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1.  INTRODUCTION

It is increasingly common in neuroimaging and genom-
ics to combine data collected from multiple study sites 
to increase the power and the reproducibility of scien-
tific discoveries. However, combining such data comes 
with unwanted non-biological variations that need to be 
removed for successful data integration. In neuroimag-
ing, this is often characterized by inter-scanner biases 
(scanner effects) when subject data are obtained by using 
different magnetic resonance imaging (MRI) scanners 
with different optimization protocols. These inter-scanner 

biases have been shown to be present in most neuroim-
aging data types, including diffusion (Vollmar et al., 2010; 
Zhu et  al., 2011), structural (Han et  al., 2006; Takao, 
Hayashi, & Ohtomo, 2014), and functional (Dansereau 
et  al., 2017) MRI. These terms are analogous to batch 
effects in genomic studies that are observed with 
genome-wide microarray or RNA sequencing data with 
different sample preparation and sequencing methods.

There have been numerous efforts in statistics, such 
as ComBat, to capture and remove these unwanted vari-
ations and increase the signal-to-noise ratio (J.-P. Fortin 
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et al., 2017, 2018; Johnson, Li, & Rabinovic, 2007; M. Yu 
et  al., 2018; Y. Zhang, Parmigiani, & Johnson, 2020). 
ComBat (Johnson et al., 2007) is a popular regression-
based batch correction approach first motivated from 
microarray data, and has been promising in removing 
inter-scanner biases in many neuroimaging data types, 
including fractional anisotropy and mean diffusivity (J.-P. 
Fortin et al., 2017), cortical thickness (J.-P. Fortin et al., 
2018), and functional connectivity (M. Yu et al., 2018). In 
ComBat, scanner effects are characterized by an additive 
scanner effect (location) and a multiplicative scanner 
effect (scale) for each feature. While a regression model is 
used in each feature, ComBat uses empirical Bayes to 
stabilize estimates across features and provides robust-
ness in the case of small within-scanner sample sizes 
(Johnson et al., 2007). In addition to showing its utility in 
various neuroimaging data types, ComBat has been 
extended to harmonize imaging data collected in a longi-
tudinal manner (Beer et al., 2020), to preserve non-linear 
age trajectories of cortical thickness data in mega-
analysis in cross-sectional studies (Pomponio et  al., 
2020). It is also a versatile method that allows for harmo-
nization even without the need to share original data from 
a study site with other sites, which relaxes concerns 
about data privacy (Chen, Luo, et al., 2022).

The ComBat’s location-scale model is simple and inter-
pretable, but, from the statistical perspective, it is insuffi-
cient to capture all sources of scanner effects. The 
heterogeneity in covariances across different sites or scan-
ners has been overlooked in the neuroimaging literature, 
and such heterogeneity might also lead to decreased sta-
tistical power. ComBat is oversimplified by the assumption 
that additive scanner effects can be explained by only an 
intercept for each scanner and feature. Recently, a new 
harmonization method called CovBat (Chen, Beer, et al., 
2022) was proposed to address covariance heterogeneity 
in multi-site, multi-scanner studies by extending ComBat. 
It applies ComBat twice: first to the original data, then to 
the principal component scores from the residual matrix. 
CovBat is an important development that expanded the 
scope of statistical harmonization to address heteroge-
neous covariances, and it has been shown to be more effi-
cient than ComBat, as expected (Chen, Beer, et al., 2022; 
Chen, Srinivasan, et al., 2022). However, CovBat implicitly 
assumes that the covariance scanner effect is contained 
within the eigenspace of the residual matrix only, in the 
form of a location-scale model. As Chen, Beer, et al. (2022) 
noted, this assumption may limit the ability of CovBat to 
characterize all sources of covariance heterogeneity, 
which we also show in this paper.

The method for harmonizing covariances across  
scanners can be understood using the latent variable 
formulation (Chen, Beer, et  al., 2022). Singular value 
decomposition (SVD) and principal component analysis 
(PCA) are commonly used techniques for removing or 
adjusting for non-biological variations not explicitly 
specified by scanner information. SVA (Surrogate Vari-
able Analysis) is a method that was originally developed 
for genomic studies (Leek & Storey, 2007) and then 
adapted to neuroimaging studies (J.-P. Fortin et  al., 
2016). SVA includes latent factors of unwanted variation 
as surrogate variables, which are not associated with  
the biological covariates of interest. Instead of using 
explicit variables to denote scanner effects, SVA identi-
fies and estimates scanner or other non-biological arti-
facts through permutation testing, then removes them as 
surrogate variables. RAVEL (J.-P. Fortin et al., 2016) is a 
statistical method for correcting technical variability in 
neuroimaging data. RAVEL applies SVD to obtain latent 
factors of unwanted variations in the control regions and 
then removes the latent factors and corresponding 
effects in the test regions (J.-P. Fortin et al., 2016, 2017). 
These approaches that apply low-rank factorization 
methods to all study subjects’ imaging features are fun-
damentally limited to addressing scanner-specific latent 
effects. At the same time, efforts to identify low-rank fac-
tors for study subjects from the same scanner may over-
kill biological variations.

In this paper, we propose a novel harmonization 
method called RELIEF (REmoval of Latent Inter-scanner 
Effects through Factorization) to distinguish loadings 
shared across scanners (which should be preserved) 
from loadings specific to scanners (which should be 
removed), which enhances the current understanding of 
inter-scanner biases. We formulate latent scanner effects 
from the perspective of linked matrix factorization by 
extending the recent work of Park and Lock (2020) in the 
harmonization context. It aligns with growing method-
ological developments on simultaneous dimension 
reduction and factorization of multi-modal data (e.g., 
Gaynanova & Li, 2019; Lock, Hoadley, Marron, & Nobel, 
2013; Lock, Park, & Hoadley, 2022), which has also been 
shown to be promising in neuroimaging data (Q. Yu, Risk, 
Zhang, & Marron, 2017). Through extensive data analy-
ses and simulations, we show our proposed method has 
superior performance in identifying and removing latent 
unwanted variations specific to each scanner, thus lead-
ing to covariance homogeneity across scanners and 
increasing statistical power compared to existing meth-
ods. Also, our estimation procedure is scalable and takes 
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only a few seconds to implement, which supports its 
practical utility.

The rest of the paper is organized as follows. Section 2 
describes our proposed method, RELIEF, and compares 
it to existing harmonization methods. In Section  3, we 
apply our method to the fractional anisotropy (FA) and 
mean diffusivity (MD) data from the Social Processes Ini-
tiative in the Neurobiology of the Schizophrenia(s) (SPINS) 
study, where study subjects were collected from multiple 
sites and scanners. We compare RELIEF to other harmo-
nization methods using a comprehensive evaluation 
framework. Section 4 conducts extensive simulations to 
evaluate performances in terms of Type 1 error rate and 
statistical power. We conclude with some points of dis-
cussion in Section 5.

2.  METHODS

2.1.  Notation and setup

We let i = 1,…,M denote the index for each scanner  
(batch), j = 1,…ni denote the subject index in ith scanner 

(
i=1
M∑ ni = n), and v = 1,…,V  denote the index for imaging 

features. We let x ij be the q-dimensional covariate vector 
for jth subject in ith scanner (e.g., age and sex). yijv is the 
vth imaging feature of the jth subject of the ith scanner.  
By stacking all observations of x ij, we let X be a n× q 
matrix of q covariates observed for n study subjects. Sim-
ilarly, let Y be a V × n data matrix of V features. Then, to 
group the subjects from the same scanner together, we con
sider {Yi :V × ni | i = 1,…,M} a partition of Y. The matrices 
can be concatenated to form a matrix Y = [Y1;Y2;…;YM]. 
We will use this notation for a general V × n matrix through-
out this paper.

2.2.  Existing harmonization methods

2.2.1.  Adjusted residuals (AdjRes)

The simplest approach to model inter-scanner bias is to 
use a regression-based approach to characterize addi-
tive scanner-specific deviations for each feature. AdjRes 
considers the following specifications,

	 yijv = αv + ′x ij ββv + γ iv + εijv ,	 (1)

where, for the vth feature, αv is the intercept, ββv is the reg
ression coefficients for x ij, and εijv is a Gaussian noise. The 
parameters αv ,  ββv ,γ iv can be estimated by the least 
squares method. The scanner-specific means, γ iv, needs 

to be removed and the harmonized data are constructed 
by yijv

AdjRes = α̂v+ x ij′ β̂βv+ ε̂ ijv.

2.2.2.  ComBat

ComBat seeks to remove the additive and multiplicative 
scanner effects (Johnson et al., 2007). For the vth fea-
ture, ComBat characterizes the additive and multiplica-
tive scanner effects by

	 yijv = αv + x ij′ ββv + γ iv + φivεijv .	 (2)

In Equation (2), the scanner effects are characterized by 
γ iv (the additive scanner effect) and φiv (the multiplicative 
scanner effect). After obtaining α̂v ,  β̂βv via least squares, 
ComBat estimates scanner effects in locations (i.e., γ iv

! ) 
and scales (i.e., φiv

! ) via empirical Bayes for each feature 
separately, providing stable and robust estimations of 
these parameters in the case of small within-scanner sam-
ple sizes (Johnson et al., 2007). The ComBat-harmonized 
data is defined by yijv

ComBat = α̂v + x ij′ β̂βv + ε̂ijv
ComBat, where

	 ε̂ijv
ComBat =

yijv − α̂v − x ij′ β̂βv − γ iv
"

φiv
" .	 (3)

2.2.3.  CovBat

In addition to ComBat’s model in Equation (2), CovBat 
assumes that the error terms εij = (εij1,εij2,…,εijV ′) ~
MVN (0,∑∑ i ), where ∑∑ i is the covariance for the i th scan-
ner. CovBat further assumes the underlying pooled cova-
riance is homogeneous across scanners. Inspired by 
how ComBat mitigates the difference between the vari-
ance within each scanner and the pooled variance, 
CovBat shifts the within-scanner covariance to the 
pooled covariance by using principal component (PC) 
and PC scores. CovBat’s harmonization procedure is 
summarized as follows. First, ComBat is applied to full 
imaging data, yielding ComBat-residuals as in Equation 
(3) with homogeneous variances across scanners. Cov-
Bat then conducts the eigendecomposition on the 
sample covariance of Combat-residuals and applies 
ComBat again to principal component scores to remove 
heterogeneous means and variances, which yields 
CovBat-residuals with an additional source of scanner 
effect removed. The final CovBat-harmonized data is 
yijv
CovBat = α̂v + x ij′ β̂βv + ε̂ijv

CovBat. CovBat assumes that the 
covariance scanner effects can be captured by the 
location-scale adjustments to the principal compo-
nents of the residuals. Despite its efficiency, we point 
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out that CovBat’s assumption might not be sufficient to 
characterize all sources of covariance heterogeneity.

2.3.  New method: RELIEF (REemoval of Latent Inter-scanner  
Effects through Factorization)

We first characterize three sources of scanner effects 
(additive mean (location), additive latent, and multiplica-
tive scanner effects (scale)) via an additive multivariate 
model illustrated in Figure 1. We assume that the data 
matrix Y consists of

Y = A +  ββ ′X +  ΓΓ1;…;ΓΓM +R +] [I1;…;IM +] [δ1E1;…;δMEM⎡⎣ ⎤⎦,	
(4)

where A is the intercept matrix (rank of 1), ββ is a V × q 
matrix of regression coefficients (rank of min(V, q)), and 
[ΓΓ1;…;ΓΓM ] is a matrix of additive scanner effects (locati
ons) for each feature (rank of M ), where elements of each 
row of Γi take the same value. Note that A + ββ ′X + [ ΓΓ1;…;ΓΓM ] 
in Equation (4) corresponds to the collection of 
αv + ′x ij ββv + γ iv in Equation (1) across all imaging features. 

The RELIEF model assumes that εijv in Equation (1) is 
decomposed into three additive variations. Specifically:

	 •	 R is a V × n matrix of the latent structure explaining 
shared variations across all scanners but not 
explained by covariate effects. It includes (i) non-
linear covariate effects from X or (ii) any additional 
variations due to unobserved covariates. From the 
viewpoint of scanner-effect correction, this should 
be preserved after harmonization.

 	 •	 Ii is a V × ni matrix of latent variations explaining latent 
scanner effects in the ith scanner beyond scanner-
specific means ΓΓi (locations). This might include any 
non-linear scanner effects (Cetin-Karayumak et  al., 
2020). It should be removed after harmonization.

	 •	 δ iEi is a V × ni noise matrix, and each element of Ei 
is assumed have a unit variance. δ i characterizes 
the variance heterogeneity as specified in ComBat, 
which has shown to be promising in neuroimaging. 
From the viewpoint of scanner-effect correction, δ is 
should be standardized to have a common variance 
across scanners.

Fig. 1.  Overview of RELIEF using data consisting of three scanners for illustrations. It decomposes original data as (i) 
covariate effects, (ii) scanner-specific means (locations), (iii) latent shared variations, (iv) latent scanner-specific variations, 
and (v) noise with heterogeneous variances (scales). For harmonization purposes, RELIEF removes (ii) and (iv) specific to 
scanners and homogenizes (v).
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	 Y  RELIEF   = Â
intercepts
!

   

+ β̂β ′X
covariate effects 
!

+ [ δ̂1R̂1
!;…;δ̂MR̂M

! ]
original−scale  shared  variations 
! "## $##

     

+ δ̂Ê
 rescaled  noise
!

     

.	 (7)

Throughout this paper, we assume R as well as each of 
I1,…,IM to be low rank, and estimate their ranks using a 
model-based approach.

Our approach is summarized by (i) removing scanner, 
feature-specific means and obtaining covariate effects 
first, (ii) standardizing the data matrix to have homoge-
neous variance, (iii) decomposing it into scanner-specific 
and scanner-independent factors, and (iv) reconstructing 
harmonized data.

Steps (i) and (ii) are achieved through the preprocess-
ing step. We obtain Â, β̂β and [Γ̂Γ1;…; Γ̂ΓM ] by using the two-
step regression. Specifically, we first fit GLM using the 
intercept and covariates (A and β) and obtain residuals 
(Y − Â − β̂β ′X ). Then, using the residuals from the first step, 
we remove scanner-specific means for each feature (Γ) to 
obtain the second-step residuals [ Y1− Â1− β̂β ′X1 − Γ̂Γ1;…; 
YM − ÂM − β̂β ′XM − Γ̂ΓM] to be used in subsequent steps. 
When the variability of the second-step residuals differs 
across features, we can easily scale each residual by its 
residual standard deviation, apply steps (iii) and (iv), and 
scale back each feature.

Step (iii) is achieved by simultaneous dimension reduc-
tion and factorization methods proposed by Park and 
Lock (2020) and Lock et  al. (2022). We first scale each 
residual matrix from the last step by δ̂ i in order to make  
the residual variances homogeneous across i = 1,…,M:

ΔΔ ≡ [(Y1− Â1− β̂βX′1 − Γ̂Γ1) / δ̂1;...;(YM − ÂM − β̂βX′M − Γ̂ΓM ) / δ̂M ]. 

Following Park and Lock (2020) and Lock et al. (2022), we 
estimate δ̂ i by the median of the singular values of resid-
ual matrices for each scanner divided by the square root 
of the median of the Marcenko–Pastur distribution 

(Gavish & Donoho, 2017). Provided that δ̂ i ≈ δ i, we first 
note that Δ is represented by

	 ΔΔ = R!+ I!+ E,	 (5)

where R!= [R1 / δ̂1,…,RM / δ̂M ] is a variation shared 

across all scanners, I! = [I1
!;…;IM

! ] = [I1 / δ̂1;…;IM / δ̂M ] are 
individual variations shared only in each scanner.

From model (5), R̂! and Î! are obtained by

{R̂!, Î! }= arg min
R! ,I!{ }

|| ΔΔ – R!− I! || F
2 + λ ||R! ||* + i=1

M∑ λ i || Ii
! ||*{ },

(6)

where || ⋅ ||F
2  and || ⋅ ||* are the squared Frobenious norm 

(sum of squared elements) and the nuclear norm (sum of 
singular values), respectively. The nuclear norm penalties 
in Equation (6) ensure that the resulting estimates R̂!, Î! 
are low-rank (Hastie, Mazumder, Lee, & Zadeh, 2015). 
Although tuning λ and λ is may be tricky, we use the rec-
ommended values from Park and Lock (2020) by setting 
λ = p + n  and λ i = p + ni , which was shown to per-
form well with independent Gaussian noise. With λ and  
λ is specified, an iterative algorithm can be applied to 
estimate R! and Ii

!s.
In Step (iv), we scale R̂! back to R̂! (δ̂ iR̂ i

!) to make sure 

R̂ = δ̂1R̂1
!…δ̂MR̂M

!⎡
⎣

⎤
⎦
 is in the original scale. To keep the 

noise variance homogeneous, we scale Ê to δ̂Ê, where 

δ̂2 =
i=1
M∑ niδ̂ i

2( ) / i=1
M∑ ni( ) is the weighted mean of 

scanner-specified noise variance. Therefore, the final har-
monized data is given by

2.4.  Using covariates in RELIEF

When a primary interest is to test for an association with 
a covariate of interest, including the covariate in RELIEF 
may lead to an inflated false positive rate. Intuitively, it is 
because our objective function (6) does not enforce 
scores of Î to be independent of the covariate of interest. 
Therefore, we suggest not including covariates of interest 
when applying RELIEF. In practice, we found that not 
including any covariates in RELIEF does not result in a 
noticeable difference because the covariate effects are 
actually low-rank (with the rank equal to the number of 

covariates) and are captured by R (in a high signal-to-
noise ratio (SNR)) or by E (in a low SNR), provided that 
covariates are independent to scanners. In Section 4, we 
show that RELIEF still achieves higher power than other 
harmonization method even when the covariate of inter-
est is not specified as an input in RELEF.

2.5.  Preventing distorted covariate effects in RELIEF

Many existing harmonization methods, including Adj 
Res, ComBat, CovBat, and RELIEF, account for explicit  
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covariate effects in the form of regression, but there 
might be hidden covariate effects from unobserved 
covariates. For downstream analyses, it is critical to pre-
serve these effects in the original scale. In RELIEF, such 
effects correspond to the R term, and therefore, we scale 
R̂ i
! back to δ̂ i in Equation (7) although δ i were used to 

characterize variance heterogeneity.
We point out that ComBat (and CovBat that uses 

ComBat in the first step) models observed covariate 
effects only and all unobserved covariate effects are 
attributed to the residuals. Since residuals are eventually 
scaled differently for each scanner/site in the harmoniza-
tion steps, ComBat and CovBat could be prone to dis-
torted covariate effects for unobserved covariates after 
harmonization, especially when variance heterogeneity 
across scanners is evident.

3.  DATA ANALYSIS

3.1.  Data preparation and preprocessing

We used diffusion tensor imaging (DTI) data from Social 
Processes Initiative in the Neurobiology of the Schizo-
phrenia(s) (SPINS) study to empirically evaluate RELIEF’s 
performance. The study subjects consisted of 256 indi-
viduals with schizophrenia spectrum disorders (SSDs) 
and 175 controls. Subjects were 18–55  years old, and 
268 of the participants were males (163 females). Partic-
ipants with SSDs met DSM-5 diagnostic criteria for 
schizophrenia, schizoaffective disorder, schizophreni-
form disorder, delusional disorder, or psychotic disorder 
not otherwise specified, assessed using the Structured 
Clinical Interview for DSM (SCID-IV-TR), and had no 
change in antipsychotic medication or decrement in 
functioning/support level in the 30 days prior to enroll-
ment. Controls did not have a current or past Axis I psy-
chiatric disorder, except adjustment disorder, phobic 
disorder, and past major depressive disorder (over 
2  years prior; presently unmedicated), or a first-degree 
relative with a history of psychotic mental disorder. Addi-
tional exclusion criteria included a history of head trauma 
resulting in unconsciousness, a substance use disorder 
(confirmed by urine toxicology screening), intellectual 
disability, debilitating or unstable medical illness, or other 
neurological diseases. Participants also had normal or 
corrected-to-normal vision. All participants signed an 
informed consent agreement, and the protocol was 
approved by the respective research ethics and institu-
tional review boards. All research was conducted in 
accordance with the Declaration of Helsinki.

The scans were acquired at three different imaging 
sites, including the Centre for Addiction and Mental Health 
(CAMH), Maryland Psychiatric Research Center (MPRC), 
and Zucker Hillside Hospital (ZHH). General Electric 3T 
MRI scanners were used at CAMH and ZHH (750w Dis-
covery and Signa, respectively), and the Siemens Tim Trio 
3T MRI scanner at MPRC. However, during the middle of 
the study, all study sites switched to Siemens Prisma 3T 
scanners for data collection. A high-angular resolution 
axial EPI dual spin echo sequence diffusion scan was 
acquired on all scanners. Within the limits of scanner hard-
ware, parameters were prospectively harmonized as fol-
lows: 60 gradient directions, b = 1,000, 5 b = 0 images, 
TR = 8,800 ms (one scanner TR = 17,000 ms), TE = 85 ms, 
FOV = 256 mm; in-plane matrix 128×128, and 2.0 mm iso-
tropic voxels. All images were preprocessed using the 
same pipeline across sites. Skull-stripping was performed 
via a two-step process combining FSL (BET) and AFNI to 
optimize brain extraction, after which MRtrix3 (dwi2mask) 
was used for brain masking. FSL eddy was used for eddy 
current-induced distortion and motion correction, includ-
ing volume-to-volume and within-volume movement 
(Tournier et al., 2019). Eddy models the effects of partici-
pant movement and diffusion eddy currents simultane-
ously, predicting undistorted data using a Gaussian 
Process. Eddy also outputs quality control metrics, includ-
ing average absolute motion (mm) for each participant as 
one measure of volume-to-volume movement. Fieldmap-
free susceptibility distortion correction was performed 
using BrainSuite (BDP; Bhushan et  al., 2015). Outputs 
were visually inspected after each preprocessing step to 
ensure data quality.

Participants’ white matter tracts were reconstructed 
using deterministic unscented Kalman Filter (UKF) tractog-
raphy (Malcolm, Shenton, & Rathi, 2010) in 3D Slicer 
(https://github​.com​/SlicerDMRI). The ORG (O’Donnell 
Research Group) white matter atlas (F. Zhang et al., 2018) 
was used to parcellate fibers into anatomical tracts. This 
atlas has been validated across different scanners and 
protocols (e.g., number of gradient directions, spatial res-
olutions, b-values; F. Zhang et  al., 2019). Metrics were 
included from 56 deep white matter fiber tracts from the 
association, cerebellar, commissural, and projection tracts 
(the cortico-ponto-cerebellar tract was excluded due to 
parcellation issues), and 16 superficial tract categories 
according to the brain lobes they connect, resulting in 
V = 72 features. Mean FA values and mean diffusivity (MD) 
values were calculated along each tract. FA measures the 
degree to which diffusion of water molecules is restricted 
by microstructural elements such as cell bodies, axons, 
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myelin, and other constituents of cytoskeleton (Beaulieu, 
2002). MD is a measure of the magnitude of water diffu-
sion, independent of direction (O’Donnell & Westin, 2011). 
Visual quality control was performed after initial tractogra-
phy, registration to the ORG atlas, and tract creation. Data 
from seven participants were excluded on the basis of 
missing or poor tractography for >15 tracts across the 
whole brain.

Since the number of samples from Siemens Tim Trio is 
small, we used images from two scanner types (GE and 
SP) in our analysis. Participants without DTI data were also 
excluded from the study. The final sample consists of 351 
subjects across 2 scanner types, with 172 subjects imaged 
on scanners manufactured by GE (67 females, 111 
patients, age 18-55), 179 on Prisma scanners manufac-
tured by Siemens (71 females, 98 patients, age 18-55).

3.2.  Results

We harmonized data by using RELIEF, ComBat, CovBat, 
and AdjRes. We used age,  age2, gender, diagnosis, an 

interaction between age and gender (age × gender), and 
an interaction between age and diagnosis (age × diagno-
sis) to model covariate effects in harmonization.

Figure  2 shows the heatmap of the estimated latent 
scanner effects Î of RELIEF for the FA and MD data from 
the SPINS study. As RELIEF’s crucial components, the 
latent scanner effects are identified and removed to reduce 
the inter-scanner variations directly. In Figure 2, the most 
scanner-specific variations were attributed to Siemens 
Prisma for both FA and MD. To investigate the potential 
sources of latent Siemens Prisma-specific variations in 
relation to existing non-biological information, we applied 
hierarchical clustering to the site subgroups of ÎSP in  
Figure 2 and reordered subjects within Siemens Prisma so 
that ÎSP within the same site were arranged together. We 
observed the latent scanner effects within each site tended 
to share similar patterns, which suggests that the varia-
tions in ÎSP are highly associated with sites.

We performed statistical analysis to quantify the rela-
tionship between existing non-biological information, 
including site information and motion parameters. In  

Fig. 2.  Heatmaps of the estimated latent scanner-specific variations (Î) of the FA and MD from the SPINS study. For 
visualizations, imaging features were reordered by applying hierarchical clustering; subjects scanned by General Electric 
3T were reordered separately, and subjects scanned by Siemens Prisma 3T were reordered within each site subgroup 
(CAMH, MPRC, and ZHH). Feature indices were also reordered by applying hierarchical clustering to concatenated I for FA 
and MD. RELIEF identified substantial variations present mostly on Siemens Prisma but not on General Electric, and the 
variations are highly associated with sites.
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Fig. 3.  Investigating the potential sources of latent Siemens Prisma-specific variations in relation to existing non-
biological information (site information and a motion parameter). (a) and (b) show one-way ANOVA p values of (a) FA and 
(b) MD in relation to three study sites. (c) and (d) show p values for the correlation between latent factors and the average 
absolute motion from the reference volume (in mm) for (c) FA and (d) MD. All p values were negative log-transformed (with 
base 10) for visualizations. The red dashed horizontal line is Bonferroni-corrected threshold (0.05 / 72 ≈ 6.9×10−4). The 
region names agree with the order in Figure 2.

Figure  3 (a) and (b), we performed one-way ANOVA to 
compare different latent scanner effects of the Siemens 
Prisma across sites for FA and MD data, respectively. We 
found that the latent factors of most features specific to 

Simens Prisma were highly associated with the sites, 
particularly for MD data. In Figure 3 (c) and (d), we per-
formed correlation tests between the latent scanner 
effects in the Siemens Prisma scanner and the motion 
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parameter for FA and MD data, respectively. We calcu-
lated the average absolute motion from the reference vol-
ume (in mm) to represent subject motion during the scan 
and averaged it for the six motion parameters (three 
translations and three rotations). Our findings revealed 
that the latent factors showed no significant associations 
with the motion parameter. Overall, our analyses pro-
vided insights into how existing non-biological informa-
tion can impact the interpretation of latent scanner-specific 
variations.

To visualize whether most variations in the data are 
still associated with scanners after harmonization, we 
applied two unsupervised data reduction techniques: 
principal component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) to the original 
and harmonized FA and MD data from diffusion tensor 
imaging (DTI). As a nonlinear technique, t-SNE empha-
sizes preserving the variations in the local structure of 
the data, while PCA focuses more on preserving varia-
tions in the overall data set. The data projected into the 

first two PCs/dimensions are presented in Figure 4. For 
raw data, we observed that most variations are clearly 
explained by the scanner information (General Electric 
vs. Siemens Prisma). For AdjRes and ComBat, despite 
evidences of higher data quality, there is heteroscedas-
ticity of ellipses across scanners, which indicates that 
there are still unremoved latent scanner effects. For 
CovBat and RELIEF, both PC scores and t-SNE scores 
appear to be distributed similarly across scanners, 
which suggests the variations associated with scanners 
are substantially removed.

To evaluate if scanner-specific latent patterns are well-
removed, we computed the empirical covariances by 
scanners as well as the difference between two scanner-
specific covariances. Figure 5 shows that the covariance 
differences remain notable in AdjRes harmonized data. 
ComBat and CovBat performed slightly better than 
AdjRes in mitigating covariance scanner effects. Notably, 
however, these covariance differences are considerably 
reduced with RELIEF. We also quantified these differences 

Fig. 4.  Scatterplots of principal component scores and t-SNE scores before and after applying harmonization to the 
SPINS DTI data.
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Fig. 5.  The difference of scanner-specific covariance matrices for harmonized SPINS data (GE–SP). The order of the 
features agrees with Figures 2 and 3. The x-axis and y-axis indicate regions of interest, which are explicitly illustrated 
in the x-axis of Figure 3. The color bar shows the range of values of the differences in covariances. RELIEF reveals the 
lowest difference between two covariances.

in covariances by the Frobenius norm of the scanner-
specific covariance matrices. For FA, the norm for RELIEF 
was the lowest (3.70) followed by CovBat (5.77), ComBat 
(6.19), and AdjRes (8.10). For MD, the norm for RELIEF 
was also the lowest (1.45) followed by CovBat (2.29), 
ComBat (4.15), and AdjRes (8.74). These results suggest 
the superior performance of RELIEF in constructing 
homogeneous covariances.

We also used Quadratic Discriminant Analysis (QDA) 
to evaluate how data harmonized using each approach 
predicts scanners. A harmonization method that per-
forms better in removing scanner effects would result in 
worse predictive performance. Using machine-learning 
methods to predict scanners from harmonized data has 
been adopted in previous work in evaluating the perfor-
mance of different harmonization methods (Chen, Beer, 
et  al., 2022; J.-P. Fortin et  al., 2018). We chose QDA 
because the classifier is constructed based on the mean 
vectors and covariance matrices only, where differences 
in predictive performances are attributed to the harmoni-
zation of scanner-specific means and covariances. Using 
leave-one-out cross-validation, we computed the aver-
age accuracy, ROC curve, and its area under the curve 
(AUC) for each harmonized data after regressing out 
covariate effects. For FA, the RELIEF method achieved 
the lowest prediction accuracy (49.6%) close to a ran-
dom prediction, followed by CovBat (59.3%), ComBat 
(66.1%), and AdjRes (70.1%). For MD, RELIEF also 

achieved the lowest prediction accuracy (61.0%) fol-
lowed by CovBat (82.6%), ComBat (83.2%), and AdjRes 
(87.5%) The results of the AUC, shown in Figure 6, were 
similar to the prediction accuracy, suggesting the lowest 
AUC for RELIEF.

Lastly, we investigated whether RELIEF preserves 
the biological variability in the data. This step is neces-
sary because the multivariate harmonization methods 
could be prone to potentially overkilling too much varia-
tion, including biological variations. Here, we evaluated 
whether the different harmonization methods maintain 
the biological associations of interest through multiple 
linear regression. For each FA/MD feature in each har-
monized data, we built a regression for each feature by 
using the same set of covariates (age, age2, gender, 
diagnosis, age ×  gender, and age ×  diagnosis) as the 
harmonization step. We then computed  t  statistics of 
the estimated coefficients across all covariates and fea-
tures. The boxplots of t statistics are shown in Figure 7. 
We observed that, for FA data, the magnitude of t statis-
tics of all harmonized data appeared to be similar, which 
confirms that RELIEF did not lose biological information 
compared with other methods. However, for MD data, 
RELIEF clearly showed more significant associations 
with diagnosis and age × diagnosis than other methods, 
which suggests that RELIEF not only provided a thor-
ough removal of scanner effects but also maintained 
biological associations well.
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4.  SIMULATION STUDIES

4.1.  Simulation designs

In this section, we performed extensive simulation studies 
to evaluate the performance of RELIEF and to compare it 
to other methods in controlled settings. We included Com-
Bat, CovBat, and AdjRes as our competitors and evalu-
ated how well-harmonized data preserve biological 
variations through power analysis. To evaluate the control 

of false positives and power, we used two models to  
generate heterogeneous covariances across scanners.

4.1.1.  Simulation 1: RELIEF model

We generated data using the sum of low-rank features 
following Equation (4). We simulated 1,000 null data sets 
with n1 = n2 = 50 (so that n = 100), and V = 100 features. 
Our data-generating model is summarized by

Fig. 6.  The ROC curves for predicting scanners by using SPINS data harmonized by different methods. We used QDA as 
a classifier and leave-one-out cross-validation (LOOCV) to obtain individualized predictions. The ROC curve of the RELIEF 
was closest to the diagonal line, suggesting that it successfully harmonized latent inter-scanner biases.

Fig. 7.  The boxplots for t statistics for each biological covariate used in our analysis.
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We used four nuisance covariates for the covariate 
effects, where each element of ββ and each row of A were 
generated from N ( 0,12 ). The covariate vector for each 
subject was generated from the multivariate normal dis-
tribution with zero means, and we used AR(1) for the 
covariance matrix with the autocorrelation parameter 0.2. 
Second, we generated R by first generating a V × n matrix 
whose entries are drawn from N (0,12 ), then taking the 
first three principal components. Similarly, we generated 
each Ii by generating a V × ni  matrix using N (0,12 ) then 
taking the top 3 principal components. Lastly, we also 
generated the additive scanner effect (location) γ iv  by 
fixing it to be the same for all i  and from N (0,  1.52 ), and 
multiplicative scanner effect (scale) δ i from Uniform 
(1,  1.5). Finally, the elements of E were generated from 
N (0,12 ) .

The constant c was chosen between 0, 1,  2,  3 to eval-
uate the impact of scanner-specific latent patterns on 
statistical power. Note that we also considered c = 0 to 
investigate whether it has comparable performance when 
the data-generating model does not include latent scan-
ner effects.

4.1.2.  Simulation 2: CovBat model

We generated data by modifying the simulation design 
introduced by Chen, Beer, et al. (2022). To address poten-
tial covariance scanner effects, CovBat model uses prin-
cipal component (PC) scores to shift each within-scanner 
covariance to the pooled covariance structure. Therefore, 
the design aimed to evaluate whether harmonization 
methods can approximate the underlying covariance 
structure when covariance scanner effects are captured 
by its PC shifts.

We simulated 1,000 null data sets based on SPINS data 
so that n1 = 172,n2 = 179 (so that n = 351) and V = 72 fea-
tures. The data yijv was generated by yijv = αv + γ iv + δ ivε ijv , 
where αα = (α1,…,αV )′ is the sample mean vector of Scan-
ner General Electric observations in the SPINS data. The 
additive scanner effects γγ i = (γ i1,…,γ iV )′’s are vectors 
drawn from N (0,0.12 ). For multiplicative scanner effects, 
we used δ1v ~ IG(46,  50) and δ2v ~ IG ( 51,  50) following 
Chen, Beer, et al. (2022). From the sample correlation matrix 
of DTI-FA observations in the SPINS data (termed S)  
with its corresponding eigen decomposition 

S =
l=1
72∑ λ̂ lψ̂ l ˆ ′ψ l, we generated εij = (εij1,…,εijV )′ that con-

tained scanner-specific shifts. The design was to investi-
gate how the rank of the covariance effect influences 
harmonization results, and we generated error terms  

by εij ~MVN 0,S + ci l=1
L∑ λ̂ lψ̂ l ˆ ′ψ l( ), where c1 = − 3

4
 and 

c2 =
3
4

. We considered different L including
 
L = 0,10,20,30.

In both simulation designs, we generated our covari-
ate of interest, Zk (k = 1,…,n), randomly from 0 or 1, for 
evaluation of power. We randomly chose 20% (for Sim
ulation 1) and 50% (for Simulation 2) of features and 
added τv ⋅ Zk to the null data, where τv ≥ 0 is the effect 
size for the vth feature, which controls whether the simu-
lated data follow the null hypothesis H0 : τ1 =…= τV = 0 
or the alternative hypothesis H1 : at least one of τv ≠ 0
(v = 1,…,V ). We used permutation to control family-wise 
error rate (FWER) at 5%.

4.2.  Simulation results

The results for Simulation 1 are summarized in the first 
row of Figure 8. RELIEF controlled family-wise error prop-
erly, with empirical FWER of 0.044, 0.047, 0.048, and 
0.052 regardless of the choice of c. In our simulations, 
while other methods controlled FWER appropriately in 
most scenarios, CovBat was conservative in controlling 
false positives when the proportion of individual latent 
patterns increased. In terms of power, RELIEF’s perfor-
mance was nearly the same as ComBat or CovBat even 
when there are no latent scanner effects (i.e., c = 0), 
which supports the robustness of the proposed method. 
Also, as the degree of latent scanner effects (c) increased, 
RELIEF showed substantial power gain compared to oth-
ers, partially because it correctly identified and removed 
the scanner-specific latent patterns in the data. The lower 
power of ComBat and AdjRes is expected as they do not 
consider these latent patterns in their model, and the 
lower power of CovBat is also expected because 
RELIEF’s data-generating model is different from Cov-
Bat’s assumption on PC shifts.

The results for Simulation 2 are summarized in the 
second row of Figure 8. RELIEF’s empirical FWERs are 
0.05, 0.051, 0.038, and 0.052 for L = 0, 10, 20, 30, while 
ComBat, CovBat are conservative in controlling false 
positives when covariance scanner effects exist. For 
power, we note that when covariance scanner effects do 
not exist (L = 0), all harmonization methods increased 
statistical power and performed similarly, except for 
AdjRes whose power was lower. When L was large, 
RELIEF still showed superior performance to other meth-

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00011/2156061/imag_a_00011.pdf by guest on 07 September 2023



13

R. Zhang, L.D. Oliver, A.N. Voineskos et al.	 Imaging Neuroscience, Volume 1, 2023

ods, which supports the robustness of RELIEF even 
when the data-generating model did not follow the 
assumption of RELIEF. In addition, when SNR was low 
(i.e., τ = 0.05), RELIEF gained higher power than compet-
itors, which supports its ability to denoise scanner effects 
and preserve true biological associations.

4.3.  Additional simulations

To address Section 2.4 empirically, we repeated Simula-
tion 1 to evaluate FWER when the covariate of interest 
was specified in RELEF. In this simulation, we obtained 
empirical FWER values of 0.058 (95% CI: (0.052, 0.064)) 
when c = 0 and 0.159 (95% CI: (0.152, 0.166)) when c = 1,  
indicating that RELIEF, when covariates of interest were 
specified in the model, had inflated false positives.

5.  DISCUSSION

We proposed a novel harmonization method, called RELIEF, 
that estimates and removes both explicit (additive and mul-
tiplicative) and latent scanner effects. RELIEF aligns with 
ongoing efforts to integrate neuroimaging data collected 
from different scanners or sites. In particular, our methods 

address covariance heterogeneity across different scan-
ners, which has been a promising direction in mitigating 
inter-scanner biases. Our approach provides an interpreta-
ble way to harmonize heterogeneous covariances by mod-
eling scanner-specific latent patterns under the low-rank 
assumption. We characterized inter-scanner bias with (i) 
scanner-specific means (locations), (ii) scanner-specific 
variances (scales), and (iii) scanner-specific latent patterns. 
We showed that identification of (iii), which has been over-
looked in previous methods, is critical in homogenizing 
data from multi-site, multi-scanner neuroimaging studies.

RELIEF is a general multivariate approach that does 
not impose data-specific assumptions. It also does not 
require traveling subjects or matched controls that are 
often needed in supervised harmonization methods, 
which are infeasible in many imaging studies. Also, as we 
extend a regression-based approach, preserving clinical 
covariate effects is straightforward. Moreover, it also pre-
serves shared variations from unobserved covariates  
or non-linear covariate effects using a low-dimensional 
representation of such variations, in which existing 
regression-based harmonization methods are limited.

In the analysis of the fractional anisotropy (FA) and 
mean diffusivity (MD) data from the SPINS study, where 

Fig. 8.  Summary of power for four harmonization methods. From the first row, the plots from left to right are with the 
increased proportion of individual latent patterns. From the second row, the plots from left to right are with the increased 
rank of the covariance effect. The blue dashed horizontal line is FWER = 0.05. RELIEF controls for false positives 
accurately and shows superior power to competitors in both settings.
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study samples were scanned using General Electric or 
Siemens Prisma scanners, we showed that there are sub-
stantial variations specific to Siemens Prisma. Notably, our 
data analysis reveals that these latent scanner effects for 
Siemens Prisma are heterogeneous across features 
(Fig. 2). This result aligns with previous studies showing 
that inter-site variability in fractional anisotropy is specific 
to tissues or regions (J.-P. Fortin et al., 2017; Vollmar et al., 
2010). RELIEF, which removed these variations in addition 
to the scanner-specific means and variance, successfully 
impaired the detection of scanners with a machine-
learning method, resulting in a more homogeneous covari-
ance as expected. A correlation analysis with existing 
non-biological information helped us understand the 
mechanism that induces these latent scanner effects.

RELIEF is not without limitations. First, our current 
approach is evaluated with a moderate number of samples. 
RELIEF assumes that the original data matrix consists of 
low-rank signals (including latent scanner effects) plus full-
rank noises to scale data and choose tuning parameters. 
To detect these low-rank variations well, it requires a mod-
erate number of samples to ensure the objective function of 
RELIEF performs more promisingly than simplified meth-
ods (e.g., ComBat) with fewer assumptions. Second, 
although low-rank decomposition is a useful way to cap-
ture arbitrary covariance structures, it might not always be 
the case when there is structured covariance in imaging 
data. For example, vertex-level cortical thickness data has 
at most 160,000 features in each brain hemisphere in  
FreeSurfer and reveals a high degree of spatial autocorrela-
tion. In such a case, the low-rank assumption made in 
RELIEF should be evaluated carefully (Karayumak et  al., 
2019; Mirzaalian et al., 2016). Also, although RELIEF does 
not require intense cross-validation to choose tuning 
parameters or ranks, it requires applying singular value 
decomposition (SVD) iteratively, and the computational 
cost increases non-linearly with increased sample size (n) 
or features (V ). Therefore, it takes more time than existing 
methods (e.g., ComBat), whose computation time increase 
linearly with V . However, the computation time for RELIEF 
is still moderate in most downstream neuroimaging data 
analyses with, at most, up to hundreds of features. More 
importantly, we believe the powerful performance of RELIEF 
outweighs the cost of some additional computation time.

Also, there were recent investigations showing how 
pre-processing can affect the performance of ComBat 
harmonization, which could also be the case in RELIEF. 
Cetin-Karayumak et  al. (2020) evaluated the effect of 
minor differences in pre-processing on ComBat’s perfor-
mance for harmonization of fractional anisotropy (FA) 

data across sites and showed that minor differences in 
the preprocessing steps resulted in non-linear changes in 
the input data. Because the SPINS study performed con-
sistent preprocessing pipelines across sites, we expect 
its impact on our analysis to be marginal. Still, evaluating 
the robustness of RELIEF with respect to different pre-
processing pipelines would be an interesting area of 
research, which we leave as future work.

RELIEF is the first approach that adopted the struc-
tured factorization of interlinked matrices into the data 
harmonization context, which used the concept of latent 
variables to characterize scanner effects. In the past 
decade, there have been a number of methodological 
developments in linked matrix factorization (Feng, Jiang, 
Hannig, & Marron, 2018; Gaynanova & Li, 2019; Lock 
et  al., 2013), which provided novel insights into under-
standing multimodal data (Q. Yu et  al., 2017), disease 
subtypes, or clustering. We believe more methodological 
research on data harmonization from the viewpoint of the 
linked matrix factorization would lead to further improve-
ments in the harmonization quality.

To summarize, we proposed a new harmonization 
method, RELIEF, that contributes to ongoing efforts on 
integrating heterogeneous multi-site, multi-scanner stud-
ies in neuroimaging. Our novel contribution is the develop-
ment of a multivariate harmonization method that captures 
scanner-specific latent factors, which have not been 
addressed in existing methods. With the three-source 
characterization of inter-scanner biases (location, scale, 
latent), RELIEF shows promising results in harmonizing all 
of them, eventually resulting in higher power in association 
studies than existing harmonization methods.

6.  SOFTWARE

RELIEF is made publicly available as an R package on 
GitHub: https://github​.com​/junjypark​/RELIEF. It requires 
the same input as neuroComBat (https://github.com/
Jfortin1/ComBatHarmonization) (imaging data matrix, 
covariates, and scanner information), producing harmo-
nized imaging data in the same format. Our harmoniza-
tion took approximately 4  seconds on a Macbook Pro 
2018 to harmonize data with 72 imaging features from 
351 subjects, which supports the computational effi-
ciency of the proposed method.

DATA AND CODE AVAILABILITY

The R package for implementing RELIEF is publicly avail-
able at https://github​.com​/junjypark​/RELIEF.
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