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Abstract

B Understanding the contribution of cognitive processes and
their underlying neurophysiological signals to behavioral phenom-
ena has been a key objective in recent neuroscience research.
Using a diffusion model framework, we investigated to what ex-
tent well-established correlates of spatial attention in the elec-
troencephalogram contribute to behavioral performance in an
auditory free-field sound localization task. Younger and older par-
ticipants were instructed to indicate the horizontal position of a
predefined target among three simultaneously presented distrac-
tors. The central question of interest was whether posterior alpha
lateralization and amplitudes of the anterior contralateral N2 sub-
component (N2ac) predict sound localization performance (accu-
racy, mean RT) and/or diffusion model parameters (drift rate,
boundary separation, non-decision time). Two age groups were
compared to explore whether, in older adults (who struggle with
multispeaker environments), the brain-behavior relationship

INTRODUCTION

When multiple sources of acoustic information are simul-
taneously present, selective filtering of the available in-
formation is necessary to, for instance, focus on a talker
of interest while ignoring traffic noise, music playing in
the background, or other peoples’ conversations. This
capacity of the human auditory system is especially as-
tonishing, given that the incoming auditory signals often
overlap in time, space, or spectral content. The behav-
ioral effects of such selective orienting of attention in
noisy, multispeaker environments, usually referred to as
“cocktail party scenarios” (Cherry, 1953), have been stud-
ied for decades (for a review, see Bronkhorst, 2015).
However, the contribution of neural signals to observable
behavioral performance and its underlying cognitive pro-
cesses is still poorly understood. Here, we investigated
the relationship between well-established correlates of
spatial attention in the electroencephalogram (EEG)
and behavioral performance in an auditory sound local-
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would differ from younger adults. Regression analyses revealed
that N2ac amplitudes predicted drift rate and accuracy, whereas
alpha lateralization was not related to behavioral or diffusion
modeling parameters. This was true irrespective of age. The re-
sults indicate that a more efficient attentional filtering and se-
lection of information within an auditory scene, reflected by
increased N2ac amplitudes, was associated with a higher speed
of information uptake (drift rate) and better localization per-
formance (accuracy), while the underlying response criteria
(threshold separation), mean RTs, and non-decisional pro-
cesses remained unaffected. The lack of a behavioral correlate
of poststimulus alpha power lateralization constrasts with the
well-established notion that prestimulus alpha power reflects
a functionally relevant attentional mechanism. This highlights
the importance of distinguishing anticipatory from poststimulus
alpha power modulations. [l

ization task. In particular, we specified the role of modu-
lations in the alpha frequency band as well as an anterior
contralateral N2 subcomponent (N2ac; Gamble & Luck,
2011) with respect to sound localization performance.
Lateralized modulations of alpha power amplitude
have been shown to reflect the orienting of spatial atten-
tion in visual (Foster, Sutterer, Serences, Vogel, & Awh,
2017; Ikkai, Dandekar, & Curtis, 2016; Rihs, Michel, &
Thut, 2007; Worden, Foxe, Wang, & Simpson, 2000), tac-
tile (Haegens, Luther, & Jensen, 2012; Haegens, Hindel,
& Jensen, 2011), and auditory space (Klatt, Getzmann,
Wascher, & Schneider, 2018b; Wostmann, Vosskuhl,
Obleser, & Herrmann, 2018; Wostmann, Herrmann, Maess,
& Obleser, 2016). Typically, alpha power is shown to
decrease contralaterally to the attended location (Kelly,
Gomez-Ramirez, & Foxe, 2009; Sauseng et al., 2005) or to in-
crease contralaterally to the unattended or ignored location
(Kelly, Lalor, Reilly, & Foxe, 2006; Worden et al., 2000).
Consistently across different modalities, this lateralized
pattern of alpha-band activity has been shown to be linked
to visual detection performance (Hindel, Haarmeier, &
Jensen, 2011; van Dijk, Schoffelen, Oostenveld, & Jensen,
2008; Thut, Nietzel, Brandt, & Pascual-Leone, 2006), tactile
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discrimination acuity (Craddock, Poliakoff, El-deredy,
Klepousniotou, & Lloyd, 2017; Haegens et al., 2011), and
listening performance (Tune, Wostmann, & Obleser, 2018;
Wostmann et al., 2016). Going beyond a mere correlational
approach, recent studies applying stimulation techniques,
such as TMS or continuous transcranial alternating current
stimulation, suggest a causal role of alpha oscillations in the
processing of incoming information (Wostmann et al., 2018;
Romei, Gross, & Thut, 2010). Two major (not necessarily
mutually exclusive) mechanisms have been proposed to
underlie those asymmetric modulations of alpha power
oscillations: target enhancement (Noonan et al., 2016;
Yamagishi, Goda, Callan, Anderson, & Kawato, 2005)
and distractor inhibition (Schneider, Géddertz, Haase,
Hickey, & Wascher, 2019; Rihs et al., 2007; Kelly et al.,
20006; Worden et al., 2000). Although the majority of pre-
vious studies investigated prestimulus alpha oscillations
as an index of anticipatory allocation of spatial attention
in young adults, we focused on poststimulus alpha later-
alization in a sound localization task, simulating a “cocktail
party scenario.” Such an experimental setup more closely
resembles frequent real-life situations, in which a person
searches for a sound of interest (e.g., a voice or a ringing
phone) without knowing in advance where to look for it. In
fact, there is first evidence that distinct attentional mecha-
nisms contribute to the preparation for as opposed to the
ongoing processing of a stimulus (van Ede, Szebényi, &
Maris, 2014). In addition, we explore whether the pro-
posed mechanistic function of alpha oscillations extends
to samples of older participants, which remains an ongoing
matter of debate (Tune et al., 2018; Mok, Myers, Wallis, &
Nobre, 2016; Hong, Sun, Bengson, Mangun, & Tong, 2015;
Vaden, Hutcheson, McCollum, Kentros, & Visscher, 2012).

A second neural measure of interest, indicating the alloca-
tion of attention within an auditory scene, is the N2ac. The
N2ac has been shown to be evoked in the N2 latency range
(starting at around 200 msec) when detecting or localizing a
target sound in the presence of one or multiple distractor
stimuli, using artificial sounds (Gamble & Luck, 2011), ani-
mal vocalizations (Klatt, Getzmann, Wascher, & Schneider,
2018a; Lewald & Getzmann, 2015), or spoken numerals
(Lewald, Hanenberg, & Getzmann, 2016). Although the
N2ac was originally suggested to reflect the allocation of
selective attention to the target (Gamble & Luck, 2011),
analogously to the visual posterior contralateral N2 sub-
component (N2pc; Eimer, 1996; Luck & Hillyard, 1994),
its functional significance remains ambiguous. Here, we
aimed to provide further evidence on the functional signif-
icance of the N2ac by investigating its relationship to sound
localization performance.

In this study, the diffusion modeling approach (Ratcliff,
1978) was applied, allowing for a more detailed under-
standing of behavioral patterns in discrimination tasks (for
recent reviews, see Voss, Nagler, & Lerche, 2013; Ratcliff &
McKoon, 2008). Although diffusion models are still only
rarely used in cognitive neuroscience research (see, e.g.,
Schubert, Nunez, Hagemann, & Vandekerckhove, 2019;
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Nunez, Vandekerckhove, & Srinivasan, 2017; Schubert,
Hagemann, Voss, Schankin, & Bergmann, 2015; Ratcliff,
Philiastides, & Sajda, 2009; Philiastides, Ratcliff, & Sajda,
2000), the interest in and the application of this methodo-
logical approach has increased considerably during the past
decade. The general purpose of diffusion models is to
decompose the cognitive processes underlying a binary
decision. As one of the major advantages of the diffusion
model, the estimation procession is not limited to single
mean or median values but takes the whole RT distribution
into account. Specifically, the resulting separation of pro-
cessing components offers an enormous potential to pro-
vide more detailed descriptions of cognitive processes
and to generate more accurate predictions for behavioral
and neurophysiological data (Turner, Rodriguez, Norcia,
McClure, & Steyvers, 2016; Ratcliff & McKoon, 2008).

The diffusion model assumes that, in order for a deci-
sion to be made and a reaction to be executed, evidence
for either response is accumulated in the course of a noisy
process until it reaches either the decision boundary of re-
sponse A or response B (see Figure 2 in Voss et al., 2013
for an illustration of this evidence accumulation process).
The basic diffusion model includes the following pa-
rameters: The drift rate v describes the speed at which
evidence is accumulated (or “the rate of accumulation of
information”; Ratcliff & McKoon, 2008, p. 3), with higher
drift rates resulting in shorter RTs and fewer errors.
Threshold separation a indicates the amount of infor-
mation considered until a decision is made. That is, con-
servative response criteria that are associated with slower
but more accurate responses result in large estimates of a,
whereas more liberal response criteria result in smaller es-
timates of a. Threshold separation and drift rate have been
shown to be negatively correlated due to the fact that in-
dividuals with higher drift rates tend to allow more liberal
response criteria (i.e., smaller threshold separation values;
Schmiedek, Oberauer, Wilhelm, Siif3, & Wittmann, 2007).
A priori biases toward one of the decision thresholds are
reflected by starting point z. Beyond that, the model also
includes non-decisional processing, such as response exe-
cution, working memory access, or stimulus encoding.
The latter is indicated by the non-decision time constant
to. Typically, older adults show a slowing in this decision-
unrelated domain (Ratcliff, Thapar, Gomez, & McKoon,
2004; Ratcliff, Thapar, & McKoon, 2001). Finally, trial-to-
trial variability in drift rate (s,), non-decision time (s,),
starting point (s,), and the proportion of contaminated tri-
als (pay; €.g., underlying non-diffusion-like processes) can
be accounted for.

In summary, here we aimed at characterizing the rela-
tion between electrophysiological correlates of atten-
tional orienting within a complex auditory scene (i.e.,
alpha lateralization and N2ac) and sound localization
performance, which was assessed by classical RT and accu-
racy measures as well as by diffusion modeling parameters.
We hypothesized that, if the cognitive processes reflected by
alpha power modulations and N2ac amplitudes contribute
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to the successful selection of the target from a sound array
containing simultaneously present distractors, they should
in turn contribute to the information accumulation process
that results in the localization of the target. Hence, alpha
power modulations and N2ac amplitudes should predict
drift rate (i.e., the speed of information accumulation)
and, in turn, RT and accuracy.

The data analyzed here were taken from a separate study
on effects of auditory training on cocktail party listening
performance in younger and older adults (Hanenberg,
Getzmann, & Lewald, unpublished). Exclusively pretraining
data of this study were used. The sample analyzed here in-
cluded both age groups. Although we did not primarily aim
at the investigation of age effects, age differences with re-
spect to sound localization performance, alpha lateralization
and N2ac, as well as the relation between these electro-
physiological correlates of attentional orienting and sound
localization performance were considered. Irrespective of
the expected age-related decline, we proposed the latter
brain-behavior relationship to be true for both age groups.

METHODS
Participants

The original sample included 28 older adults and 24
younger adults. Data for three younger participants were
discarded because of technical problems with the EEG
recording. In addition, two older participants were ex-
cluded from analysis because their performance was be-
low (14% correct) or very close to (30%) chance level
(25%). Consequently, the final sample included 26 older
adults (mean age = 69 years, range = 56-76 years, 13
women) and 21 younger adults (mean age = 24 years,
range = 19-29 years, 11 women). All participants were
right-handed as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971).

An audiometry, including 11 pure-tone frequencies (0.125—
8 kHz; Oscilla USB100, Inmedico) was conducted. Hearing
thresholds in the speech frequency range (<4 kHz) in-
dicated normal hearing (<25 dB) for all younger par-
ticipants and mild impairments for older participants
(£40 dB). The study was conducted in accordance with
the Declaration of Helsinki and was approved by the
Ethical Committee of the Leibniz Research Centre for
Working Environment and Human Factors. All participants
gave their written informed consent for participation.

Experimental Setup, Procedure, and Stimuli

The original study, in which data were collected (Hanenberg
et al., unpublished), comprised three training sessions on
3 days, with three experimental blocks per session (15 min
pretraining, 15 min posttraining, 1 hr posttraining) and
with intervals of 1-3 weeks between sessions. For the pres-
ent reanalysis, exclusively the data obtained in the pre-
training blocks, pooled across the three sessions, were

used. The experiment was conducted in a dimly lit, echo-
reduced, sound-proof room. Participants were seated in a
comfortable chair that was positioned with equal distances
to the left, right, and front wall of the room. Participants’
head position was stabilized by a chin rest. A semicircular
array of nine broadband loudspeakers (SC5.9; Visaton;
housing volume 340 cm®) was mounted in front of the par-
ticipant at a distance of 1.5 m from the participant’s head.
Only four loudspeakers, located at azimuthal positions of
—60°, —20°, 20° and 60°, were used for the experimental
setup of this study. A red light-emitting diode (diameter =
3 mm, luminous intensity = 0.025 mcd) was attached right
below the central loudspeaker in the median plane of the
participant’s head at eye level. The light-emitting diode was
continuously on and served as a central fixation point.

The sound localization task applied in this study was a
modification of the multiple-sources approach that has
been used in several previous studies on auditory selec-
tive spatial attention in “cocktail party scenarios” (Lewald,
2016, 2019; Lewald & Getzmann, 2015; Zundorf, Karnath,
& Lewald, 2011, 2014; Zundorf, Lewald, & Karnath, 2013).
Details of the present task version have been previously
described (Lewald et al., 2016). Briefly, participants indi-
cated the position of a predefined target numeral that was
presented simultaneously with three distractor numerals.
The target was kept constant for each participant and was
counterbalanced across participants and age groups such
that each numeral served as a target an equal number of
times within the overall experiment. Four 1-syllable nu-
merals (“eins,” 1; “vier,” 4; “acht,” 8; “zehn,” 10), spoken
by two male (mean pitch = 141 Hz) and two female (mean
pitch = 189 Hz) native German speakers, served as sound
stimuli (Lewald et al., 2016). All numerals were presented
equally often at each of the four possible loudspeaker posi-
tions (located at —60°, —20°, 20°, 60° azimuth). Numerals
presented in each trial were spoken by four different
speakers. The overall sound pressure level of the sound
arrays was 66 dB(A), as measured at the position of the par-
ticipant’s head using a sound-level meter with a 0.5-in. free-
field measuring microphone (Types 2226 and 4175, Briel &
Kjaer).

The target was present in each trial, with target posi-
tion, distractor positions, and speakers varying between
trials following a fixed pseudorandom order. The stimu-
lus duration was 600 msec, followed by a response period
of 2 sec and an intertrial interval of 525 msec, resulting in
a total trial duration of 3.125 sec. The response was given
by pressing one out of four response buttons with the
index finger of the right hand. The response buttons
were arranged in semicircular array, related to the four
possible target locations (i.e., far left, inner left, inner
right, far right). Each block consisted of 288 trials, re-
sulting in a duration of 15 min per block. As already
mentioned above, data from three blocks, assessed on
different days, were pooled. Thus, there was a total of
864 trials per participant. On each of the 3 days, partici-
pants completed a short training sequence of 10 trials
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before the experiment to familiarize themselves with the
task.

EEG Recording and Preprocessing

The continuous EEG was recorded from 58 passive Ag/
AgCl electrodes at a sampling rate of 1 kHz using a
QuickAmp-72 amplifier (Brain Products). The electrode
montage was arranged according to the international
10/10 system. Two electrodes were positioned on the left
and right mastoid, respectively. In addition, two horizon-
tal and two vertical EOG electrodes were placed below
and above the right eye and at the outer canthi of the left
and right eye, respectively. The ground electrode was po-
sitioned right above the nasion, in the center of the fore-
head. The average of all electrodes served as an online
reference. Electrode impedances were kept below 10 k(.

Offline preprocessing of the data was conducted using
the open-source toolbox EEGLAB (v14.1.2b; Delorme &
Makeig, 2004) for MATLAB (R2018a). The continuous EEG
data were high-pass filtered at 0.5 Hz (6601-point FIR fil-
ter, bandwidth = 0.5 Hz, cutoff frequency = 0.25 Hz) and
low-pass filtered at 30 Hz (441-point FIR filter, transition
bandwidth = 7.5 Hz, cutoff frequency = 33.75 Hz). Using
the automated channel rejection procedure implemented
in EEGLAB, channels with a normalized kurtosis greater
than 5 SDs of the mean were rejected. The data were re-
referenced to the average of all remaining EEG electrodes
(including two mastoid electrodes) and segmented into
epochs ranging from —1000 to 3125 msec, relative to
sound array onset. For epoched data, the 200 msec time
window before sound array onset served as a baseline.
Independent component analysis was run on a subset of
the original data, downsampled to 200 Hz and containing
only every second trial. The derived independent compo-
nent (IC) decomposition was then projected onto the orig-
inal data set with a 1-kHz sampling rate comprising all trials.
Using the DIPFIT plugin of the EEGLAB toolbox, a single
equivalent current dipole model was computed for each
of the IC scalp maps by means of a spherical head model
(Kavanagh, Darcey, Lehmann, & Fender, 1978). Artifactual
ICs were identified and excluded in two subsequent steps:
The automated algorithm ADJUST (Mognon, Jovicich,
Bruzzone, & Buiatti, 2011) was applied to identify and re-
ject components related to blinks, eye movements, and ge-
neric discontinuities. In addition, because artifactual ICs
usually do not resemble the projection of a single dipole
(Onton & Makeig, 20006), all components with a residual
variance exceeding 40% of the dipole solution were re-
jected. The resulting IC solution was visually inspected
for any additional artifactual components that were not
detected by this automated rejection procedure. On aver-
age, 28 ICs (out of 51-58 ICs) were rejected for each par-
ticipant (range = 12-40). Finally, the automated artifact
rejection procedure implemented in EEGLAB (threshold
limit = 1000 nV, probability threshold = 5 SDs) was per-
formed. On average, the procedure rejected 207 trials
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(range = 92-317), that is, 23% of trials (range = 10.6—
36.6%). Only trials with correct responses were submitted
to further analyses of EEG data (cf. ERP Analysis section
and Time-Frequency Data section). Data from channels,
which were originally rejected, were reconstructed using
EEGLAB’s spherical interpolation procedure.

Data Analyses
Behavioral Data

Behavioral performance was quantified by means of
mean RTs and mean accuracy (proportion of correct tri-
als), as well as diffusion model parameters. Proportion of
correct trials included only responses that were given
within the maximum response period of 2 sec. A total
of 83 trials (i.e., on average two trials per participant,
range = 0-16, median = 1) were rejected as incorrect
due to missing responses and responses that exceeded
the maximum response period.

The diffusion modeling framework was applied to the
present auditory localization task, in which participants
were instructed to localize the position of a given target
within a four-sound array of one-syllable spoken nu-
merals. Because the diffusion model is originally based
on a two-choice decision task, the decision process is
here assumed to present a continuous accumulation
of evidence for the true target location relative to the
three nontarget locations. Previous applications of the
diffusion model have shown that it can validly describe
decision-making in four-choice alternative response
tasks (Schubert et al., 2015, 2019). To eliminate outliers
that could bias model results (Voss, Voss, & Lerche,
2015) extremely fast (<150 msec) and extremely slow
(>3000 msec) RTs were discarded. Subsequently, data
were log-transformed and z-standardized to exclude all
trials with RTs exceeding = 3 SDs of the mean for each
individual participant.

The free software fast-dm (Voss & Voss, 2007) was
used to fit a diffusion model to the RT distributions of
the present data. The model parameters were estimated
based on an iterative permutation process using the
Kolmogrov-Smirnov test statistic. The starting point z
was set to 0.5, presuming that participants were not bi-
ased toward one of the two response categories (correct
target location vs. distractor locations). The parameters
a, v, and t, were allowed to vary freely. In addition, pa-
rameters s, and s,, were estimated because they led to a
notable improvement of model fit. Trial-to-trial variability
of starting point (s,), the difference in speed of response
execution (d), as well as the measure for the percentage
of contaminants (p;) were set to 0. To graphically eval-
uate model fit, we plotted observed versus predicted ac-
curacy as well as observed versus predicted values of the
RT distribution for the first (.25), second (.50), and third
(.75) quartile. Predicted parameter values were derived
using the construct-samples tool of fast-dm (Voss &
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Voss, 2007). That is, 500 data sets were generated for
each participant based on each individual’s empirical pa-
rameter values and number of trials. Finally, the mean
quartile values and mean response accuracy were cal-
culated for each participant. Pearson correlations were
calculated to quantify the relationship between empirical
data and model predictions for both age groups. If the
majority of data points lie close to the line of perfect cor-
relation, good model fit can be assumed.

ERP Analysis

To investigate the N2ac component (Gamble & Luck, 2011),
we computed the mean contralateral and ipsilateral ERP
amplitude at frontocentral electrodes FC3/4 for older
adults and FC5/6 for younger adults. The contralateral
portion comprised the average signal at left hemispheric
electrodes in right target trials and right hemispheric elec-
trodes in left target trials, whereas the ipsilateral portion
included the average signal at left hemispheric electrodes
in left target trials and right hemispheric electrodes in
right target trials. Mean amplitude was measured from
477 to 577 msec relative to sound array onset. The mea-
surement window was based on a 100-msec time window
set around the 50% fractional area latency (FAL; Luck,
2014; Hansen & Hillyard, 1980) in the grand-averaged
contralateral minus ipsilateral difference curve averaged
across age groups and electrodes (50% FAL = 527 msec).
To determine the FAL, the area under the difference
curve was measured in a broad time window ranging from
200 to 800 msec relative to sound array onset. The latency
at which this area is divided in two equal halves denotes
the 50% FAL. We determined a common analysis time
window for both age groups because a prior control anal-
ysis did not reveal any significant differences between the
50% FAL for younger (M = 525.86 msec) and older adults
M = 517.50 msec), Z = 0.26, p = .80, U3 = 0.48. The
respective electrodes of interest (i.e., FC3/4 and FC5/6)
were chosen to include the scalp sites with the most
pronounced asymmetry (i.e., peak asymmetry in the age-
specific grand-averaged waveform) for each age group.
This age-specific mean amplitude was measured in the
time window specified above.

Time—-Frequency Data

To obtain time—frequency representations of the single-trial
oscillatory power, we convolved the epoched, stimulus-
locked EEG data with three-cycle complex Morlet wavelets.
The number of cycles increased with frequency by a factor
of 0.5, that is, half as fast as the number of cycles in the
respective fast Fourier transformation. This resulted in
three-cycle wavelets at the lowest frequency (4 Hz) and
11.25-cycle wavelets at the highest frequency (30 Hz). To
quantify asymmetries in the attentional modulation of total
oscillatory power (induced + evoked activity), the alpha lat-
eralization index (ALI) was calculated (Wildegger, van Ede,

Woolrich, Gillebert, & Nobre, 2017; Wostmann et al., 2016;
Haegens et al., 2011). The latter quantifies the strength of
the ipsilateral minus contralateral difference in alpha power
relative to the total power across both hemispheres:

(ipsilateral alpha power—contralateral alpha power)
(ipsilateral alpha power + contralateral alpha power)

@)

ALl =

This normalization controls for potential confounds through
differences in overall power level when comparing the
two age groups. Mean ipsilateral and contralateral power
was extracted in the alpha frequency band (8-12 Hz) at
electrodes PO7/POS8 in a time window ranging from 705
to 902 msec relative to the onset of the sound array. The
measurement window was based on a 200-msec time win-
dow set around the 50% FAL in the ALI difference curve av-
eraged across age groups (50% FAL = 804 msec). The 50%
FAL was calculated based on a broad time window ranging
from 300 to 1400 msec relative to sound array onset. We
determined a common analysis time window for both age
groups, because a control analysis did not reveal any signif-
icant differences between the 50% FAL for younger (M =
796.00 msec) and older adults (M = 860.57 msec), Z =
—1.27, p = .20, U3 = 0.31. The electrodes sites were se-
lected based on a range of previous studies (e.g., Klatt
et al., 2018b; van Driel, Gunseli, Meeter, & Olivers, 2017,
van Ede, Niklaus, & Nobre, 2017; Myers, Walther, Wallis,
Stokes, & Nobre, 2015; Van der Lubbe, Bundt, & Abrahamse,
2014; Gould, Rushworth, & Nobre, 2011; Thut et al., 2006),
revealing a parieto-occipital scalp distribution and show-
ing PO7/8 to be a representative choice of electrodes
when measuring alpha lateralization. To minimize the
family wise error rate, we chose to limit the analysis to
one pair of electrodes. The ALI is positive when alpha
power is higher over the ipsilateral hemisphere (relative
to the target sound) and/or lower over the contralateral
hemisphere. In contrast, negative values indicate higher
alpha power contralateral to the target and/or lower alpha
power over ipsilateral electrode sites. The lateralization in-
dex was calculated using the raw, baseline-uncorrected
power values. ALI values for younger and older adults
were submitted to parametric two-sample ¢ tests, using
Satterthwaite’s approximation to assess degrees of free-
dom. Subsequently, one-sample ¢ tests were conducted
to test for significance of alpha lateralization within or
across age groups.

Multiple Regression

To investigate to what extent alpha lateralization and
N2ac amplitudes predict behavior in the given auditory
localization task, we applied regression analyses. Sep-
arate multiple linear regression models were evaluated
for mean RT, drift rate v, threshold separation a, and
non-decision time ¢, as response variables, using the fitlm
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function implemented in the MATLAB Statistics and
Machine Learning toolbox (R2018a). To account for the
fact that accuracy proportions range inbetween 0 and 1,
a beta regression was calculated for accuracy as a re-
sponse variable using the R betareg package by Cribari-
Neto and Zeileis (2010). For all five regression analyses,
N2ac amplitudes, ALI, and age group served as pre-
dictors. In addition, to assess whether the relationship
between electrophysiological correlates and behavioral
outcomes differed between age groups, two interaction
terms were also included (i.e., age:N2ac, age:ALl). Effects
coding was used as a contrast scheme for the age group
variable to enable a proper interpretation of lower and
higher order effects. Model assumptions were verified by
examination of residuals plots: Pearson residuals were
plotted against fitted values and against predictor variables
to assess nonconstant error variance (heteroscedasticity)
and deviations from linearity, respectively. In addition,
normal probability plots were examined to evaluate nor-
mality of residuals. In case of a nonsignificant Durbin—
Watson test, returning a test statistic close to 2, residuals
were assumed to be uncorrelated. Variation inflation fac-
tors were inspected for signs of multicollinearity. Finally,
to check for influential cases, leverage and cook’s distance
were examined. Values exceeding 1 for cook’s distance
(Cook & Weisberg, 1982) or 3 X @ (with £ indicating
the number of predictors and » indicating the sample
size) for leverage (Pituch & Stevens, 2016) were set as cut-
offs for further inspection. The inspection of residuals
plots indicated deviations from normality for the drift rate
regression model. Refitting the model with a log trans-
formation (to base 10) of the drift rate values (v + 1; a
constant was added to avoid negative values) resulted in
approximately normally distributed residuals. Thus, ordi-
nary least square regression was applied. For the models
regarding threshold separation, non-decision time, and
RT, the residual probability plots indicated some outliers.
To reduce outlier effects, we fitted a robust regression
model, using an iterative reweighted least squares proce-
dure and a bisquare weight function. Adjusted R-squared
(denoted as R?) is reported as a goodness-of-fit statistic. To
correct for the fact that we conducted separate multiple
regression analyses for each of the five dependent vari-
ables, p values for regression coefficients were corrected
using a Bonferoni-Holm procedure (Holm, 1979). Note
that in each case the five p values belonging to the same
type of estimate (i.e., intercept, N2ac fixed effect, ALI fixed
effect, age fixed effect, N2ac:age interaction term, or ALL
age interaction term) were corrected for multiple testing.
To visualize the relationship between single predictors and
outcomes, marginal effects plots (ggeffect function from
ggeffects package; Lidecke, 2018) and adjusted response
functions (plotinteraction and plotAdjustedResponse
functions) were used for the beta regression model (in R)
and linear regression models (in MATLAB), respectively.
Adjusted response functions describe the relationship be-
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tween the fitted response and a specific predictor, whereas
the other predictors are averaged out by averaging the fitted
values over the data used in the fit. Adjusted response values
are computed by adding the residual to the adjusted fitted
value for each observation (The MathWorks, 2019). When
plotting marginal effects using “ggeffect,” the other factors are
held constant at an average value (Lidecke, 2018).

Statistical Tests and Effect Sizes

Data were considered normally distributed if the Lilliefors
test (Lilliefors, 1967) vielded insignificant results (p >
.05). For normally distributed data, parametric two-sample
Welch’s ¢ tests were applied. Degrees of freedom were
estimated using Satterthwaite’s approximation, assuming
unequal variances. Wilcoxon rank-sum test served as the
nonparametric counterpart in case of nonnormality. To
test for significance within an age group, a parametric
one-sample # test or the nonparametric Wilcoxon signed-
rank test was applied. Measures of effect sizes were calcu-
lated using the MES toolbox provided by Hentschke and
Stiittgen (2011). For parametric one- and two-sample ¢
tests, g1 and Hedge’s g (in the following referred to as g)
are reported, respectively. For both measures, effect sizes
of =0.2 are typically referred to as small, values of 0.5 as
medium, and values of 0.8 as large. For nonparametric ¢
tests, Cohen’s U3 is reported. Cohen’s U3 is 2 measure of
overlap of two distributions, with 0.5 indicating minimal
overlap and 0 or 1 indicating maximal overlap. The sig-
nificance of effects was assessed at a significance level of
a = .05. The Bonferroni—-Holm correction procedure
was applied to correct for multiple comparisons when
appropriate (Holm, 1979). Adjusted p values are denoted
as padj-

Given that p values from standard inferential statistics
do not allow any conclusions on whether or not the null
hypothesis is true, we additionally report the Bayes factor
(BF) to strengthen the interpretability of effects in this
study. In essence, the BF provides a “continuous” mea-
sure, which indicates how much more likely the ob-
served results are under a given hypothesis, compared
with an alternative hypothesis (for an introduction to
Bayesian statistics, see Quintana & Williams, 2018;
Wagenmakers et al., 2018). A BF of 1 indicates that the
results are equally likely under both hypotheses (i.e.,
the null and the alternative hypothesis). A BF < 1 pro-
vides increasing evidence in favor of the null hypothesis
relative to the alternative hypothesis, whereas a BF > 1
provides increasing evidence favoring the alternative
hypothesis over the null hypothesis (Dienes, 2014). To
facilitate the interpretation of BFs, the classification
scheme originally proposed by Jeffreys (1961) is applied:
The latter suggests that a BF > 3 and > 10 provide mod-
erate and strong evidence for the alternative hypothesis,
respectively, whereas a BF < 0.33 or < 0.1 suggests mod-
erate and strong evidence in favor of the null hypothesis,
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respectively. Finally, BFs between 0.33 and 3 are inter-
preted in terms of anecdotal evidence. However, it should
be noted that those cutoffs have no absolute meaning
(Dienes, 2014) in that evidence is continuous and it is di-
rectly interpretable in terms of an odds ratio (Quintana &
Williams, 2018). The notation BF;q indicates the Bayes
factor for the alternative hypothesis (i.e., that the means
of the samples are different). BF functions implemented
in MATLAB by Krekelberg (2019) and the BayesFactor
package implemented in R (function: linearReg R2stat) by
Morey and Rouder (2018) were used to calculate BFs for
¢ tests and regression, respectively. To obtain a BF for a
specific coefficient in our regression model (BF.qf), the
BF for the full model and the restricted model were com-
pared according to the following formula: BFg,;/BF regi-
BFy,; indicates the BF for the full model, including all pre-
dictors, whereas BF,., indicates the BF for the restricted
model, omitting the coefficient of interest. Default priors,
that is, the Jeffrey—Zellner—Siow Prior for # tests and a
mixture of g-priors according to Liang, Paulo, Molina,
Clyde, and Berger (2008) for regression, were applied.
Because those packages do not support the calcula-
tion of BFs for beta regression, no Bayesian statistics
are provided for the regression analysis of accuracy
data.

RESULTS
Behavioral Results

Figure 1 shows the proportion of correct responses
(Figure 1A) as well as mean RTs (Figure 1B) separately
for both age groups. Diffusion parameters are depicted
in Figure 2. On average, younger adults showed higher
accuracy (#(43.05) = —3.36, p = .002, p,q; = 01, g =
0.92, BF,, = 14.21) and faster responses than older
adults (£(38.56) = 2.80, p = .008, p,q; = .038, g =
—0.83, BFjy = 6.93). The BFs indicated that the alterna-
tive model was around 14 times and six times more likely
than the null model, respectively, thus providing strong

and moderate support for a difference between age
groups.

Although mean RTs do not offer any insights into the
underlying causes of prolonged RTs, diffusion parame-
ters allow for a closer look at different possible explana-
tions for the observed difference between age groups,
including a slowdown of information update (i.e., higher
drift rate v), a more conservative response criterion (i.e.,
higher threshold separation &), or delayed response exe-
cution (i.e., higher response constant #y). In our sample,
older adults showed a significantly reduced drift rate
(t(44.89) = —2.51, p = 016, p,g; = 047, g¢ = 0.70,
BF;, = 3.01), higher non-decision time (#(41.31) =
2.81, p = .008, p,g = .038, g = —0.82, BFy, =
6.59), as well as higher variability of non-decision time
(1(40.26) = 5.25, p < 001, pog; < 001, g = —1.43, BFy, =
153.9). Threshold separation values (#(44.24) = —0.60,
p = 513, pag; = 513, g = 0.19, BFo = 0.35) and trial-
to-trial variability of drift rate (Z = —1.21, p = 226, p,gj =
453, U3 = 0.29, BF;, = 0.35) did not differ significantly
between age groups. Although the BFs supported clas-
sical inferential statistics for significant results (BFs > 3),
for insignificant results they fell short of the criterion for
moderate evidence for equivalence (BFs > 0.33). To graph-
ically assess the fit of the estimated diffusion models, ob-
served RT quartiles (.25, .5, .75) and observed accuracy
were plotted against the corresponding value of the pre-
dicted distributions. As can be seen in Figure 3, the major-
ity of data points lie close to the line of perfect correlation,
indicating adequate model fit.

N2 Anterior Contralateral Component

Figure 4 presents the ERPs at frontocentral electrodes
FC3/4 for older adults and electrodes FC5/6 for younger
adults. In addition, the corresponding topographies
based on the contralateral minus ipsilateral difference
wave in the analysis time window are depicted. N2ac am-
plitudes (i.e., contralateral minus ipsilateral differences)
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did not differ significantly between younger (M = —0.37,
SD = 0.47) and older adults M = —0.38, SD = 0.40, ¢
(39.37) = —0.09, p = .926, g = 0.03, BF;, = 0.29).
The BF of 0.29 can be interpreted as insufficient evi-
dence, supporting neither the null nor the alternative hy-
pothesis. A one-sample ¢ test confirmed that across both
age groups, N2ac amplitudes were significantly different
from zero (t(46) = —6.02, p < .001, p,q; < .001, g; =
—0.88, BF, > 1000). However, it should be noted that
the original analysis time window was based on the 50%
FAL in the grand-averaged difference waveform across
both age groups; thus, this procedure favors a significant
result when testing overall N2ac amplitudes against zero.
To avoid this problem of “double dipping,” we performed
a second one-sample # test, using a broader analysis time
window of 400-600 msec post sound array onset. The lat-
ter yielded comparable results (#(46) = —4.41, p < .001,
DPagy < .001, gy = —0.64, BF;, > 1000). Consistently, the
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BF provided strong evidence in favor of the presence of
an N2ac component across both age groups.

Alpha Lateralization

The time—frequency plots in Figure 5 illustrate the asym-
metric modulation of alpha power (8-12 Hz) at electrodes
PO7/8 time-locked to sound array onset for younger
(Figure SA) and older adults (Figure 5B), respectively. In
addition, the corresponding topographies based on the
normalized ipsilateral minus contralateral difference in al-
pha power are depicted. Although younger adults appeared
to show larger alpha power lateralization than older adults,
the analysis revealed no significant difference in alpha
power lateralization between age groups (¢#(41.23) =
—143, p = 161, g = 0.42, BF;o = 1.13). The BF suggested
that the data were insensitive to distinguish the null (no
amplitude difference between groups) from the alternative
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hypothesis (difference in amplitudes between age groups).
Yet, a one-sample ¢ test confirmed that alpha lateralization
across both age groups was significantly different from zero
((46) = 6.07, p < .001, p,q; < .001, g1 = 0.89, BFy, >
1000), and the BF consistently suggested strong evidence
for the alternative hypothesis. As mentioned above (cf.
N2 Anterior Contralateral Component section), the analysis
time window (determined based on the 50% FAL in the
grand-averaged waveform) favors a significant result when
testing across age groups, against zero. Thus, a second

one-sample ¢ test was performed, based on a broader anal-
ysis time window of 600-900 msec post sound array onset,
yielding comparable results (#(46) = 591, p < .001, puq <
.001, g; = 0.86, BF;q > 1000).

Regression Analyses

We examined the relationship between mean alpha
power lateralization, N2ac amplitudes, and behavioral
performance (including diffusion model parameters)

uv
3r FCsl6
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1500 2000
Time (msec)

1000

contra
ipsi
difference wave

1500 2000
it Time (msec)

Figure 4. N2ac component at frontocentral electrodes FC5/6 for (A) younger and at FC3/4 for (B) older participants. Contralateral and ipsilateral
portions of the signal as well as the resulting difference wave (contralateral minus ipsilateral) are depicted. Scalp topographies show the
distribution of voltage differences based on the contralateral minus ipsilateral difference wave in the time window used for statistical analysis

(highlighted in gray in ERP figures).
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Figure 5. Grand-average time—frequency plots of lateralization indices at electrodes PO7/8 for (A) younger and (B) older adults. The scalp
topographies are based on normalized differences of ipsilateral minus contralateral alpha power in the time window used for statistical analysis.
Bar graphs show the mean difference (left minus right) for the left (i.e., PO7) and right (i.e., PO8) hemisphere. Error bars indicate the SEM. Line
plots (right) illustrate the contralateral and ipsilateral portion of the raw ERSPs as well as the resulting ALL

using multiple linear regression. The estimated param-
eters are provided in Table 1. Participants with greater
N2ac amplitudes showed higher accuracy (Z = —3.93,
p < .001, pag; < .001) and higher drift rate (¢(41) =
—2.79, p = .008, pag; = .032, BFoer = 7.75), whereas
there was no significant effect of alpha lateralization on
those performance outcomes (accuracy: Z = —1.54, p =
124, pog; = 499; drift rate: 1(41) = —0.37, p = 712, pogj =
1.067, BF.uef = 0.43). For both models, there was no
significant interaction with age (all p,q; > .160). The cor-
responding BFs (only available for the drift rate model; cf.
Statistical Tests and Effect Sizes section) were below 3
(BFoer < 0.65) but above 0.33, thus lending insufficient
evidence for the null or the alternative hypotheses. The
full models, including all predictors, explained 26% and
36% of variance in drift rate (Rzadj = .26, F(5, 41) =
4.15, p = .004) and accuracy (pseudo-R* = .36, precision
parameter phi = 9.73, SE = 1.96, z = 4.97, Pr(>|z]|) <
.001), respectively. For all other models tested, nei-
ther N2ac amplitudes nor alpha power lateralization or
their interaction with age groups served as statistically
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significant predictors (all p,q; > .095; cf. Table 1). For all
but one parameter, the corresponding BFs were in-
conclusive (3 < BF.oef > 0.33), providing no substantial
support for the alternative hypothesis, but neither for
the null hypothesis. However, for the regression model
predicting non-decision time, the BF for the interaction
term N2ac*Age (p = .095) lend moderate evidence in fa-
vor of the alternative hypothesis (BF .o = 5.92), suggest-
ing that, in older adults, less pronounced N2ac amplitudes
were associated with higher non-decision times. In con-
trast, the latter relationship appeared absent in younger
adults. Age group, not surprisingly, significantly predicted
non-decision time (¢(41) = 3.00, p = .005, paq; = .018,
BFcoer = 15.27), accuracy (Z = 3.03, p = .002, p,q =
.012), and drift rate (¢1(41) = —2.86, p = .007, pagj =
.020, BFoer = 8.78). Although age group failed to serve
as a significant predictor for RT in the regression model
framework (#(41) = 1.82, p = .075, pag; = 151, BFoer =
2.38), the results largely confirm the behavioral age dif-
ferences reported in the Behavioral Results section. The BF
of 2.38 suggests that the data may simply be underpowered
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Table 1. Estimated Parameters, Standard Errors, Confidence Intervals, and ¢ Test (or z Test) Statistics for Each Predictor in the Linear (or Beta) Regression Model

Outcome v a 1y Accuracy RT
Predictors b (SE) [95% CI] / b (SE) [95% CI] ! b (SE) [95% CI] ! b (SE) z b (SE) [95% CI] !
Intercept 0.22°%% (0.05) 443, p < .001 1.55%%* (0.09) 16.47, p < .001 0.77%%% (0.04) 19.77,p < 001 0.89%** 563 p < .001 1.24%%% (0.04) 2895, p < .001
[0.12 0.31] Pagj < 001 [1.36 1.74) Pagj < 001 [0.70 0.86] Dagy < 001 (0.16) Dagj < 001 [1.15 1.33] Dagy < 001
N2ac —0.22% (0.08) —2.79, p = .008 —0.32 (0.15) —2.10, p = .042 0.08 (0.06) 1.29,p = 0203 —1.02%%* —393 p < .001 0.08 (0.07) 1.14, p = 261
[—0.38 —0.06] Dagy = 032 [—0.62 —0.01] Pagj = 126 [—0.05 0.21] Dagj = 407 (0.26) Pagj < 001 [—0.06 0.22] Dagy = 407
ALL —2.52 (6.77) —037,p = .712 —10.87 (13.05) —0.83, p = .410 10.18 (5.45) 1.87,p = .069 —33.48 —1.54, p = 124 3.73 (5.94) 0.63, p = .333
[—16.20 11.16] Dagy = 1.067  [—37.22 15.49] Dagy = 1.230  [—0.83 21.19] Dagj = 345 (21.81) Dagj = 499 [—8.27 15.74] Dagj = 1.230
Age —0.14* (0.05) —2.86, p = .007 —0.07 (0.09) —0.76, p = 452 0.12* (0.04) 3.00, p = .005 —0.48* 3.03, p = .002 0.08 (0.04) 1.82, p = 075
[—0.24 —0.04] Dagj = 020 [—0.26 0.12] Dagy = 452 [0.03 0.20] Dagy = 018 (0.16) Dagy = 012 [—0.01 0.16] Pagy = 151
N2ac*Age —0.16 (0.08) —2.02, p = .050 —0.11 (0.15) —0.72,p = 474 0.15 (0.06) 244, p =018 —0.53 —2.05, p = .039 0.09 (0.04) 1.43, p = .160
[—0.32 0.00] Dagj = 160 [—0.41 0.20] Dagy = 474 [0.03 0.28] Dagy = 095 (0.26) Dagy = 160 [—0.04 0.24] Dagj = 319
ALI*Age —4.67 (6.78) —0.69, p = 495 —10.06 (13.05) —0.77, p = .445 11.23 (5.45) 2.06, p = .046 —15.30 —0.70, p = .483 9.19 (5.94) 1.55, p = .130
[—18.35 9.02] Dagj = 965 [—36.41 16.30] Dagj = 1.336 [0.22 22.24] Dacj = 229 (21.78) Dagj = 1.336 [—2.81 21.19] Dagj = 519
Adjusted/ 26 03 32 36 14
pseudo-R?
F-statistic F(5,41) = 4.15, p = .004 F(5,41) = 1.25, p = 302 F(5,41) = 529, p = .001 - F(5, 41) = 2.46, p = .048

v, a, ty, and RT denote drift rate, threshold separation, non-decision time, and mean RTs, respectively. SE = standard error, CI = confidence interval. Adjusted R%is given for linear regression models (v, a,
to, and RT); pseudo-R? is given for beta-regression (accuracy). p denotes uncorrected p values; Paqy denotes p values corrected for multiple comparison using a Bonferroni-Holm correction procedure
(Holm, 1979). Asterisks denote significant estimates with adjusted p values as *p,q; < .05, ***p,q; < .001.
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Figure 6. Participants’ drift rate and mean accuracy as a function of mean N2ac amplitude. Triangles represent younger participants (7 = 21);
squares represent older participants (z = 26). For the linear drift rate regression model, an adjusted response function describes the relationship
between the fitted response and N2ac amplitudes, whereas the other predictors are averaged out by averaging the fitted values over the data used in
the fit. Adjusted response data points are computed by adding the residual to the adjusted fitted value for each observation. For the accuracy
beta regression model, the marginal effect of the interaction N2ac amplitude by age group is displayed, holding the other factors constant at an

average value.

to reveal a relation between RT and age group in the present
regression model. Figure 6 visualizes the reported results for
those outcomes that were significantly predicted by N2ac
amplitudes.

DISCUSSION

In this study, we investigated the contribution of post-
stimulus alpha power lateralization and N2ac amplitudes
to sound localization performance in a sample of younger
and older adults. Both measures have been associated
with the deployment of attention in auditory space. We
hypothesized that if the cortical processes reflected by
alpha lateralization and N2ac amplitudes contribute to
successful target selection, their magnitudes should be
related to the information accumulation process (i.e.,
drift rate; cf. diffusion model framework, as outlined in
the Introduction) and in turn to localization accuracy
and RTs. In fact, what we found only partially confirmed
this hypothesis: N2ac amplitudes significantly predicted
both drift rate and accuracy, whereas alpha lateralization
was not associated with any of the behavioral outcomes.
We thus proposed that N2ac and alpha lateralization re-
flect distinct aspects of attentional orienting in auditory
scenes. Classical frequentist inferential statistics suggested
that the observed relationship did not depend on age and
that both age groups showed comparable neural signa-
tures. However, Bayesian alternatives to classical hypothe-
ses testing raised doubts about these claims, suggesting
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that the data is inconclusive with respect to age effects
in the electrophysiological data. Age differences in behav-
ioral performance are briefly reviewed below.

Cocktail Party Sound Localization in Older and
Younger Adults

As expected, older adults showed fewer correct responses
and slower RTs than younger adults. This is in line with the
often-described difficulties of older people to follow a con-
versation in noisy (“cocktail party”) environments, which
depends on the integrity of both sensory and cognitive
functions (Shinn-Cunningham, 2017). Declined perfor-
mance in older adults in the present task is likely to be
related to age-related deficits in concurrent sound segre-
gation (Hanenberg, Getzmann, & Lewald, 2019; Alain &
McDonald, 2007; Snyder & Alain, 2005). Traditionally,
such deficits have been interpreted as a result of a gen-
eral sensory-cognitive decline (e.g., Pichora-Fuller, Alain,
& Schneider, 2017), assuming all aspects of processing in
an experimental task to be globally slowed in aging adults
(Myerson, Hale, Wagstaff, Poon, & Smith, 1990). The diffu-
sion model allows to differentiate between different aspects
of processing that might be affected by age (Ratcliff, Spieler,
& McKoon, 2000): Consistent with previous results (Ratcliff,
Thapar, & McKoon, 2003, 2011; Ratcliff et al., 2001), we
found an increase in non-decision time for older adults. In
addition, older participants varied more strongly in their
non-decision time from trial to trial, indicating that this
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process was noisier in older adults (Spaniol, Madden, &
Voss, 2006). However, rather untypically, the two age
groups did not differ in their threshold separation values.
This contradicts the wide-spread assumption that older
adults usually aim to minimize errors (leading to more con-
servative response criteria) whereas younger adults focus on
balancing speed and accuracy (Starns & Ratcliff, 2010). The
observed lack of differences in response criteria between
older and younger adults could be due to the relatively
long response period in this study, potentially inducing
a change in task goals in younger adults. Alternatively,
as the corresponding BFs were rather inconclusive, we
cannot exclude that the data are simply underpowered
and therefore fail to reveal significant differences in our
sample. Furthermore, supporting a line of evidence that
showed differences in the rate of information accumulation
in some contexts (Ratcliff et al., 2004, 2011; Spaniol et al.,
2006), older adults had significantly decreased drift rates.
Given the current state of research, the conditions under
which drift rate decreases with age are still hard to grasp.
Here, drift rate was significantly predicted by N2ac ampli-
tudes. In participants with higher N2ac amplitudes (i.e.,
more negative difference waves) drift rates were higher,
whereas participants with lower N2ac amplitudes tended
to have lower drift rates. Hence, differences in drift rate
may reflect the differences in the ability to extract rele-
vant information from a perceptual scene (in this case,
an array of concurrently presented sounds). In the fol-
lowing section, we will discuss this relationship in more
detail.

N2ac Amplitudes Predict Drift Rate and Accuracy

To date, little is known about the functional relevance of
the N2ac component. The regression analysis conducted
here revealed that N2ac amplitudes significantly pre-
dicted variations in accuracy as well as drift rate, while
they were unrelated to mean RTs, threshold separation,
or non-decision time. These findings add to the sparse
literature that has so far investigated the N2ac com-
ponent in different contexts (Klatt et al., 2018b; Lewald
et al., 2016; Gamble & Woldorff, 2015a, 2015b; Lewald &
Getzmann, 2015; Gamble & Luck, 2011). In addition, to
our best knowledge, this is the first study to show an
N2ac component in a sample of older adults. Gamble
and Luck (2011) originally proposed that the N2ac arises
to resolve the competition between simultaneously pres-
ent stimuli and reflects the attentional orienting toward a
target. They further elucidated that this may be based on
the biasing of neural coding toward the attended stimulus,
as observed in the visual modality. In fact, the observed
relationship of N2ac amplitudes and drift rate may support
this line of reasoning: Drift rate conceptually reflects the
quality of relevant information derived from sensory input
that eventually drives the decision process (Ratcliff et al.,
2000). Hence, the better participants may be able to re-
solve competition between concurrent sounds by focusing

on the target (i.e., N2ac amplitude), the better the quality
of information that prompts participants to make a deci-
sion (i.e., drift rate; or in other words, the higher the rate
of evidence accumulation in favor of a given response). In
turn, it logically follows that the better or more consis-
tently participants are able to focus their attention onto
a relevant target sound (i.e., N2ac amplitude), the higher
their overall accuracy.

Interestingly, in addition to the similar N2ac ampli-
tudes for younger and older adults, we found no signifi-
cant interactions between N2ac amplitudes and age,
neither for accuracy nor for drift rate (cf. Table 1). This
may suggest that the variances within age groups contrib-
ute more strongly to the observed relationship than the
variance between age groups. However, the difficulties of
interpreting a null effect, such as a missing interaction
with age, need to be considered as a caveat here. Al-
though regression lines in Figure 6 show a trend toward
an interaction of N2ac amplitude and age group, the cal-
culated BFs (cf. Regression Analyses section) suggest the
data to be insensitive to age group differences, providing
no substantial evidence in favor of the null or alternative
hypothesis. Nevertheless, one may raise the question, if
lower N2ac amplitudes result in lower drift rates and
decreased performance, why did older adults not show
reduced N2ac amplitudes, given that they performed sig-
nificantly worse than the younger adults? On the one
hand, the well-pronounced N2ac component in older
adults may, at least in part, have resulted from the re-
cruitment of additional top—down resources to allow for
more efficient target selection. This interpretation would
be in line with the decline-compensation hypothesis
(Cabeza, Anderson, Locantore, & McIntosh, 2002; for a re-
view, see Schneider, Pichora-Fuller, & Daneman, 2010),
proposing that age-related declines in peripheral and
central auditory processing are compensated for by in-
creased allocation of cognitive resources. Increases in at-
tentional focusing, however, might not be sufficient to
completely compensate for the reduced performance of
the older group. On the other hand, we cannot exclude
that we simply failed to find a significant difference in
N2ac amplitudes due to a lack of power, as the calcula-
tion of BFs provided no substantial evidence in favor of
the null hypothesis.

Is Poststimulus Alpha Power Lateralization
Functionally Relevant?

This study also investigated alpha lateralization as a mea-
sure of attentional orienting within an auditory scene.
Typically, alpha lateralization manifests in a bilateral de-
crease of alpha power, which is more pronounced over
the contralateral hemisphere (relative to a target or a
cue). This spatially specific modulation of oscillatory activ-
ity has been repeatedly associated with the top—down con-
trolled voluntary allocation of attention (Ikkai et al., 2016;
Haegens et al., 2011; Thut et al., 2006; Foxe, Simpson,
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& Ahlfors, 1998). Here, we replicated this consistently
observed response in the alpha frequency band in a sam-
ple of younger and older participants who performed an
auditory localization task, requiring them to indicate the
location of a predefined target stimulus among three con-
cordantly presented distractors. Our results suggested that
older adults may, in principle, be able to recruit the same
oscillatory mechanisms as younger adults when searching
for a target among simultaneously present distractors
(Klatt et al., 2018b). Although Bayesian statistics were in-
decisive in whether the nonsignificant difference in alpha
lateralization between age groups presents a true null
effect, the preserved poststimulus alpha lateralization cor-
roborated a number of studies, showing intact alpha later-
alization in older adults when anticipating an upcoming
(lateralized) stimulus (Heideman et al., 2018; Leenders,
Lozano-Soldevilla, Roberts, Jensen, & De Weerd, 2018;
Tune et al., 2018). However, recent studies did not find
alpha lateralization in older adults, although they were still
able to perform the task as well as their younger counter-
parts (van der Waal, Farquhar, Fasotti, & Desain, 2017;
Hong et al., 2015). This poses the question to what extent
lateralized alpha dynamics are functionally relevant for
behavior.

It is relatively undisputed that alpha power lateraliza-
tion tracks the locus and timing of spatial attention
(Bae & Luck, 2018; Foster et al., 2017; Samaha, Iemi, &
Postle, 2017). In addition, a growing body of evidence
supports the notion that the alpha rhythm as a correlate
of spatial attention, so far predominantly investigated in
the visual attention literature, analogously operates in dif-
ferent modalities (Klatt et al., 2018a, 2018b; Wostmann
et al., 2016, 2018; Thorpe, D’Zmura, & Srinivasan, 2012;
Haegens et al.,, 2011). Yet, what remains a matter of de-
bate is (1) how alpha power lateralization aids selective
spatial attention and (2) whether it reflects a necessary
prerequisite for successful behavioral performance.
Regarding the how, two prevailing views exist: The
gating by inhibition theory, proposed by Jensen and
Mazaheri (2010), suggested that the relative increase of
alpha power over the ipsilateral hemisphere inhibits re-
gions processing irrelevant information. Alternatively, it
has been suggested that the relative decrease of alpha
power over the contralateral hemisphere results in in-
creased cortical excitability, allowing for enhanced pro-
cessing of the targets (Noonan et al., 2016; Yamagishi
et al., 2005). Both mechanisms are not necessarily mutu-
ally exclusive. In fact, Foster and Awh (2019) just recently
pointed out that a lot of the empirical evidence is com-
patible with either the target enhancement or the distrac-
tor suppression account. Recent evidence suggested that
both mechanisms might independently contribute to at-
tentional orienting (Schneider et al., 2019). In line with
those latter findings, Capilla, Schoffelen, Paterson, Thut,
and Gross (2014) proposed distinct sources and behav-
ioral correlates for the ipsilateral and contralateral por-
tion of the alpha power signal.
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Adressing the second question—Does alpha lateraliza-
tion reflect a necessary prerequisite for successful behav-
ioral performance?—a range of spatial-cueing studies has
provided compelling evidence showing behavioral per-
formance to be predicted by the degree of alpha lateral-
ization (Haegens et al., 2011; Kelly et al., 2009; Thut et al.,
20006). On the contrary, our findings question the notion
that alpha power lateralization reflects a behaviorally rel-
evant attentional mechanism: Surprisingly, we did not
find any association between alpha lateralization and dif-
fusion model parameters, mean RTs, or accuracy. This
could be explained by the fact that this study differed
from the majority of previous studies in that it investi-
gated alpha power modulations following stimulus presen-
tation. That is, although alpha lateralization may in fact be
necessary to successfully shift one’s attention iz anticipa-
tion of an upcoming stimulus, it does not appear to be a
required neural response in the attentional processing
Jfollowing the presentation of a multisound array. This is
in line with the proposal previously made by van Ede
et al. (2014), who similarly concluded that the relevance
of attentional modulations might be “restricted to situa-
tions in which attention influences perception through an-
ticipatory processes” (p. 139). However, in contrast to our
results, these authors found that alpha lateralization was
completely abolished during the processing of an ongoing
tactile stimulus.

Alternatively, the lack of a relationship with behavioral
performance may be due to the fact that we calculated a
relative measure of alpha amplitudes, that is, the differ-
ence between ipsilateral and contralateral alpha power.
In a cued somatosensory detection task, van Ede et al.
(2014) found only contralateral alpha power amplitudes
to be related to tactile detection performance, whereas
fluctuations in the contralateral minus ipsilateral differ-
ence failed to predict performance. Similarly, other stud-
ies using a relative index of alpha power modulations did
not find a strong relationship with behavioral performance
(Tune et al., 2018; Limbach & Corballis, 2017). These find-
ings or rather null findings might strengthen the emerging
view that both target enhancement (i.e., contralateral
alpha power decrease) and distractor suppression (i.e.,
ipsilateral alpha power increase) differentially contribute
to task performance (Schneider et al., 2019) and that this
should be taken into account when analyzing the contribu-
tion of alpha power oscillations to behavior. Yet, it should
be noted that there are studies that successfully demon-
strated an effect of the relative strength of alpha lateraliza-
tion on task performance (Haegens et al., 2011; Kelly et al.,
2009), suggesting the reasons for those diverging results
are likely to be more complex than just a methodological
artifact. Also, it has to be noted that the respective BFs
(below 1, but above 0.33) were rather indecisive; thus,
although our data do not seem to support a significant
relationship between alpha lateralization and behavioral
performance, they cannot provide compelling evidence
for a true null effect either.
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Critically, one question remains unanswered: If alpha
lateralization is not a necessary component of poststimu-
lus attentional processing in an auditory scene, what does
it reflect? It might be that poststimulus alpha lateraliza-
tion is an “optional response” that may result in more ef-
fective target enhancement or distractor inhibition, when
a specific strategy is applied. Hence, because of different
strategies used by different participants, there might be no
overall relationship between alpha lateralization and be-
havior when analyzed across all participants (Limbach &
Corballis, 2017; Rihs, Michel, & Thut, 2009). Alterna-
tively, as shown in a previous study using a very similar
task design, auditory poststimulus alpha lateralization
might be more closely related to the spatial specificity
of the task (Klatt et al., 2018b). In the latter study, a
lateralization of alpha power was only evident when par-
ticipants were instructed to localize (instead of to simply
detect) a target sound within a multisound array. Hence,
we proposed that, in poststimulus attentional processing,
the lateralization of alpha power indexes the access to a
spatiotopic template that is used to generate a spatially
specific response (Klatt et al., 2018b). If alpha lateraliza-
tion reflects such a process, one may argue that there
should be no or a substantially reduced alpha lateraliza-
tion in incorrect trials, and thus, alpha lateralization
should in fact be associated with behavioral performance.
Such differences in ALI amplitudes for correct versus
incorrect trials have in fact been reported (Tune et al.,
2018; Wostmann et al., 2016, 2018). The fact that we cal-
culated ALIs based on each participant’s mean alpha
power in correctly answered trials may explain why
we fail to capture such differences for a rather coarse,
dichotic measure of behavioral performance such as
accuracy.

Conclusion

In summary, fluctuations in N2ac amplitude predicted the
rate of information accumulation (i.e., drift rate) as well as
overall accuracy. We conclude that the N2ac component
reflected the participants’ ability to resolve competition be-
tween co-occurring sounds by focusing on the target. This,
in turn, determined the quality of the information accu-
mulated during the decision-making process and thereby
affected overall accuracy levels. In contrast, alpha lateraliza-
tion was unrelated to behavioral performance, suggesting
that successful attentional orienting within an auditory
scene (as opposed to in anticipation of an upcoming target
sound), does not rely on alpha lateralization. Our findings
strengthen the proposal that alpha lateralization is not spe-
cific to the visual domain but may reflect a supramodal at-
tentional mechanism that generalizes to the auditory
domain (Thorpe et al., 2012; Kerlin, Shahin, & Miller,
2010). Yet, we highlight that it is important to distinguish
between cue-related, anticipatory modulations of alpha
power and poststimulus alpha power lateralization.
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