattern sim-
ilarity between viewpoints increased in the right PHC and
RSC, implying the emergence of location-based represen-
tations. In the right PHC, these representations appeared
regardless of whether participants could identify which
scenes were from the same location. In contrast, repre-
sentations in the right RSC only emerged for scene pairs
that participants could subsequently identify as being
from the same location.
The results provide further evidence that the PHC and

RSC support spatial representations that are not solely
driven by visual features in a scene (Robertson et al., 2016;
Marchette et al., 2015; Vass & Epstein, 2013; cf. Watson,
Hartley, & Andrews, 2017). Using a similar panoramic video
manipulation, Robertson et al. (2016) suggested that the
RSC and OPA maintain viewpoint-independent representa-
tions but found a more general associative effect in the
PHC. Our results further identify the PHC in this process

Figure 5. Univariate BOLD effects showing differences in activity
between the two video conditions (thresholded at t(21) > 3, p < .004
uncorrected, BF01 < 0.143, d > 0.626). Hot colors indicate areas
showing a greater response to overlap versus no-overlap videos. Cool
colors indicate areas showing a greater response to no-overlap versus
overlap videos. An unthresholded statistical map of this contrast is
available at neurovault.org/collections/4819.
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and highlight that RSC representations are more tightly
linked to behavior. Note that the OPA was not one of our
a priori ROIs, and we therefore make no claims in relation
to this region supporting location-based representations
(see ROIs section for further details). Our results also place
constraints on models that describe how location-based
representations are used. Unlike Robertson et al., we show
that viewpoint-independent representations are evoked
during passive viewing, in the absence of any explicit
memory task (although we cannot rule out the possibility
that participants engaged in active imagery, as explicitly re-
quired in Robertson et al.; see below).
Furthermore, we show that the learning of location-

based representations can take place rapidly (in a single
scanning session), with few exposures to the spatial layout
of a location. Consistent with this, the firing fields of place
cells have been shown to emerge rapidly in the rodent
hippocampus (Monaco et al., 2014). Novel locations,
where rats engaged in head-scanning behavior (i.e., explo-
ration), were associated with place fields the next time the
rat visited the same location. Our results provide evidence
that location-based representations form after only three
learning exposures to the videos. Although wewere specif-
ically interested in the emergence of viewpoint-independent
spatial representations, a similar approach could be used to
track the emergence of viewpoint-independent represen-
tations of other stimulus categories (e.g., objects or faces;
see Clarke et al., 2016, for a similar approach), opening
the door to understanding how such representations are
formed, or modulated, across the visual system.
We also found that the right RSC only exhibited location-

based representations when participants were able to iden-
tify which scenes belonged to that location in a postscanner
test (PHC representations emerged regardless of behav-
ioral performance on the postscanner test). This implies
that the ability to identify differing scenes as from the same
location is perhaps more dependent on representations
in the RSC than PHC. Computational models hold that
medial posterior and temporal regions (including the
PHC and RSC) perform distinct but complementary func-
tions in support of spatial navigation and imagery
(Bicanski & Burgess, 2018; Byrne et al., 2007). Specifically,
the PHC is thought to represent allocentric information
related to the spatial geometry of the environment.
Conversely, the posterior parietal cortex supports egocen-
tric representations that allow the organism to actively
navigate. The RSC transforms allocentric representations
in the MTL into egocentric representations in the parietal
cortex (and vice versa). Critically, the models predict that
spatial navigation and planning is carried out in an egocen-
tric reference frame. Thus, the RSC is critical to the transla-
tion of allocentric to more behaviorally relevant, egocentric
information.
Our task required participants to match distinct scenes

from the same location. This likely requires transformation
from the presented egocentric viewpoint to an allocentric
representation (egocentric-to-allocentric; i.e., A1 to the

allocentric representation A*). In turn, the allocentric
representation may allow for the retrieval of the associ-
ated viewpoint from the same location (allocentric-to-
egocentric; i.e., A* to A2). Under this assumption, the
RSC is likely to bemore tightly coupled to behavior relative
to the PHC, as shown in the present data. This is because
allocentric representations in the PHC only require the ini-
tial egocentric-to-allocentric transformation to be retrieved
(A1–A*). If only the egocentric-to-allocentric transforma-
tion occurs, participants will not be able to perform the
task. As such, it is possible to see evidence for allocentric
PHC representations in the absence of accurate behavior.
For allocentric representations in the RSC to be retrieved,
both the initial egocentric-to-allocentric (A1–A*) and sub-
sequent allocentric-to-egocentric (A*–A2), transformation
is required. If both transformations occur, then partici-
pants should be able to perform the task accurately.
Thus, location-based representations in the RSC may only
be seen in the presence of accurate behavior and may
reflect the transformation between reference frames rather
than reflecting an allocentric representation per se.

A related possibility is that, during the passive viewing of
specific scenes, participants engaged in active imagery of
the associated scenes, leading to subsequent improve-
ments in behavior for scenes from the same location.
However, we note that the task did not explicitly require
memory retrieval; participants responded to oddball tar-
gets leaving little time for active imagery (see Linde-
Domingo, Treder, Kerrén, & Wimber, 2019). In addition,
participants would only be able to engage in active imagery
on the overlap trials alone. Despite this, we did not ob-
serve any univariate BOLD effects indicative of additional
processing on these trials. As such, the activation of these
representations does not appear to depend on any task-
specific memory demands. It is possible that the retrieval
of PHC representations (i.e., egocentric-to-allocentric
mapping) occurs relatively automatically, consistent with
the proposal that allocentric representations in the MTL
are automatically updated during self-motion in an envi-
ronment (Bicanski & Burgess, 2018; Byrne et al., 2007).
However, the retrieval of associated egocentric represen-
tations (i.e., allocentric-to-egocentric mapping) may not
occur automatically during passive viewing, consistent
with the observation that viewpoint-independent repre-
sentations in the RSC are abolished when participants en-
gage in a task that prevents them from active retrieval of
spatial information (Marchette et al., 2015). Importantly,
both of the above accounts are consistent with the pro-
posal that the RSC plays a critical role in mapping between
allocentric and egocentric representations.

Although consistent with models of allocentric process-
ing, it is possible that the location-based representations
we observed reflect other forms of associative learning
(e.g., O’Reilly & Rudy, 2001). On this view, Scene A1 may
become bound to A2 via a simple associative representa-
tion such that, after seeing the videos, A2 is covertly
retrieved when presented with A1 (leading to increased
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pattern similarity). However, contrary to our findings, this
simple account may also predict increased similarity in the
no-overlap condition, where B1 and C2 are shown in the
same video—particularly given that models of associative
learning often rely on prediction error signals to account
for incidental encoding (Den Ouden, Friston, Daw,
McIntosh, & Stephan, 2009), which could be strongest in
the no-overlap condition. A second possibility is that the
overlapping content in the overlap videos (relative to the
no-overlap videos) increases the probability of a direct
association between A1 and A2. Indeed, it is the overlap-
ping content that likely drives the increase in pattern
similarity between overlap endpoints. Our current study
is not able to discern whether the resulting “location-
based” representations are associative, or truly allocentric,
in nature.

In terms of associative learning, a related possibility is
that the overlapping content supports amore complex tran-
sitive representation (e.g., A1–AX and A2–AXwhere X is the
overlapping scene in the center of the panorama). On this
account, presentation of A1 cues the retrieval of AX and
subsequently A2 (similar in nature to AB–AC inference par-
adigms; see Joensen, Gaskell, & Horner, 2020; Schlichting,
Mumford, & Preston, 2015; Horner & Burgess, 2014;
Schlichting, Zeithamova, & Preston, 2014; Zeithamova,
Dominick, & Preston, 2012). Representations that encode
these transitive relationships between scenes are possible
and may support spatial navigation but are not directly pre-
dicted by models of spatial memory (Bicanski & Burgess,
2018; Byrne et al., 2007). Furthermore, the hippocampus
and medial PFC (mPFC) are more typically associated with
transitive inference (Schlichting et al., 2014, 2015;
Zeithamova et al., 2012), yet we only found evidence of
location-based representations in scene-selective regions.
In addition, Robertson et al. have demonstrated that asso-
ciative memory for scenes belonging to different locations
is poor (comparable to their no-overlap condition) even
when those scenes are presented in a “morphed”panorama
such that they are associated with a common context. As
such, our data are suggestive of processes that go beyond
associative or transitive learning and provide support for
models of allocentric processing, although we cannot rule
out an “associative” explanation.

Finally, it is noteworthy that certain nonspatial models
may be able to account for our findings. In particular,
models of directed attention may predict increased levels
of pattern similarity in the overlap condition if the over-
lap videos alerted participants to visual features that are
shared across scenes (e.g., Luo, Roads, & Love, 2020;Mack,
Preston, & Love, 2013). Further work will be needed
to fully establish the true nature of the location-based
representations that we report here. To fully match all
visual features across scenes in each condition, one pos-
sibility would be to experimentally manipulate the central
section of continuous panoramas so that no coherent
spatial representation can be learned. Furthermore, to fully
distinguish between allocentric and transitive (A1–AX–A2)

representations, an imaging study incorporating the pano-
ramic morph manipulation used by Robertson et al. may
be used.
Although we directly link to computational models of

spatial navigation and imagery, as well as rodent studies
on spatial navigation, it is important to note that we have
assessed pattern similarity during visual presentation of
static scenes. This is a common approach in human
fMRI (Bonner & Epstein, 2017; Robertson et al., 2016;
Marchette et al., 2015; Marchette et al., 2014), as it allows
one to control for many potential experimental con-
founds that might be present in a more ecologically valid
experimental setting (e.g., using virtual reality; Julian
et al., 2016; Doeller, Barry, & Burgess, 2010). However,
this approach has the issue of being further removed
from real-world spatial navigation. Interestingly, we saw
evidence for increases in pattern similarity despite using
a low-level attentional task, speaking to the potential
automaticity of retrieving more location-based represen-
tations. Across the literature, there are numerous exam-
ples of evidence for spatial learning in humans and
rodents during goal-directed navigation (Aoki, Igata,
Ikegaya, & Sasaki, 2019; Howard et al., 2014), non-goal-
directed navigation (e.g., O’Keefe & Dostrovsky, 1971;
Tolman, 1948), mental imagery (e.g., Bellmund, Deuker,
Schröder, & Doeller, 2016; Horner, Bisby, Zotow, Bush,
& Burgess, 2016), and viewing of static images (e.g.,
Robertson et al., 2016; Marchette et al., 2015; Vass &
Epstein, 2013). Our study adds to this growing literature
suggesting that these representations can be assessed
across diverse experimental environments with multiple
methodologies.
The PHC has been proposed to represent several com-

plementary spatial representations, including geometric
information regarding one’s location in relation to bear-
ings and distances to environmental features (e.g.,
boundaries; Park, Brady, Greene, & Oliva, 2011). The
representations that we observed in PHC may reflect en-
riched spatial representations relating specific scenes to
environmental features outside the current field of view.
Also consistent with our results, the PHC may represent
spatial contexts more broadly (Epstein & Vass, 2014). The
experimental manipulation used here could be modified
to learn novel locations in the same spatial context,
potentially dissociating between the above accounts. A
further proposal is that viewpoint-independent represen-
tations in the PHC reflect prominent landmarks that are
visible across viewpoints (Marchette et al., 2015). Although
this proposal yields similar predictions to above, it is less
able to account for our finding of shared representations
of views that did not contain any of the same landmarks.
Our PHC results are somewhat inconsistent with those

of Robertson et al. (2016). Whereas our similarity increases
were specific to the overlap condition, Robertson et al. saw
effects in both their overlap and no-overlap conditions.
One possibility is that our results reflect a Type II error,
in that we failed to find an effect in the no-overlap
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condition when one is present. A second possibility is that
Robertson et al. either (1) found an effect in the no-overlap
condition when one is not present (i.e., a Type I error) or
(2) failed to find a similarity effect in the overlap condition
that was significantly larger than in the no-overlap condi-
tion (a Type II error). Notably, the “overlap > no-overlap”
effect size that we observed in the PHC is considerably
larger than the same effect reported by Robertson et al.
(0.610 relative to −0.062) and more in line with their RSC
and OPA effects (0.470 and 0.415, respectively). Thus, it
seems plausible that the disagreement stems from a Type
I error in Robertson et al. Despite this, without further
information, it is not possible to draw clear conclusions.
However, one important caveat is that we also saw

evidence for a “same-location” effect in the PHC before
learning had occurred. This effect was seen despite con-
trolling for visual similarity across stimuli using the GIST
descriptor, accounting for pixel-wise correlations in lumi-
nance and color content, and despite participants being
unable to identify which endpoints were from the same lo-
cation before the videos. It is therefore possible that the
PHC effects in Robertson et al. could have been driven
by a similar effect not dependent on learning. This under-
lines the importance of including a prelearning versus post-
learning estimate of pattern similarity, to definitively rule
out trivial effects driven by preexisting similarities between
images that are difficult to control for.
RSC representationsmay reflect the retrieval of spatial or

conceptual information associated with the environment
(Marchette et al., 2015). Further evidence suggests that
the RSC contains multiple viewpoint-dependent and
viewpoint-independent (Vass & Epstein, 2013), as well as
local and global (Jacob et al., 2017; Marchette et al., 2014),
spatial representations. This multitude of representations
fits with the proposed role of the RSC as a transformation
circuit, mapping between allocentric and egocentric repre-
sentations. The heterogeneity of representations, relative
to the PHC, may also be a further reason why we did not
see clear evidence for location-based representations with-
out taking behavior into account. Our RSC results are con-
sistent with those of Robertson et al. in that they saw a clear
effect after more extensive learning across 2 days (where
behavioral performance was likely higher than in our study).
However, we extend these findings to show that these effects
are specifically associated with the locations that each
individual participant has learned (i.e., a within-participant
correlation that is consistent across participants). Regardless
of the exact nature of such representations, our results
provide clear evidence that we can track their emergence
in both the PHC and RSC.
Although more explorative, we also examined activity

during learning of new spatial relationships (i.e., video
presentation). BOLD activations in medial posterior brain
regions (including but not limited to the PHC and RSC
ROIs) were greater for no-overlap videos compared to
overlap videos. This effect perhaps reflects greater fMRI
adaptation during the overlap videos because they

presented the central viewpoint of the panorama more
frequently than no-overlap videos (Figure 1). However,
it is interesting that the same cortical regions that
showed increased pattern similarity after presentation
of the overlap video showed decreased activity when par-
ticipants were watching the videos. This underlines the
complex relationship between univariate activity during
learning and resultant changes in patterns of activity after
learning. More theoretically driven research would be
needed to provide a robust explanation for this finding.

In addition, we found that mPFC showed a greater
BOLD response in the overlap than no-overlap condition.
This may reflect a mnemonic integration process that
guides the learning of viewpoint-independent represen-
tations. Similar effects in mPFC have been observed in
tasks that require integrating overlapping memories to
support inference and generalization (Milivojevic, Vicente-
Grabovetsky, & Doeller, 2015; Schlichting et al., 2015).
Indeed, mPFC has been implicated in detecting new
information that is congruent with previously learnt
materials so that it can be integrated into a generalized
representation (van Kesteren, Ruiter, Fernández, &
Henson, 2012). Our results are broadly in line with this
proposal, where mPFC may be detecting the presence of
overlapping spatial information during the overlap videos,
resulting in the integration of previously learnt represen-
tations into more coherent viewpoint-independent repre-
sentations in posterior medial regions. Despite this, our
results do not exclude the possibility that mPFC activa-
tions reflect disinhibition from medial–posterior inputs
(which showed reduced activity) or attentional differences
related to the behavioral task.

We have shown that brain regions in the scene network,
specifically the right PHC and RSC, rapidly learn represen-
tations of novel environments by integrating information
across different viewpoints. They appear to be relatively
viewpoint-independent in that they become active regard-
less of which part of an environment is in the current field
of view. We show that the PHC and RSC have potentially
dissociable roles, consistent with models that propose
the RSC plays a role in translating viewpoint-independent
representations into a behaviorally relevant egocentric
reference frame. Finally, our experimental approach allows
for tracking the emergence of viewpoint-independent
representations across the visual system.

Acknowledgments

We thank all the staff at the York Neuroimaging Centre for their
assistance in running this project. We are also grateful to Tim
Andrews and Tom Hartley for early discussions regarding exper-
imental design. B. H. J. was funded a PhD studentship awarded
by the Department of Psychology, University of York.

Reprint requests should be sent to Sam C. Berens or Aidan J.
Horner, Department of Psychology, University of York, York
YO10 5DD, UK, or via e-mails: s.berens@sussex.ac.uk, aidan
.horner@york.ac.uk.

Berens, Joensen, and Horner 459

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/3/445/1862592/jocn_a_01654.pdf by guest on 08 Septem
ber 2023



Author Contributions

Sam C. Berens: Conceptualization; Data curation; Formal
analysis; Investigation; Methodology; Project administration;
Visualization; Writing—original draft; Writing—review &
editing. Bárður H. Joensen: Conceptualization; Data cura-
tion; Methodology; Writing—review & editing. Aidan J.
Horner: Conceptualization; Formal analysis; Funding
acquisition; Investigation; Methodology; Project adminis-
tration; Supervision; Visualization, Writing—original
draft; Writing—review & editing.

Funding Information

Aidan J. Horner: Wellcome Trust (http://dx.doi.org/10
.13039/100004440), Grant number: 204277/Z/16/Z,
Economic and Social Research Council (http://dx.doi.org
/10.13039/501100000269), Grant number: ES/R007454/1.

REFERENCES

Andersson, J. L. R., Hutton, C., Ashburner, J., Turner, R., &
Friston, K. (2001). Modeling geometric deformations in EPI
time series. Neuroimage, 13, 903–919. DOI: https://doi.org
/10.1006/nimg.2001.0746, PMID: 11304086

Aoki, Y., Igata, H., Ikegaya, Y., & Sasaki, T. (2019). The integration
of goal-directed signals onto spatial maps of hippocampal
place cells. Cell Reports, 27, 1516–1527. DOI: https://doi.org
/10.1016/j.celrep.2019.04.002, PMID: 31042477

Ashburner, J. (2007). A fast diffeomorphic image registration
algorithm. Neuroimage, 38, 95–113. DOI: https://doi.org
/10.1016/j.neuroimage.2007.07.007, PMID: 17761438

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-
effects modeling with crossed random effects for subjects
and items. Journal of Memory and Language, 59, 390–412.
DOI: https://doi.org/10.1016/j.jml.2007.12.005

Bellmund, J. L. S., Deuker, L., Schröder, T. N., & Doeller, C. F.
(2016). Grid-cell representations in mental simulation. eLife,
5, e17089. DOI: https://doi.org/10.7554/eLife.17089, PMID:
27572056, PMCID: PMC5005038

Bicanski, A., & Burgess, N. (2018). A neural-level model of spatial
memory and imagery. eLife, 7, e33752.DOI: https://doi.org/10
.7554/eLife.33752, PMID: 30176988, PMCID: PMC6122954

Bonner, M. F., & Epstein, R. A. (2017). Coding of navigational
affordances in the human visual system. Proceedings of the
National Academy of Sciences, U.S.A., 114, 4793–4798. DOI:
https://doi.org/10.1073/pnas.1618228114, PMID: 28416669,
PMCID: PMC5422815

Burgess, N., Becker, S., King, J. A., & O’Keefe, J. (2001).
Memory for events and their spatial context: Models and
experiments. Philosophical Transactions of the Royal Society
of London, Series B, Biological Sciences, 356, 1493–1503.
DOI: https://doi.org/10.1098/rstb.2001.0948, PMID:
11571039, PMCID: PMC1088531

Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the
past and imagining the future: A neural model of spatial
memory and imagery. Psychological Review, 114, 340–375.
DOI: https://doi.org/10.1037/0033-295X.114.2.340, PMID:
17500630, PMCID: PMC2678675

Calton, J. L., & Taube, J. S. (2009). Where am I and how will I
get there from here? A role for posterior parietal cortex in the
integration of spatial information and route planning.
Neurobiology of Learning and Memory, 91, 186–196. DOI:

https://doi.org/10.1016/j.nlm.2008.09.015, PMID: 18929674,
PMCID: PMC2666283

Clarke, A., Pell, P. J., Ranganath, C., & Tyler, L. K. (2016).
Learning warps object representations in the ventral
temporal cortex. Journal of Cognitive Neuroscience, 28,
1010–1023. DOI: https://doi.org/10.1162/jocn_a_00951,
PMID: 26967942

Den Ouden, H. E. M., Friston, K. J., Daw, N. D., McIntosh, A. R.,
& Stephan, K. E. (2009). A dual role for prediction error in
associative learning. Cerebral Cortex, 19, 1175–1185. DOI:
https://doi.org/10.1093/cercor/bhn161, PMID: 18820290,
PMCID: PMC2665159

Doeller, C. F., Barry, C., & Burgess, N. (2010). Evidence for grid
cells in a human memory network. Nature, 463, 657–661.
DOI: https://doi.org/10.1038/nature08704, PMID: 20090680,
PMCID: PMC3173857

Eichenbaum, H. (2004). Hippocampus: Cognitive processes
and neural representations that underlie declarative memory.
Neuron, 44, 109–120. DOI: https://doi.org/10.1016/j.neuron
.2004.08.028, PMID: 15450164

Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017).
The cognitive map in humans: Spatial navigation and
beyond. Nature Neuroscience, 20, 1504–1513. DOI:
https://doi.org/10.1038/nn.4656, PMID: 29073650, PMCID:
PMC6028313

Epstein, R. A., & Vass, L. K. (2014). Neural systems for landmark-
based wayfinding in humans. Philosophical Transactions of
the Royal Society of London, Series B, Biological Sciences,
369, 20120533. DOI: https://doi.org/10.1098/rstb.2012.0533,
PMID: 24366141, PMCID: PMC3866451

Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A
weakly informative default prior distribution for logistic and
other regression models. Annals of Applied Statistics, 2,
1360–1383. DOI: https://doi.org/10.1214/08-AOAS191

Hannula, D. E., & Ranganath, C. (2009). The eyes have it:
Hippocampal activity predicts expression of memory in eye
movements. Neuron, 63, 592–599. DOI: https://doi.org/10
.1016/j.neuron.2009.08.025, PMID: 19755103, PMCID:
PMC2747814

Henson, R. N., & Gagnepain, P. (2010). Predictive, interactive
multiple memory systems. Hippocampus, 20, 1315–1326.
DOI: https://doi.org/10.1002/hipo.20857, PMID: 20928831

Horner, A. J., Bisby, J. A., Zotow, E., Bush, D., & Burgess, N.
(2016). Grid-like processing of imagined navigation. Current
Biology, 26, 842–847. DOI: https://doi.org/10.1016/j.cub
.2016.01.042, PMID: 26972318, PMCID: PMC4819517

Horner, A. J., & Burgess, N. (2014). Pattern completion in
multielement event engrams. Current Biology, 24, 988–992.
DOI: https://doi.org/10.1016/j.cub.2014.03.012, PMID:
24746796, PMCID: PMC4012134

Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C.,
Knight, R., et al. (2014). The hippocampus and entorhinal
cortex encode the path and Euclidean distances to goals
during navigation. Current Biology, 24, 1331–1340. DOI:
https://doi.org/10.1016/j.cub.2014.05.001, PMID: 24909328,
PMCID: PMC4062938

Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J.,
& Turner, R. (2002). Image distortion correction in fMRI: A
quantitative evaluation. Neuroimage, 16, 217–240. DOI:
https://doi.org/10.1006/nimg.2001.1054, PMID: 11969330

Jacob, P.-Y., Casali, G., Spieser, L., Page, H., Overington, D., &
Jeffery, K. (2017). An independent, landmark-dominated
head-direction signal in dysgranular retrosplenial cortex.
Nature Neuroscience, 20, 173–175. DOI: https://doi.org
/10.1038/nn.4465, PMID: 27991898, PMCID: PMC5274535

Joensen, B. H., Gaskell, M. G., & Horner, A. J. (2020). United we
fall: All-or-none forgetting of complex episodic events. Journal
of Experimental Psychology: General, 149, 230–248. DOI:

460 Journal of Cognitive Neuroscience Volume 33, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/3/445/1862592/jocn_a_01654.pdf by guest on 08 Septem
ber 2023

http://dx.doi.org/10.13039/100004440
http://dx.doi.org/10.13039/100004440
http://dx.doi.org/10.13039/501100000269
http://dx.doi.org/10.13039/501100000269
https://doi.org/10.1006/nimg.2001.0746
https://doi.org/10.1006/nimg.2001.0746
https://europepmc.org/article/MED/11304086
https://doi.org/10.1016/j.celrep.2019.04.002
https://doi.org/10.1016/j.celrep.2019.04.002
https://europepmc.org/article/MED/31042477
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://europepmc.org/article/MED/17761438
https://doi.org/10.1016/j.jml.2007.12.005
https://doi.org/10.7554/eLife.17089
https://europepmc.org/article/MED/27572056
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5005038
https://doi.org/10.7554/eLife.33752
https://doi.org/10.7554/eLife.33752
https://europepmc.org/article/MED/30176988
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122954
https://doi.org/10.1073/pnas.1618228114
https://europepmc.org/article/MED/28416669
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422815
https://doi.org/10.1098/rstb.2001.0948
https://europepmc.org/article/MED/11571039
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088531
https://doi.org/10.1037/0033-295X.114.2.340
https://europepmc.org/article/MED/17500630
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678675
https://doi.org/10.1016/j.nlm.2008.09.015
https://europepmc.org/article/MED/18929674
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2666283
https://doi.org/10.1162/jocn_a_00951
https://europepmc.org/article/MED/26967942
https://doi.org/10.1093/cercor/bhn161
https://doi.org/10.1093/cercor/bhn161
https://europepmc.org/article/MED/18820290
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2665159
https://doi.org/10.1038/nature08704
https://europepmc.org/article/MED/20090680
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3173857
https://doi.org/10.1016/j.neuron.2004.08.028
https://doi.org/10.1016/j.neuron.2004.08.028
https://europepmc.org/article/MED/15450164
https://doi.org/10.1038/nn.4656
https://europepmc.org/article/MED/29073650
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028313
https://doi.org/10.1098/rstb.2012.0533
https://europepmc.org/article/MED/24366141
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866451
https://doi.org/10.1214/08-AOAS191
https://doi.org/10.1016/j.neuron.2009.08.025
https://doi.org/10.1016/j.neuron.2009.08.025
https://europepmc.org/article/MED/19755103
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2747814
https://doi.org/10.1002/hipo.20857
https://doi.org/10.1002/hipo.20857
https://europepmc.org/article/MED/20928831
https://doi.org/10.1016/j.cub.2016.01.042
https://doi.org/10.1016/j.cub.2016.01.042
https://europepmc.org/article/MED/26972318
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819517
https://doi.org/10.1016/j.cub.2014.03.012
https://europepmc.org/article/MED/24746796
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4012134
https://doi.org/10.1016/j.cub.2014.05.001
https://europepmc.org/article/MED/24909328
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062938
https://doi.org/10.1006/nimg.2001.1054
https://europepmc.org/article/MED/11969330
https://doi.org/10.1038/nn.4465
https://doi.org/10.1038/nn.4465
https://europepmc.org/article/MED/27991898
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5274535


https://doi.org/10.1037/xge0000648, PMID: 31305093,
PMCID: PMC6951107

Julian, J. B., Fedorenko, E., Webster, J., & Kanwisher, N. (2012).
An algorithmic method for functionally defining regions
of interest in the ventral visual pathway. Neuroimage, 60,
2357–2364. DOI: https://doi.org/10.1016/j.neuroimage.2012
.02.055, PMID: 22398396

Julian, J. B., Keinath, A. T., Marchette, S. A., & Epstein, R. A.
(2018). The neurocognitive basis of spatial reorientation.
Current Biology, 28, R1059–R1073. DOI: https://doi.org
/10.1016/j.cub.2018.04.057, PMID: 30205055, PMCID:
PMC6161705

Julian, J. B., Ryan, J., Hamilton, R. H., & Epstein, R. A. (2016).
The occipital place area is causally involved in representing
environmental boundaries during navigation. Current
Biology, 26, 1104–1109. DOI: https://doi.org/10.1016/j.cub
.2016.02.066, PMID: 27020742, PMCID: PMC5565511

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the
American Statistical Association, 90, 773–795. DOI: https://
doi.org/10.1080/01621459.1995.10476572

Kumaran, D., Hassabis, D., Spiers, H. J., Vann, S. D., Vargha-
Khadem, F., & Maguire, E. A. (2007). Impaired spatial and
non-spatial configural learning in patients with hippocampal
pathology. Neuropsychologia, 45, 2699–2711. DOI: https://
doi.org/10.1016/j.neuropsychologia.2007.04.007, PMID:
17507060, PMCID: PMC2572909

Linde-Domingo, J., Treder, M. S., Kerrén, C., & Wimber, M.
(2019). Evidence that neural information flow is reversed
between object perception and object reconstruction from
memory. Nature Communications, 10, 179. DOI: https://
doi.org/10.1038/s41467-018-08080-2, PMID: 30643124,
PMCID: PMC6331625

Luo, X., Roads, B. D., & Love, B. C. (2020). The costs and
benefits of goal-directed attention in deep convolutional
neural networks. ArXiv Preprint arXiv:2002.02342. Retrieved
from http://arxiv.org/abs/2002.02342.

Mack, M. L., Preston, A. R., & Love, B. C. (2013). Decoding the
brain’s algorithm for categorization from its neural
implementation. Current Biology, 23, 2023–2027. DOI:
https://doi.org/10.1016/j.cub.2013.08.035, PMID: 24094852,
PMCID: PMC3874407

Malcolm, G. L., Silson, E. H., Henry, J. R., & Baker, C. I. (2018).
Transcranial magnetic stimulation to the occipital place area
biases gaze during scene viewing. Frontiers in Human
Neuroscience, 12, 189. DOI: https://doi.org/10.3389/fnhum
.2018.00189, PMID: 29867413, PMCID: PMC5953332

Marchette, S. A., Ryan, J., & Epstein, R. A. (2017). Schematic
representations of local environmental space guide goal-
directed navigation. Cognition, 158, 68–80. DOI: https://doi
.org/10.1016/j.cognition.2016.10.005, PMID: 27814459,
PMCID: PMC5123926

Marchette, S. A., Vass, L. K., Ryan, J., & Epstein, R. A. (2014).
Anchoring the neural compass: Coding of local spatial
reference frames in human medial parietal lobe. Nature
Neuroscience, 17, 1598–1606. DOI: https://doi.org/10.1038
/nn.3834, PMID: 25282616, PMCID: PMC4309016

Marchette, S. A., Vass, L. K., Ryan, J., & Epstein, R. A. (2015).
Outside looking in: Landmark generalization in the human
navigational system. Journal of Neuroscience, 35, 14896–14908.
DOI: https://doi.org/10.1523/JNEUROSCI.2270-15.2015, PMID:
26538658, PMCID: PMC4635136

Milivojevic, B., Vicente-Grabovetsky, A., & Doeller, C. F. (2015).
Insight reconfigures hippocampal–prefrontal memories.
Current Biology, 25, 821–830. DOI: https://doi.org/10.1016
/j.cub.2015.01.033, PMID: 25728693

Monaco, J. D., Rao, G., Roth, E. D., & Knierim, J. J. (2014).
Attentive scanning behavior drives one-trial potentiation of
hippocampal place fields. Nature Neuroscience, 17, 725–731.

DOI: https://doi.org/10.1038/nn.3687, PMID: 24686786,
PMCID: PMC4036486

Motley, S. E., Grossman, Y. S., Janssen, W. G. M., Baxter, M. G.,
Rapp, P. R., Dumitriu, D., et al. (2018). Selective loss of thin
spines in area 7a of the primate intraparietal sulcus predicts
age-related working memory impairment. Journal of
Neuroscience, 38, 10467–10478. DOI: https://doi.org/10
.1523/jneurosci.1234-18.2018, PMID: 30355632, PMCID:
PMC6284109

O’Keefe, J., & Burgess, N. (2005). Dual phase and rate coding
in hippocampal place cells: Theoretical significance and
relationship to entorhinal grid cells. Hippocampus, 15,
853–866. DOI: https://doi.org/10.1002/hipo.20115, PMID:
16145693, PMCID: PMC2677681

O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a
spatial map: Preliminary evidence from unit activity in the
freely-moving rat. Brain Research, 34, 171–175. DOI: https://
doi.org/10.1016/0006-8993(71)90358-1, PMID: 5124915

Oliva, A., & Torralba, A. (2001). Modeling the shape of the
scene: A holistic representation of the spatial envelope.
International Journal of Computer Vision, 42, 145–175.
DOI: https://doi.org/10.1023/A:1011139631724

O’Reilly, R. C., & Rudy, J. W. (2001). Conjunctive representations
in learning andmemory: Principles of cortical and hippocampal
function. Psychological Review, 108, 311–345. DOI: https://
doi.org/10.1037/0033-295x.108.2.311, PMID: 11381832

Park, S., Brady, T. F., Greene, M. R., & Oliva, A. (2011).
Disentangling scene content from spatial boundary:
Complementary roles for the parahippocampal place area
and lateral occipital complex in representing real-world
scenes. Journal of Neuroscience, 31, 1333–1340. DOI:
https://doi.org/10.1523/JNEUROSCI.3885-10.2011, PMID:
21273418, PMCID: PMC6623596

Robertson, C. E., Hermann, K. L., Mynick, A., Kravitz, D. J., &
Kanwisher, N. (2016). Neural representations integrate the
current field of view with the remembered 360° panorama in
scene-selective cortex. Current Biology, 26, 2463–2468. DOI:
https://doi.org/10.1016/j.cub.2016.07.002, PMID: 27618266

Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015).
Learning-related representational changes reveal dissociable
integration and separation signatures in the hippocampus
and prefrontal cortex. Nature Communications, 6, 8151.
DOI: https://doi.org/10.1038/ncomms9151, PMID: 26303198,
PMCID: PMC4560815

Schlichting, M. L., Zeithamova, D., & Preston, A. R. (2014). CA1
subfield contributions to memory integration and inference.
Hippocampus, 24, 1248–1260. DOI: https://doi.org/10.1002
/hipo.22310, PMID: 24888442, PMCID: PMC4159432

Shulman, G. L., Pope, D. L. W., Astafiev, S. V., McAvoy, M. P.,
Snyder, A. Z., & Corbetta, M. (2010). Right hemisphere
dominance during spatial selective attention and target
detection occurs outside the dorsal frontoparietal network.
Journal of Neuroscience, 30, 3640–3651. DOI: https://doi
.org/10.1523/jneurosci.4085-09.2010, PMID: 20219998,
PMCID: PMC2872555

Silson, E. H., Steel, A. D., & Baker, C. I. (2016). Scene selectivity
and retinotopy in medial parietal cortex. Frontiers in Human
Neuroscience, 10, 412. DOI: https://doi.org/10.3389/fnhum
.2016.00412, PMID: 27588001, PMCID: PMC4988988

Smith,M. L., &Milner, B. (1981). The role of the right hippocampus
in the recall of spatial location. Neuropsychologia, 19, 781–793.
DOI: https://doi.org/10.1016/0028-3932(81)90090-7, PMID:
7329524

Tolman, E. C. (1948). Cognitivemaps in rats andmen.Psychological
Review, 55, 189–208. DOI: https://doi.org/10.1037/h0061626,
PMID: 18870876

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello,
F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical

Berens, Joensen, and Horner 461

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/3/445/1862592/jocn_a_01654.pdf by guest on 08 Septem
ber 2023

https://doi.org/10.1037/xge0000648
https://europepmc.org/article/MED/31305093
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6951107
https://doi.org/10.1016/j.neuroimage.2012.02.055
https://doi.org/10.1016/j.neuroimage.2012.02.055
https://europepmc.org/article/MED/22398396
https://doi.org/10.1016/j.cub.2018.04.057
https://doi.org/10.1016/j.cub.2018.04.057
https://europepmc.org/article/MED/30205055
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161705
https://doi.org/10.1016/j.cub.2016.02.066
https://doi.org/10.1016/j.cub.2016.02.066
https://europepmc.org/article/MED/27020742
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565511
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1016/j.neuropsychologia.2007.04.007
https://doi.org/10.1016/j.neuropsychologia.2007.04.007
https://europepmc.org/article/MED/17507060
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2572909
https://doi.org/10.1038/s41467-018-08080-2
https://doi.org/10.1038/s41467-018-08080-2
https://europepmc.org/article/MED/30643124
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6331625
http://arxiv.org/abs/2002.02342
https://doi.org/10.1016/j.cub.2013.08.035
https://europepmc.org/article/MED/24094852
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874407
https://doi.org/10.3389/fnhum.2018.00189
https://doi.org/10.3389/fnhum.2018.00189
https://europepmc.org/article/MED/29867413
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953332
https://doi.org/10.1016/j.cognition.2016.10.005
https://doi.org/10.1016/j.cognition.2016.10.005
https://europepmc.org/article/MED/27814459
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5123926
https://doi.org/10.1038/nn.3834
https://doi.org/10.1038/nn.3834
https://europepmc.org/article/MED/25282616
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4309016
https://doi.org/10.1523/JNEUROSCI.2270-15.2015
https://doi.org/10.1523/JNEUROSCI.2270-15.2015
https://europepmc.org/article/MED/26538658
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4635136
https://doi.org/10.1016/j.cub.2015.01.033
https://doi.org/10.1016/j.cub.2015.01.033
https://europepmc.org/article/MED/25728693
https://doi.org/10.1038/nn.3687
https://europepmc.org/article/MED/24686786
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4036486
https://doi.org/10.1523/jneurosci.1234-18.2018
https://doi.org/10.1523/jneurosci.1234-18.2018
https://europepmc.org/article/MED/30355632
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284109
https://doi.org/10.1002/hipo.20115
https://doi.org/10.1002/hipo.20115
https://europepmc.org/article/MED/16145693
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677681
https://doi.org/10.1016/0006-8993(71)90358-1
https://doi.org/10.1016/0006-8993(71)90358-1
https://europepmc.org/article/MED/5124915
https://doi.org/10.1023/A:1011139631724
https://doi.org/10.1037/0033-295x.108.2.311
https://doi.org/10.1037/0033-295x.108.2.311
https://europepmc.org/article/MED/11381832
https://doi.org/10.1523/JNEUROSCI.3885-10.2011
https://doi.org/10.1523/JNEUROSCI.3885-10.2011
https://europepmc.org/article/MED/21273418
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6623596
https://doi.org/10.1016/j.cub.2016.07.002
https://europepmc.org/article/MED/27618266
https://doi.org/10.1038/ncomms9151
https://europepmc.org/article/MED/26303198
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4560815
https://doi.org/10.1002/hipo.22310
https://doi.org/10.1002/hipo.22310
https://doi.org/10.1002/hipo.22310
https://europepmc.org/article/MED/24888442
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159432
https://doi.org/10.1523/jneurosci.4085-09.2010
https://doi.org/10.1523/jneurosci.4085-09.2010
https://europepmc.org/article/MED/20219998
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872555
https://doi.org/10.3389/fnhum.2016.00412
https://doi.org/10.3389/fnhum.2016.00412
https://europepmc.org/article/MED/27588001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4988988
https://doi.org/10.1016/0028-3932(81)90090-7
https://europepmc.org/article/MED/7329524
https://doi.org/10.1037/h0061626
https://doi.org/10.1037/h0061626
https://europepmc.org/article/MED/18870876


labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage,
15, 273–289. DOI: https://doi.org/10.1006/nimg.2001.0978,
PMID: 11771995

Vallortigara, G., & Rogers, L. J. (2005). Survival with an
asymmetrical brain: Advantages and disadvantages of cerebral
lateralization. Behavioral and Brain Sciences, 28, 575–589.
DOI: https://doi.org/10.1017/s0140525x05000105, PMID:
16209828

van Kesteren, M. T. R., Ruiter, D. J., Fernández, G., & Henson,
R. N. (2012). How schema and novelty augment memory
formation. Trends in Neurosciences, 35, 211–219. DOI:
https://doi.org/10.1016/j.tins.2012.02.001, PMID: 22398180

Vass, L. K., & Epstein, R. A. (2013). Abstract representations of
location and facing direction in the human brain. Journal of
Neuroscience, 33, 6133–6142. DOI: https://doi.org/10.1523

/JNEUROSCI.3873-12.2013, PMID: 23554494, PMCID:
PMC3656495

Watson, D. M., Hartley, T., & Andrews, T. J. (2017). Patterns of
response to scrambled scenes reveal the importance of visual
properties in the organization of scene-selective cortex.
Cortex, 92, 162–174. DOI: https://doi.org/10.1016/j.cortex
.2017.04.011, PMID: 28499144

Welch, B. L. (1947). The generalization of “student’s” problem
when several different population variances are involved.
Biometrika, 34, 28–35. DOI: https://doi.org/10.1093/biomet
/34.1-2.28, PMID: 20287819

Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012).
Hippocampal and ventral medial prefrontal activation during
retrieval-mediated learning supports novel inference. Neuron,
75, 168–179. DOI: https://doi.org/10.1016/j.neuron.2012
.05.010, PMID: 22794270, PMCID: PMC3398403

462 Journal of Cognitive Neuroscience Volume 33, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/3/445/1862592/jocn_a_01654.pdf by guest on 08 Septem
ber 2023

https://doi.org/10.1006/nimg.2001.0978
https://europepmc.org/article/MED/11771995
https://doi.org/10.1017/s0140525x05000105
https://europepmc.org/article/MED/16209828
https://doi.org/10.1016/j.tins.2012.02.001
https://europepmc.org/article/MED/22398180
https://doi.org/10.1523/JNEUROSCI.3873-12.2013
https://doi.org/10.1523/JNEUROSCI.3873-12.2013
https://doi.org/10.1523/JNEUROSCI.3873-12.2013
https://europepmc.org/article/MED/23554494
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3656495
https://doi.org/10.1016/j.cortex.2017.04.011
https://doi.org/10.1016/j.cortex.2017.04.011
https://europepmc.org/article/MED/28499144
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://doi.org/10.1093/biomet/34.1-2.28
https://europepmc.org/article/MED/20287819
https://doi.org/10.1016/j.neuron.2012.05.010
https://doi.org/10.1016/j.neuron.2012.05.010
https://europepmc.org/article/MED/22794270
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398403

