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Abstract 

The cortical alterations underpinning the acquisition of motor skills remain debated. In this 

longitudinal study in younger adults, we acquired performance and neuroimaging (7T MRI) measures 

weekly over the course of 6 weeks to investigate neural changes associated with learning sequences 

of simultaneous finger presses executed with the non-dominant hand. Both the intervention group (n 

= 33), which practiced the finger sequences at home, and the control group (n = 30, no home 

practice), showed general performance improvements, but performance improved more and 

became more consistent for sequences that were intensively trained by the intervention group, 

relative to those that were not. Brain activity for trained sequences decreased compared with 

untrained sequences in the bilateral parietal and premotor cortices. No training-related changes in 

the primary sensorimotor areas were detected. The similarity of activation patterns between trained 

and untrained sequences decreased in secondary, but not primary, sensorimotor areas, while the 

similarity of the activation patterns between different trained sequences did not show reliable 

changes. Neither the variability of activation patterns across trials, nor the estimates of brain 

structure displayed practice-related changes that reached statistical significance. Overall, the main 

correlate of learning configural sequences was a reduction in brain activity in secondary motor areas. 
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Introduction 

The ability to move is indispensable for key survival functions, so much so that the brain devotes vast 

resources to generating movement. Beyond survival, professional achievement and social 

recognition are often reliant on the acquisition and subsequent production of sophisticated motor 

behaviors (for instance, in the case of craftspeople, athletes, or musicians). Even mundane activities 

such as typing on a computer require complex motor programs. For these reasons, understanding 

the process of motor skill acquisition has been a long-standing topic in psychology and cognitive 

neuroscience. Nonetheless, many outstanding questions remain, and a key one is how the observed 

behavioral changes are related to the alterations known to occur at multiple neurophysiological 

levels (Zatorre et al. 2012; Sampaio-Baptista et al. 2013; Fields 2015; Jensen and Yong 2016; Makino 

et al. 2016; Krakauer et al. 2019). 

 

There is ample evidence from functional Magnetic Resonance Imaging (fMRI) studies of learning-

related changes in activation in primary and secondary motor cortices as well as in subcortical areas 

(Grafton et al. 1995; Karni et al. 1995, 1998; Penhune and Doyon 2002; Floyer-Lea 2005; Lehéricy et 

al. 2005; Dayan and Cohen 2011). However, there are discrepancies among studies regarding 

whether activity in these areas increases, decreases, or shows more complex non-monotonic 

patterns of change with practice. It also remains unclear whether the changes occur in the primary 

sensorimotor cortices or exclusively in secondary areas (Xiong et al. 2009; Ma et al. 2010; Huang et 

al. 2013; Wiestler and Diedrichsen 2013; Berlot et al. 2020). Recent work made significant progress in 

resolving these disagreements with a preregistered long-term longitudinal study of subjects 

practicing a finger-sequence production task (Berlot et al. 2020). This study found decreases in 

activation during performance relative to rest in trained compared with untrained sequences in the 

dorsal premotor cortex and the anterior superior parietal lobule. Activation in primary sensorimotor 

cortex remained constant. Berlot and colleagues (2020) also reported changes of the multivariate 

activation patterns for the execution of trained sequences in secondary, but not primary, regions 

(Huang et al. 2013; Wiestler and Diedrichsen 2013; Berlot et al. 2020).  

 

Learning classic finger-sequence tasks primarily requires assembling elements from the repertoire of 

previously learned actions instead of creating novel continuous movements (Krakauer et al. 2019; 

Wong and Krakauer 2019). According to this interpretation, what is learned in this type of task is to 

select rapidly the appropriate, already-learned, discrete actions in the correct order. Learning may 

thus primarily occur in movement planning and action selection – an interpretation consistent with 

observations of learning-relate changes in secondary but not primary sensorimotor cortices (Yokoi 
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2019). This perspective is compatible with a hierarchical architecture of the representations 

underlying motor skill, with associative areas encoding chunks and sequences of elementary motor 

components or particular component features like timing or spatial organization (Diedrichsen and 

Kornysheva 2015). Nevertheless, it remains unknown whether learning sequences of more difficult 

discrete movements (i.e., movements that are initially challenging because they have not been 

practiced previously) is associated with the same pattern of activation over time (i.e., stability in the 

primary sensorimotor cortices and reductions in the associative cortices). That is, the primary 

sensorimotor cortices may also be involved in learning such sequences of movements. Here we 

addressed this issue by developing a configural sequence task, akin to playing short sequences of 

piano chords, which naïve subjects had to learn to execute with their non-dominant (left) hand 

(Figure 1). 

 

 

Figure 1. Design and task. A) The longitudinal study spanned a 6-week period, with 7 testing 

sessions. Participants were tested behaviorally once a week at the MR facility, both outside the 

scanner (unpaced task) and inside the scanner (paced task) while undergoing functional MRI. 

Structural images were also acquired. In between testing sessions, subjects in the intervention group 

practiced at home, 5 times a week. B) Participants practiced and were tested on a discrete 
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configural-response sequence task, in which they had to execute different sequences of finger 

movements with 5 combinations (chords) of up to 4 fingers with their left (non-dominant) hand upon 

seeing a cue. Subjects used a button box and each finger except the thumb had one button assigned 

to it. Each button that had to be pressed was depicted as a square, and button combinations were 

arranged in 5 rows, to be executed from top to bottom. Subjects practiced two versions of the task, 

both starting with a short fixation, after which a cue was shown depicting the sequence to be 

executed. In the unpaced version of the task (C), subjects were asked to execute the sequence 

correctly and as fast as possible. They received feedback regarding correctness and execution speed, 

relative to their past trials and to the best score in their (fictitious) peer group. A sequence had to be 

repeated until 20 correct trials were achieved before moving on to the next. In the paced version (D), 

a counter indicated a beat (0.7 s) that participants had to follow when pressing the chords. 

Participants received feedback regarding whether the sequence was correct and in sync with the 

beat, and they had to achieve 5 correct trials to move on to the next sequence. In the scanner, 

participants were tested on the paced version of the task but no feedback was provided, and a 

different sequence was presented on each trial, with two consecutive trials never presenting the 

same sequence. See Methods for details about the design and the task.  

Beyond functional changes, human neuroimaging has also revealed learning-related alterations in 

brain structure. Estimates of gray and white matter structure obtained with MRI display differences 

between adult human experts and non-experts in brain regions that are relevant to their domain of 

expertise (Amunts et al. 1997; Maguire et al. 2000; Gaser and Schlaug 2003; Bengtsson et al. 2005; 

de Manzano and Ullén 2018). In longitudinal designs, changes in such structural properties can be 

detected following weeks or months of practice to acquire skills such as juggling or speaking a new 

language (Draganski et al. 2004, 2006; Scholz et al. 2009; Mårtensson et al. 2012; Lövdén et al. 2013; 

de Lange et al. 2017). Some evidence indicates that such structural changes in gray matter may be 

non-monotonic, with initial increases followed by partial normalization during motor learning 

(Wenger et al. 2017).  

 

Several researchers have attempted to integrate these findings of learning-related structural changes 

with the functional changes, and with related observations in animal models, like cortical map 

reorganization (Molina-Luna et al. 2008; Reed et al. 2011) or the formation and stabilization of 

selected synapses (Xu et al. 2009; Yang et al. 2009), under the umbrella of an exploration-selection-

refinement (ESR) theory (Kilgard 2012; Makino et al. 2016; Lindenberger and Lövdén 2019; Lövdén et 

al. 2020). This conceptual model draws from early ideas of variation and selection within neural 

populations (Edelman 1987; Changeux 1989) and predicates that remodeling of circuits in motor skill 

learning follows three phases. Initially, circuits that may elicit potentially adequate movements are 
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randomly recruited (exploration), leading to a high activation extent that prompts structural changes 

in those circuits. Subsequently, the neural ensembles supporting movements that are reinforced 

persist, while superfluous circuitry is pruned (selection). Finally, the selected circuits are fine-tuned 

as the optimal behavior is repeated, resulting in stable long-term memories and a slow development 

of precision and consistency of performance (refinement). 

 

The ESR theory generates hypotheses that are testable in humans with MRI: (1) The variability of 

neural representations (i.e., activity patterns) across trials corresponding to the same intended 

action should be initially high during exploration and then decrease rapidly after selection; (2) the 

overall neural activity level should be initially high and then decrease during learning; and (3) the ESR 

process should give rise to growth of regional structure in brain regions controlling the learned 

movement during the exploration phase (expansion), followed by a partial retraction 

(renormalization) after the best circuit for the task has been selected (Lindenberger and Lövdén 

2019). In the present study we sought to test these preregistered predictions (https://osf.io/48meb; 

https://osf.io/x4c9b). Under the assumption that the task that we developed demands learning of 

both novel elementary movements (simultaneous multiple finger presses) and sequential 

combinations that have not been a prominent part of the subjects’ behavioral repertoire before, we 

predicted these results in both primary and secondary sensorimotor areas. In analyses that were not 

preregistered, we also probed past findings of reductions in behavioral variability across trials of the 

same intended action and examined how training affects the similarity between activation patterns 

elicited by different movement sequences. 

 

To test these hypotheses, we randomly allocated 70 healthy right-handed younger adults to either an 

intervention group, which trained the task at home 5 times a week during a period of 6 weeks, or to 

a control group (Figure 1). Once a week, both groups were scanned with structural and functional 

MRI, and tested inside and outside of the scanner on trained and untrained sequences. With this 

design, we could probe sequence-specific learning by comparing changes in performance and brain 

activity between trained and untrained sequences, controlling for the effects of repeated testing. 

Furthermore, comparison between the intervention and control groups enables assessing transfer of 

training effects to untrained sequences (i.e., sequence-general effects of training) and to investigate 

the effects of learning on brain structure. We measured baseline brain structure and activity before 

any substantial pretraining. Some discrepancies between previous studies could stem from whether 

or not they included pretraining, which could be associated with some early changes before the 

baseline scans. Training of the sequences took place both in an unpaced condition (i.e., subjects were 

required to complete the sequences as fast as possible) and in a paced condition (i.e., subjects were 
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required to execute the discrete movements following a predefined tempo). The paced condition 

was administered during fMRI to rule out that potential training-related activity changes were driven 

simply by changes in motor output. 

Methods 

Participants and recruitment procedures 

Subjects were recruited via advertisements on a recruitment website and in an online newspaper, 

and with flyers in the local area. After an information meeting, subjects who agreed to partake in the 

study signed a consent form. They were then asked to complete questionnaires focused on study 

criteria, the Edinburgh Handedness Inventory, and an 18-item version of Raven’s Progressive 

Matrices test. Next, subjects tried a short demo of the practice routine (with simpler sequences and 

fewer trials than they would encounter in the actual experiment) so that they could ask questions 

and familiarize themselves with the task and the button box. Participants who fulfilled all study 

criteria (see Supplementary Table 1) received an invitation to take part in the study.  

 

The recruited subjects (n = 70; age = 20-30 years, right-handed, MRI eligible, no previous experience 

of fine-motor skill acquisition involving the left hand) were randomly allocated to either an 

intervention (n = 35) or a control group (n = 35), matched for sex and score in the Raven’s matrices 

test. Participants were informed that they would be randomly allocated to two different groups, but 

their group membership was only disclosed after finishing the baseline session. To be able to fit all 

the planned non-linear trends over test sessions, we excluded participants completing less than 4 

scanning sessions for the analyses reported here, leaving 33 intervention subjects and 30 controls. 

The two groups considered in the final analyses did neither differ statistically significantly in sex (M/F 

intervention group: 12/21; control group: 12/18; Kruskal-Wallis χ2(1) = 0.09, p = 0.78) nor in 

performance on the Raven’s Progressive Matrices test (intervention: mean = 10.7, SD = 2.9; control: 

mean = 10.8, SD = 3.2; two-tailed t(59.14) = 0.13, p = 0.90). Supplementary Figure 7 shows a flow 

chart for the recruitment, attrition, and exclusions in the study. 

 

Subjects received financial compensation for each training session and for each MR exam, and a 

scheme of rewards and penalties was implemented to incentivize compliance and effort. Participants 

in the control group were paid up to 5850 Swedish crowns (SEK) if they completed all the sessions, 

whereas participants in the intervention group were paid up to 8350 SEK due to the additional 

dedication required by the home training sessions.  

 

Ethics statement 
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The study was reviewed and approved by the Ethical Review Board in Stockholm (Case number: 

2018/1620-31/2). All the participants gave their informed consent.  

 

Motor task 

The task was a configural-response sequence learning task, which requires the execution of a 

sequence of key combinations that need to be pressed simultaneously with fingers of the non-

dominant hand, as when playing a sequence of chords on a piano keyboard. The sequences had 5 

combinations of between 1 and 4 fingers, excluding the thumb, and subjects used a button-box with 

4 buttons (Current Designs, Philadelphia, PA, www.curdes.com) to execute them (Figure 1 B). 

Depending on the type of session, subjects went through between 3 and 6 different sequences. The 

sequences were associated with different colors to make it easier for the participants to identify 

them and recognize when there was a sequence change during the session. At the beginning of each 

session, the software showed instructions on the screen. The subject triggered the start of the task 

by pressing the space button. Each trial started with a fixation cross on screen (1s). A representation 

of a sequence was then displayed (5 rows with squares denoting which fingers to press in the 

following order from left to right: pinky, ring, middle, index) that the participant had to execute. The 

task was implemented with the Psychopy library (psychopy.org) for python (python.org). 

 

After the baseline session, subjects were told which group they had been allocated to and 

intervention subjects were provided with a LENOVO Thinkpad x200 Tablet (Beijing, China) running 

Microsoft Windows 7 (Redmond, USA) so that they could practice at home. Participants in the 

intervention group practiced at home 5 days a week during the 6-weeks long experiment. They were 

asked to find a quiet environment to practice free of distractions, and, as much as possible, a regular 

time to practice. The subjects’ performance data was uploaded to a database at the end of each 

session, so that research assistants could monitor their progression and contact them if they 

detected any problems with the execution of the task or any lack of improvement, which was rarely 

necessary.  

 

The sessions at home had two different phases: an unpaced phase (Figure 1 C) was followed by a 

paced phase (Figure 1 D). In the unpaced phase, subjects were instructed to perform the sequence 

correctly but doing it as fast as possible and attempting to improve their speed continuously. To keep 

subjects focused, the time to execute the sequence was limited to 5 s. Responses that were 

incorrect, too slow, or missed (no response) were signaled with a buzzing sound and a red cross mark 

displayed on screen at the end of the trial, together with a message indicating the reason for the 

error. If the response was correct, 3 bars were displayed: a blue bar indicated the score (speed, 
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inverse of Movement Time [MT]) of the completed trial, a green bar displayed the subject’s score 

across past trials and sessions, and a yellow bar displayed a fictitious group best score. Subjects were 

told that this yellow bar reflected the best score for a group of subjects examined previously and that 

they should strive to surpass it. To keep the task challenging and at the same time confer a feeling of 

continuous improvement, the yellow bar was manipulated so that their score got closer and closer 

with time to the fictitious group score, but they were never able to reach it. This manipulation kept 

participants motivated throughout experiment and was disclosed at the end of the study.  

 

For each key that was pressed, the system logged the key and the corresponding time at which it was 

pressed. Executed sequences were then clustered in 5 chords on the basis of the difference between 

the times of their keys, regardless of accuracy. Next, accuracy was checked for each chord separately 

(i.e., the keys assigned to the nth chord in the performed sequence had to be the same as those in 

the nth chord in the presented sequence for that chord to be considered correct) and then across the 

5 chords (all chords had to be correct and in the same order). Thus, only when the sequence of 5 

chords matched the presented sequence, in the same order, was the trial considered correct. 

Subjects had to complete 20 trials correctly before moving on to the next sequence, and they did not 

encounter the same sequence again in the same training session 

 

In the paced phase participants were supposed to execute the same sequences but following a 

predefined tempo (0.7 s / beat). After a fixation cross had been shown for 1 s, subjects were 

prompted to wait during 3 preparation beats that signaled the pace at which to press the keys. This 

preparation phase was followed by an execution phase of 5 beats in which subjects were supposed 

to press the sequence of key combinations at the presented tempo. The beats were indicated by a 

visual counter and an auditory beat. Subjects had to complete 5 trials correctly before moving on to 

the next sequence. At the end of the trial subjects received feedback regarding whether the response 

was correct (green tick mark) or incorrect, too fast or too slow (buzzing sound plus red cross and 

message). Responses were considered too slow (fast) if MT was 10% longer (shorter) than the MT for 

the prescribed beat. The paced phase was implemented so that subjects could practice the task that 

was administered during the fMRI measurements, which was paced to rule out that potential 

differences in neural patterns could be driven by timing differences in the motor output rather than 

differences in representation. The paced phase in the scanner differed from the one at home in a 

number of aspects: (1) subjects relied only on the screen counter to follow the tempo and could not 

hear the auditory beats (because the coil was very narrow and did not allow to use a headset that 

would have protected their hearing); (2) sequences were interspersed pseudo-randomly (with 2 

consecutive trials of the same sequence never taking place), counterbalanced across subjects; (3) no 
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feedback was provided at the end of the trial; (4) instead there was a pseudorandom exponentially 

distributed inter-trial-interval (ITI) with mean 7.4 s and truncated between 6.0 s and 9.2 s, 

counterbalanced across subjects; (5) subjects had to perform 2 (of the 3) trained sequences and the 

same 2 untrained sequences of the unpaced phase; (6) the number of trials was fixed, with 8 trials 

per sequence and run, yielding a total of 160 trials in a single fMRI session (5 runs). To improve 

participants’ comfort during the task and avoid that superfluous movements produced undesired 

BOLD signal fluctuations, after every 8 trials subjects were given 6 seconds to stretch their hand, 

indicated by the text ’STRETCH’ displayed on the screen. Supplementary Figure 1 illustrates the 

timeline of an fMRI task trial. To perform the task in the scanner subjects used an MR-compatible 

version of the same button box that the experimental group was provided to train at home.  

 

In both the unpaced and paced phase, intervention subjects trained 3 different sequences at home 

(hereafter trained sequences as opposed to untrained sequences). Practice sessions at home lasted a 

median time of 16.3 (SD = 3.7) minutes. 

 

Motor sequences 

To create the sequences, we considered all key combinations (chords) of 4 fingers except 1-1-0-1 and 

1-0-1-1 (pinky-ring-middle-index; 1 indicates the finger is used and 0 otherwise). A preceding pilot 

study showed that these 2 chords were considerably more difficult for subjects and some of them did 

not manage to press the keys simultaneously after multiple trials. Therefore, they were discarded, 

leaving 13 different chords to form sequences by concatenation.  

 

We generated sequences of 5 chords with a Hamming distance of 3 between each transition (i.e., 3 

fingers had to change between 2 consecutive combinations) which did not contain any repeated 

chords. These were divided into 2 sets of 3 trained and 6 untrained sequences, which we call 

configuration A and B, respectively. The sequences forming these two configurations can be seen in 

Supplementary Table 2. These sets of sequences fulfilled several conditions. First, there were no 

common transitions between trained and untrained sequences, as we assumed that the core 

learning component in the task were transitions rather than chords. Second, we maximized the 

number of chords not shared between trained and untrained sequences, given the previous 

condition. Third, we tried to match the frequency distribution of the different fingers as much as 

possible, given the previous two conditions. More details about how the sequences and 

configurations were obtained can be found in the Supplementary Information.  
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To guarantee that any possible differences between trained and untrained sequences were 

independent of the specific sequences trained, 17 out of the 35 subjects in each group received 

configuration A and the remaining ones received configuration B, meaning that approximately one 

half of each group trained on different sequences. For tests in the scanner (2 trained / 2 untrained 

sequences), the A and B configurations were further split into 2 subgroups each (A1/A2/B1/B2), 

depending on which 2 of the 3 trained sequences the subjects were tested on. Only two sequences 

were tested inside the scanner at a given session to respect scanning time limits while still achieving 

enough trials for the individual sequences to ensure adequate power for the statistical analyses.  

 

Our use of the terms trained and untrained sequences warrants some clarification. Subjects within 

the same configuration subgroup (A1/A2/B1/B2) were tested every week on the same 3 trained 

sequences, whether they were in the control or the intervention group. The 2 untrained sequences 

tested in each session varied from week to week but were the same for control and intervention 

subjects if they belonged to the same configuration subgroup. Because there were only 6 untrained 

sequences possible with the constraints explained above, the 2 untrained sequences were cycled 

every 3 testing sessions, that is, they were the same for testing sessions 0, 3, and 6, the same for 1 

and 4, and the same for 2 and 5. Therefore, after testing session 3, untrained sequences were not 

completely novel, but they had not been seen by subjects for 3 weeks. 

 

To ensure that possible effects of training were not confounded by the order of presentation of 

sequences in the practice sessions with the laptop, this order was counterbalanced across subjects, 

and across sessions to minimize potential expectancy effects.  

 

Testing sessions 

Both experimental groups were invited to 7 sessions at the MR center (Figure 1 A). These sessions 

corresponded to sessions 0 (baseline), 6, 12, 18, 24, 30, 36 for intervention subjects (6 sessions were 

done within a week, with 5 of practice at home and one of testing at the MR facility). The testing 

sessions also had 2 phases, with an unpaced phase outside the scanner and a paced phase inside the 

scanner. The paced task was used in the scanner to avoid that timing differences in the motor output 

affected activity. The purpose of the unpaced phase was to compare the two groups’ execution 

speed in laboratory conditions every week on trained and untrained sequences. The unpaced phase 

in the testing session differed only with that in the home training sessions in that there were 2 

additional untrained sequences that were tested besides the 3 trained ones. The behavioral tasks 

always followed structural scanning. Supplementary Table 3 summarizes the characteristics of each 

phase and session. 
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Data collection waves 

Because many scanning sessions were required and scanner availability was limited, the data 

collection was divided into 5 waves of 7 intervention and 7 control subjects each. Due to scanner 

malfunction, the 4th wave lasted one week less than planned (5 weeks, with 6 scanning sessions). On 

average, subjects in the intervention group that were included in the 4th wave completed 24.1 (out 

of 25, SD = 0.9) training sessions at home, whereas those in the remaining waves completed 29.6 

(out of 30, SD = 0.8) training sessions.  

 

Statistical analyses of behavioral data 

Subjects in general did not make many errors in a session, but, in a few cases, we observed a 

disproportionate number of errors (number of errors/session: median = 6, minimum = 0, maximum = 

291), in particular for home sessions. We reasoned that the subjects were not paying enough 

attention or perhaps were experiencing some problem in those sessions. Consequently, we excluded 

all trials of a particular sequence if the number of incorrect trials for that sequence was more than 

1.5 interquartile ranges (IQR) above the 3rd IQR of the number of incorrect trials for any subject for 

that sequence. This was done separately for each session to allow for a higher number of incorrect 

trials in initial sessions or more difficult sessions, and led to exclusion of 6.7 % of the data in total. 

 

Only correct trials were included in the analyses of MT. Within each session, subjects’ performance 

was initially not very consistent, and it took a few trials until MT stabilized. We therefore discarded 

the first 10 trials of each sequence and session. With the remainder we computed the median and 

standard deviation (SD) of MT for each sequence. Next, for each chord we computed the mean of the 

times of its corresponding key presses and defined an inter-press interval (IPI) as the difference 

between the mean times of two consecutive chords. We then determined the 4 inter-press intervals 

between the chords that constituted a particular sequence and computed the correlation between 

IPIs from consecutive trials of the same sequence, averaging the correlation across trials to obtain a 

measure of execution consistency within a session (Beukema et al. 2019). The same procedure was 

followed for lags between trials ranging from 1 (i.e., consecutive trials) to 9. Finally, we computed the 

number of wrong trials that were performed by a subject for each type of sequence and session until 

reaching the 20 correct trials required.  

 

The 4 dependent variables were analyzed individually and separately for each test session (0-6) with 

a linear mixed model (LMM) to test for the main effects of group (intervention vs. control group) and 

practice (trained vs. untrained sequences), and for the interaction between group and practice. A 
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random intercept was included in each model and we covaried for training configuration (i.e., the 

counterbalanced sets A/B). FDR control (q < 0.05) was applied for the number of sessions. Restricted 

maximum likelihood (REML) was used to estimate the parameters, with Satterthwaite’s 

approximation to calculate p-values. These analyses were performed with R Software and the lme4 

and lmerTest packages. 

 

Neuroimaging sessions 

The MRI sessions took place at the 7T facility at Skåne University Hospital in Lund (Sweden). Scanning 

was performed with a 7T Philips Achieva scanner (Best, the Netherlands) with a dual channel 

transmit, 32-channel receive head coil (Nova Medical, Wilmington, MA, USA). Due to malfunction of 

the RF system, an 8-channel transmit coil was used in 24 of the sessions. 

 

To minimize confounds with functionally-related acute differences in cerebral blood flow (Franklin et 

al. 2013; Månsson et al. 2018), structural scans were always performed before functional scans. 

Subjects were instructed to avoid practicing the task during the day of the MR scan. In the baseline 

session, once the structural scans had been acquired, participants were taken outside of the scanner 

and asked to perform the unpaced part of the task. After completing this part, subjects underwent a 

functional scan while performing the paced part of the task (see details above). In the remaining 

sessions, the structural and functional scans were performed consecutively and the unpaced part of 

the task was done after all scanning had finished. The order was different in the baseline session to 

give the participants the chance to try out the task before the first functional scan. Otherwise, due to 

the difficulty of performing the sequences, the error rate during the baseline functional acquisition 

would have been too high for most participants. Subjects were asked to abstain from alcohol intake 

on the day before scanning, and prior to the examination on the day of scanning. They were also 

asked to refrain from caffeine consumption on the day of scanning, as intake of the latter can 

potentially affect morphometric measures (Ge et al. 2017). 

 

MRI protocol 

 

In each session, we acquired a T1-weighted (T1w) MP2RAGE scan (Marques et al. 2010), with the 

following parameters: MP2RAGETR = 5000 ms, TI1/TI2 = 900/2750 ms, flip angles = 5° and 3°, TR/TE = 

6.8/2.4 ms, 257 sagittal images, matrix size = 320x320, voxel size = 0.7 mm isotropic, SENSE factor = 

2, partial Fourier = 75%; the total scan duration was approximately 8 minutes. We also acquired a T2-

weighted (T2w) TSE scan, with parameters TR =2500 ms, TE = 314 ms, excitation flip angle = 90°, 

refocusing flip angle reduced to 35°, 283 sagittal images, matrix size = 320x320, voxel size = 0.7 mm 
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isotropic, SENSE factor = 2x2; the duration of this scan was around 6 min. For functional MRI, EPI 

scans (TR = 1200 ms, TE = 25 ms, flip angle = 65°, matrix size = 112x116, voxel size = 2x2 mm, 44 axial 

slices of 2 mm thickness and 0.7 mm spacing, SENSE factor = 3, 5 runs of 400 volumes each) and an 

auxiliary B0 map were acquired. The total duration of the functional scans was approximately 40 min, 

excluding short breaks between runs. 

 

Preprocessing of structural data  

Bias-free structural images (also known as flat images) were obtained by combining the complex 

images generated by the MP2RAGE sequence and used to derive CT and GMV. The structural images 

and surface reconstructions were inspected visually, discarded when not deemed acceptable, and 

the processing pipelines rerun without them (i.e., the same scans were used for CT and GMV 

analyses).   

 

Cortical thickness (CT). To produce surface-based maps of CT we processed the structural images 

with the longitudinal pipeline for FreeSurfer 6.0.1 (https://surfer.nmr.mgh.harvard.edu/), with a 

modified protocol for skull-stripping the MP2RAGE-derived structural images (Fujimoto et al. 2014). 

Besides the T1w image, we included the T2w image (-T2pial option) when processing the original 

images and the average for each subject (within-subject template, also called base image), as the 

additional contrast can facilitate locating the boundaries of the pial surfaces and lead to better 

surface reconstructions. For the last step (called long image), to avoid that small differences in 

geometry or registration between T1w and T2w images affected the results, we only employed the 

T1w images (see Reuter et al. 2012 for details on the longitudinal processing). The CT maps were 

registered onto the cortical surface of the average subject’s template (Freesurfer’s fsaverage) and 

smoothed with a kernel with 10 mm of full-width at half-maximum (FWHM) using Connectome 

Workbench (https://www.humanconnectome.org/software/connectome-workbench). For 

comparison, the hand-knob area has around 14 mm of diameter (Yousry et al. 1997).  

 

Gray matter volume (GMV). To derive GMV maps, the T1w images were preprocessed with CAT12.7 

using the longitudinal preprocessing pipeline (http://www.neuro.uni-jena.de/cat12/), consisting of 

within-subject longitudinal registration, segmentation into gray matter, white matter and 

cerebrospinal fluid probability maps, normalization, and smoothing (8 mm FWHM).  

 

Statistical analyses of structural data  

Structural Region-of-interest (ROI). In order to reduce the number of tests in the univariate analyses, 

we created and preregistered a mask encompassing cortical areas involved in motor sequence 
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learning (Wiestler and Diedrichsen 2013; Yokoi 2019; Berlot et al. 2020), where changes related to 

training the motor task were expected to take place. For this purpose we aggregated a number of 

frontal and parietal parcels from the Human Connectome Project’s Multi-modal Cortical Parcellation 

(Glasser et al. 2016). Supplementary Figure 8 shows the mask, and a list with the parcels that were 

combined can be found in Supplementary Table 4. This mask (henceforth ROIsurf) was created on the 

fsaverage surface, and transferred to MNI space to create a mask for volumetric analyses (henceforth 

ROIvol).  

 

Reliability analyses. At each vertex/voxel we computed the intraclass correlation coefficient (ICC) 

separately for CT and GMV, using a two-way random-effects model to estimate agreement across 

timepoints with the irr R package. A high ICC at a given voxel indicates that the value of the measure 

of interest at that voxel has low within-subject variance across timepoints, compared to the 

between-subject variance.  

 

Univariate structural analyses. We used linear mixed models (LMMs) with the fixed effects of 

experimental group (intervention vs. control; coded as a factor), test session (linear and/or non-

linear; see below), and the group x session interactions to test for effects of training on brain 

structure (predicting the interaction effects). Separate models were estimated with CT and GMV as 

dependent variables. Only random intercepts were included in the models, since including random 

effects for the linear and/or quadratic slopes (i.e., the effects of test session) often led to singular 

models (variance close to 0) and their inclusion made no meaningful difference for the fixed effects 

estimates we were interested in. This holds also for the other analyses below involving LMMs.  

 

At each vertex/voxel we computed the value of the Bayesian Information Criterion (BIC) for 5 

different LMMs that differed in how session was specified: (1) a model with only a linear term for 

session interacting with group; (2) a model with an asymptotic term for session interacting with 

group (increasing inverse-quadratically until the middle of the training period and constant 

afterwards); (3) a model with an inverse-quadratic term of session interacting with group; (4) a 

model with linear and quadratic terms of session interacting with group; and (5) a model with linear, 

quadratic and cubic terms of session interacting with group. All these models had, additionally, 

linear, quadratic and cubic terms for session (main effects). Models 1-3 were preregistered 

(Supplementary Figure 9), although the cubic-polynomial main effects were not considered initially 

and were added a posteriori upon observation of the data, to account for non-linear drifts in 

structural measures over time in the whole sample, which could compromise the ability to detect 

interaction effects. Models 4 and 5 were also added post hoc for completeness in case that models 1-

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00016/2155687/imag_a_00016.pdf by guest on 07 September 2023



 

16 
 

3 were too rigid to fit the data adequately. Note that models 4 and 5 incorporate, respectively, 1 and 

2 more parameters than models 1-3, but this increased flexibility should be penalized by the BIC. 

With the winning models, we tested for interactions between experimental group and session terms. 

P-values for interaction terms and for tests considering collectively for the different session terms 

(e.g., for model 4, linear and quadratic terms) were obtained through parametric estimation with the 

Type III Wald chi-square test (as implemented in the Anova function of the car R package).  

 

The univariate tests were restricted to the vertices in ROIsurf for the analysis of CT, and to the voxels 

in ROIvol for the analysis of GMV. Since in a few sessions the regular transmit coil had to be replaced 

by an auxiliary one due to malfunctioning, we introduced this covariate of no interest in the model. 

We also controlled for training configuration and framewise displacement (FD, Power et al. 2012) 

estimated during the functional scan to approximate in-scanner motion during the structural scan, 

since its potential impact on morphometric measures has been documented (Reuter et al. 2015). 

 

Preprocessing of functional data  

Functional MRI data were preprocessed with fMRIPrep version 20.1.1 (Esteban et al. 2019), a Nipype-

based tool (Gorgolewski et al. 2011). The corresponding preprocessing steps are described here using 

the citation boilerplate provided by the software. Each T1w volume was corrected for intensity non-

uniformity using N4BiasFieldCorrection v2.1.0 (Tustison et al. 2010) and skull-stripped using 

antsBrainExtraction.sh v2.1.0 (using the OASIS template). The brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (Klein et al. 2017). Spatial normalization to 

the ICBM 152 Non-linear Asymmetrical template version 2009c (Fonov et al. 2012) was performed 

through non-linear registration with the antsRegistration tool of ANTs v2.1.0 (Avants et al. 2008), 

using brain-extracted versions of both T1w volume and template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-

extracted T1w using FAST (Zhang et al. 2001). The subject-average cortical surfaces reconstructed 

with the longitudinal pipeline for structural analyses were also employed for surface-based 

functional analyses.  

Functional data were motion corrected using mcflirt (FSL v5.0.9, Jenkinson et al. 2002). Distortion 

correction was performed using GRE fieldmaps processed with FUGUE (FSL v5.0.9, Jenkinson 2003). 

This was followed by co-registration to the corresponding T1w with 6 degrees of freedom with FLIRT 

(FSL v5.0.9, Jenkinson 2003). We did not use boundary-based registration because in our 7T 

functional data, it led to failed registrations in a considerable number of cases, whereas the volume-
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based method yielded accurate registrations. Motion correcting transformations, field distortion 

correcting warp, BOLD-to-T1w transformation and T1w-to-template (MNI) warp were concatenated 

and applied in a single step using antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. 

Functional runs with excessive head motion (FD more than 1.5 times the interquartile range above 

the upper quartile) were removed (3.6% of runs). 

 

Statistical analyses of functional data  

Functional ROIs. We defined 4 ROIs in each hemisphere (Figure 4 A), encompassing cortical areas 

involved in motor sequence learning (Wiestler and Diedrichsen 2013; Yokoi 2019; Berlot et al. 2020), 

by aggregating parcels from the Human Connectome Project’s Multi-modal Cortical Parcellation 

(Glasser et al. 2016): 

 

Primary sensorimotor (PS): R_1_ROI, R_3a_ROI, R_3b_ROI, R_4_ROI (right hemisphere); L_1_ROI, 

L_3a_ROI, L_3b_ROI, L_4_ROI (left hemisphere), excluding vertices further than 25 mm of distance 

from the respective hand knob (Yousry et al. 1997; Berlot et al. 2020).  

 

Premotor (PM): R_FEF_ROI, R_6a_ROI (right hemisphere); L_FEF_ROI, L_6a_ROI (left hemisphere). 

 

Supplementary motor area (SMA): R_6mp_ROI, R_6ma_ROI, R_SCEF_ROI (right hemisphere); 

L_6mp_ROI, L_6ma_ROI, L_SCEF_ROI (left hemisphere). 

 

Superior parietal lobule (SPL): R_AIP_ROI, R_IP2_ROI (right hemisphere); L_AIP_ROI, L_IP2_ROI (left 

hemisphere). 

 

First-level activation analyses. The preprocessed fMRI data were resampled on the fsaverage6 

surface (with 41k vertices for each hemisphere), and a smoothing kernel with 10 mm FWHM was 

applied with Connectome Workbench. The smoothed data was analyzed with the FMRIB’s Software 

Library (FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Low-frequency drifts in the time domain were 

removed by applying a high-pass filter cutoff of 90 s. In the single-subject-level statistical analyses, 

the general linear model (GLM) matrix included regressors formed as boxcar functions convolved 

with double-gamma hemodynamic response functions accounting respectively for trained correct 

trials, trained incorrect trials, untrained correct trials, untrained incorrect trials and fixation and 

hand-stretching periods. Six realignment parameters to correct for head motion plus the derivatives 

of these and all the previous regressors were also included in the model.  
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Univariate activation analyses. On the group-level, we used LMMs to test for effects of motor 

training on brain functional activation. The parameter estimates from the first level analyses 

corresponding to activation relative to baseline were used as the dependent variable. The model 

included, for each subject, a random intercept and linear and/or non-linear fixed effects of session 

number. At each vertex/voxel in the 4 functional ROIs we computed the BIC to compare the same 5 

LMMs explained for the structural analyses above (linear, asymptotic, quadratic, quadratic plus linear 

and cubic), with the only difference that the interactions of session terms in this case were not only 

with group but also with practice (trained/untrained), both coded as factors. We tested for group x 

session terms, practice x session terms and group x practice x session interactions with the winning 

model for each voxel/vertex within the functional ROIs. 

 

The univariate tests were restricted to the vertices in a mask formed by the 8 cortical ROIs (4 per 

hemisphere) mentioned above. False discovery rate (FDR) control for multiple testing across voxels 

was employed, with q < 0.025 (to account for the two hemispheres). Like for structural analyses, to 

rule out the influence of the type of transmit coil used or of motor training configuration, we 

introduced these covariates of no interest in the models. We also controlled for average framewise 

displacement within each run to account for in-scanner motion.  

 

Estimation of multivariate activation patterns. For each voxel and functional run, we first estimated 

trial-by-trial activation patterns (Mumford et al. 2012) by fitting to each voxel’s data a GLM model 

with one regressor per trial (impulse response convolved with a double gamma hemodynamic 

response function), plus 2 additional regressors accounting respectively for fixation and hand-

stretching periods. Six realignment parameters to correct for head motion plus the derivatives of 

these and all the previous regressors were also included in the model. No smoothing was applied to 

the data to estimate these parametric maps. To take into account that voxel signal is corrupted by 

noise, we applied multivariate spatial prewhitening (Walther et al. 2016) of the regression 

coefficients with a regularized estimator of the variance-covariance matrix of the residuals (Ledoit 

and Wolf 2004).  

 

Variability of activation patterns. Next, we were interested in quantifying the variability of these trial-

by-trial activation patterns separately for trained and untrained sequences, so as to be able to 

compare them. Given the set of voxels   in one of the cortical ROIs, and               , the 

activation pattern in the ROI (vector of parameter estimates) for trial  , we calculated the trial-by-

trial matrix   formed by the scaled inner products of activation patterns,            , for all trial 
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pairs (       in a session, which is related to their similarity. For this estimation we included in our 

analyses correct trials only, and only from runs with at least 3 correct trials for each of the 4 

sequences tested. The matrix   determines the representational geometry of activity profiles, and 

Euclidean or cosine distances can be easily derived from it (Diedrichsen and Kriegeskorte 2017; 

Diedrichsen et al. 2017). We then expressed   as a linear combination of 8 components specifying 

the contribution to its structure from different features related to the similarity between sequence 

pairs:  

 

                                                         (1) 

 

   corresponds to a global intercept (matrix with all entries equal to 1).        
  models the 

increased covariance for pairs of patterns of the same run, where    is an indicator matrix with a 

dummy variable for each run.     reflects the similarity for pairs of patterns of trained sequences, 

shared across runs, with           
 , and     an indicator vector with ones for trained 

sequences and zeros otherwise.     is equivalent to     for untrained sequences.           
  

reflects the similarity for trained sequences of the same type (in a session, 4 different types of 

sequences were presented, 2 of which were trained sequences and 2 untrained sequences, and each 

of these sequence types was executed 40 times), with     an indicator matrix with a dummy 

variable for each type of trained sequence, with ones when the trial corresponded to that type and 

zero otherwise.     is equivalent to    , for untrained sequences. Finally,    is a diagonal matrix 

where the diagonal is an indicator vector with ones for trials for trained sequences, and similarly for 

  . Thus, the coefficients for    and    should reflect the variability for trained and untrained 

sequences, respectively.  

 

Since the coefficients    need to be positive, we used non-negative least squares to estimate them. 

The coefficients of interest are    and   , as they reflect the magnitude of the variability of trained 

and untrained sequences respectively, together with fMRI noise. Under the assumption that the level 

of noise for both types of sequences is comparable, we can use these coefficients    and    to 

compare the variability of trained vs. untrained sequence patterns, taking logarithms to render the 

estimates normally distributed for successive analyses. Finally, we computed the variability index 

           for each session, subject, sequence type group/untrained) and each of the 8 cortical 

ROIs specified above. These calculations were implemented in Python 3.6.  

 

Dissimilarity of neural patterns. To elucidate further the changes in neural patterns over the course 

of the experiment, for each of the 8 cortical ROIs we computed one further metric, the squared 
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cross-validated Mahalanobis distance (also known as cross-nobis dissimilarity (Walther et al. 2016; 

Nili et al. 2020)) between patterns of different sequence type: 

 

        
 

                     
                         

     

  (2) 

where       denotes scalar product;     index sequence types;     index different runs and      is 

the average of trial-wise patterns of type   within run  . We used a cross-validated metric because its 

non-cross-validated counterpart tends to be biased by the presence of noise (Walther et al. 2016; 

Diedrichsen et al. 2021). The cross-validation folds corresponded to the different session runs, as the 

noise across different runs can be considered independent. As seen in equation (2), to obtain the 

metric we divided the summed scalar products by the number of voxels        , rendering them 

comparable across subjects. We arranged the ensuing metric estimates by whether the pair of 

sequences was formed by two trained, two untrained, or by one trained and one untrained 

sequence. Then we averaged the estimates within each of these categories.  

 

To further illustrate the changes in neural patterns, we also trained a linear support vector machine 

(SVM) to discriminate between patterns from different pairs of sequence types. Like for the previous 

metrics we arranged the pairs when averaging to calculate session/subject estimates by whether 

they were from trained, untrained or both trained and untrained sequences. Classification accuracies 

were estimated by cross-validating across runs, and the SVM regularization parameter C was 

optimized using nested cross-validation. These calculations were implemented in Python 3.6. 

 

Statistical analyses of dissimilarity and variability of neural patterns. For cross-nobis dissimilarities, at 

each session, we tested for a group x practice interaction using an LMM, where in this case the 

practice factor refers to whether the dissimilarity is between one trained and one untrained 

sequence or between different untrained sequences. For the variability index (          ) and the 

variance of neural patterns, we tested for a group x practice (trained/untrained) interaction at each 

session, separately for each session. In these analyses, we applied FDR control for the 8 ROIs and 

number of sessions, with q < 0.05. To rule out the influence of the type of transmit coil used, motor 

training configuration or in-scanner motion, we introduced these covariates of no interest in the 

models. 

 

Datasets used for different analyses 

As noted above, data collection was divided in 5 waves of 14 subjects each for logistic reasons. The 

first wave was used for the purpose of piloting (although the protocol was not changed in 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00016/2155687/imag_a_00016.pdf by guest on 07 September 2023



 

21 
 

subsequent waves and the data should be equivalent). Thus, the preregistered hypotheses need to 

be confirmed using data from the last 4 waves only. For analyses where we were able to confirm the 

preregistered hypothesis, we report results for the 4 waves. Whenever the results were either 

negative or the analyses were not preregistered, there was no reason to exclude the first wave and 

therefore we report results corresponding to the full dataset.  

 

Data/code availability 

The European General Data Protection Regulation (GDPR) and supplementary Swedish data 

protection legislation prohibit us from making the data publicly available, but data can be requested 

(martin.lovden@psy.gu.se or dataskydd@gu.se) and subsequently transferred for projects with well-

defined analyses (described in a project outline) that have been approved by the requesting 

researcher's local ethics committee and are consistent with the original ethics approval. This requires 

a data sharing agreement that effectively transfers the confidentiality obligations of the host 

institution where the original research was carried out to the institution receiving the data. 

The code is available from the following repositories: 

https://github.com/benjamingarzon/SeqLearn (motor task) 

https://github.com/benjamingarzon/LH-RSA (analyses) 

Results 

Behavioral measures: unpaced task 

 

We first asked whether the intervention subjects improved on the speed of executing the sequences 

that were trained at home, where they were required to execute the sequences correctly but as fast 

as possible, 5 times a week over 6 weeks. This was the case. Median movement time (MT) displayed 

rapid initial reductions that eventually stabilized (Figure 2 A). The learning curves were reliable in the 

sense of being more similar within (i.e., across trained sequences) than between subjects (see 

Supplementary Information).  
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Figure 2. Behavioral measures. Panels A-E correspond to the unpaced task outside the scanner, 

panels F, G to the task inside the scanner. A) Median movement time (MT) over practice sessions for 

8 representative intervention participants showing reductions in MT with training and interindividual 

variability in the learning curves. Different trace colors denote different sequences trained. The 

dotted vertical lines correspond to the 7 on-site test sessions, referenced in the remaining panels. B) 

Mean of the median (within-session) MT for the two groups and sequence types (trained/untrained). 

C) Standard deviation of MT, as a measure of performance variability. D) Correlation between the 

inter-press intervals (IPIs) of consecutive trials, a measure of performance consistency. E) Average 
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number of incorrect trials per sequence in a session until achieving 20 correct trials. In all panels, the 

measures for the control group are depicted in red, and for the intervention group in blue. F) Mean 

of the median (within-session) MT during the fMRI task. This task was paced, and the dashed black 

horizontal line marks the duration of the sequence at the tempo indicated by the screen counter (2.8 

s). Only correct trials were considered when computing the MT. G) Average number of incorrect trials 

per sequence in a session during the fMRI task (out of a total of 40 trials). The measures are averaged 

across subjects and specific sequences. Error bars denote standard error of the mean. Where 

indicated, the interaction of group x practice (trained/untrained) was significant: ‘**’ significant FDR-

corrected, q < 0.05; ‘*’ significant uncorrected, p < 0.05. 

 

Because the intervention subjects and the control subjects (who did not train on the sequences) 

were both tested in the lab once a week on the 3 sequences that the intervention group trained at 

home (trained sequences) and 2 additional ones (untrained sequences), we could also address 

whether there were training-related sequence-specific and sequence-general improvements, and 

whether there were global effects of repeated testing behind the improvements over time. The 

overall time-course of MT followed a differentially faster decrease for the intervention group and the 

trained sequences relative to the control group and the untrained sequences (Figure 2 B). The group 

(intervention vs. control) x practice (trained vs. untrained sequences) interaction reached significance 

for every testing session after baseline, reflecting that intervention subjects were faster than controls 

especially on trained relative to untrained sequences after a week of training (p < 0.05, FDR-

corrected for the number of sessions; see Supplementary Table 5 for the statistics in each session). 

Thus, parts of the performance improvements displayed by intervention subjects were specific to the 

trained sequences. In addition to these sequence-specific improvements, both groups showed 

substantial improvements in median MT over the training period, with most of the decreases taking 

place initially; the intervention subjects did not show significantly larger improvements on untrained 

sequences than the control participants (Figure 2 B). On the whole, this pattern of results suggests 

that there was no detectable transfer of learned MT improvements to novel sequences (transfer is 

defined here as improvements in performance as a direct result of the intensive training taking place 

at home, over and above test-retest effects).  

 

Because past studies have found reductions in behavioral variability over learning, we also 

investigated whether training reduced the variability of motor output. Both groups showed 

decreases in variability (SD) of MT for both sequence types, with a larger reduction over time for 

trained sequences in intervention subjects relative to controls and untrained sequences (Figure 2 C). 

The interaction group x practice was statistically significant (p < 0.05, FDR-corrected for the number 
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of sessions) in test session 2 (and significant uncorrected in test session 4; see Supplementary Table 5 

for statistics). To provide a complementary measure of behavioral variability, we also correlated the 

IPI pattern (i.e., the 4 intervals between the 5 discrete presses in a sequence) across trials. 

Participants in the intervention group demonstrated more highly correlated IPIs between 

consecutive trials of the same sequence type compared to baseline for trained sequences relative to 

the controls and to the untrained sequences (Figure 2 D). The group x practice interaction was 

statistically significant (p < 0.05, FDR-corrected for the number of sessions) in all test sessions after 

baseline (see Supplementary Table 5 for statistics). When computing the correlation for pairs of trials 

lagged by several trials the correlation was lower the further apart the trials were, but a similar 

pattern was observed, namely that practicing the trained sequences led to a markedly more 

consistent performance on those specific sequences (Supplementary Figure 2). Thus, training 

reduced execution variability and this effect was partly specific for the trained sequences. Although 

the time-course of IPIs for the untrained sequences increased in a similar fashion in both groups, we 

observed a subtle generalization effect, as the increase in IPI over time was steadier in the 

intervention group as compared to the control group.  

 

The number of incorrect trials per session and sequence was similar for intervention and control 

subjects for trained sequences, that is, subjects did not seem to trade-off speed for accuracy when 

learning the sequences (Figure 2 E). Surprisingly, intervention subjects who practiced at home 

committed more errors on untrained sequences than the control subjects. The interaction group x 

practice was statistically significant (p < 0.05, FDR-corrected for the number of sessions) in test 

session 3 after baseline and uncorrected in sessions 2 and 5 (see Supplementary Table 5 for 

statistics). These results may indicate that intervention subjects became less careful over time when 

facing new sequences. 

 

Taken together, these results show both task-general performance improvements and increased 

performance consistency independent of group or sequence type, but also differential and specific 

improvements to the sequences that were trained intensively.  

 

Finally, there were considerable differences between trained and untrained sequences for both 

groups at baseline in MT variability (untrained > trained, t(220.14) = 2.9, p = 0.003, Figure 2 C) and 

number of correct trials (untrained > trained, z = 2.8, p = 0.006, Figure 2 E), which reflects differences 

in the difficulty of the two sets of sequences (due to the different cardinality of the sets and the 

constraints we imposed on the sequences, it was not possible to counterbalance them completely, 

only to make the proportions of training configurations equivalent for the two groups, see Methods). 
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These baseline behavioral differences are, however, unlikely to account for group differences in 

differential changes over time. In addition, the statistical analyses included training configuration as a 

covariate. Therefore, the baseline differences between the trained and untrained sequences should 

neither affect the main interpretations of the behavioral results nor the imaging results reported 

below. 

 

Behavioral measures: fMRI task 

 

In the scanner, both groups executed the sequences following the tempo signaled by the screen 

counter (4 beats x 0.7 s/beat = 2.8 s). The control group tended to be slightly faster already after a 

week of training, executing the sequences in about 3% less MT than the intervention group (Figure 

2F). The group x practice interaction was nonetheless not significant at any session even at the 

uncorrected level (see Supplementary Table 5 for the statistics in each session). As in the case of the 

unpaced task, the number of incorrect trials per session and sequence was similar for intervention 

and control subjects for trained sequences (Figure 2G). Also, as before, intervention subjects 

committed a slightly higher number of errors on untrained sequences than the control subjects. The 

interaction group x practice was statistically significant (p < 0.05, FDR-corrected for the number of 

sessions) in test sessions 2 and 4 after baseline and uncorrected in session 3 (see Supplementary 

Table 5 for statistics).  

Training-related changes in functional activation 

Initial analyses of the fMRI data focused on the activity elicited by task performance. Whole-brain 

surface-based univariate analyses of the BOLD signal (correct execution > resting baseline), 

demonstrated task-related functional activation (p < 0.025, FDR-corrected) in bilateral secondary 

motor areas (supplementary motor area, superior parietal and premotor cortex), primary motor and 

somatosensory regions, most prominently on the right side, i.e. contralateral to the hand used to 

perform the movements, as well as in primary visual cortex and regions of the salience network 

(insular and anterior cingulate cortices; Figure 3 A). Our task thus elicited activity in the expected 

sensorimotor and dorsal attention networks. 
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Figure 3. Functional activation. Practice-related changes in functional activation within cortical 

motor areas. A) The figure shows the significance map (p-values) for the contrast of activation 

against resting baseline (mean effect across subject groups, timepoints and sequence types). P-

values were FDR-corrected considering the whole cortex as the search area. Executing the motor 

sequences required by the task elicited brain activity in primary and secondary motor regions. B) 

Result of the model comparison indicating, at each vertex, the model with the lowest BIC (cyan = 
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asymptotic, red = cubic). Non-linear models, and the asymptotic regime in particular, were preferred 

in the major part of the cortical areas probed. BIC reflects the likelihood of the model penalized by its 

complexity. C) Functional activation time-courses from clusters where the univariate analyses 

identified effects of practice. D) Practice x session effect for the asymptotic model, revealing changes 

over time in activation in bilateral parietal and premotor regions that were differential for trained as 

compared to untrained sequences. The figure shows p-values FDR-corrected within the preregistered 

areas for the test of practice-related effects. The pattern found when fitting the cubic model was 

equivalent. The contour lines mark the preregistered mask encompassing primary sensorimotor and 

secondary motor cortical areas, and the corresponding analyses were restricted to these areas. E) 

Average of the functional activation time-courses within the primary sensorimotor (PS) ROIs, in 

which no significant practice x session effects were detected. In (A, D), the corrected significance 

threshold was set to   = 0.025 to account for both hemispheres.   
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Next, we tested the preregistered hypothesis of training-related decreases in activation. For these 

analyses, we performed voxel-wise analyses restricted to a preregistered mask encompassing 

primary and secondary cortical sensorimotor regions. The analyses showed sequence-specific 

decreases in activity in secondary sensorimotor areas, but not in primary areas, for the intervention 

group and the trained sequences relative to the control group and the untrained sequences (Figure 3 

C, D). In the analyses revealing these results, we fitted several models that assumed an interaction 

between experimental group, practice (i.e., trained vs. untrained sequences), and different shapes of 

changes over the sessions (i.e., the 7 longitudinal measurements; see Methods). To evaluate the fit of 

these models, we computed the BIC at each voxel in the mask. Within the cortical areas of interest, 

the BIC was lowest for either the asymptotic or the cubic model, depending on the specific region 

(Figure 3 B). The practice by session interaction reached statistical significance (p < 0.025, FDR-

corrected) with both models in clusters within bilateral superior parietal and premotor cortices 

(Figure 3 D; Table 1). However, we were unable to detect practice-related effects in primary 

sensorimotor cortex (no interactions concerning effects of practice were significant in this region 

even at the uncorrected level). Control analyses smoothing the data with a kernel with half the size 

(5 mm FWHM) returned an analogous pattern of clusters (Supplementary Figure 10). When plotting 

the effects (Figure 3 C, E), the pattern of results was in line with our preregistered hypothesis only in 

the secondary sensorimotor areas, which showed larger reductions in activity over time for trained 

than untrained sequences especially for the intervention group. Note also that control analyses with 

the linear or quadratic models of the time-trends over sessions did not reveal any additional clusters 

showing statistically significant practice-related effects. The predicted three-way interaction of group 

by practice by session approached statistical significance in the same regions reported above for the 

asymptotic model, but the effect did not survive correction for multiple comparisons. This pattern of 

results should be interpreted considering the study procedures, which included testing control 

subjects on a subset of sequences (trained sequences) more often than on the remaining ones, 

namely every week. This may explain the trends for activation decreases that can be observed also in 

the control group for the trained set compared to the untrained set, which varied from week to 

week. 
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Table 1. Effects of practice on functional activation. Clusters showing a practice (trained/untrained) 

x session interaction on functional activation (cf. Figure 3).  

 

Model Region MNI 

coordinates 

(x, y, z) 

Cluster 

size 

(mm^2) 

Chi-

square 

df Peak p-value 

(uncorrected) 

Peak p-

value (FDR-

corrected) 

Asymptotic Right Superior 

Lobule 

31, -40, 39 851.87 22.1 1 2.55e-06 3.96e-e4 

Right Premotor 

Cortex 

21, -2, 48   433.39 23 1 1.6e-06 3.96e-e4 

Left Superior 

Lobule 

-42, -35, 38 596.47 18.6 1 1.58e-05 1.59e-03 

Left Premotor 

Cortex 

-21, -3, 43 335.21 17.7 1 2.55e-05 1.59e-03 

Cubic Right Superior 

Lobule 

31, -40, 39     681.72 24.6  3 1.88e-05 3.3e-03 

Right Premotor 

Cortex 

21, -2, 48    258.92 24.8  3 1.72e-05  3.3e-03 

Left Superior 

Lobule 

-42, -35, 38 419.54 22.2 3 6.04e-05 8.4e-03 

Left Premotor 

Cortex 

-20, -4, 46 133.22 19.5  3 2.2e-04 8.4e-03 

 

Because our design included a control group, we could also test the hypothesis that training effects 

on activation would generalize to untrained sequences, such that decreases in activity would also be 

observed in the intervention group relative to the control group for untrained sequences. The results 

did not support this hypothesis (Figure 3 C). The group by session interactions did not reach 

statistical significance even at more liberal statistical thresholds. This was confirmed by follow-up 

tests: when restricting the analysis of the data to untrained sequences, there was no statistically 

significant differences between groups (p > 0.1 in all clusters). Therefore, practicing the trained 

sequences resulted in no noticeable activation changes for the untrained ones.  

 

 

 

In summary, brain activity for trained sequences decreased relative to untrained sequences in the 

bilateral parietal and premotor cortices. Training-related changes in the primary sensorimotor areas 

were not detected. 
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Training-related changes in variability of activation patterns over repeated trials of trained sequences 

We had preregistered the hypothesis that training specific sequences would result in lower variability 

of multivariate activation patterns among trials of those sequences, as predicted by the ESR model 

due to stabilization of neural circuits in its refinement phase. To test this hypothesis, we derived an 

index of the variability of the multivariate activity patterns over repeated trials of trained and 

untrained sequences for each subject (see Methods) and examined the group averages over time in 

preregistered ROIs in SPL, SMA, PM, and PS in each hemisphere (Figure 4 A; these ROIs together 

formed the mask used for the univariate analyses above). This index of neural variability was not 

affected by training in a significant manner (Supplementary Figure 5 and Supplementary Table 7; p > 

0.1 in all ROIs and sessions, testing separately for a group x practice interaction in each ROI/session 

and applying FDR control for sessions and ROIs). 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00016/2155687/imag_a_00016.pdf by guest on 07 September 2023



 

31 
 

 

Figure 4. Evolution of cross-nobis dissimilarities between neural patterns for pairs of sequences. A) 

ROIs that were used for neural pattern dissimilarity analyses (only right hemisphere regions are 

shown, but the same regions from the left hemisphere were also analyzed). B) Cross-nobis 

dissimilarities between multivariate patterns of trained and untrained sequences increased over time 

in both groups, and much more prominently for the intervention group. These changes were present 

in all regions except PS. Asterisks indicate a significant interaction of group x practice 
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(untrained/trained - untrained). ROI: region-of-interest; PM: premotor; PS: primary sensorimotor; 

SMA: supplementary motor area; SPL: superior parietal lobule; ‘***’ significant FDR-corrected for 

ROIs and sessions, q < 0.05; ‘**’ significant FDR-corrected for sessions, q< 0.05; ‘*’ significant 

uncorrected, p < 0.05.  

 

Training-related changes in the dissimilarities between activation patterns 

To investigate whether multivariate activity patterns, just like the overall activity, also displayed 

sequence-specific changes with learning, we calculated cross-nobis dissimilarities as a measure of the 

dissimilarity of activation patterns within and between trained and untrained sequences (see 

Methods; these analyses were not preregistered). Dissimilarities were computed for the ROIs in SPL, 

SMA, PM, and PS in each hemisphere (Figure 4 A) as in the previous analyses of pattern variability. 

The cross-nobis dissimilarities between patterns for trained and untrained sequences increased over 

time in both groups in all ROIs except bilateral primary sensorimotor areas (Figure 4B, green dashed 

trace). Nevertheless, the increase was more prominent for the intervention participants and 

dissimilarities between trained and untrained sequence patterns relative to dissimilarities between 

untrained sequence patterns and controls (the interaction was significant in several sessions after 

baseline; Figure 4 B; Supplementary Table 6). In contrast, dissimilarities between sequence patterns 

for different trained sequences (red traces) or between sequence patterns of different untrained 

sequences (blue traces) showed generally a stable trend over time in both groups. Overall, these 

results indicate that practicing the trained sequences resulted in their neural patterns becoming 

more dissimilar to those from untrained sequences in the secondary motor regions that had shown 

the largest activation decreases. 

 

The use of the cross-nobis dissimilarities is closely related to the multivariate pattern classification 

approach that is more common in the fMRI literature. To make a direct contact with this literature 

and further illustrate our findings, we also report average cross-validated classification accuracies for 

multivariate models (SVM) trained to separate pairs of different sequences (see Methods). These 

accuracies were significantly above chance (i.e., accuracy = 0.5) for untrained sequences in all regions 

in the control group (p < 0.05 in all ROIs for the group mean, considering all sessions), implying that 

different sequences had to some extent distinguishable neural representations even when they were 

not practiced (Supplementary Figure 6 A; see permutated data for comparison in Supplementary 

Figure 6 B). In line with results from computing the cross-nobis dissimilarities, accuracy of the 

classification between patterns of trained and untrained sequences increased over sessions and 

more highly for the intervention group (Supplementary Table 8), but remained stable for 

classification between different trained or untrained sequences. 
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In summary, the results from these non-preregistered analyses were aligned with the overall 

activation results by showing that when subjects practiced certain motor sequences the 

corresponding activation patterns in secondary, but not primary, motor areas became more 

differentiated from those of untrained sequences. The similarity of the activation patterns among the 

trained sequences did not show reliable change. 

 

Structural imaging analyses 

To test the preregistered hypothesis of practice-dependent changes in cortical thickness and gray 

matter volume, we fitted several models that assumed an interaction between experimental group 

and different shapes of changes over the sessions (i.e., the 7 measurements; see Methods). To 

evaluate the fit of these models, we computed the BIC at each vertex/voxel of a preregistered ROI. 

Depending on the region, the BIC was minimized by either the linear, the asymptotic, or the 

quadratic model, but there was no anatomical congruency (i.e. no clear spatial pattern) in the spatial 

BIC map. We then tested for interactions between group and session terms within the ROI, but we 

could not find any clusters in which these tests survived correction for multiple comparisons for any 

of the measures, even using a liberal threshold. Although there were clusters at the uncorrected 

level, examination of the corresponding time-courses suggested that they were driven by 

fluctuations in the measures at a few timepoints and not compatible with the occurrence of 

structural changes in the intervention group. Supplementary analyses halving the smoothing kernel 

sizes (4 mm FWHM for GMV and 5 mm FWHM for cortical thickness) also yielded negative results.  In 

sum, we could not identify any pattern consistent with gradual differential increases, decreases, or 

non-linear progression in the intervention group relative to the control group.  

 

Note that the estimates of cortical thickness and gray matter volume displayed acceptable reliability 

across timepoints. Intra-class correlation coefficients (ICC; computed separately for each 

vertex/voxel within the ROI, including only the control subjects and considering these as the class of 

interest) of the structural measures ranged from moderate to good across vertices (Koo and Li 2016) 

for CT (median = 0.78, SD = 0.09) and good to excellent across voxels for GMV (median = 0.92, SD = 

0.11; Supplementary Figure 3).  

 

In summary, despite the acceptable reliability of the structural measures, we were unable to detect 

training-related changes in any of the measures. Preregistered supplementary analyses on 

approximate T1 relaxation times derived from the structural scans, which exhibited lower reliability 
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than morphometric measures, did not reveal any experience-dependent changes either (see 

Supplementary Information).  

Discussion 

In this study, we acquired repeated behavioral performance and neuroimaging measures over the 

course of 6 weeks to investigate neural changes associated with motor sequence learning. Both the 

intervention group and control groups showed general performance improvements, but 

performance improved more, and became more consistent, for sequences that were intensively 

trained by the intervention group relative to those that were not. In line with our preregistered 

hypothesis, practice led to decreases in brain activity in the bilateral parietal and premotor cortices. 

In contrast, no statistically significant changes were observed in primary sensorimotor areas. In 

secondary motor areas only, practice also resulted in decreased similarity of activation patterns 

between trained and untrained sequences. The similarity of the activation patterns among the 

trained sequences did not change. The preregistered predictions of practice-related changes in the 

variability of activation patterns across trials and in the estimates of brain structure were not 

supported by the data.  

 

It is surprising that we were unable to detect training-related changes in the three structural 

measures we derived from the T1w scans, given that our experiment had more within-subject scans 

than most previous studies in the field and that the number of participants per group was on the 

upper end of the sample size range compared to similar studies (Draganski et al. 2004, 2006; 

Mårtensson et al. 2012; Lövdén et al. 2013). In addition, the reliabilities of our CT and GMV estimates 

were above moderate in the areas of interest. At present, the origin of learning-induced gray matter 

changes measured with MRI is still uncertain. An animal study which investigated the relationship 

between several neuron morphology metrics and the VBM signal found only a significant but weak 

association with spine density (Keifer et al. 2015). Another study of the effects of monocular 

deprivation in rats suggests that experience-dependent changes in GMV estimated with MRI mainly 

are the results of swelling astrocytes (Schmidt et al. 2021). It remains unknown whether these 

findings can be translated to humans learning a motor task. Our own post hoc simulations 

(Supplementary Information) of the relationship between statistical power and relative volumetric 

change suggest that, unless the relative changes are very large and possibly happening in several 

cellular constituents, they would be unlikely to be detected by vertex- or voxel-wise analyses (e.g., 

synaptic changes should be very extensive to trigger measurable macroscopic changes on their own). 

On the other hand, extant evidence indicates that vascular changes can induce changes in 

morphometric measures. For instance, it has been shown that a single-dose pharmacological 
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manipulation that decreases cerebral blood flow in a localized manner alters VBM estimates in 

overlapping regions (Franklin et al. 2013; Ge et al. 2017). Other recent studies show task-related 

effects on MPRAGE images in humans (Månsson et al., 2018; Olivo et al., 2021). An intriguing 

explanation for the lack of structural alterations in the present study has to do with the structural 

sequence we used (MP2RAGE), which differs in a crucial way from the MPRAGE sequences that have 

typically been used in prior studies of experience-dependent plasticity in humans. Specifically, in 

MPRAGE sequences the T2* effects are present, whereas in flat images derived from MP2RAGE 

sequences T2* effects are mostly cancelled, by virtue of the division of the two volumes involved in 

order to remove the intensity bias (Marques et al. 2010; Tanner et al. 2012). Thus, if the learning-

related structural changes observed in similar experimental designs based on MPRAGE sequences 

were predominantly of vascular origin, they would have been mostly cancelled out had MP2RAGE 

been used instead. Remarkably, even though the MP2RAGE sequence has been available for over 10 

years (Marques et al. 2010) and it is becoming the recommended sequence for gray-white matter 

segmentation (Droby et al. 2021; Oliveira et al. 2021), no published studies have, to the best of our 

knowledge, shown longitudinal training-related structural changes on a similar time-scale using this 

MR sequence, which may be a symptom of its lower sensitivity to vascular alterations. Nevertheless, 

this interpretation remains speculative, and more research will be needed to elucidate this question. 

 

Even though executing the motor sequences triggered robust and widespread activations in visual, 

primary, and secondary motor cortices, and the nodes of the salience network, changes in activation 

were localized to bilateral parietal and premotor regions. Our finding of activation decreases in 

secondary cortical motor areas and absence of changes in the primary sensorimotor cortices agrees 

with recent inquiries (Wiestler and Diedrichsen 2013; Berlot et al. 2020), contradicting a number of 

older studies that reported increases (Karni et al. 1995, 1998; Grafton et al. 2002; Penhune and 

Doyon 2002; Floyer-Lea 2005; Lehéricy et al. 2005) or non-monotonic changes (Xiong et al. 2009; Ma 

et al. 2010). We can obviously not exclude that practicing tasks other than ours leads to decreases 

also in primary regions. Importantly, the task used in the present study was more challenging than 

those in previous similar studies in terms of motor demands (i.e., execution with non-dominant 

hand, relatively novel configural responses). Nevertheless, we observed no changes in activity in the 

primary sensorimotor cortices. In addition, in our study, subjects had no exposure to the motor 

sequences of the experiment prior to baseline imaging. To ensure that participants understood the 

mechanics of the task and were familiar with the process, they tested it only once during the 

information session several days prior to the baseline session, but the demonstration version of the 

task required executing easier sequences of 3 chords with transitions of only 1 or 2 finger changes at 

a time. Therefore, there was no meaningful pretraining of the actual experiment sequences that 
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could have triggered changes before the first scanning session. We conclude that activity in 

secondary cortical motor areas declines from the beginning of the training period. 

 

The set of regions in which activation exhibited changes for trained sequences corresponds to the 

dorsal attention network (DAN), or dorsal frontoparietal network (dFPN), which consists of the 

intraparietal sulcus and the frontal eye fields (Corbetta and Shulman 2002). These regions are 

activated simultaneously in a wide range of tasks, both motor (reaching, grasping, saccade 

production) and purely cognitive (spatial attention, mental rotation, working memory). Previous 

studies of finger sequence production have demonstrated that these regions encode sequences and 

sequence chunks (Wiestler and Diedrichsen 2013; Yokoi et al. 2018; Yokoi 2019; Berlot et al. 2020), 

and our multivariate analysis of the activity patterns also indicates that different sequences could be 

classified above chance level in these regions. Recent reviews have proposed that the overarching 

role of the DAN is the top-down modulation of attention (Vossel et al. 2014) or the emulation of 

actions (Ptak et al. 2017). One explanation for the decreases found in the DAN nodes is that, with 

practice, these areas become more efficient and therefore the demand for oxygen sinks (Berlot et al. 

2020). A somewhat different perspective would be that, for sequences that have been intensively 

trained and memorized, the need to rely on spatial attention to read the sequences, subserved by 

the DAN, is much diminished. In the latter view, the changes do not reflect localized plastic change 

per se but the reduced need for involvement of this domain-general system after transitioning from 

controlled to automatic execution (Chein and Schneider 2012). Plastic change would happen at the 

level of the mechanisms selecting these regions in the early phases of skill learning. 

 

In the paced task in the scanner there were consistent albeit small timing differences between 

groups. These cannot, nevertheless, account for the neural changes we observed: the intervention 

subjects executed the sequences more slowly, but there was no detectable group x practice 

interaction. This is the opposite pattern found in the activation data, where there were no 

appreciable differences between groups together with large decreases for the trained relative to the 

untrained sequences. Besides, because of the sluggishness of the hemodynamic response, it is 

implausible that timing differences on the order of 100 ms would result in the large neural changes 

detected. The group x practice effects on accuracy during the fMRI task were small and did not reach 

significance at all time points after baseline. As only correct trials were included in the fMRI analyses, 

these small effects cannot explain the decreases in activity or the differences between the mean 

patterns either. 
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The use of a control group, which former similar studies did not incorporate (Xiong et al. 2009; Ma et 

al. 2010; Wiestler and Diedrichsen 2013; Berlot et al. 2020), allowed us to establish that untrained 

sequences in the intervention group did not elicit significantly larger behavioral improvements or 

differential activity reductions relative to the control group. This speaks to a lack of (measurable) 

generalization (i.e. the ability to transfer learned improvements to novel sequences (Krakauer et al. 

2019)) from learning the trained sequences to the untrained ones in terms of both performance in 

the primary outcome measures and functional activity in this task. However, the initial large changes 

occurring between the first and second sessions are an exception to this lack of generalization. The 

improvements for the untrained sequences also occurred for the control group, which implies that 

they were due to the learning occurring in the testing sessions, and may contain both sequence-

specific and sequence nonspecific changes. It is likely that these initial changes relate to general 

aspects of getting acquainted with the task, such as selecting goals, developing online planning, or 

the use of explicit knowledge to find a general strategy to perform the task (Krakauer et al. 2019; 

Spampinato and Celnik 2020; Ariani et al. 2021, 2022). Furthermore, the smoother IPI time-courses 

for untrained sequences in the intervention group and the overall pattern of behavioral results of the 

paced fMRI task also indicate that practicing the task at home leads to partially more consistent and 

controlled performance in general. 

 

We found no evidence for the decreases in variability of activation patterns across trials predicted by 

the ESR model. A critical difficulty when comparing trial-wise variability of trained and untrained 

sequences is that, due to the low SNR that is typical of fMRI measurements, trial-wise pattern 

variability will have a large contribution from non-neural noise that cannot be disentangled from 

neural variability. For this reason, sensitivity to detect differences between variability of activation 

patterns will tend to be low. Moreover, an assumption that trained and untrained sequences have 

equivalent levels of non-neural noise must be made, which may not hold if systematic trained-

untrained differences in non-neural signal are present.  

 

Although neural representations for different sequences were measurably distinct (i.e., classification 

accuracy was above chance) even when the sequences were not trained, practice did not lead to 

appreciable changes over time in cross-nobis dissimilarities between different (trained) sequences, as 

would be expected if the patterns became more distinct following training. Overall, our results are 

commensurate with the analysis of activation patterns for paced sequences by Berlot and colleagues 

(Berlot et al. 2020); they could not observe training-related effects on dissimilarity between patterns 

of different sequences that were executed at paced tempo either, only general increases in 

dissimilarity between trained- and untrained-sequence patterns in secondary motor regions. 
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However, the authors found that the dissimilarity between sequence-specific activation patterns for 

trained sequences was greater than for untrained sequences when the task was performed at full 

speed (as opposed to when it was paced). Single-finger tasks do not fully reproduce the demands of 

more challenging real-world skills like playing the piano that we would ultimately want to 

understand. Therefore, considering that our task is more difficult and should require additional 

motor control and cognitive processes in order to coordinate the simultaneous pressing of keys in 

the same chord, it would be worthwhile to investigate an unpaced version during scanning. 

Establishing conditions in which neural patterns become sequence-specific with practice in such tasks 

is a prerequisite to enable future research on the predictions of the ESR model and more generally to 

understand neuroplastic changes during skill learning. Besides, it would also be interesting to 

investigate whether generalization effects in behavior (such as those we observed in the paced fMRI 

task) are present when the task is unpaced, and if so, to study their neural correlates. 

 

We cannot rule out that the reason for the lack of structural findings is that the duration of the 

experiment was not long enough or that the task was not sufficiently demanding to elicit structural 

changes, compared to previous work. While some past studies have used periods of the order of 

months (Draganski et al. 2004; Matuszewski et al. 2021), the duration of our experiment was based 

on a former study of our group in which we were able to detect localized changes in motor areas 

(Wenger et al. 2017), together with a pilot study of the motor task that showed that the practice 

period extends beyond the point where performance reaches a plateau. We should therefore have 

been able to capture the whole process of exploration, selection, and refinement that is predicted by 

the ESR model. Longer periods of training (months or years) are possibly required to trigger 

measurable structural changes that give rise to differences between skilled and naïve groups (e.g., 

musicians vs. non-musicians; Schlaug et al. 2001; Gaser and Schlaug 2003). Alternatively, such 

differences may to some extent reflect selection effects (niche picking), with differences existing 

before practice. It is also possible that adaptive training procedures are required, but because our 

primary interest was to understand the dynamics of neural changes, we expressly avoided using an 

adaptive task that would have confounded the time-course of neural alterations. We also note that 

other analysis approaches may be more effective in finding changes in neural representations. To 

obtain the activation patterns, we fitted a GLM to the functional data to derive one activation 

pattern per trial. This approach is bound to lose important timing information. A spatio-temporal 

approach, which could potentially capture more nuanced aspects of neural representations, would 

be considerably more complex to implement and remains as an avenue for future work. This 

approach may be more fruitful for finding differences between configural-response and single-finger 

tasks. Lastly, in our study we opted for the use of a passive control group, which offers less control 
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for unspecific aspects of learning the task than an active control group. However, we deem it unlikely 

that placebo or motivation effects can explain that the changes observed were localized only to 

motor-related areas. 

 

In conclusion, training a paced configural-response sequence task with the non-dominant hand 

during a period of 6 weeks resulted in reduced activity in the DAN for the sequences that had been 

practiced, but neither in detectable activation changes in primary sensorimotor cortices nor in 

morphological changes. Practice also resulted in decreased similarity between the neural activation 

patterns of trained and untrained sequences in secondary, but not primary, motor areas. 
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