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Abstract 

Functional magnetic resonance imaging (fMRI) has been widely used to identify brain 

regions linked to critical functions, such as language and vision, and to detect tumors, 

strokes, brain injuries, and diseases. It is now known that large sample sizes are 

necessary for fMRI studies to detect small effect sizes and produce reproducible results. 

Here we report a systematic association analysis of 647 traits with imaging features 

extracted from resting-state and task-evoked fMRI data of more than 40,000 UK 

Biobank participants. We used a parcellation-based approach to generate 64,620 

functional connectivity measures to reveal fine-grained details about cerebral cortex 

functional organizations. The difference between functional organizations at rest and 

during task was examined, and we have prioritized important brain regions and 

networks associated with a variety of human traits and clinical outcomes. For example, 

depression was most strongly associated with decreased connectivity in the 

somatomotor network. We have made our results publicly available and developed a 

browser framework to facilitate the exploration of brain function-trait association 

results (http://fmriatlas.org/). 

 

Keywords: Brain function; Functional connectivity; Human traits; Mental Health; Resting 

fMRI; Task fMRI; UK Biobank. 
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1. Introduction 

Functional magnetic resonance imaging (fMRI) is a noninvasive and comprehensive 

method of assessing functional organizations of the human brain. By measuring blood 

oxygen level dependent (BOLD) signal changes, fMRI can map complex brain functions 

and estimate neural correlations between different brain regions (Power et al., 2011). 

When the subject is performing a specific task, fMRI can detect brain signals and regions 

that link to the task (Ogawa et al., 1990), which is known as task-evoked fMRI. As an 

alternative, resting-state fMRI can observe brain signals during rest and measure 

intrinsic functional organization without performing any tasks (Biswal et al., 1995). Both 

task-evoked and resting-state fMRIs have been widely used in clinical and 

epidemiological neuroscience research to explore the relationship between 

inter-individual variations in brain function and human traits. For example, resting-state 

functional abnormalities are frequently observed in neurological and psychiatric 

disorders, such as Alzheimer's disease (Agosta et al., 2012), 

attention-deficit/hyperactivity disorder (ADHD) (Posner et al., 2014), schizophrenia (Hu 

et al., 2017), and major depressive disorder (MDD) (Mulders et al., 2015). fMRI has also 

been used to identify the influence of multi-system diseases and complex traits, such as 

diabetes (Macpherson et al., 2017), alcohol consumption (Ewing et al., 2014), and 

dietary behaviors (Zhao et al., 2017), on brain functions.  

 

A major limitation of most fMRI association studies has been their small sample 

size, which is usually less than one hundred or a few hundred. As functional connectivity 

measures may be noisy and have large intra-subject variations (Elliott et al., 2020), it 

may be difficult to replicate fMRI-trait associations found in small studies (Marek et al., 

2022). This problem can be resolved statistically by increasing the sample size of fMRI 

studies, which can detect weaker signals and reduce the uncertainty of the results. For 

example, Marek et al. (2022) showed that when the sample size is larger than 2,000, 

brain-behavioral phenotype associations can become more reproducible. However, the 

high assessment costs of fMRI may make it difficult to increase sample sizes sufficiently 

to collect the necessary data in every study. In the last few years, several large-scale 

fMRI datasets involving over 10,000 subjects have become publicly available, including 
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the Adolescent Brain Cognitive Development (Chaarani et al., 2021) (ABCD), the Chinese 

Imaging Genetics (CHIMGEN) (Xu et al., 2020), and the UK Biobank (Miller et al., 2016) 

(UKB). Particularly, the UKB study collected a rich variety of human traits and disease 

variables (Bycroft et al., 2018), providing the opportunity to discover and validate 

fMRI-trait associations in a large-scale cohort.  

 

Based on fMRI data from more than 40,000 subjects in the UKB study, we 

investigated resting-state and task-evoked functional organizations and their 

associations with human traits and health outcomes. By processing raw fMRI images 

from the UKB study, we represented the brain as a functional network containing 360 

brain areas in a parcellation (Glasser et al., 2016) developed using the Human 

Connectome Project (Van Essen et al., 2013) (HCP) data (referred to as the Glasser360 

atlas, Fig. 1, Fig. S1, and Table S1). The Glasser360 atlas contained 64,620 (360 × 359/2) 

full correlation measures to represent the functional connections among 360 brain 

areas in 12 functional networks (Ji et al., 2019): the primary visual, secondary visual, 

auditory, somatomotor, cingulo-opercular, default mode, dorsal attention, 

frontoparietal, language, posterior multimodal, ventral multimodal, and orbito-affective 

networks. Compared to the functional connectome data provided by the UKB study, 

which were generated from whole brain spatial independent component analysis (ICA) 

(Alfaro-Almagro et al., 2018; Beckmann & Smith, 2004; Hyvarinen, 1999), the 

parcellation-based approach (like Glasser360) can provide more fine-grained details of 

brain functional organizations.  

 

We explored brain-trait associations by performing a systematic analysis with 647 

traits and diseases (selected to represent a wide range of traits and health conditions) 

using a discovery-validation design. Functional brain regions and networks were found 

to be strongly associated with a range of disorders and complex traits. In order to 

evaluate how the choice of parcellation may impact our results, we additionally applied 

another parcellation (Schaefer et al., 2018) on the same datasets, which divided the 

brain into 200 regions, referred to as the Schaefer200 atlas (Fig. S2 and Table S2). We 

found that the two parcellations can yield similar conclusions and patterns, whereas the 

Glasser360 atlas can provide more biological insights due to its finer partitioning. We 
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also explored the differences between resting-state and task-evoked functional 

organizations, as well as age and sex-related effects. Numerous studies have 

investigated the impacts of age and sex disparities on brain structures and functions. 

However, the specific locations and patterns of these identified differences can vary 

across studies (Ritchie et al., 2018; Scheinost et al., 2015). By leveraging 

parcellation-based data from the comprehensive UKB study, our aim is to provide a 

more in-depth exploration of differences in resting-state functional connectivity and 

their correlations with age and sex. 

 

In order to facilitate the exploration of our extensive results obtained from large-scale 

fMRI data, we have developed an interactive browser tool, accessible at 

http://fmriatlas.org/. This tool acts as a gateway for users to navigate and delve deeper 

into our research findings. While we will highlight several pivotal discoveries in the 

forthcoming sections of the main body, we urge readers to consult the supplementary 

materials and utilize our online tool for a more comprehensive understanding and 

discovery of additional patterns. It is worth noting that our bioinformatics resource will 

be regularly updated and broadened to include new findings and data. Future updates 

will encompass integration with new brain parcellations, alternative data processing 

pipelines, and the addition of future large-scale fMRI datasets. These improvements will 

further augment the tool's functionality, keeping it current and providing the research 

community with a continually updated platform for the exploration of fMRI data. 

 

2. Material and methods 

2.1 Brain imaging data  

We generated functional connectivity measures from the raw resting and task fMRI 

data downloaded from the UKB data categories 111 and 106, respectively. Details of 

image acquisition and preprocessing procedures were summarized in the 

Supplementary Note. We mapped the preprocessed images onto the Glasser360 atlas 

(Glasser et al., 2016), which projected the fMRI data onto a brain parcellation with 360 

areas, resulting in a 360 × 360 functional full correlation matrix for each subject (full 

correlation). The Glasser360 atlas was originally a surface-based parcellation (Dickie et 

al., 2019), and has been converted into a volumetric atlas that is compatible with UKB 
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data. The 360 brain functional areas were grouped into 12 functional networks (Ji et al., 

2019), including the primary visual, secondary visual, auditory, somatomotor, 

cingulo-opercular, default mode, dorsal attention, frontoparietal, language, posterior 

multimodal, ventral multimodal, and orbito-affective (Table S1). The 64,620 (360 × 

359/2) functional connectivity measures were studied in our main analyses. These 

high-resolution fMRI traits provided fine details on cerebral cortex functional 

organization and allowed us to compare the resting and task-evoked functional 

organizations.  

 

 

Fig. 1 Illustration of functional areas and networks in the Glasser360 atlas.  

(A) Functional areas defined in the Glasser360 atlas (left hemisphere). See Table S1 for 

information on these areas and Figure S1 for maps of the whole brain (both 

hemispheres). Visual1, the primary visual network; Visual2, the secondary visual 
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network. (B) Annotation of the 12 functional networks in the human brain. The default 

mode network (bottom right) is further divided into seven clusters, mainly based on 

their physical locations. 

 

To investigate the potential cross-parcellation variability, we also projected the 

fMRI data onto the Schaefer200 atlas (Schaefer et al., 2018) and obtained the 200 × 200 

functional connectivity matrices (full correlation, Table S2). The resting and task fMRI 

data from the HCP study were also used in our analysis. In addition to functional 

connectivity measures, we generated amplitude measures for the brain functional areas 

in the Glasser360 atlas, which quantified the brain functional activity (Alfaro-Almagro et 

al., 2018; Bijsterbosch et al., 2017; Zou et al., 2008). Precise mathematical definitions 

and previous examples of amplitude applications in UKB and HCP studies can be found 

in Bijsterbosch et al. (2017).  

 

2.2 Consistency, reliability, and comparison of resting and task fMRI  

Following the previous Glasser360 paper (Glasser et al., 2016), we first checked the 

group mean maps of two independent sets of UKB subjects (UKB phases 1 & 2 data and 

UKB phase 3 data). In the UKB phase 3 data, we removed the relatives of early phase 

subjects. We obtained the group means for each functional connectivity measure 

separately in the two datasets. To measure the similarity/consistency of the two sets of 

group means, we calculated their Pearson correlation. For both the resting and task 

fMRI, the same analysis was conducted, and we also compared the group mean maps 

between resting and task fMRI by using Pearson correlation. Next, we evaluated the 

intra-subject reliability by using repeated images. We generated and compared the 

group mean maps for the original visit and repeated visit separately as we did in the 

above two-phase analysis. For each functional connectivity measure, we also checked 

the individual-level differences by taking the Pearson correlation across all subjects with 

two visits. Finally, we repeated the group mean and intra-subject reliability analyses by 

using repeated scans in HCP study.  

 

2.3 Age effects and sex differences analysis 
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Between 2006 and 2010, approximately half a million participants aged 40 to 69 

were recruited for the UKB study. The UKB imaging study is an ongoing project to 

re-invite 100,000 UKB participants to collect multi-modal brain and body imaging 

data(Littlejohns et al., 2020). We used the UKB phases 1 to 4 data (released up through 

early 2021, n = 40,880 for resting fMRI and 34,671 for task fMRI) in our analysis. The age 

(at imaging) range of subjects was 44 to 82 (mean age = 64.15, standard error = 7.74) 

and the proportion of females was 51.6%. In the age and sex analysis, we fitted the 

following model for each fMRI trait:                      where   is the 

standardized fMRI trait,   is the standardized age,   is the sex factor (0 for female and 

1 for male),   is the set of adjusted covariates,    is the main effect of   on  ,    

is the main effect of   on  ,   is the effect of age-sex interaction term    on  ,   

represents effects of covariates, and   is random error variable. We adjusted the 

following covariates: imaging site, head motion, head motion-squared, brain position, 

brain position-squared, volumetric scaling, height, weight, body mass index, heel bone 

mineral density, and the top 10 genetic principal components. For each continuous trait 

or covariate variable, we removed values greater than five times the median absolute 

deviation from the median. These removed values will be treated as missing entries in 

the dataset. We performed the analysis in a discovery-validation design and only 

reported the results that were significant in both discovery and validation datasets (at 

different significance levels). Specifically, as in previous studies (Zhao et al., 2022), we 

used the UKB white British subjects in phases 1 to 3 data (n = 33,795 for resting and 28, 

907 for task) as our discovery sample. The assignment of ancestry in UKB was based on 

self-reported ethnicity and has been verified in Bycroft et al. (2018). The UKB non-British 

subjects in phases 1 to 3 data and the individuals in newly released UKB phase 4 data (n 

= 5,961 for resting and 4,884 for task, removed relatives of the discovery sample) were 

treated as the validation sample. We reported P values from the two-sided t test and 

focused on the results that were significant at the Bonferroni significance level (7.73 × 

10-7, 0.05/64,620 for the Glasser360 atlas; and 2.51 × 10-6, 0.05/19,900 for the 

Schaefer200 atlas) in the discovery dataset and were also significant at nominal 

significance level (0.05) in the validation dataset.  

 

2.4 Trait-fMRI association analysis 
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For each fMRI trait, we performed linear regression with 647 phenotypes, which 

were selected to reflect a variety of traits and diseases across different domains (Table 

S3). Specifically, there were 24 mental health traits (Category 100060), 10 cognitive 

traits (Category 100026), 12 physical activity traits (Category 100054), 6 electronic 

device use traits (Category 100053), 8 sun exposure traits (Category 100055), 3 sexual 

factor traits (Category 100056), 3 social support traits (Category 100061), 12 family 

history of diseases (Category 100034), 21 diet traits (Category 100052), 9 alcohol 

drinking traits (Category 100051), 6 smoking traits (Category 100058), 34 blood 

biochemistry biomarkers (Category 17518), 3 blood pressure traits (Category 100011), 3 

spirometry traits (Category 100020), 20 early life factors (Categories 135, 100033, 

100034, and 100072), 9 greenspace and coastal proximity (Category 151), 2 hand grip 

strength (Category 100019), 13 residential air pollution traits (Category 114), 5 

residential noise pollution traits (Category 115), 2 body composition traits by impedance 

(Category 100009), 4 health and medical history traits (Category 100036), 3 female 

specific factors (Category 100069), 1 education trait (Category 100063), 48 curated 

disease phenotypes based on Dey et al. (2020), and 386 disease diagnosis coded 

according to International Classification of Diseases (ICD-10, Category 2002). We 

selected all diseases in Category 2002 that had at least 100 patients in our resting fMRI 

imaging cohort.  

 

For all traits, we adjusted for the effects of age (at imaging), age-squared, sex, 

age-sex interaction, age-squared-sex interaction, imaging site, head motion, head 

motion-squared, brain position, brain position-squared, volumetric scaling, height, 

weight, body mass index, heel bone mineral density, and the top 10 genetic principal 

components. Similar to the age and sex analysis, we used the UKB white British subjects 

in phases 1 to 3 data (n = 33,795 for resting and 28, 907 for task) as our discovery 

sample and validated our results in the hold-out independent validation dataset (n = 

5,961 for resting and 4,884 for task, removed relatives of the discovery sample). We 

reported P values from the two-sided t test and prioritized the results that were 

significant at the false discovery rate (FDR) level of 5% in the discovery dataset and were 

also significant at the nominal significance level (0.05) in the validation dataset. In 

comparison to the conservative Bonferroni correction, the popular FDR multiple testing 
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procedure (Benjamini & Hochberg, 1995) was more powerful and was consistent with 

the exploratory nature of our fMRI-trait analysis. Thus, we mainly used FDR multiple 

testing control in this paper and the subset of associations further passed the stringent 

Bonferroni significance level were also provided in our website.  

 

2.5 Prediction models with multiple data types  

We built prediction models for fluid intelligence using multi-modality neuroimaging 

traits, including 64,620 resting fMRI traits, 64,620 task fMRI traits, 215 DTI parameters 

from dMRI (Zhao et al., 2021), and 101 regional brain volumes from sMRI (Zhao et al., 

2019). After removing relatives according to Bycroft et al. (2018), we randomly 

partitioned the white British imaging subjects into three independent datasets: training 

(n = 20,270), validation (n = 6,764), and testing (n = 6,761). The effect sizes of imaging 

predictors were estimated from the training data (n = 20,270). We removed the effects 

of age, age-squared, sex, age-sex interaction, age-squared-sex interaction, imaging site, 

head motion, head motion-squared, brain position, brain position-squared, volumetric 

scaling, height, weight, body mass index, heel bone mineral density, and the top 10 

genetic principal components.  

 

We also integrated other data types into our prediction model, including genetic 

variants and several categories of traits studied in our trait-fMRI association analysis 

(Table S4). For non-neuroimaging traits, the effect sizes were estimated from all UKB 

white British subjects except for the ones in validation and testing data (after removing 

relatives). We adjusted for all the covariates listed above for neuroimaging traits, except 

for the imaging-specific variables including imaging site, head motion, volumetric 

scaling, and brain position. The genetic effects were estimated by fastGWA (Jiang et al., 

2019) and were aggregated using polygenic risk scores via lassosum (Mak et al., 2017). 

We downloaded imputed genotyping data (Category 100319) and performed the 

following quality controls (Zhao et al., 2019): 1) excluded subjects with more than 10% 

missing genotypes; 2) excluded variants with minor allele frequency less than 0.01; 3) 

excluded variants with missing genotype rate larger than 10%; 4) excluded variants that 

failed the Hardy-Weinberg test at 1 × 10-7 level; and 5) removed variants with 

imputation INFO score less than 0.8. All non-genetic predictors (including neuroimaging 
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traits) were modeled using ridge regression via glmnet (Friedman et al., 2010) (R version 

3.6.0). All model parameters were tuned in the validation dataset, and we evaluated the 

prediction performance on the testing data by calculating the correlation between the 

predicted values and the observed ones.  

 

3. Results 

3.1 Consistency and reliability of the cerebral cortex functional organizations  

We examined the consistency and reliability of functional connectivity using 

annotations from the Glasser360 atlas in the UKB study. As in Glasser et al. (2016), we 

first compared the group means of two independent sets of UKB subjects: the UKB 

phases 1 and 2 data (imaging data released up through 2018 (Zhao et al., 2021), n = 

17,374 for resting and 15,891 for task) and the UKB phase 3 data (data released in early 

2020, n = 16,852 for resting and 13,232 for task, removing the relatives of subjects in 

early released data). Figure S3 illustrates the consistent spatial patterns of functional 

connectivity across the two independent groups. Similar to previous studies of other 

datasets (Chaarani et al., 2021; Glasser et al., 2016; Herting et al., 2018), the group 

mean maps in the two independent datasets of the UKB study were highly similar, with 

the correlation (r) across the 64,620 functional connectivity being 0.996 in resting fMRI 

and 0.994 in task fMRI. These results may suggest that the HCP-trained parcellation can 

provide a set of well-defined and biologically meaningful brain functional traits in the 

UKB datasets.  

 

Next, we evaluated the intra-subject reliability of the Glasser360 atlas using the 

repeat scans from the UKB repeat imaging visit (n = 2,771 for resting and 2,014 for task, 

average time between visits = 2 years). We performed two analyses. The first analysis is 

to compare the group mean maps of the original imaging visit to those of the repeat 

visit. Group means were highly consistent between the two visits, with a correlation of 

0.997 and 0.994 for resting and task fMRIs, respectively (ranges across different 

networks were [0.995, 0.999] for resting and [0.987, 0.998] for task, Fig. S4). The second 

analysis quantified individual-level differences between the two visits. Specifically, we 

evaluated the reliability of each functional connectivity by calculating the correlation 

between two observations from all revisited individuals. Overall, the correlation was r = 
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0.37 (standard error = 0.11) for resting fMRI and r = 0.31 (standard error = 0.08) for task 

fMRI (Fig. S5). The correlation of within-network connectivity was generally high in 

resting fMRI (Fig. 2A, mean r = 0.46). During task fMRI, the overall correlation was 

decreased (mean r = 0.32) and the secondary visual and posterior multimodal networks 

exhibited higher functional connectivity on average than others. In addition, the 

connectivity within activated functional areas (defined by group-level Z-statistic maps, 

Supplementary Note) showed a higher correlation than that within nonactivated areas 

(Figs. 2B and S6A, mean r = 0.40 vs. 0.30, P < 2.2 × 10-16). The majority of the 

above-defined activations occurred in the secondary visual, dorsal attention and 

somatomotor networks. Furthermore, we examined the reliability of amplitude 

measures of fMRI (Alfaro-Almagro et al., 2018; Bijsterbosch et al., 2017; Zou et al., 

2008), which quantified the functional activity within each of the 360 brain areas. The 

average amplitude correlation was r = 0.60 (standard error = 0.08) for resting fMRI and r 

= 0.45 (standard error = 0.07) for task fMRI (Fig. 2C). In accordance with the findings in 

functional connectivity, the reliability of amplitude measurements of activated areas in 

task fMRI was higher than that of nonactivated areas (Fig. 2D, mean r = 0.49 vs. 0.43, P = 

1.1 × 10-12). 

 

Finally, we compared the spatial patterns of UKB and HCP studies. The correlation 

between UKB and HCP was r = 0.90 for resting fMRI and r = 0.78 for task fMRI in the 

group mean analysis (Fig. S7). These results demonstrate a substantial level of overall 

consistency between the typical subjects in a healthy young adult cohort and those of 

middle age and older age. We also examined the reliability of functional connectivity in 

the Glasser360 atlas using the repeated scans in the HCP study (n = 1075, average time 

between two scans = 1 day). The average correlation was r = 0.40 (standard error = 0.09) 

for resting fMRI and r = 0.22 (standard error = 0.11) for task fMRI (the emotion task) 

(Fig. S6B). These results show that the two studies have similar reliability, suggesting 

that the quality of fMRI traits in the biobank-scale UKB study is comparable to that of 

the HCP project. Similar to the UKB study, the connectivity among activated functional 

areas (defined by group-level Z-statistic maps, Supplementary Note) had higher 

reliability than the nonactivated connectivity in HCP task fMRI (Fig. S6C, mean r = 0.382 

vs. 0.225, P < 2.2 × 10-16). In general, the excellent group mean map consistency, as well 
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as the similar reliability between the UKB and the HCP studies, provides confidence that 

the Glasser360 atlas will be able to consistently annotate the functional organization of 

typical subjects in a healthy population. On the other hand, the relatively low 

intra-subject reliability of fMRI matches previous findings (Elliott et al., 2020), which 

may suggest that a large sample size is needed to produce reproducible association 

results in downstream analyses (Marek et al., 2022).     

 

 

Fig. 2 Reliability across brain functional areas and networks. 

(A) Comparison of reliability of functional connectivity across 12 brain functional 

networks in resting (left panel) and task (right panel) fMRI. (B) Comparison of reliability 

of functional connectivity between the activated areas (within activation) and the 

nonactivated areas (out of activation) in task fMRI. (C) Comparison of reliability of 

amplitude measures in resting (left panel) and task (right panel) fMRI. See Table S1 for 

information of the labeled brain areas. (D) Comparison of reliability of amplitude 

measures between the activated areas (within activation) and the nonactivated areas 

(out of activation) in task fMRI. 
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3.2 Comparison of resting-state and task-evoked functional organizations  

The correlation between resting fMRI and task fMRI group mean maps was 0.754 in 

the UKB study and 0.782 in the HCP study, indicating the high degree of similarity 

between intrinsic and extrinsic functional organizations (Fig. S7). Resting-task 

differences were observed across different networks. For example, in the auditory 

network, task fMRI revealed stronger intra-hemispheric connections than resting fMRI 

(mean = 0.482 vs. 0.314, P = 5.6 × 10-11), while the inter-hemispheric connections in task 

fMRI generally weakened (mean = 0.214 vs. 0.280, P = 8.0 × 10-6). Task-related changes 

were more complex in the default mode network. To summarize the patterns, we 

grouped the 77 areas in the default mode network into seven clusters, mainly based on 

their physical locations. We found that functional connectivity within the frontal, visual, 

and hippocampal clusters was stronger in task fMRI than in resting fMRI (mean = 0.314 

vs. 0.384, P = 1.7 × 10-9), while the connectivity between the frontal and the other two 

clusters decreased (mean = 0.191 vs. 0.086, P < 2.2 × 10-16). Moreover, the frontal 

cluster of the default mode network can be further divided into two subclusters, the 

first subcluster consisted of left/right 9a, 9m, 9p, 8BL, 8Ad, and 8Av areas, mainly in the 

dorsolateral superior frontal gyrus (referred to as the dorsolateral superior subcluster); 

and the second one included left/right 10v, 10r, p32, a24, and 10d areas in the medial 

orbital superior frontal gyrus and pregenual anterior cingulate cortex (referred to as the 

medial orbital superior subcluster). The dorsolateral superior subcluster had decreased 

connectivity with the areas in other clusters of the default mode network in task fMRI, 

especially those in the temporal cluster. On the other hand, the medial orbital superior 

subcluster had a greater level of connectivity with a few other areas of the default mode 

network when performing the task, especially with the orbitofrontal complex (OFC) 

cluster and the neighboring 10pp area. Furthermore, the visual cluster maintained 

strong intra-cluster connectivity during the task, whereas its connectivity with the 

angular, frontal, and temporal clusters decreased (mean = 0.271 vs. 0.177, P < 2.2 × 

10-16).  

 

Several areas of the secondary visual network were less connected to other visual 

areas when the task was performed, including the left/right V6A (in the superior 
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occipital), V6 (in the cuneus), VMV1 (in the lingual gyrus), and VMV2 (in the lingual and 

fusiform gyrus). Interestingly, some of these visual areas, such as the left/right V6, had 

increased functional connectivity with the default mode network. There was also an 

increase in connections between the default mode network and other major cognitive 

networks, such as the cingulo-opercular and frontoparietal. For the somatomotor 

network, the insula-related areas (including left/right Ig, FOP2, OP2-3, and right RI) had 

reduced connections with other somatomotor areas in task fMRI. Similar to the auditory 

network, the inter-hemispheric connectivity in the cingulo-opercular network decreased 

in task fMRI. Additionally, we found that the dorsal attention, frontoparietal, and 

language networks had similar functional connectivity patterns in resting and task fMRI. 

In summary, our results confirm the similarity of functional structures between resting 

and task fMRI, while also identifying specific patterns of differences. These 

network-specific patterns can be explored on our website http://fmriatlas.org/. 

 

3.3 Age effects and sex differences in functional organizations  

By using the large-scale fMRI data, we quantified the age and sex effect patterns on 

resting and task functional organizations. We used unrelated white British subjects in 

UKB phases 1-3 data release (until early 2020) as our discovery sample (n = 33,795 for 

resting and 28, 907 for task) and validated the results in an independent hold-out 

dataset, which included non-British subjects in UKB phases 1-3 data release and all 

subjects in UKB phase 4 data release (early 2021 release, removed the relatives of our 

discovery sample, n = 5, 961 for resting and 4, 884 for task). The full list of the adjusted 

covariates can be found in the Methods section. Below we highlighted the results 

passing the stringent Bonferroni significance level (7.73 × 10-7 = 0.05/64,620) in the 

discovery dataset and being significant at the nominal significance level (0.05) in the 

validation dataset.  

 

There were widespread age effects on functional connectivity of resting and task 

fMRI, and network and area-specific details were revealed (Figs. S8A-B). For example, as 

age increased, the connections within the auditory, secondary visual, somatomotor, 

language, and cingulo-opercular networks were generally weaker. Some areas had 

particularly large age-effects, such as the left/right PoI2 (the posterior insular area 2) 
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areas in the cingulo-opercular network. However, both positive and negative age effects 

were observed in the frontoparietal and default mode networks (Fig. S9). For example, 

the left/right POS2 (the parieto-occipital sulcus area 2) areas in the frontoparietal 

network and left/right POS1 (the parieto-occipital sulcus area 1) areas in the default 

mode network had strong aging effects. Negative age effects in the default mode 

network were strongest in the hippocampal cluster, such as the left/right PHA1 (the 

parahippocampal area 1) areas.  

 

In task fMRI, age effects were different from those in resting fMRI. We highlighted 

a few patterns. First, the age effects in the auditory network were mainly on the 

inter-hemispheric connections, where the connectivity between the left and right 

hemispheres decreased with aging. Similarly, the inter-hemispheric connectivity 

between the auditory and cingulo-opercular networks declined as we aged. The age 

effects on intra-hemispheric connections were much weaker. Except for a few areas 

(such as the right 8Ad and right PEF), most areas in the cingulo-opercular and default 

mode networks had reduced functional connectivity with aging (Fig. S10). On the other 

hand, most of the functional connectivity in the secondary visual network increased 

with aging, especially the left/right V3A and V6A areas in the superior occipital gyrus. 

There were both positive and negative effects of aging on other networks, such as 

somatomotor, frontoparietal, and dorsal attention. Overall, these results describe the 

detailed age effect pattern for functional organizations at rest and during task 

performance. 

 

We also examined the age effects on amplitude measures. In resting fMRI, 

age-related decreases in brain activity were observed in most brain areas, with the 

strongest effects in left and right PreS areas (the presubiculum, a subarea of the 

parahippocampal region,  < -0.222, P < 5.01 × 10-193, Fig. 3A). In task fMRI, however, 

both strong positive and negative effects on brain activity were widely observed (Fig. 

3B). Because widespread age effects were detected on both functional connectivity and 

amplitude traits, we examined the conditional age effects on functional connectivity 

traits after additionally including amplitude traits as covariates. After adjusting for 

amplitude traits, most of the age effects on functional connectivity traits became much 
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smaller and were not significant at the Bonferroni significance level, especially in resting 

fMRI (Fig. S11). For example, although a few of the strongest amplitude-adjusted age 

effects remained significant, most of the other moderate amplitude-adjusted age effects 

failed to pass the Bonferroni significance level in the default mode network. Overall, 

these results for amplitude traits indicate that age has a significant effect on the 

variation of amplitude traits across subjects, which may also be carried over to 

functional connectivity traits (Bijsterbosch et al., 2017).  

 

Functional connectivity patterns differed between males and females. We found 

widespread sex differences across different resting fMRI networks, with the strongest 

differences occurring in the somatomotor network (Fig. S8C). Males had stronger 

functional connectivity in the somatomotor and auditory networks as well as a few 

specific areas, including the left/right VIP (in the superior parietal gyrus), LIPv (in the 

superior parietal gyrus), PH (in the inferior temporal gyrus), and V6A (in the superior 

occipital gyrus) of the secondary visual network, the left/right PFcm (in the superior 

temporal gyrus) and 43 (in the rolandic operculum) of the cingulo-opercular network, 

the left/right a9-46v and p9-46v (both in the middle frontal gyrus) of the frontoparietal 

network, and the left/right PGp (in the middle occipital gyrus) of the dorsal attention 

network. In the default mode network, the sex difference had a complicated pattern. 

Specifically, males had stronger connectivity in the hippocampal and OFC clusters, 

especially in the left 47m area of the posterior orbital gyrus. On the other hand, females 

had stronger connectivity in many other areas of the default mode network (Fig. S12).  

 

We observed significant sex differences in task fMRI within several brain regions. 

These include the right V6A (located in the superior occipital gyrus) and left VMV2 

(found in the lingual and fusiform gyrus) within the secondary visual network, the 

left/right PHA3 (situated in the fusiform gyrus) within the dorsal attention network, and 

the left/right RSC (located in the middle cingulate cortex) of the frontoparietal network 

(P < 7.73 × 10-7, refer to Figs. S13A-C). Within the language, auditory, and somatomotor 

networks, males exhibited stronger functional connectivity than females in numerous 

brain regions (see Figs. S13D-F).  Additionally, males had stronger connectivity in the 

hippocampal and frontal areas of the default mode network, whereas females had 
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stronger connectivity between the visual cluster and the frontal cluster (Fig. S14). As for 

the amplitude measures, females had stronger brain activity in many areas of the 

default mode network, whereas males had stronger brain activity in most other 

networks in resting fMRI (Fig. 3C). Sex differences were generally reduced in task fMRI 

amplitude measurements (Fig. 3D). Lastly, we estimated the amplitude-adjusted sex 

effects on functional connectivity traits by additionally controlling for the amplitude 

traits as covariates. Similar to the findings of the age effects, the majority of 

amplitude-adjusted sex effects on functional connectivity traits can be explained by 

amplitude traits, such as in the somatomotor and default mode networks (Fig. S15).  

 

Fig. 3 Spatial pattern of age and sex effects on brain functional organizations.  
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We illustrate the spatial pattern of age effects on amplitude measures in (A) for resting 

fMRI and in (B) for task fMRI. See Table S1 for information on the labeled brain areas. 

(C) and (D) display the spatial pattern of sex effects on amplitude measures of resting 

and task fMRI, respectively. We labeled the brain areas with the strongest age and sex 

effects in amplitude measures.  

 

3.4 An atlas of trait associations with cerebral cortex functional areas  

We aimed to explore the associations between resting and task functional 

organizations and 647 phenotypes. Similar to the age and sex analyses, we used 

unrelated white British subjects in UKB phases 1-3 data release as the discovery sample 

(n = 33,795 for resting and 28, 907 for task) and validated the results in an independent 

hold-out dataset (n = 5, 961 for resting and 4, 884 for task). We prioritized significant 

associations that survived at the FDR 5% level in the discovery sample and remained 

significant at the nominal significance level (0.05) in the validation sample. Among the 

647 traits, 120 had at least one significant association with resting fMRI functional 

connectivity measures, among which 82 further survived the Bonferroni significance 

level (7.73 × 10-7, 0.05/64,620) (Table S3). We detail below the patterns of associations 

relating to mental health, cognitive function, and disease status. For the complete set of 

results, please visit http://165.227.92.206/traitList.html. 

 

We observed strong associations between resting fMRI and multiple mental health 

traits, including risk-taking, depression, MDD, and neuroticism. Enrichments in specific 

networks and brain areas were observed. For example, risk-taking (Data field 2040) was 

strongly positively associated with the somatomotor network and the connections 

between the somatomotor and visual networks (Fig. 4A). Risk-taking was also negatively 

associated with the functional connections of the default mode network. Functional 

connectivity of sensory/motor areas was recently found to be positively associated with 

risk-taking (Rolls et al., 2022) and our findings were consistent with the 

“sensory-motor-cognitive” mode of brain functional amplitude changes related to aging 

(Smith et al., 2020). In addition, depression was mostly associated with reduced 

connectivity in the somatomotor and cingulo-opercular networks (curated disease 

phenotype based on ICD-10 codes, Fig. 4B). Consistent patterns were also observed in 
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MDD (ICD-10 code F329), nervous feelings (Data field 1970), seen doctor for nerves 

anxiety tension or depression (Data field 2090), neuroticism score (Data field 20127), 

and suffer from nerves (Data field 2010).  

 

Multiple cognitive traits were associated with functional connectivity in fMRI, such 

as fluid intelligence (Data field 20016), the number of puzzles correctly solved (Data field 

6373), duration to complete alphanumeric path (Data field 6350), and maximum digits 

remembered correctly (Data field 4282). These cognitive traits showed different 

association patterns. Fluid intelligence, for example, was associated with functional 

connectivity in the auditory, language, cingulo-opercular, dorsal attention, and default 

mode networks, most of the associations were positive (Fig. 5A). The duration to 

complete alphanumeric path was mainly negatively associated with functional 

connectivity in the secondary visual network (Fig. S16A), the number of puzzles 

correctly solved was mostly related to the functional connectivity within the default 

mode, somatomotor, and secondary visual networks (Fig. S16B), and the maximum 

digits remembered correctly was positively related to the auditory and language 

networks (Fig. S16C). The links between brain function and several other brain-related 

complex traits were detected, such as the strong connections between handedness 

(Data field 1707) and the cingulo-opercular network (Fig. S16D). Resting functional 

connectivity was also widely associated with lifestyle and environmental traits, including 

physical activity, electronic device use, smoking, diet, alcohol, and sun exposure. For 

example, watching television (TV) for longer periods of time (Data field 1070) may 

weaken functional connectivity in the somatomotor and visual networks as well as 

strengthen functional connectivity in the default mode network (Fig. 5B).  

 

Strong associations between increased functional connectivity and cardiovascular 

diseases were identified, including atrial fibrillation (curated disease phenotype and 

ICD-10 code I48), vascular/heart problems diagnosed by doctor (Data field 6150), and 

hypertension (curated disease phenotype and ICD-10 code I10). Atrial fibrillation is the 

most common clinically significant arrhythmia, and increasing evidence suggests it is 

associated with cognitive decline and dementia (Alonso & de Larriva, 2016). We found 

that atrial fibrillation was widely associated with functional connectivity across different 
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networks (Figs. S17A-B). Hypertension and vascular/heart problems were associated 

with reduced functional connectivity in the auditory, somatomotor, secondary visual, 

and cingulo-opercular networks (Figs. S17C-D). Hypertension is a major risk factor for 

vascular dementia and Alzheimer’s Disease and altered functional connections may 

reflect the early effects of vascular risk factors on brain functions (Carnevale et al., 

2020).  

 

In task fMRI, 96 traits had at least one significant association at the FDR 5% level 

(and significant at the nominal level in the validation dataset), and 59 further survived 

the Bonferroni significance level (7.73 × 10-7 = 0.05/64,620) (Table S3). Of the 96 traits, 

69 were also significantly associated with resting fMRI at the 5% FDR level. The 

association patterns in task and resting fMRI were very similar for a few traits, such as 

atrial fibrillation (Fig. S18). For many traits, however, we observed different patterns in 

resting and task fMRI, including fluid intelligence (Figs. S19A-B) and the number of 

puzzles correctly solved (Figs. S19C-D) (P < 2.2 × 10-16). For example, both fluid 

intelligence and the number of solved puzzles were positively associated with 

intra-hemispheric connections of the auditory network in task fMRI, whereas no or 

negative associations were observed with inter-hemispheric connections. There were 

similar intra- and inter-hemispheric connection differences in the cingulo-opercular 

network.  

 

We also quantified the association patterns with amplitude traits and prioritized 

brain areas whose functional activity was related to traits and diseases. We observed 

similar patterns to the functional connectivity results. For example, risk-taking has the 

strongest associations with the brain activity of the postcentral gyrus in the 

somatomotor network, especially the primary somatosensory cortex (Rolls et al., 2022) 

(Fig. 4C,  > 0.033, P < 8.14 × 10-6). The postcentral gyrus, insula, and Rolandic 

operculum areas of the somatomotor network were most negatively related to 

depression (Fig. 4D,  < -0.036, P < 7.10 × 10-7). All significant associations with fluid 

intelligence were positive, with the top three areas being the middle cingulate, anterior 

cingulate, and orbital part of the inferior frontal gyrus (IFG pars orbitalis) in the default 

mode network (Fig. 5C,  > 0.053, P < 1.31 × 10-12). Time spent watching TV was strongly 
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negatively associated with the postcentral gyrus, precentral gyrus, paracentral lobule, 

and the supplementary motor area in the somatomotor network (Fig. 5D,  < -0.050, P < 

2.03 × 10-12).  

 

3.5 Alternative analyses using the Schaefer200 atlas 

  

             

Fig. 4 Selected complex traits that were associated with brain functional organizations. 

(A) Associations between risk-taking (Data field 2040) and functional connectivity of 

resting fMRI. This figure and the top-ranked brain areas can be viewed in an interactive 

version at http://165.227.92.206/trait/trait85.html. (B) Associations between 

depression (curated disease phenotype) and functional connectivity of resting fMRI. This 

figure and the top-ranked brain areas can be viewed in an interactive version at 

http://165.227.92.206/trait/trait230.html. We illustrated the estimated correlation 
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coefficients that were significant at FDR 5% level in the discovery sample (n = 33,795) 

and were also significant at the nominal significance level (0.05) in the validation dataset 

(n = 5, 961). (C) and (D) display the spatial pattern of associations with amplitude 

measures of resting fMRI for risk-taking and depression, respectively. Brain areas with 

the strongest associations were labeled. See Table S1 for information on these areas.   

  

          

Fig. 5 Selected complex traits that were associated with brain functional organizations. 

(A) Associations between fluid intelligence (Data field 20016) and functional 

connectivity of resting fMRI. This figure and the top-ranked brain areas can be viewed in 

an interactive version at http://165.227.92.206/trait/trait158.html. (B) Associations 

between time spent watching TV (Data field 1070) and functional connectivity of resting 

fMRI. This figure and the top-ranked brain areas can be viewed in an interactive version 

at http://165.227.92.206/trait/trait101.html. We illustrated the estimated correlation 
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coefficients that were significant at FDR 5% level in the discovery sample (n = 33,795) 

and were also significant at the nominal significance level (0.05) in the validation dataset 

(n = 5, 961). (C) and (D) display the spatial pattern of associations with amplitude 

measures of resting fMRI for fluid intelligence and time spent watching TV, respectively. 

Brain areas with the strongest associations were labeled. See Table S1 for information 

on these areas. 

 

The brain parcellation may play a crucial role in the definition of the brain 

functional network and affect the results of downstream analysis (Popovych et al., 2021). 

To explore the impact of parcellation choice on the large-scale UKB study, we 

additionally applied another parcellation (the Schaefer200 atlas (Schaefer et al., 2018)) 

and repeated our analysis of the same set of subjects. Briefly, the Schaefer200 atlas 

partitioned the brain into 200 regions, resulting in 19,900 pairwise functional full 

correlation measures (200 × 199/2). We mapped the 200 regions onto the same 12 

networks used in the Glasser360 atlas (Table S2).   

 

The average reliability in the Schaefer200 atlas was r = 0.387 (standard error = 

0.10) for resting fMRI and r = 0.312 (standard error = 0.07) for task fMRI, which was in 

the same range as the Glasser360 atlas. Figure S20 compares the reliability of the two 

parcellations. Glasser360 and Schaefer200 atlases showed similar patterns across a 

variety of networks, with the largest differences being observed in the secondary visual 

network, where the Glasser360 atlas was more reliable. In addition, consistent spatial 

patterns of functional connectivity were observed in the two parcellations, although the 

strength of connectivity was slightly higher in the Schaefer200 atlas, which may partly 

be explained by the smaller number of brain areas (Fig. S21). These results demonstrate 

the good generalizability of functional organizations modeled by the Glasser360 atlas.  

 

We evaluated the age and sex effects in the Schaefer200 atlas. Figure S22 

compares the age effect patterns in the Schaefer200 and Glasser360 atlases. In both 

atlases, decreasing resting functional connectivity was consistently associated with 

aging, especially in the auditory, cingulo-opercular, and somatomotor networks. The 

main difference was in the secondary visual network, where the age effects in the 
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Glasser360 atlas were stronger than those in the Schaefer200 atlas. This finding may be 

attributed to the lower reliability of the Schaefer200 atlas in the secondary visual 

network, suggesting that the Glasser360 atlas may be more suitable for studying the 

brain connectivity of the visual cortex. In addition, consistent intra- and 

inter-hemispheric association differences in task fMRI were observed. The Schaefer200 

and Glasser360 atlases also showed similar sex effect patterns, in which the strongest 

effects were both detected in the somatomotor and auditory networks (Fig. S23).  

 

Next, we repeated the association analysis with the 647 traits. In resting fMRI, 131 

traits had at least one significant association at the FDR 5% level and 83 further passed 

the Bonferroni significance level (2.51 × 10-6 = 0.05/19,900, also passing the nominal 

significance level (0.05) in the independent validation dataset, Table S3). Of the 120 

traits with significant associations in the Glasser360 atlas analysis, 109 (90.83%) were 

also significant in the Schaefer200 atlas analysis. Additionally, the association maps 

were largely consistent in the two atlases. For example, time spent watching TV was 

consistently associated with decreased functional connections of the somatomotor and 

visual networks, as well as increased functional connectivity in the default mode 

network (Figs. S24A-B). Moreover, fluid intelligence was consistently linked to increased 

functional connectivity, particularly in the language and auditory networks (Figs. 

S24C-D). In both atlases, depression was associated with reduced functional 

connectivity in the somatomotor and cingulo-opercular networks (Fig. S25). At the FDR 

5% level, 90 traits showed significant associations with task fMRI, including 76 of the 96 

(79.2%) traits that were significant in the Glasser360 atlas analysis. All these results are 

available on our website. In summary, the Schaefer200 atlas results agree well with 

those of the Glasser360 atlas, indicating that the patterns observed in our Glasser360 

analysis are not parcellation-specific. 

 

Finally, we examined the trait associations with 1,701 functional connectivity traits 

based on the whole brain spatial ICA (Alfaro-Almagro et al., 2018; Beckmann & Smith, 

2004; Hyvarinen, 1999) approach in resting fMRI. These ICA functional connectivity 

traits were available from the UK Biobank data release 

(https://www.fmrib.ox.ac.uk/ukbiobank/index.html, Data fields 25752 and 25753), 
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which were partial correlations and the timeseries were estimated from group ICA maps 

via the dual-regression(Alfaro-Almagro et al., 2018). Of the 647 traits, 76 demonstrated 

at least one significant association at the FDR 5% level and 58 remained significant at 

the Bonferroni significance level (2.94 × 10-5 = 0.05/1,701, also passing the nominal 

significance level in the independent validation dataset). Among the 76 ICA-significant 

traits, 65 (85.53%) were also significant in the above Glasser360 atlas analysis. 

Compared to the ICA-derived traits, parcellation-based traits from the Glasser360 atlas 

(which identified significant associations with 120 complex traits at the FDR 5% level and 

82 at the Bonferroni significance level) were able to detect associations with more traits.  

 

In addition, we ranked the 58 ICA-significant complex traits (at the Bonferroni 

significance level) by the number of their significant associations with ICA-derived traits. 

Then we compared the association strengths of the top ten traits with ICA-derived traits 

and those with Glasser360 traits. On these ten traits, ICA-derived traits and Glasser360 

traits showed similar levels of association strength (Fig. S26). For example, many 

ICA-derived and Glasser360 traits were found to be significantly associated with systolic 

blood pressure (Data field 4080), and most of these associations were in a similar range 

of effect size (Fig. S27). These results align with the results of a recent study on the 

functional connectome signature of blood pressure (Jiang et al., 2023). The results of 

Glasser360 traits indicate that the auditory and somatomotor networks may be more 

strongly associated with systolic blood pressure than other networks. These networks 

and areas may be targeted when studying hypertension-related cognitive dysfunction 

and brain functional damages (Carnevale et al., 2020; Naumczyk et al., 2017). In 

summary, parcellation-based traits may reveal more network and area-level details with 

comparable association strength to ICA-derived traits. 

 

3.6 Fluid intelligence prediction by integrating multiple data types.  

Our association analyses demonstrate the potential value of large-scale fMRI data 

for a variety of complex traits and disorders in clinical and epidemiological research. For 

example, it is of great interest to construct prediction models by integrating fMRI data 

and other data types (He et al., 2020; Pervaiz et al., 2020; Shen & Thompson, 2019). 

Fluid intelligence is a key indicator of cognitive ability and is associated with multiple 
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neurological and neuropsychiatric disorders (Keyes et al., 2017). In this section, we 

performed prediction for fluid intelligence using neuroimaging traits from multiple 

modalities, including resting fMRI, task fMRI, diffusion MRI (dMRI) (Zhao et al., 2021), 

and structural MRI (sMRI) (Zhao et al., 2019). We further integrated these neuroimaging 

data with a wide range of other data types, including common genetic variants, 

biomarkers, local environments, early life factors, diet, and behavioral traits. The 

relative contributions and joint performance of these data types were assessed in a 

training, validation, and testing design. All model parameters were tuned using the 

validation data and we evaluated the prediction performance on the independent 

testing data by calculating the correlation between the predicted values and the 

observed intelligence, while adjusting for the covariates listed in the Methods section.  

 

The prediction performance of multi-modality neuroimaging traits was summarized 

in Figure 6A. The prediction correlation of resting fMRI was 0.272 (standard error = 

0.012), suggesting that about 7.4% variation in fluid intelligence can be predicted by 

resting fMRI connectivity. The prediction correlation was similar in task fMRI 

(correlation = 0.279) and was improved to 0.333 by jointly using resting and task fMRI, 

which suggests that resting and task fMRI had different contributions to intelligence 

prediction. This improvement aligned with previous results reported in the HCP and 

Philadelphia Neurodevelopmental Cohort (PNC) studies (Gao et al., 2019), and matched 

our association results where both resting and task fMRI showed strong associations 

with fluid intelligence with different spatial patterns. In addition, the dMRI and sMRI 

traits had much lower prediction accuracy than fMRI traits. Specifically, the prediction 

correlation was 0.09 for diffusion tensor imaging (DTI) parameters of dMRI and 0.08 for 

regional brain volumes of sMRI. Moreover, adding these structural traits in addition to 

fMRI traits did not substantially improve the prediction performance (correlation = 

0.342), indicating the prediction power of brain structural traits for intelligence can be 

largely captured by the functional traits.  

 

Next, we examined the prediction performance of non-neuroimaging data types 

(Fig. 6B). The prediction correlation of intelligence genetic polygenic risk score was 

0.232 (standard error = 0.013), which was slightly lower than the performance of resting 
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fMRI. Several categories of lifestyle and environmental traits had strong predictive 

power, including physical activity (correlation = 0.205), sun exposure (correlation = 

0.193), and diet (correlation = 0.153). Moreover, biomarkers, disease records, and early 

life factors all had significant predictive performance, with prediction correlations being 

0.067, 0.087, and 0.156, respectively. By combining all these non-neuroimaging data 

types, the prediction correlation increased to 0.381. The performance was further 

improved to 0.440 by including neuroimaging data, which was much higher than when 

using only one type of data. 

 

To explore whether the predictive power of non-neuroimaging traits can be 

explained by brain structural and functional variations, we evaluated their conditional 

predictive performance on fluid intelligence after controlling for neuroimaging traits. 

There was a reduction of performance on multiple categories of non-neuroimaging 

predictors, suggesting their effects on intelligence may be indirect and partially 

mediated by brain structure and function (Fig. 6C and Table S4). For example, the 

prediction performance of the polygenic risk score decreased from 0.232 to 0.186, 

indicating that 19.8% of the genetic predictive power on intelligence can be captured by 

brain structural and functional variations measured by brain MRI. The proportion was 

28.3% for physical activity, 23.1% for diet, and 28.6% for early life factors. Overall, these 

results illustrate that neuroimaging traits, especially the ones from resting and task 

fMRI, are powerful predictors of cognitive function. Future studies can integrate genetic, 

biomarker, behavioral/environmental factors, and multi-modality MRI data for better 

prediction of brain-related complex traits and disorders.   

 

4. Discussion  

Inter-individual variations in brain function and their relationship to human health 

and behavior are of great interest. The intra-individual reliability of brain fMRI traits is 

generally low, although the group-level consistency is high (Chaarani et al., 2021; Elliott 

et al., 2020; Herting et al., 2018; Noble et al., 2021). Then it has been suggested that a 

large sample size is needed for fMRI studies to detect trait associations with small effect 

sizes (Kennedy et al., 2021; Smith & Nichols, 2018). The UKB study provided an 

extensive biobank-scale data resource for quantifying fMRI associations with many 
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phenotypes. The present study conducted a systematic analysis of intrinsic and extrinsic 

functional organizations with a parcellation-based approach using fMRI data collected 

from over 40,000 individuals. We measured differences between resting and task fMRI, 

investigated age and sex effects on brain function, and examined the cross-parcellation 

variability of our findings. We explored the fMR’s association with 647 traits chosen 

from  

 

Fig. 6 Integrative prediction model for fluid intelligence.  

(A) Prediction accuracy of neuroimaging traits for fluid intelligence. Volume, region 

brain volumes from brain structural MRI (sMRI); DTI parameters, diffusion tensor 
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imaging parameters to measure brain white matter microstructures; All MRI traits, 

including brain volume, DTI parameters, resting fMRI, and task fMRI. (B) Prediction 

accuracy of non-neuroimaging traits from different trait categories and their joint 

performance. PRS, polygenic risk scores of genetic variants. (C) Comparison of predictive 

power of non-neuroimaging traits before (“marginal”) and after controlling for the 

neuroimaging traits (“conditional on brain imaging”).  

a variety of trait domains. In comparison to the prior literature (Miller et al., 2016), 

which applied data-driven spatial ICA (Alfaro-Almagro et al., 2018; Beckmann & Smith, 

2004; Hyvarinen, 1999) to about 5000 subjects, the parcellation-based approach and 

much larger sample size allowed us to quantify functional organizations in fine-grained 

details. We found distinct brain functional areas and networks that were strongly 

related to traits from various categories, such as mental health, physical activity, 

cognitive performance, and biomarkers. We developed integrative prediction models 

for fluid intelligence, suggesting that integrating fMRI traits with multiple data types can 

improve prediction performance for brain-related complex traits and diseases.  

 

4.1 Resting-state and task-evoked functional organizations 

The study of how the brain alters its functionality in response to tasks or stimuli is a 

topic of significant interest and has broad clinical applications (Zheng et al., 2022). For 

instance, fMRI studies involving an emotional task have consistently demonstrated 

abnormalities in the prefrontal cortex-limbic area among patients with anxiety 

disorders, who typically exhibit exaggerated responses to emotional stimuli (Li et al., 

2020). Despite relatively small sample sizes, previous studies have found that intrinsic 

and extrinsic functional architectures share substantial similarities, with minor but 

consistent differences observed across various tasks (Cole et al., 2014; Cole et al., 2021; 

Gonzalez-Castillo & Bandettini, 2018; Gratton et al., 2016; Gratton et al., 2018; Smith et 

al., 2009; Tavor et al., 2016). Leveraging parcellation-based data from the extensive UKB 

study, we corroborate that group-level intrinsic and extrinsic functional spatial patterns 

are largely alike (correlation = 0.754), consistent with previous fMRI datasets with 

smaller sample sizes (Cole et al., 2014; Cole et al., 2021; Gonzalez-Castillo & Bandettini, 

2018; Gratton et al., 2016; Gratton et al., 2018; Tavor et al., 2016). Moreover, we 

provide a more detailed analysis of resting-state functional connectivity differences. For 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00015/2154903/imag_a_00015.pdf by guest on 07 September 2023



 31 

example, our results described the complicated task-positive and task-negative 

functional connectivity change patterns in the default mode network. Although the 

default mode network has been originally recognized as brain areas with greater 

connectivity in resting fMRI than task fMRI (Raichle et al., 2001), recent studies have 

found that the default mode network also had positive functional contributions to tasks, 

which may result in increased activity in task fMRI (Elton & Gao, 2015).  

 

Furthermore, our results demonstrate a remarkable spatial correlation between 

the UKB and HCP studies in both resting and task fMRI. This high degree of consistency 

across independent studies underscores the possibility of innovative joint analyses of 

human connectome data. Through meta-analytic amalgamation of these fMRI datasets, 

we have the potential to gain a more profound understanding of trait-fMRI associations' 

replication and enhance fMRI's predictive power for a variety of phenotypes (He et al., 

2022). The integration of data from multiple sources may lead to more robust and 

reliable outcomes in the field of fMRI research. 

 

4.2 Sex difference in fMRI  

Our area- and network-specific sex effect maps can be useful for understanding sex 

differences in brain functional activity, as well as brain function-related cognitive 

impairment and brain disorders. We found that the strongest sex difference in resting 

fMRI was in the somatomotor network, where females had weaker functional 

connectivity than males (Fig. 3C). Additionally, depression was strongly associated with 

decreased connectivity in the somatomotor network (Fig. 4B). Considering the fact that 

depression is two times more prevalent in females than in males (Salk et al., 2017), our 

results may help understand the brain function-related sex differences in depression 

(Labaka et al., 2018). In addition, we found that a wide variety of complex traits were 

strongly associated with the functional connectivity between the visual and 

somatomotor networks, such as risk-taking and time spent watching TV (Figs. 4A and 

5B). Future studies could investigate the biological mechanisms underlying these 

functional connectivity alterations as well as causal medication pathways among 

lifestyle, brain function, and mental health (Zhao & Castellanos, 2016).  

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00015/2154903/imag_a_00015.pdf by guest on 07 September 2023



 32 

     Additionally, our findings indicate that males demonstrated stronger task 

functional connectivity than females in numerous areas within the language network 

(Refer to Fig. S13D). This could potentially be attributable to males' more frequent use 

of language strategies, such as silent naming during the Hariri’s faces/shapes emotion 

task. On the other hand, females might rely more heavily on visual or spatial strategies. 

This observation calls for further investigation. 

 

4.3 Trait-fMRI associations 

We conducted an analysis of fMRI data alongside a range of complex traits using a 

discovery-validation design, generating association maps that correspond to the 

functional organization of the human brain during both resting and task states. These 

results may contribute to the development of improved disease prediction models and 

the identification of clinically beneficial neuroimaging biomarkers. For instance, 

depression and depressive mood disorders have been associated with abnormal brain 

connectivity across several intrinsic networks (Brakowski et al., 2017; Gudayol-Ferré et 

al., 2015; Korgaonkar et al., 2019). Our findings spotlight specific patterns of decreased 

resting functional connectivity, particularly within the somatomotor network. Extended 

periods of TV viewing have been linked to structural variations in the visual cortex and 

sensorimotor areas (Takeuchi et al., 2013). This activity has also been associated with 

cognitive decline (Fancourt & Steptoe, 2019) and increased dementia risk (Raichlen et 

al., 2022)—both closely connected with the default mode network (Grieder et al., 2018). 

Moreover, visual impairment and diminished functional connectivity within the visual 

network have been identified in Alzheimer’s disease (Huang et al., 2021; Littlejohns et 

al., 2022). Our results suggest that resting fMRI traits of the default mode and visual 

networks could serve as valuable endophenotypes for investigating the effects of 

environmental and lifestyle factors on aging and dementia.  

The large-scale UKB data also revealed that resting and task fMRI may have 

different association patterns with complex traits, such as mental health and cognitive 

abilities. For example, depression was strongly associated with resting fMRI, but not 

with task fMRI. Moreover, in resting and task fMRI, the associations with fluid 

intelligence had different spatial distributions. Our prediction analysis further suggests 

that task fMRI has additional predictive power on intelligence on top of resting fMRI. 
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These results demonstrate the differences between resting and task-evoked brain 

functions in terms of their connections with brain health and cognition. 

 

4.4 Online resource and future development 

Using the large-scale fMRI data in the UKB study, we were able to study hundreds 

of brain regions in a parcellation-based approach. We have utilized the rich phenotypic 

data in the UKB database in our fMRI-trait association analysis, which was an 

exploratory analysis designed to offer a publicly accessible web interface. The 

bioinformatics resource we have developed offers significant potential for fMRI 

researchers in various ways. Firstly, it allows for swift comparisons between our findings 

and those of existing studies within the field. Researchers can easily evaluate the 

congruencies or disparities in trait-fMRI associations when utilizing data from distinct 

studies or when identical data are analyzed by different research groups and 

methodologies (Botvinik-Nezer et al., 2020). Furthermore, our results can offer 

corroborating evidence and preliminary data for future study designs and grant 

proposals. Researchers can harness our findings to justify the necessity for additional 

data collection and the development of advanced techniques. Additionally, our resource 

has the potential to unearth further insights in subsequent studies through the 

incorporation of other fMRI data resources. For instance, conducting joint analyses with 

other large-scale neuroimaging studies, such as the ABCD (Chaarani et al., 2021) and 

CHIMGEN (Xu et al., 2020) studies, could support the replication of association findings 

and provide insights into age-related or cohort-related interactions throughout the 

lifespan. In conclusion, the online resource we have developed offers a wealth of 

opportunities for fMRI researchers to gain insights, compare results, support the design 

of future studies, and integrate with other data sources. This integration fosters an 

enhanced understanding and collaboration within the field. 

 

The ongoing UKB imaging study, which aims to scan 100,000 subjects within a few 

years (Littlejohns et al., 2020), presents an opportunity for us to continuously update 

and augment our online resource. This will involve not only replicating our reported 

findings based on the Glasser360 and Schaefer (Schaefer et al., 2018) atlases, but also 

integrating additional common parcellation schemes such as the Gordon (Gordon et al., 
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2016), Power (Power et al., 2011), DiFuMo (Dadi et al., 2020), and data-driven ICA 

(Alfaro-Almagro et al., 2018; Beckmann & Smith, 2004; Hyvarinen, 1999) atlases. 

Moreover, we plan to explore and incorporate different data preprocessing pipelines to 

understand their effects on the results. For example, we will examine the effects of 

topographical misalignments on trait-fMRI associations and sex differences. There has 

been an observation in the HCP study that the cross-subject variability can be explained 

by the misalignment in topography between individual subjects' true connectivity 

topography and group-average ICA maps used by the ICA dual regression (Bijsterbosch 

et al., 2019; Bijsterbosch et al., 2018). This residual functional misalignment can mean 

that between-subject spatial variability appears as variability in network connectivity; 

the extent of this problem of misinterpretation may vary across different analysis 

methods (e.g., group-ICA with dual-regression vs hard parcellation). It would be 

interesting to quantify the effects of spatial misalignment on both parcellation-based 

and whole-brain ICA-based fMRI traits in the large-scale UKB dataset.  

 

In addition, our main analyses were based on parcellation-based full correlations. 

Although the FMRIB's ICA-based X-noiseifier (FIX) has been applied to the UKB dataset 

to remove scanner artifacts and motion effects, full correlation measures can be more 

sensitive to the remaining global artifacts and noises than partial correlations (Feis et al., 

2015; Griffanti et al., 2014). It is possible to further remove global artifacts by measuring 

the partial functional connectivity between paired brain regions after removing the 

dependency of other brain regions (Elliott et al., 2018). Future studies need to explore 

parcellation-based partial correlation traits for a large number of parcels (such as the 

360 regions in the Glasser360 atlas) with a limited number of time points in the UKB 

study. Finally, we welcome user feedback and suggestions, which will help improve our 

project and resources to better meet the needs of the fMRI research community. 
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