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Abstract
Thirty years, 1993–2023, is a huge time frame in science. We address some major de-
velopments in the field of evolutionary algorithms, with applications in parameter
optimization, over these 30 years. These include the covariance matrix adaptation
evolution strategy and some fast-growing fields such as multimodal optimization,
surrogate-assisted optimization, multiobjective optimization, and automated algo-
rithm design. Moreover, we also discuss particle swarm optimization and differential
evolution, which did not exist 30 years ago, either. One of the key arguments made
in the paper is that we need fewer algorithms, not more, which, however, is the cur-
rent trend through continuously claiming paradigms from nature that are suggested
to be useful as new optimization algorithms. Moreover, we argue that we need proper
benchmarking procedures to sort out whether a newly proposed algorithm is useful
or not. We also briefly discuss automated algorithm design approaches, including con-
figurable algorithm design frameworks, as the proposed next step toward designing
optimization algorithms automatically, rather than by hand.

Keywords
Evolutionary computation, evolutionary algorithms, natural computing, parameter
optimization.

1 Introduction

When being asked to write a paper 30 years after the original work was published,
namely our paper, “An Overview of Evolutionary Algorithms for Parameter Optimiza-
tion” (Bäck and Schwefel, 1993), I (Thomas Bäck) immediately thought this would be
too big a challenge. In the early 1990s, the “big unification” was achieved in the field
that formerly consisted of relatively strictly separated algorithmic branches: Genetic Al-
gorithms, Genetic Programming, Evolutionary Strategies, and Evolutionary Program-
ming, which were then united into what we call today Evolutionary Computation. Due
to Evolutionary Computation’s success in a huge range of application domains and its
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importance as a foundation for many subfields of computer science, the development
of the field over the past 30 years has been tremendous, going far beyond what we can
report in this paper. In the late 1990s, the Handbook of Evolutionary Computation (Bäck
et al., 1997) represented an attempt towards summarizing the state of the art based on
a unified perspective of the field, and the editors were taking up this challenge since
there was at least some hope to make it happen.

For today’s paper, 30 years later, we can face this challenge only by taking a personal
perspective of the field, making the corresponding (necessarily subjective) choices,
and—fortunately—inviting co-authors who I (Thomas Bäck) have the pleasure to work
with at the Leiden Institute of Advanced Computer Science. Like in the original paper,
we will also mostly restrict this paper to continuous parameter optimization problems of
the form:

minimize f : � ⊂ R
n → R

k where k ≥ 1

subject to gi (x) ≤ 0 ∀i ∈ {1, . . . , m}; x ∈ �, (1)

(i.e., we explicitly include multiobjective optimization problems and constraints except
for equality constraints, as they can be represented by two inequality constraints).

In the following, we provide a list of what we subjectively consider important devel-
opments over the past 30 years, and we elaborate on some of those in detail across the
paper.

• The development of the Covariance Matrix Adaptation Evolution Strategy, in
short CMA-ES (Hansen and Ostermeier, 1996), has defined a new state of the
art and a whole branch of algorithms derived from the CMA-ES (see Bäck
et al., 2013, for an overview). Section 2.1 provides more details about this
development.

• Genetic Algorithms have been specialized into many powerful variants for
combinatorial optimization problems, which are beyond the scope of this pa-
per. When it comes to our problem definition (see Equation 1), the Genetic
Algorithms often still exhibit strong similarities with the canonical Genetic Al-
gorithm described by Bäck and Schwefel (1993), as discussed in Section 2.2.

• Parameter control methods, dating back to the early days of Evolution Strate-
gies with Rechenberg’s 1/5-success rule (Rechenberg, 1973) and Schwefel’s
self-adaptation methods (Schwefel, 1981), have now become a widespread
technique in Evolutionary Computation. Section 2.2 discusses this in the
context of Genetic Algorithms, and Section 3.1 provides a more general
perspective.

• When it comes to identifying multiple local optima at the same time in so-
called multimodal optimization, and its generalization to find solutions that ex-
hibit behavioral properties as diverse as possible, new techniques in Novelty
Search and Quality-Diversity Search have been developed. These algorithms are
briefly discussed in Section 3.2.

• Constraint handling methods have been developed well beyond penalty-function
and re-evaluation-based approaches that were popular in the early 1990s; see
Section 3.3 for details.
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• For expensive objective function evaluations, Surrogate-Assisted Evolutionary
Algorithms use nonlinear regression methods from the field of machine learn-
ing to learn fast-to-evaluate proxy functions for objective(s) and constraints
(Jin, 2011). Section 3.4 provides a few of the corresponding developments in
this area of research.

• Multiobjective optimization (Deb, 2009; Coello Coello, 2006) has developed
from only a few publications into a huge field within Evolutionary Compu-
tation due to the powerful ability of a population to approximate a Pareto-
optimal frontier in its entirety by using concepts such as Pareto dominance
or performance indicators. Section 3.5 explains some of the key developments
and state of the art.

• Automated algorithm design using configurable frameworks, discussed in
Section 3.6, is a promising new approach towards automatically creating
new algorithms for parameter optimization and dynamically configuring
algorithms.

• Particle swarm optimization and differential evolution, two relevant classes of
evolutionary algorithms that did not exist yet in 1993, are discussed briefly in
Sections 3.7 and 3.8.

• It is impossible to discuss the wealth of new theoretical results in the field, such
that we can only give a very brief list of relevant works in Section 4.

• In Section 5, we briefly discuss the flood of “new” paradigms from nature that
are proposed as optimization algorithms, and the urgent need for appropriate
benchmarking procedures for qualifying new methods, and in Section 6 a brief
outlook is provided.

Most recently, we have seen many tremendously important developments in the
field, for instance, new benchmarking standards and test function sets, statistical anal-
ysis methods, and software tools for experimentation, visualization, and analysis of ex-
perimental results (Bäck et al., 2022). In Section 5.2, we address some key developments
in benchmarking and argue that proper benchmarking and empirical analysis of op-
timization algorithms is critical to assessing their performance and their value to the
community and, more importantly, to the domain expert who wants to solve an op-
timization problem but is not an expert in optimization algorithms. Related to this,
we also need to stress that it is of paramount importance to properly benchmark any
proposed “natural metaphor-based” optimization algorithm against established state-
of-the-art methods and to refrain from an unjustified use of non-mathematical termi-
nology to describe such algorithms. As outlined in Section 5.1, we fully concur with
critical voices such as Sörensen (2015) and Campelo and Aranha (2018, 2021), and would
like to encourage the research community to support the publication of new algorithms
only if they are adequately defined using mathematical notation and appropriately
benchmarked against well-known state-of-the-art algorithms.

Going beyond proposing expert-designed optimization algorithms, a fascinating
idea is to automatically design optimization algorithms that are best-in-class for a given
(set of) optimization problems. Approaches such as hyper-heuristics (Pillay and Qu, 2018;
Drake et al., 2020), which can be based on genetic programming (Burke et al., 2009),
have been proposed for such automated algorithm design. More recently, algorithm
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configuration methods have also been proposed very successfully for genetic algo-
rithms (Ye et al., 2022), modern CMA-ES-based evolution strategies (van Rijn et al.,
2016), and differential evolution and particle swarm optimization (Boks et al., 2020;
Camacho-Villalón et al., 2022b). Although these ideas are not completely new in the
domain of genetic algorithms (see Grefenstette, 1986, for hyperparameter optimization;
Bäck, 1994, for algorithm configuration and hyperparameter optimization), they can
now be applied at a massive scale, with proper benchmarking procedures for compar-
ing the algorithmic variants, and also facilitating both configuration and hyperparam-
eter optimization as a systematic next step.

There are many important aspects of evolutionary computation that are not covered
in this paper simply because we had to make choices.

2 Evolutionary Computation for Parameter
Optimization—30 Years Later

We assume familiarity with the underlying ideas of evolutionary computation, includ-
ing a set of candidate solutions (the population), a given optimization problem (as in
Equation 1), variation operators such as mutation and recombination, and one or more selec-
tion operators—and an iteration of the operator loop until a given termination criterion
is satisfied. In Bäck and Schwefel (1993), we have presented the general algorithmic loop
of evolutionary algorithms and how it can be used to describe the various instances. In
this section, we briefly summarize some of the key developments since 1993 concerning
parameter optimization variants.

2.1 Evolution Strategies

Evolution strategies, like all other EAs, have seen tremendous development over more
than 60 years, starting from the early work at the Technical University of Berlin (Schwe-
fel, 1965; Rechenberg, 1965, 1973). The algorithm, a (1+1)-ES, was inspired by the pro-
cess of biological evolution and used a simple iterative procedure that mutates the
search point of a single individual x ∈ R

n by a multivariate normal distribution, that
is, x′ = x + σ · N (0, I), and assigns x ← x′ iff f (x′) ≤ f (x). Experimenting with engi-
neering optimization problems, Schwefel and Rechenberg quickly discovered the need
for adaptively learning the mutation step size σ , a concept that then became central to
evolution strategies: The self-adaptation of strategy parameters.

For the (1+1)-ES, it started with the so-called 1/5-success rule for updating σ , which
was derived from theoretical results on the sphere and corridor models (Schwefel, 1977).
With multimembered evolution strategies, for example, the (μ, λ)-ES and the (μ + λ)-
ES, which has μ parents and λ offspring, mutative self-adaptation was introduced. With
these methods, individuals are represented as (x, θ ), where in addition to the search
point x, a set of endogenous parameters θ is evolved by the ES, based on the intuition
that good search points sprout from good strategy parameters (Beyer and Schwefel,
2002). Schwefel’s strategy extensions additionally allowed for the self-adaptation of
coordinate-specific step sizes σi and covariances cij for mutations, using a lognormal
distribution for their variation (Schwefel, 1981). In 1993, this (μ, λ)-mutational step size
control (MSC)-ES (Schwefel, 1981) was considered state of the art and was the first evo-
lution strategy that was able to adapt the parameters of the mutation distribution to an
arbitrary covariance matrix and generate correlated mutations.

However, as pointed out by Hansen et al. (1995), this strategy strongly depends
on the chosen coordinate system. It is not invariant to search space rotations—an in-
sight that led to a development that again, after the discovery of self-adaptation, has
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significantly advanced state of the art through derandomization (Section 2.1.1) and the
Covariance Matrix Adaptation ES and its derivates (Section 2.1.2), which are now state of
the art in the field.

2.1.1 Derandomized (DR) Evolution Strategies
Derandomized evolution strategies moved away from mutative self-adaptation and
used global strategy parameters for all the individuals in the population. This was moti-
vated by the observation that mutative self-adaptation of individual step sizes is unsat-
isfactory for small populations (Schwefel, 1987), which is attributed to two key reasons.
Namely, (i) good strategy parameters do not necessarily cause a successful mutation of
the search points, and (ii) there is a conflict in maintaining a diverse set of strategy pa-
rameters within the population and stability of the search behaviour (Ostermeier et al.,
1994a). Derandomized evolution strategies aim to achieve self-adaptation without any
independent stochastic variation of the strategy parameters. This is addressed in DR1
by using the length of the most successful mutation vector z ∼ N (0, I) to update σ and
by applying a dampening factor β in order to reduce strong oscillations of σ over time
(Ostermeier et al., 1994a).

With DR2 (Ostermeier et al., 1994b), in addition to a global step size σ , local step
sizes σ ∈ R

n
+ are included, which control the variability of each component of the deci-

sion variables. The update of both the local and global step sizes is not only based on
the best mutation vector z in the current generation, but also on the best moves of pre-
vious generations. This information is collected in a vector ζ , which is updated based
on a global learning rate c.

DR3 (Hansen et al., 1995), or Generating Set Adaptation Evolution Strategy ((1, λ)-
GSA-ES), includes a representation of the covariance matrix as a global strategy pa-
rameter and can produce mutations from an arbitrary multivariate normal distribution,
similar to the (μ, λ)-MSC-ES. Moreover, the GSA-ES is able to learn problem scaling and
is invariant to search space rotations. Instead of using a direct representation for the
covariance matrix, a matrix B ∈ R

n×m is used, of which the column vectors form a
so-called generating set. Correlated mutation vectors are generated by matrix mul-
tiplication of a random normal vector z ∼ N (0, I) with B. The number of columns
n2 < m < 2n2 of the matrix can be used to control the speed of adaptation, where a
smaller value of m yields faster adaption and a larger value increases the accuracy.

2.1.2 Completely Derandomized Self-Adaptation in Evolution Strategies
The algorithms described in the previous section, DR1-3, introduce the first level of
derandomization of parameter control in evolution strategies, which reduces selection
disturbance on the strategy level. The second level of derandomization, or complete
derandomization, completely removes this disruption and aims to explicitly realize the
original objective of mutative strategy parameter control: to favor strategy parameters
that produce selected mutation steps with high probability (Hansen and Ostermeier,
2001). In addition, the second level of derandomization also aims to provide a direct
control mechanism for the rate of change of strategy parameters and requires that strat-
egy parameters are left unchanged in the case of random selection.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES), introduced in
Hansen and Ostermeier (1996), satisfies these conditions through two key techniques,
Covariance Matrix Adaptation (CMA) and Cumulative Step length Adaptation (CSA).
A series of papers (Hansen and Ostermeier, 1996, 1997, 2001) refined the CMA-ES to
use weighted recombination for μ > 1. In this section, we discuss the (μW, λ)-CMA-ES
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as introduced in Hansen and Ostermeier (2001), focusing on CMA and CSA. For a com-
plete tutorial on the CMA-ES, we refer the interested reader to Hansen (2016).

The (μW , λ)-CMA-ES. As previously mentioned, evolution strategies (commonly)
generate search points xi for i, . . . , λ by sampling from a multivariate normal distribu-
tion, which for CMA-ES, at generation g, reads as:

y(g+1)
i = N (0, C(g) ) (2)

x(g+1)
i = m(g) + σ (g)y(g+1)

i . (3)

For generation g + 1, self-adaptation of the CMA-ES involves the calculation of the next
mean of the search distribution m(g+1), step size σ (g+1) and covariance matrix C(g+1).
The mean of the search distribution is updated using the weighted average of μ-best
individuals in the current generation, effectively performing weighted intermediate
recombination:

m(g+1) = m(g) +
μ∑

i=0

wi (x
(g+1)

i − m(g) ). (4)

Several variants for the recombination weights wi have been proposed, and the CMA-
ES from Hansen and Ostermeier (2001) uses exponentially decaying weights.

Covariance Matrix Adaptation. The covariance matrix is updated such that the likeli-
hood of successful search steps is increased, and effectively involves an iterative princi-
pal component analysis of selected search steps. Since, in order to guarantee fast search
on simple functions, the population size λ is required to be small, it is not feasible to
produce a reliable estimator of the covariance matrix using only the information avail-
able in the current population at generation g. The CMA-ES thus uses the selected steps
from previous generations to yield a good covariance matrix estimator. To put more
weight on the information obtained in recent generations, exponential smoothing with
learning rate cμ is used in computing the so-called rank-μ update:

C(g+1) = (1 − cμ)C(g) + cμ

μ∑
i=0

y(g+1)
i (y(g+1)

i )T . (5)

Since the update of the covariance matrix uses the dot product of the selected
steps, sign information is lost, as yi (yi )T = (-yi )(-yi )T , and a so-called evolution path
pc is used to reintroduce this information. The evolution path pc aggregates the search
path (selected steps) of the population through a number of successive generations. In
practice, pc is computed as an exponential moving average of the mean of the search
distribution:

p(g+1)
c = (1 − cc )p(g)

c +
√

cc(2 − cc )μeff
m(g+1) − m(g)

σ (g)
. (6)

Where cc is the learning rate for the exponential smoothing of pc, and μeff denotes the
variance effective selection mass. The full update of the covariance matrix then reads:

C(g+1) =
(

1 − c1 − cμ

μ∑
i=0

wi

)
C(g) (7)

+ c1p(g+1)
c (p(g+1)

c )T rank-one update (8)

+ cμ

μ∑
i=0

wiy
(g+1)
i (y(g+1)

i )T rank-μ update. (9)
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This combines information from the current population through the rank-μ update and
introduces the information of correlations between generations with the rank-one up-
date by leveraging the evolution path pc.

Cumulative Step Length Adaptation. The update of the global step size σ (g+1) is not
addressed explicitly via CMA, and only the changes in scale for the respective directions
are computed. The reasoning for maintaining a global step size in the CMA-ES algo-
rithm is two-fold. First, the optimal step size cannot be well approximated by the CMA
update alone, and second, the required rate of change for the global step length is much
higher than the maximum rate of change of the covariance matrix (Hansen, 2016). Sim-
ilar to CMA, the update of σ (g+1) utilizes an evolution path p(g+1)

σ , which represents the
sum of successive steps over a given backward time horizon. Since the evolution path
p(g+1)

c depends on its direction, that is, covariance, a conjugate evolution path p(g+1)
σ is

constructed via:

p(g+1)
σ = (1 − cσ )p(g)

σ +
√

cσ (2 − cσ )μeffC(g)- 1
2 m(g+1) − m(g)

σ (g)
. (10)

The inverse square root of the covariance matrix is computed via an eigendecomposi-
tion of C = B(D2)BT , where C- 1

2 = B(D-1)BT . Since this is a computationally expen-
sive operation, the authors suggest only performing the eigendecomposition every
max(1, �1/(10n(c1 + cμ))�) generations (Hansen, 2016).

For updating the global step size σ (g+1), the length of the conjugate evolution path
is compared with its expected length under random selection, that is, E||N (0, I)||. If the
evolution path is too short, this means that single steps are not making enough progress
and cancel each other out, thus the step size should be decreased. If the evolution path is
long, the progress made in previous steps is correlated, and thus could have been made
with fewer steps, and requires an increase in step size. With an additional dampening
parameter dσ , this allows σ (g+1) to be computed as:

σ (g+1) = σ (g)exp

(
cσ

dσ

(
p(g+1)

σ )
E||N (0, I)|| − 1

))
. (11)

Extensions. Several modifications to the CMA-ES have been proposed over the years,
but the core algorithm remains the current state of the art in ES, ranking high in bench-
marks for numerical optimization (Hansen et al., 2010), with many successful applica-
tions in real-world optimization problems (Hansen, Niederberger et al., 2009; Bredèche,
2008; Winter et al., 2008). Early extensions to the CMA-ES involved the introduction
of local restart strategies (Auger et al., 2004), which uses multiple criteria to determine
whether to restart the algorithm at certain points during the optimization run. This gave
rise to the introduction of the IPOP-CMA-ES (Auger and Hansen, 2005), which upon
a restart increases the size of the population, and the BIPOP-CMA-ES (Hansen et al.,
2010), which balances between larger and smaller population sizes during restarts. The
(1+1)-Cholesky CMA-ES (Igel et al., 2006) uses an implicit method for adapting the co-
variance matrix, without using an eigendecomposition but by leveraging the so-called
Cholesky decomposition, which has the effect of reducing the runtime complexity in
each generation from O(n3) to O(n2). This was later extended to the (μ, λ)-Cholesky
CMA-ES (Krause et al., 2016), which uses triangular Cholesky factorization instead of
the inverse square root of the covariance matrix. Since, in general, the CMA-ES scales
poorly with increasing n, several variants have been proposed for large-scale optimiza-
tion such as the sep-CMA-ES (Ros and Hansen, 2008) and dd-CMA-ES (Akimoto and
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Hansen, 2020); see Varelas et al. (2018) for a review. The (μW, λ)-CMA-ES uses the infor-
mation of the μ best individuals in the population to compute the update of C(g+1). The
Active-CMA-ES improves upon this idea by also including the information from the
λ − μ worst individuals and scaling them with negative weights. Alternative strategies
for updating the global step size have been proposed, such as the two-point step-size
adaption (Hansen, 2008) and the median success rule (ElHara et al., 2013). Mirrored
sampling and pairwise selection (Auger et al., 2011), seeks to improve the mutation op-
erator by generating pairs of mirrored mutation steps and only selecting the best out
of each mirrored pair for updating the strategy parameters. This was later extended to
use orthogonal sampling (Wang et al., 2014). Many of the extensions mentioned in this
section can be combined arbitrarily to produce novel CMA-ES variants (van Rijn et al.,
2016; de Nobel et al., 2021a), even ones that are not originally proposed for use with
the CMA-ES, such as the usage of quasi-random mutations (Auger et al., 2005). Hybrid
CMA-ES algorithms, such as the HCMA, BIPOP-Active-CMA-STEP (Loshchilov et al.,
2013), and IPOP-Active-CMA-ES (Faury et al., 2019) are currently ranking top on the
well-known BBOB single objective noiseless benchmark (Hansen et al., 2021).

This brief overview clarifies how much the subfield of evolution strategies has di-
versified after the introduction of the CMA-ES in the second half of the 1990s. All vari-
ants based on the CMA-ES use historical information about successful mutations to
support continual learning of the mutation distribution. Even for this branch of evo-
lutionary computation, gaining a complete overview of the state of the art in the field
becomes very difficult, as exemplified by the subset of algorithm variants that have been
collected and empirically compared by Bäck et al. (2013).

2.2 Genetic Algorithms

The genetic algorithm (GA) is likely still the most widely known variant of evolutionary
algorithms. It was initially conceived in Holland’s work of general adaptive processes
(Holland, 1975). The commonly known GA, which is referred to as canonical GA or sim-
ple GA (SGA), has been the first example of applying genetic algorithms to parameter
optimization (De Jong, 1975). The SGA applies a binary representation and proportional
selection, which is based on the fitness values of individuals. It emphasizes the use of
recombination, that is, crossover, as the essential variator for generating offspring, while
preferring a low mutation probability. After the initialization step, the procedure of an
SGA can be briefly described as an optimization loop that successively applies the op-
erators selection, crossover, mutation, and evaluation until a stopping criterion is met. Fol-
lowing years of development, the GA variants that have been proposed for applications
in different domains still primarily follow this algorithm skeleton, but depending on the
application domain (and, correspondingly, the search space), numerous variations have
been proposed. A complete overview is beyond the scope of this paper, which focuses
on continuous parameter optimization.

2.2.1 Decoding Is Not a Unique Option
A GA used to be characterized by its encoding and decoding system. The optimization
operators execute on a genotype solution, while the problem-specific solutions are pre-
sented as the phenotype. The SGA applies a binary genotype representation, that is,
x ∈ {0, 1}n, where n is the length of the bit string. When dealing with continuous and dis-
crete parameter optimization problems, encoding and decoding methods are applied to
transfer solutions between genotype and phenotype.
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Nowadays, the GA supports the representations of arbitrary types of variables such
as real, integer, and categorical values such that the encoding and decoding system is
unnecessary for some variants, for example, in complex GA applications such as in en-
gineering (Dasgupta and Michalewicz, 2013), neural networks (Leung et al., 2003), and
permutation-based problems (Whitley, 2019; Larrañaga et al., 1999; Reeves and Yamada,
1998; Costa et al., 2010). Also, novel operators have been proposed to deal with the non-
binary representation.

2.2.2 Real-Coded Operators
For continuous optimization, the GA variants with non-binary representation usually
apply the following collection of real-coded crossover operators:

• Blend crossover (BLX) (Eshelman and Schaffer, 1992) samples values of off-
spring from a uniform distribution, of which the range depends on the values
of the two parents.

• Simulated binary crossover (SBX) (Deb et al., 1995) simulates the one-point
crossover of the binary representation. It creates two offspring based on the
linear combination of two parents, and the scale of each parent’s value depends
on a distribution with a given spread factor.

• Unimodal normal distribution crossover (UMDX) (Ono et al., 1999) samples
offspring values as linear combinations of the realization of two normal distri-
butions. One distribution obtains the mean and the standard deviation, which
is the average of two parents’ values and is proportional to their distances, re-
spectively. The other distribution’s mean is 0, and its variance depends on the
distance from the third parent to the line connecting the two parents.

Recent works mostly focus on the modification and self-adaptivity of the distribu-
tions that are used to sample offspring. For example, the simple crossover (SPX) (Tsutsui
et al., 1999) samples offspring values as the combinations of values sampled uniformly
at random based on pairs formed by multiple parents, which can be seen as an exten-
sion of BLX for multiple parents. Moreover, self-adaptive and dynamic models have
been proposed for SBX (Deb et al., 2007; Chacón and Segura, 2018; Pan et al., 2021). The
Parent-Centric crossover (PCX) (Deb, Anand, et al., 2002) modified the UNDX by intro-
ducing a parent-centric concept, and the PNX (Ballester and Carter, 2004) followed the
idea of PCX and simplified the normal distribution used to sample offspring based on
the deviation of two parents.

For the real-coded mutation operators, one of the earliest related work (Janikow et
al., 1991; Neubauer, 1997) known as a non-uniform mutation increases and decreases
variable values with equal probabilities. The mutated distance, that is, deviation of the
parent and offspring values, is proportional to the deviation of the boundary and the
parent values, and this deviation gets close to 0 after a large number of generations.
Also, the recently proposed wavelet mutation (Ling and Leung, 2007) samples the mu-
tated distance using the Morlet wavelet, which distributes symmetrically with an ex-
pected value of zero. Moreover, novel mutation operators (Korejo et al., 2010; Temby
et al., 2005) search towards promising space based on the progress feedback from pre-
vious updatings of the population.
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2.2.3 Developments in Binary Representation
At the same time, GAs with the binary representation are still applied in many do-
mains, for example, pseudo-Boolean optimization. For the binary representation, mu-
tation flips the chosen bits of a parent, and crossover swaps the chosen bits of the two
parents.

The classic standard bit mutation flips each bit of an individual with probability pm ∈
[0, 1]. It was seen as a “background operator” with a small pm ≈ 10-3, later pm ≈ 1/n, in
early GAs (Holland, 1975; Bäck and Schwefel, 1993). We rephrase the mutation proce-
dure as flipping � ∈ {0, . . . , n} bits chosen uniformly at random. The standard bit muta-
tion samples � from a binomial distribution Bin(n, pm). Recent work of mutation-only
EAs studies the choice of �. For example, the so-called fast GA applies a heavy-tailed
power-law distribution to sample � (Doerr et al., 2017), and a normalized bit mutation
samples � using a normal distribution in Ye et al. (2019). Moreover, it has been shown
that the value of � depends on problem dimensionality n (Witt, 2013; Doerr et al., 2019).

Crossover, another key operator of the GA, obtains important characteristics that
are not in mutation (Spears, 1993). Theoretical studies have tried to explain how
crossover works in a GA and indicate that crossover could capitalize on population and
mutation (Doerr et al., 2015; Dang et al., 2017; Corus and Oliveto, 2017; Sudholt, 2017;
Pinto and Doerr, 2018; Antipov et al., 2020). The value of pc ∈ [0.6, 1.0] was mentioned in
Bäck and Schwefel (1993) for the crossover probability, found in earlier empirical stud-
ies. However, a recent study shows that this suggested value is not optimal for some
cases. For example, the optimal value changes with population size and dimensionality
for the LeadingOnes problem (Ye et al., 2020).

Note that many theoretical studies exist about GAs for discrete optimization (Doerr
and Neumann, 2020). Also, much evidence indicates that the optimal parameters (i.e.,
mutation rate, crossover probability, and population size) are dynamic, which relates to
the topic of parameter control (Karafotias et al., 2014; Aleti and Moser, 2016).

2.2.4 Learning in Genetic Algorithms
The schema theorem plays an important role in the early theoretical study of genetic al-
gorithms. It considers the hypothesis that good GAs combine building blocks, which are
short, low-order, and above-average schemata, to form better solutions (Goldberg, 1989;
White, 2014). Though the schema theorem shows some drawbacks (Eiben and Rudolph,
1999)—for example, this building blocks hypothesis implicitly assumes that the prob-
lems are separable, and the theorem cannot explain the dynamic behavior and limits of
GAs—it reveals that one key issue of GA is destroying building blocks. Furthermore,
to take “correct” actions, contemporary methods extract and apply useful information
learning from the population of GAs, though this information may unnecessarily be
about building blocks.

Linkage Learning was introduced to form a novel crossover operator (Harik and
Goldberg, 1996), avoiding to destroy building blocks. Later on, the hierarchical cluster-
ing algorithm is applied to learn a linkage tree, creating building blocks for the crossover
of the linkage tree GA (Thierens, 2010), which belongs to the family of gene-pool opti-
mal mixing EAs (GOMEAs) (Thierens and Bosman, 2011). The GOMEA learns the main-
tained population’s general linkage model, called the Family of Subset (FOS). A FOS is
usually a set of variables, and for each FOS, GOMEAvaries the values of the correspond-
ing variables. Many variants exist for GOMEA, and the algorithms have been applied
in both discrete and continuous optimization (Bosman and Thierens, 2013; Bouter et al.,
2017).
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The compact GA (CGA) (Harik et al., 1999) is another GA extension inspired by
the idea of building blocks. However, CGA represents the population as a distribution
over the set of solutions. New solutions are sampled based on the distribution, and the
distribution is updated for each generation. Nowadays, this technique is known for the
family of estimation of distribution algorithms (EDA) (Hauschild and Pelikan, 2011).
EDAs maintain a stochastic model for the search space, and this model can be built for
discrete, continuous, and permutation-based solutions.

2.2.5 Outlook
As before, the GA can still be represented by the iterative order selection, variator, and
evaluate. A significant difference from the SGA introduced in Bäck and Schwefel (1993)
is that the contemporary GAs do not necessarily follow the generational model, main-
taining consistent population size. Moreover, more techniques are available for the vari-
ators to create new solutions. Novel operators have been proposed for mutation and
crossover. In addition, contemporary variators learn to create new solutions using link-
age information intelligently. GAs have been applied in various domains, although we
cannot list all the applications, such as permutation-based problems (Oliver et al., 1987;
Mathias and Whitley, 1992; Nagata and Kobayashi, 1997; Whitley et al., 2010; Goldberg
and Lingle, 1985). While more and more techniques appear in various problem-specific
domains, theoretical work is developing to help us understand how the GA works.
However, providing guidelines for selecting the optimal operators for a given problem
remains challenging while the GA community is putting effort towards this goal (Bartz-
Beielstein et al., 2020; Ye, 2022).

2.3 Evolutionary Programming

The development of evolutionary programming (EP) dates back to the mid-1960s, too.
Initial work was presented by Fogel et al. (1965, 1966) for evolving finite state machines
(FSM) with the aim to solve prediction tasks generated from Markov processes and
non-stationary time series. EP was originally proposed as an alternative method for
generating machine intelligence (Fogel, 1994). Genetic variation was performed by mu-
tating the corresponding discrete, finite alphabet with uniform random permutations.
Each candidate machine in the parent population produced one offspring by mutation.
The best performing half number of parents and offspring were then selected for the fol-
lowing generation. This selection method is analogous to the (μ + λ) strategy commonly
used in ES. In addition, the original work for evolving finite state machines also offered
the potential for exchanging parts of finite state machines, which one might consider as
a proposal for a “crossover” operator (Fogel et al., 1966).

D. B. Fogel later enhanced EP by adapting genetic variation on real-valued vari-
ables with normally distributed mutations (see e.g., Fogel et al., 1990; Fogel, 1992, 1993).
EP traditionally did not use any form of crossover; therefore, the evolutionary pro-
cess typically relied on a set of mutation techniques that have been proposed over the
last decades. In general, EP viewed each candidate solution as a reproducing population,
whereby the used mutation operator simulates all changes that occur between the cur-
rent and the subsequent generation. Like evolutionary strategies, EP stressed the role of
mutation in the evolutionary process. Traditionally, EP used normally distributed mu-
tation as the primary search operator. During the course of the 1990s, the annual con-
ference on EP was held until 1998. Several studies in the mid- and late-1990s showed
that using a Cauchy random variable can enhance performance for certain parameter
optimization problems (Yao and Liu, 1996). Moreover, a multi-operator approach to EP

Evolutionary Computation Volume 31, Number 2 91

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/31/2/81/2133989/evco_a_00325.pdf by guest on 07 Septem
ber 2023



T.H.W. Bäck et al.

was proposed in this period. It was shown that this multi-mutational self-adaptive EP
strategy was able to adjust the use of both, the Gaussian and Cauchy mutations, and
was thereby able to provide greater rates of optimization when compared to the sole
use of Cauchy mutations (Saravanan and Fogel, 1997). A runtime analysis of EP using
Cauchy mutations has been presented by Huang et al. (2010).

EP has been very successful in evolving strategies for certain games (see, e.g., work
by Chellapilla and Fogel, 1999a). Most remarkable is the use of EP to evolve neural
networks that were able to play checkers without relying on expert knowledge (Chel-
lapilla and Fogel, 1999b; Fogel, 2000). In this approach, EP created a population of 15
artificial neural networks. Each candidate network created an offspring with Gaussian
mutation that was controlled with a self-adaptive step size. To validate the strength
of the best-evolved networks, the created artificial checkers players operated within a
computer program called Blondie24 on the online board gaming site Zone.com. Over a
two-month period, 165 games against human opponents were played. The estimated
rating of Blondie24 was in the mean 2045.85 with a standard error of 0.48 whereby
the master level starts at a rating of 2200. The best result from the 165 games was
seen when the network defeated a player with a rating of 2173, which is only 27
points away from the master level. The story of Blondie24 is described in David B.
Fogel’s book Blondie 24—Playing at the Edge of AI (Fogel, 2002). Later on, Fogel applied
the approach to chess and created Blondie25, a chess program that was able to win
over a nationally ranked human chess player and also showed some wins (one out of
twelve games for black, two of twelve for white) over Fritz 8.0, which was the num-
ber five ranked program in the world at that time (Fogel et al., 2006; see also Fogel,
2023).

When considering parameter optimization problems as defined in Equation (1),
early version of ES and EP shared quite a few similarities, as we already outlined in Bäck
and Schwefel (1993). From the year 2000, algorithms based on the concept of CMA-ES
are more prominent for this type of application than EP-based approaches, and today
one finds that the term evolutionary programming is sometimes used to denote algorithms
for continuous parameter optimization that are solely based on mutation (Abido and
Elazouni, 2021) or the term is also sometimes confused with genetic programming (Jamei
et al., 2022).

3 Other Important Developments

In this section, a few developments are discussed that we consider of strong importance
for the field, however, again this is a subjective selection and a wide range of topics
cannot be covered in this paper.

3.1 Parameter Control

It is truly amazing to see that early parameter control techniques such as the 1/5-th suc-
cess rule (Rechenberg, 1973) and Hans-Paul’s early approaches for adapting variance(s)
and covariances of an n-dimensional Gaussian distribution (Schwefel, 1981), later on
proposed in a similar way for genetic algorithms and binary search spaces {0, 1}n (Bäck
and Schütz, 1996; Kruisselbrink et al., 2011), as well as mixed search spaces (Li et al.,
2013), have now turned into a standard approach in evolutionary computation. Thanks
to the wonderful progress that was achieved in the theoretical analysis of evolution-
ary algorithms in the past 30 years, we also now have a fairly good understanding of
why such approaches are helpful, how to analyze them, and what the time complexity
and optimal parameter settings for some (classes of) test functions look like—both for
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specific pseudo-Boolean optimization problems and for specific continuous parameter
optimization problems. This field of research is huge now, and giving an overview is
impossible, so a selection of just a few research works is incomplete and subjective, and
therefore we abstain from trying to do so here.

3.2 Multimodal Optimization, Novelty Search, and Quality
Diversity Algorithms

In this subsection, we consider the development in multimodal optimization in the last
30 years and a relatively new generalization of such optimization referred to as Nov-
elty Search and Quality Diversity algorithms. At first, we introduce and motivate mul-
timodal optimization, then highlight the development of niching as one of the most
important concepts in multimodal optimization, and then proceed with describing sev-
eral algorithms that use this concept including the most promising state-of-the-art al-
gorithm. Secondly, we show how the idea of multimodal optimization developed to a
more general setting by introducing and motivating Novelty Search and Quality Diver-
sity. Thirdly, we introduce Multidimensional Archive of Phenotypic Elites (MAP-Elites)
algorithm as one of the historically first and most influential methods in quality diver-
sity and discuss its limitations and how they are overcome. We finish with a discussion
of state-of-the-art quality diversity algorithms and the scenarios of their application.

3.2.1 Multimodal Optimization
Traditional single-objective optimization focuses on obtaining a solution with the best
possible quality with regard to the given objective function in the smallest possible time.
However, this exact setup may be not targeted by engineers and other practitioners who
apply optimization at the beginning of the construction process. For this kind of applica-
tion, it is relevant to explore possible trade-offs that give sufficiently good performance
in acceptable time (Bradner et al., 2014). Such exploration may be seen as the task of
obtaining a diverse set of solutions with a fitness value above the given threshold. This
task is called multimodal optimization (MMO) since it is common for the considered
objective functions to have many local optima or modes.

To approach MMO, a number of algorithms were developed. The first algorithms
of this type were proposed back in the 1970s (De Jong, 1975). They were extensions of
genetic algorithms by niching methods that aim to maintain the diversity in the popu-
lations (Preuss, 2015). Works of the mid-1990s followed where niching methods were
improved. A clearing method was proposed (Pétrowski, 1996) where similar individuals
are penalized when their number exceeds the given threshold. Restricted tournament
selection modifies the selection procedure for creating the new population (Harik, 1995)
by restricting the competition to take place only between similar offspring. This ensures
that the population has a diverse set of individuals even if the quality of some of them
is worse than others. Both those niching methods use distance in the search space as
the criterion of similarity. The threshold (or niche radii) for this criterion in particular,
and other parameters of those niching algorithms in general, cannot be efficiently deter-
mined a priori without assumptions about the optimized function. The series of works
followed to solve this problem, in particular Shir and Bäck (2006) and Shir et al. (2007)
propose to adaptively control this threshold during the optimization process. The latter
work also introduced niching into the CMA-ES for the first time. The comprehensive
survey on variations of niching can be found in Das et al. (2011).

Apart from niching in evolutionary algorithms, the same idea of diversity in popu-
lation can be applied to other metaheuristics. Particle swarm optimization was extended
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with niching by Qu et al. (2012). It uses the Euclidean distance-based neighborhood of
every particle and picks several locally best-performing ones to guide the search for
every particle. Thomsen (2004) proposed to extend differential evolution with nich-
ing using the classical idea to penalize individuals that are close. Surveys by Das et al.
(2011) and Li et al. (2016) thoroughly describe other important methods and ideas for
extending existing algorithms to MMO settings. According to Preuss et al. (2021), one
of the leaders in competitions in MMO that were held on CEC/GECCO from 2016
to 2019 and the winner among niching algorithms when a greater budget is given is
HillVallEA (Maree et al., 2018). This algorithm makes extra evaluation of the objective
function to check the existence of worse solutions (hills) between the given pair of so-
lutions to decide whether they belong to the same niche (valley).

3.2.2 Novelty Search
In the optimization community, mainly in evolutionary robotics, diversity with regard
to the behavior of the solutions started to be considered around 2010 (Lehman and Stan-
ley, 2008). In such domains, the individuals do not describe the complete solution, but
the complete description may be obtained during the evaluation of the objective func-
tion, for example, the simulation of robot movements. The set of all possible descrip-
tions is called behavior space (BS). The first algorithms that approached this modified goal
aimed to explore this space, because the connection with genotype space is not known
for the optimizer. Such approaches, known as novelty search algorithms (Lehman and
Stanley, 2011a), changed the goal from obtaining high-quality solutions to the explo-
ration of BS. Instead of optimizing the single given value of the objective function, they
optimize the distance in BS between the sampled solution and solutions in the previ-
ously collected archive. Illumination of the landscape of BS produces a diverse set of so-
lutions with different qualities. However, only the solutions of sufficiently good quality
are interesting for practical applications.

3.2.3 Quality-Diversity
The family of algorithms that search for a distributed set of sufficiently good solutions in
BS is known as Quality-Diversity (QD) algorithms (Pugh et al., 2015). Following Chatzi-
lygeroudis et al. (2021), the goal of the QD algorithms may be seen as a generaliza-
tion of MMO, such that the objective function is maximized as in the MMO case but
the diversity is targeted with regard to the given behavior descriptor function. One of
the first QD algorithms proposed in 2011 is an extension of novelty search and opti-
mizes two objectives: novelty objective (the same as in the original novelty search) and
local competition objective (number of closest solutions with lower objective value)
(Lehman and Stanley, 2011b). Optimization of those objectives allows the generation
of a set of diverse solutions with good local quality. Approximately at the same time,
the MAP-Elites (Mouret and Clune, 2015) algorithm was proposed. Due to the simplic-
ity of its idea and efficiency in practice, this algorithm gained a lot of attention in the
optimization area and became a classical QD optimizer. Due to the great influence of
this algorithm on QD optimization, we give its description in more detail in the next
paragraph.

MAP-Elites maintains an archive of previously obtained solutions in a special con-
tainer. The container discretizes the BS and splits it into cells. Every solution in the con-
tainer belongs to the cell that corresponds to its behavior descriptor and eliminates from
the container a worse solution (with respect to the objective function) that shares the
same cell with it. To update the container MAP-Elites follows the general template of
evolutionary algorithms. In the original version, random selection is applied to choose a
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number of solutions from the container, then mutation and crossover are applied to the
selected individuals to create a new generation of individuals, then the objective func-
tion is evaluated for each of them to obtain their behavior descriptors and performance,
and then the container is updated.

The standard version of MAP-Elites was applied in a number of domains (see Sec-
tion 3.1 of Chatzilygeroudis et al., 2021). However, it exhibits two limitations: (i) the
high dimensionality of BS does not allow for efficient storage of the container; and
(ii) the expensiveness of the objective function restricts the number of evaluations that
the QD algorithm may afford to make in a reasonable time. Different modifications of
this algorithm were proposed to overcome those problems; here we mention only the
first ones. Vassiliades et al. (2017) addressed the problem of high-dimensional BS by
using Voronoi diagrams to store the individuals in the container instead of the tradi-
tional grid, which occupies exponentially more memory with the growth of the number
of dimensions. Gaier et al. (2017) addresses the problem of optimizing the expen-
sive objective function by building a surrogate of the function and applying EGO for
optimization.

QD algorithms are actively developed to satisfy the needs of modern applications.
In the case when the BS is not simple to define before the optimization, Cully and
Demiris (2018) proposed to apply autoencoders to automatically learn the latent space
of digits images and use it as BS of a robotic hand that learns to write digits. In the case
of a noisy function, Flageat and Cully (2020) proposed to store multiple individuals
in every cell of the MAP-Elites container, select only the individuals with the highest
quality, and change the randomly selected individual in the cell to the freshly added
individual. This procedure ensures that the search is not misled by the deceptiveness of
a noisy environment. Pierrot et al. (2022) considered the case of multiobjective functions
and proposed to maintain the Pareto front in every cell of MAP-Elites’ grid. The bench-
marking study of this algorithm showed that it maintains a diverse set of individuals
and at the same time manages to outperform (with respect to the global hypervolume)
traditional multi-objective algorithms in many cases while not significantly losing on
the rest of the considered functions. Urquhart and Hart (2018) first proposed a MAP-
Elites based QD algorithm for discrete settings and applied it to workforce schedul-
ing and routing problems, resulting in new best-known solutions for several problem
instances.

All of these areas are strongly related, as analyzed and compared also in Hagg et al.
(2020). Their use to support engineers in finding diverse solutions to engineering design
problems (Hagg et al., 2018) and in involving the user experience in the ideation process
(Hagg et al., 2019) are highly relevant to works in real-world optimization.

3.3 Constrained Optimization

Another highly relevant topic for parameter optimization is the handling of constraints,
as these are typically occurring in real-world optimization settings. Consequently, the
past 30 years have seen tremendous development in constraint-handling approaches
(Coello, 2022), which, 30 years ago, was often limited to the simple “death penalty”
approach of discarding infeasible offspring. Ordered from the most straightforward to
more complex ones, we categorize contemporary approaches into six groups.

(i) Feasible solution preference is the most straightforward strategy. It works by al-
ways preferring feasible solutions over infeasible solutions (also known as the death
penalty (Kramer, 2010), and preferring solutions with a small constraint violation over
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solutions with large constraint violations (Deb, 2000; Mezura-Montes and Coello, 2005).
A downside of this method is that little information is preserved in the population from
infeasible solutions in the optimization process. Consequently, the algorithms using this
method can get stuck in local optima.

(ii) Penalized unconstrained optimization uses a so-called penalty function that as-
signs a cost to constraint violations (Mezura-Montes and Coello, 2011). Penalty func-
tions can be static, dynamic, adaptive, or even based on self-adaptive fitness formu-
lations and stochastic ranking approaches. Penalty functions for constraints, however,
lead to a strong bias toward feasible solutions. This is not always ideal, as for example, a
high cost assigned by a bad penalty function could cause a selection operator to prefer a
feasible solution far away from the optimum over a solution very close to the optimum
which is only slightly infeasible. All the information from this promising solution would
be lost and not maintained in the population. Unfortunately, the best penalty function
cannot be known upfront, and tuning the hyper-parameters of the penalty function for
each constraint requires a lot of additional function evaluations (Richardson et al., 1989).

(iii) Repair mechanisms aim to repair solutions that violate the constraints, and are of-
ten based on constraint-specific characteristics. Since they are often problem-dependent,
a range of different repair mechanisms has been proposed (Salcedo-Sanz, 2009), for ex-
ample, gradient-based repair mechanisms (Chootinan and Chen, 2006; Zahara and Kao,
2009) and strategies that reduce the probability to generate infeasible offspring (Liepins
and Vose, 1990; Arnold and Hansen, 2012).

(iv) Constraint separation considers both the constraint and the original problem as
separate optimization problems and aims to solve each of these independently. This
can, for example, be achieved via coevolution, where two populations interact with each
other (Paredis, 1994), where one population is focused on the fitness of solutions, and
the other on constraint satisfaction. Another frequently used approach considers the
constraints as additional objectives (Surry et al., 1997; Coello and Montes, 2002). After
optimizing the multiobjective (see Section 3.5) problem, the solution with the best true
objective function value without any constraint violation can be selected. A downside of
this method is an unnecessarily more complex objective space and a strong bias towards
the regions where the constraints are violated in the optimization process.

(v) Model-assisted constraint optimization uses machine learning to identify feasible
solutions, by training a classification model or fitting a surrogate model with the already
evaluated solutions of the constraint function. The trained models can then be used to
classify or predict which solutions are feasible and which are not. Simple classification
algorithms (such as SVMs; see Poloczek and Kramer, 2013) can be used in this approach,
but more advanced regression or surrogate models (see Section 3.4) can also be used.
A benefit of model-assisted constraint optimization is that no information is lost from
evaluated solutions and that a lot of function evaluations can be saved. However, this
often comes at the cost of a substantial increase in computational resources.

(vi) Hybrid methods exist that make use of a combination of the above-mentioned tech-
niques. Noteworthy mentions are, for example, SACOBRA, which uses a repair mech-
anism in combination with model-assisted constraint optimization techniques (Bagheri
et al., 2017) and automatic constraint-handling technique selection based on problem
characteristics (Mallipeddi and Suganthan, 2010).
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These constraint-handling strategies are not necessarily limited to being used solely
in single-objective optimization, but can also be applied to find feasible solutions for
multiobjective problems. The only clear difference between them is a different way of
handling the objectives (see Section 3.5 for more information).

3.4 Surrogate-Assisted Approaches

Optimization based on computer simulations or real-world experiments can be very
expensive in terms of time and money. Therefore, the automotive, marine, aviation, and
other engineering fields that make use of computer simulations make use of surrogate-
assisted optimization algorithms.

Surrogate-assisted evolutionary computation is a variant of EC that utilizes a sur-
rogate model, also known as a metamodel or response surface model, to guide the search
process. In traditional EC, the objective function, which maps a set of input parameters
to a single output value, is evaluated directly to determine the fitness of candidate solu-
tions. In surrogate-assisted EC, the objective function is approximated using a surrogate
model, which is trained on a subset of the evaluated points and can be used to predict
the objective function value at any point in the search space. The use of a surrogate
model allows the search process to be more efficient by reducing the number of func-
tion evaluations required to find good solutions. This is particularly useful when the
objective function is computationally expensive to evaluate or when the search space is
large and complex.

The original idea of using surrogate models in optimization comes from the Effi-
cient Global Optimization (EGO) framework (Bayesian optimization) by Jones et al. (1998).
In EGO, a Gaussian Process Regression (GPR) model is used as a surrogate model where
the GPR is exploited to select a promising candidate solution. At each iteration, the most
promising (yet unseen) candidate solution is evaluated on the real objective function.
In surrogate-assisted EC, similar techniques are used to reduce the number of real ob-
jective evaluations by using the surrogate models as a filter to remove the most likely
bad individuals from the population before the real evaluation. Surrogate-assisted EC
was mainly motivated by reducing the time-complexity of expensive problems such
as aerodynamic design optimization (e.g., Jin and Sendhoff, 2009) or drug design (e.g.,
Douguet, 2010).

Different strategies for using surrogate models are often known as model manage-
ment or evolution control. This is specifically challenging when the problems are of high
dimension. The first works in this field date from the mid-1990s (e.g., Ratle, 1998; Yang
and Flockton, 1995). Surrogate models can be applied to almost all operations of EAs,
such as population initialization, mutation (Abboud and Schoenauer, 2001), crossover
(Anderson and Hsu, 1999), and fitness evaluations (Rasheed and Hirsh, 2000).

3.4.1 Advances in Model Management Strategies
Model management strategies for fitness evaluations can generally be divided
into population-based, individual-based, and generation-based strategies (Jin, 2005).
Population-based means that more than one subpopulation coevolves. Each subpop-
ulation uses its own surrogate model for fitness evaluations. Individual-based methods
use a surrogate for some of the individuals in a generation and use the real function on
the rest of the individuals (Jin et al., 2000). Generation-based means that the surrogate
is used for fitness evaluations in some of the generations, and the real objective function
in the rest (Ratle, 1998; Jin et al., 2002).
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3.4.2 Advances in Surrogate Models
The original EGO framework uses Gaussian Process Regression, or Kriging (Rasmussen
and Williams, 2006), as the default surrogate model due to its capability of providing
uncertainty quantification. However, for surrogate-assisted EC this uncertainty is not
always required and other machine-learning models can be used as well. There are also
many advances in EGO surrogate models that use Kriging approximation methods to
deal with larger numbers of dimensions or samples (Van Stein et al., 2020; Raponi et al.,
2020; Antonov et al., 2022). Next to Kriging(-like) methods, popular choices are Radial
Basis Functions (Sun et al., 2018), artificial neural networks (Jin et al., 2002), polynomial
repression (Zhou et al., 2005), and support vector regression (Wang et al., 2015). Re-
cent advances also include the use of surrogate ensembles and incorporate automated
hyperparameter optimization methods (AutoML) for selecting a well-fitting surrogate
model (Yu et al., 2020, 2022; Huang et al., 2022; de Winter et al., 2022).

3.5 Multiobjective Optimization

While multiobjective optimization almost was in its infancy 30 years ago, nowadays
it is almost impossible to imagine evolutionary computation without this important
subfield. Evolutionary multiobjective optimization now defines its own research field
and requires other approaches than single-objective optimization. The main reason for
this is that in multiobjective optimization, we are often not interested in a single so-
lution, but in finding the set of Pareto-optimal solutions (Konak et al., 2006). The first
multiobjective optimization algorithm (VEGA, see Schaffer, 1985) splits the population
into multiple subpopulations where each population would be optimized for a different
objective. This strategy, however, tends to only converge to the extremes of each objec-
tive. In the 30 years following, researchers realized that there was a need for diversity
mechanisms, elitism in the population, and other fitness functions to find well-spread
solutions along the entire Pareto frontier. Three evolutionary multiobjective optimiza-
tion algorithms that had these characteristics quickly started to define the state of the
art (Deb, 2007):

1. Nondominated Sorting Genetic Algorithm II (NSGA-II) by Deb, Agrawal et al. (2002)
became popular because it uses an elite-preservation mechanism, enhances a
diversity mechanism, and emphasizes nondominated solutions. The emphasis
on the nondominated solutions is done with a selection operator that selects only
the top N nondominated solutions for crossover to generate new individuals.

2. Strength Pareto Evolutionary Algorithm 2 (SPEA2) by Zitzler et al. (2001) keeps
a fixed archive of nondominated solutions where nondominated solutions are
replaced with solutions that dominate more individuals. The search for new so-
lutions is guided by a k-th nearest neighbor density estimation technique.

3. Pareto Envelope-based Selection Algorithm (PESA2) by Corne et al. (2001) is an evo-
lutionary strategy that compares a parent selected from a hyperbox with its off-
spring child. If the child dominates the parent, the child is accepted as the next
parent. All nondominated solutions are put in an archive, and to keep the archive
small only the solutions in the least crowded regions are kept.

In the years following, the multiobjective optimization research field was enhanced
with strategies for many-objective optimization (e.g., Wagner et al., 2007; Deb and
Jain, 2013; Ishibuchi et al., 2008), for problems with expensive function evaluations
(e.g., Ponweiser et al., 2008; Knowles, 2006; Santana-Quintero et al., 2010), interactive
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multiobjective optimization (e.g., Miettinen, 2014; Xin et al., 2018), and constraint mul-
tiobjective optimization (e.g., Qu and Suganthan, 2011; Blank and Deb, 2021; de Winter
et al., 2022).

3.6 Automated Algorithm Design

As the number of available algorithms to solve parameter optimization problems keeps
growing, as evidenced by the many developments in the algorithms described in Sec-
tion 2, the question of how to choose one of them is gaining considerable importance.
While the problem of algorithm selection (see Kerschke et al., 2019; Muñoz et al., 2015 for
surveys), where we want to pick one algorithm to solve a particular problem, has been
around for decades (Rice, 1976), extensions on this original framework have gained
more traction in the last decade.

The question of algorithm configuration or meta-optimization (see Huang et al., 2019
for a survey), where we want to tune parameters for a specific algorithm, has become
more feasible as computational resources are more readily available. Simultaneously,
the number of parameters of most methods in evolutionary computation is growing
as more modifications are proposed. As such, tuning of parameters is becoming more
prevalent (Eiben and Smit, 2011), and tools for algorithm configuration are gaining pop-
ularity (e.g., see López-Ibáñez et al., 2016; Lindauer et al., 2022).

While tuning parameters for an overall performance gain on a specific function or
set of functions is natural, further benefits are expected when the choice of algorithms
or their parameters can be changed during the optimization process. In contrast to self-
adaptation, this notion of Dynamic Algorithm Configuration (DAC; see Biedenkapp et al.,
2020; Adriaensen et al., 2022) often relies on methods like reinforcement learning, which
enable more general adaptation of not just a single parameter, but potentially switch-
ing multiple operators at once (see Eimer et al., 2021; Sun et al., 2021). Results with
DAC have been promising, showing the potential to mimic complex traditional self-
adaptation schemes (Shala et al., 2020).

These online configuration tasks are feasible only if we consider our algorithms to
be modular in nature, so changes between operators are as simple as swapping a mod-
ule, as we have recently shown (de Nobel et al., 2021a; Vermetten et al., 2019). However,
even when this modularity is not present, advantages could be gained by switching be-
tween algorithms to exploit differences in their behavior (Vermetten et al., 2020). While
this notion of switching between algorithms has shown promise in the context of hy-
brid algorithm design, online policies to switch between algorithms on a per-run basis,
for example, based on the internal state and the landscape as seen by the algorithm, are
promising future directions (e.g., Kostovska, Jankovic et al., 2022).

3.7 Particle Swarm Optimization

Particle Swarm Optimization (PSO), first introduced by Eberhart and Kennedy (1995), is
inspired by the swarming behavior of animals, observed in flocks of birds and schools of
fish. In PSO, a group of candidate solutions, called particles, are modeled as moving in
a multidimensional search space. Each particle i maintains its own position xi ∈ R

n and
velocity vi ∈ R

n, which it updates based on its own experience pi ∈ R
n and the experi-

ences of other particles in the swarm ps ∈ R
n. In canonical PSO, after random initializa-

tion of the position and velocity of each particle, the algorithm loops until termination
criteria are met. In each iteration, the velocity of each particle is updated using:

vi ← vi + U (0, φ1) ⊗ (pi − xi ) + U (0, φ2) ⊗ (ps − xi ). (12)
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Here, U (0, φ) represents a vector of random numbers, uniformly distributed in [0, φ]n,
and ⊗ is component-wise multiplication. The parameters φ1 and φ2 are often referred
to as the social and cognitive components and control the impact of the local best value
pi and the global best value ps . Following the update of vi , the position of each particle
is updated by adding the velocity to the current position, i.e., xi + vi . Several variations
to this general scheme exist; see Boks et al. (2020) for an overview. In the original PSO
algorithm, hard velocity bounds are used (minimum and maximum velocity) to prevent
particles from leaving the search space. It is, however, not a trivial task to choose these
constraints, and particles may fail to converge using this strategy. Attempts to better
control the scope of the search without using hard velocity constraints include Shi and
Eberhart (1998), which introduces an inertia weight ω, that dampens the rate of change
of vi . Large values of ω result in more exploratory behavior while a small value results
in exploitative behavior. It was proposed by Shi and Eberhart (1998) to reduce the value
of ω adaptively from 0.9 to 0.4 during the algorithm run. Notable variants of PSO are
Fully Informed Particle Swarm (FIPS) (see Kennedy and Mendes, 2002), which uses the
best previous positions of all its neighbors, and Bare-Bones PSO (see Kennedy, 2003),
which does not use velocity at all but updates the position using a Gaussian probability
distribution.

3.8 Differential Evolution

Originally proposed in 1995 for parameter optimization problems, Differential Evolution
(DE) (Storn and Price, 1995) has rapidly gained popularity over the subsequent years
due to the simplicity of its implementation, low number of parameters, low space com-
plexity, and competitive performance on a wide range of problems (Das and Suganthan,
2011).

The general framework of DE is as follows: the algorithm starts with a population
of N solutions typically initialized at random as real-valued vectors inside problem
boundaries. Then, within the generational loop of DE, all solutions in the population
sequentially one-by-one undergo a multi-stage perturbation made up of: (i) mutation:
first, a number of “donor” solutions is selected uniformly at random from the popula-
tion for each “current” solution (now called “target”), then a new “mutant” solution is
generated as a sum of a selected solution (called “base”) selected following the muta-
tion strategy and a scaled difference between pairs of abovementioned selected solu-
tions; (ii) crossover/recombination: components of the new “trial” solution are produced
via exchanging components, with some probability, between mutant and target solu-
tions; (iii) selection: trial and target solutions deterministically compete for a spot in the
next generation in terms of their values of the objective function. Similar to other EC
algorithms, the termination criterion can be either based on the precision or the budget
of function evaluations.

All classic DE variants can be described via a general notation DE/a/b/c where a
stands for mutation strategy, b denotes the number of difference vectors employed in
the mutation strategy (e.g., rand/1 Storn and Price, 1995; rand/2, best/1, best/2 originally
proposed in Price et al., 2005; and more advanced versions like target-to-pbest/1, Tanabe
and Fukunaga, 2013 and Zhang and Sanderson, 2007; target-to-best/2, Gong and Cai,
2013; target-to-rand/1, Qijang, 2014, Sharma et al., 2020, Qin et al., 2009; 2-Opt/1 Chiang
et al., 2010), and c specifies the crossover strategy (e.g., originally proposed bin, Storn
and Price, 1995; exp, Price et al., 2005; or more advanced options from Das et al., 2016).
Initialization (uniform, Halton, Gaussian, etc.) and feasibility-preserving (Boks et al.,
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2021) operators are traditionally not included in such notation, typically leaving the
algorithm’s specification somewhat ambiguous (Kononova et al., 2022).

3.8.1 Differential Evolution in the Context of EC
DE is closely related to a number of other heuristic algorithms, namely: (i) the standard
EA, due to the same computational steps involved in both algorithms; (ii) annealing-
inspired algorithms 1 (Kirkpatrick et al., 1983), due to built-in scaling down of the “step
size” in both algorithms; (iii) the Nelder-Mead algorithm (Nelder and Mead, 1965) and
controlled random search (CRS) (Price, 1977), both of which also operationally rely
heavily on the difference vectors to perturb the current trial solutions.

At the same time, DE is remarkably different from traditional EC algorithms (Das and
Suganthan, 2011): (i) population-derived differences used for perturbation in DE auto-
matically adapt to the natural scaling of the problem, unlike, for example, an ES which
requires explicit rules for adaptation of step size per variable over time; (ii) perturba-
tions to solutions are generated from evolving nonzero population difference vectors
rather than a predefined density function in, for example, Estimation of Distribution
Algorithms (EDA)—the so-called contour matching property of DE (Price et al., 2005)
which allows both a mutation step’s size and its orientation to adapt automatically to
the landscape of the objective function; (iii) donor solutions in the mutation step of DE
are selected without any reference to their fitness values, unlike a GA, where typically
some sort of fitness-based parent selection takes place; (iv) while both algorithms en-
sure elitism, one-to-one competition for survival in DE between parent and child mostly
resembles that of a (μ + λ)-ES, where surviving solutions are selected from the joined
pool of parents and children; (v) survivor selection in DE is local as solutions are com-
pared only against a (relatively local) mutated version of itself and not against solutions
that have evolved in distant parts of solution space—apart from multi-population ver-
sions, no standard EC algorithm behaves in a similar fashion (Price et al., 2005). Finally,
the latter property prevents premature convergence and makes DE perfectly suitable
for parallelization.

3.8.2 Parameter Control
Population size. To employ the full potential of the chosen mutation operator, the
population size Np should allow choices of non-repeating indices of donor solutions
(i.e., Np ≥ 4 for rand/1). At the same time, too large populations should be avoided as
potentially deleterious for the convergence process, at the expense of an adequate ex-
ploitation phase to refine promising solutions locally.

Control parameters. DE mutation is parameterized via scale factor F ∈ (0, 2], whose
value in practice should be sufficiently high to counteract selection pressure and gener-
ate sufficiently diverse trial solutions to avoid premature convergence (Zaharie, 2002).
While values 1 < F < 2 are generally less reliable, their occasional utilization can be
beneficial within adaptive schemes described below. DE crossover is parameterized via
crossover rate Cr ∈ [0, 1], which controls the proportion of components of the mutant so-
lution copied into the trial solution and, counterintuitively at first, defines a mutation
rate—the probability that a component is inherited from a mutant (Price et al., 2005).

1In fact, the first version of DE originated as a floating-point-arithmetic modification of a genetic
annealing algorithm (Price et al., 2005) proposed in 1994 in a popular programmer’s magazine, Dr.
Dobb’s Journal.

Evolutionary Computation Volume 31, Number 2 101

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/31/2/81/2133989/evco_a_00325.pdf by guest on 07 Septem
ber 2023



T.H.W. Bäck et al.

(Self-)adaptation. Population size clearly influences population diversity: larger pop-
ulation size means higher diversity and therefore a better exploration of the search
space (Zaharie and Micota, 2017). Such reasoning gave rise to algorithms with adaptive
schemes, controlling a gradual reduction of population size over the optimization run,
to lower chances of stagnation (Brest et al., 2008; Zamuda and Brest, 2012; Tanabe and
Fukunaga, 2013), following similar developments in other subfields of EC.

4 Theoretical Aspects

Huge efforts have been devoted in the past 30 years to develop a rigorous theoretical
analysis of evolutionary computation, in particular for genetic algorithms and evolution
strategies. Following the pioneering work of John Holland’s schema theorem (Holland,
1975) on genetic algorithms, Wegener (2001) used a fitness level-based method to an-
alyze the expected running time of the (1 + 1) EA. This work presented the first proof
that crossover can reduce the running time of EAs on the so-called royal road functions
(Garnier et al., 1999). The analysis of the (1 + 1) EA for more theoretical problems (e.g.,
Linear and LeadingOnes) was presented in the work of Droste et al. (2002). Recently,
attention was also drawn to the impact of hyperparameters on the running time, for
instance, for EAs with parameterized population sizes (Jansen et al., 2005; Witt, 2006;
Rowe and Sudholt, 2014; Antipov et al., 2019) and mutation rates (Böttcher et al., 2010;
Doerr et al., 2013; Gießen and Witt, 2017). Furthermore, extensive work on the analysis
of the crossover operator has also been done in Doerr and Doerr (2015); Doerr et al.
(2015); Dang et al. (2017); Corus and Oliveto (2017); Sudholt (2017); Pinto and Doerr
(2018); and Antipov et al. (2020).

For continuous optimization, many contributions focus on the asymptotic analysis
of evolution strategies, such as the inspiring and fundamental analysis of Beyer (2001)
and Auger and Hansen (2011). Moreover, the well-known drift analysis has been intro-
duced by He and Yao (2001, 2003), serving as a general theoretical framework. It was
employed for several challenging theoretical questions. For instance, Doerr et al. (2012)
provides an elegant proof for the O(n log n) running time of the (1 + 1) EA on any linear
function. In Witt (2013) tight runtime bounds of (1 + 1) EA are presented, and Akimoto
et al. (2018) uses drift analysis to analyze the runtime bound for the (1 + 1) evolution
strategy with the 1/5-success rule. Lengler has summarized some examples of using
drift analysis for EAs (Lengler, 2020).

For multiobjective evolutionary algorithms (MOEAs), theoretical results are mainly
derived for simple MOEAs on discrete problems. For example, the runtime analyses for
(global) simple evolutionary multi-objective optimizers on classic bi-objective pseudo-
Boolean optimization problems (Laumanns et al., 2004; Giel and Lehre, 2006; Osuna
et al., 2020). Very recently, the first theoretical results were presented for the famous
NSGA-II algorithm (Zheng et al., 2022; and Doerr and Qu, 2022a, b).

For a more complete overview of the many fundamental theoretical results of EC
in recent years, we refer the interested reader to Auger and Hansen (2011); Doerr and
Neumann (2020); Krejca and Witt (2020); and Doerr and Neumann (2021).

5 The More the Better? Not Always

In this section, we briefly address the excessive number of optimization algorithms
with potentially similar performance in the field, referring to the ever-growing num-
ber of paradigms gleaned from nature, claimed to be distinct models for optimization
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algorithms (Section 5.1). A possible investigation of this problem can be achieved by
proper benchmarking, as we argue in Section 5.2.

5.1 The “Bestiary” and the Problem of Too Many Algorithms

Although the rising popularity of evolutionary computation has led to a vast number
of positive contributions in the optimization domain at large, there have also been some
rather negative developments over the past 30 years. In particular, the trend of devising
“novel” nature-inspired optimization heuristics has been a concern in the last decades,
and the trend does not seem to slow down (Hussain et al., 2019).

While early evolutionary computation techniques effectively use metaphors to mo-
tivate the algorithmic concepts, the use of metaphor has expanded to the point where
it is (un)intentionally obfuscating the underlying algorithmic components (Sörensen,
2015). There is now a veritable zoo of metaphor-based optimization heuristics (Campelo
and Aranha, 2021, 2018), each with its own terminology, which is hard to decipher for
those with a more standard background in optimization heuristics, and for those who
are looking for a well-defined formal algorithmic or mathematical description. These
“novel” metaphor-based methods still gain attention, and even though many of them
have been exposed as providing no novelty, new ones are still devised and promoted
(Weyland, 2010; Camacho Villalón et al., 2020; Camacho-Villalón et al., 2022a). For prac-
titioners who are not familiar with the field, but looking for the best possible choice of
an optimization algorithm for solving a real-world problem, the ever-growing zoo of
metaphor-based heuristics often confuses them and results in the impossibility of mak-
ing a sensible choice for a specific problem to solve.

We, therefore, strongly advocate (i) the use of mathematical language and formal
pseudocode to describe new algorithms; (ii) avoiding the excessive use of analogies
with nature and the corresponding language, and (iii) proper benchmarking compar-
isons (see Section 5.2) against the state-of-the-art optimization algorithms to justify any
proposal for new ones.

5.2 Benchmarking for Algorithm Performance Comparison

With an ever-increasing variety of optimization algorithms, questions about when a
particular algorithm is useful become difficult to answer. Despite numerous advances
in the theoretical analysis of optimization algorithms, it is infeasible to answer our ques-
tion with only theory. This is due to the sheer number of variations of evolutionary al-
gorithms and the fact that modern runtime analyses only apply to a limited number of
theoretical problems and algorithms. There is, however, still a need to gain insight into
the behavior of algorithms to decide when they might apply to a particular real-world
scenario. As such, benchmarking has grown from an ad-hoc procedure into a field with
many toolboxes to help researchers perform their experiments (Bartz-Beielstein et al.,
2020).

The standards for experimentation have improved a lot in the last 30 years, and the
importance of not just benchmarking, but standardized and reproducible benchmark-
ing, has become increasingly apparent to the community (López-Ibáñez et al., 2021).
Various benchmarking frameworks have been developed, providing access to curated
sets of problems (Bennet et al., 2021; Hansen et al., 2021; de Nobel et al., 2021b). This way,
performance data can be shared, promoting data reuse and enabling straightforward
comparisons to state-of-the-art algorithms. One particular example of benchmarking
tools promoting this idea is the IOHprofiler (Doerr et al., 2020), a collaboration between
Leiden University, Sorbonne Université, Tel-Hai College, and others, which collects

Evolutionary Computation Volume 31, Number 2 103

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/31/2/81/2133989/evco_a_00325.pdf by guest on 07 Septem
ber 2023



T.H.W. Bäck et al.

performance data from a wide range of sources and makes it directly accessible via
a web service,2 such that anyone can analyze the data (Wang et al., 2022).

As noted in Section 3, there is a great variety in the types of optimization problems
that can be formulated, and each of them can be applicable for a specific real-world use
case (van der Blom et al., 2020). As such, benchmark problems have to be developed for
each of these domains. The most used suites in the context of parameter optimization
are for single-objective, noiseless optimization without additional constraints, where
benchmark collections have largely become standardized in the last decade (Hansen,
Finck et al., 2009; Suganthan et al., 2005), but other areas (e.g., constrained optimiza-
tion) have also seen significant efforts to ensure reliable benchmark setups (see e.g.,
Hellwig and Beyer, 2019). Some tools, such as the COCO framework, have expanded
on a single suite of commonly used problems (Hansen et al., 2010) to include variations
with constraints, noise, discrete variables, and multiple objectives (Hansen et al., 2021).

While the specific demands of different communities within EC lead to variations
in benchmarking problems, the overall procedures have much in common with each
other (Beiranvand et al., 2017). To ensure fair comparisons, evaluation counts provide a
hardware-independent measure of computational effort, which allows data generated
decades ago to still be used today. While performance data formats have not yet been
standardized, moves towards interoperability of benchmark tools are gaining steam,
with, for example, analysis pipelines that inherently support data from many different
sources (Wang et al., 2022). Further developments in terms of data representation and
reuse are promising future directions (Kostovska et al., 2021).

While benchmarking plays a key role in understanding the strengths of optimiza-
tion algorithms, benchmarking data is useful only when the problem being bench-
marked can be clearly understood. While many benchmark problems are built from
the ground up to have specific high-level properties (e.g., strong global structure), the
way in which the problem and algorithm interact in a lower-level context is often not
as easily described. To aid with this process, the field of Exploratory Landscape Analysis
(ELA) has been developed (Mersmann et al., 2011). This field aims to characterize prob-
lems based on sets of low-level features, such as information content of a set of samples.
This type of analysis (Kerschke and Trautmann, 2019) has proven useful in areas like
algorithm selection (Bischl et al., 2012), but also for benchmarking and understanding
the impact of algorithmic components of modular algorithms (Kostovska, Vermetten,
et al., 2022).

6 A Subjective Outlook (Not for 30 Years)

In the domain of continuous parameter optimization problems, as defined in Equation
(1), it is extremely difficult today for practitioners and researchers to pick the best pos-
sible optimization algorithm for a given problem and to parameterize it correctly. First
steps in the direction of problem characterization, for example, by means of Exploratory
Landscape Analysis, and problem-specific Combined Algorithm Selection and Hyperparame-
ter Optimization have been made recently, with promising results. Methods such as dy-
namic algorithm configuration, metaheuristics, and modular algorithm frameworks,
as discussed in Section 3.6, clearly indicate one path towards the future of the field—
namely, automatically designing the optimal optimization algorithm for a given prob-
lem or problem class.

2https://iohanalyzer.liacs.nl
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Related to this, we would like to emphasize that there are too many nature-inspired
optimization algorithms around, with new ones being proposed continuously. We
strongly propose for the future to consolidate the field, understand which algorithms
are good for which optimization problem characteristics, and develop configurable
algorithm frameworks that allow for the generation, experimentation, and proper
benchmarking of existing and new algorithms. A few more topics we propose are the
following:

• In addition to the common “competitive” form of benchmarking, a focus
should also be placed on the explainability of achieved results by understand-
ing the interaction between algorithmic components and problem properties
better.

• Where possible, reproducibility should become a requirement for all evolu-
tionary computation publications. We should, however, also leave possibili-
ties to publish about real-world applications, which often use proprietary data
or simulators but facilitate a better understanding of the requirements of real-
world applications.

• It would be good to use configurable algorithm frameworks with straightfor-
ward interfaces to allow easy use of state-of-the-art algorithms.

• We need to get rid of “novel” nature-inspired algorithms and use a standard-
ized description and formalization approach for new algorithms, to easily see
whether they are similar or identical to existing methods.
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Brest, J., and Maučec, M. S. (2008). Population size reduction for the differential evolution algo-
rithm. Applied Intelligence, 29:228–247. 10.1007/s10489-007-0091-x

Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., and Woodward, J. R. (2009). Exploring
hyper-heuristic methodologies with genetic programming. In C. L. Mumford and L. C. Jain
(Eds.), Computational Intelligence: Collaboration, Fusion and Emergence, pp. 177–201. Springer.

Camacho Villalón, C. L., Stützle, T., and Dorigo, M. (2020). Grey wolf, firefly and bat algorithms:
Three widespread algorithms that do not contain any novelty. In International Conference on
Swarm Intelligence, pp. 121–133.

Camacho-Villalón, C. L., Dorigo, M., and Stützle, T. (2022a). An analysis of why cuckoo search
does not bring any novel ideas to optimization. Computers & Operations Research, 142:105747.

Camacho-Villalón, C. L., Dorigo, M., and Stützle, T. (2022b). PSO-X: A component-based frame-
work for the automatic design of particle swarm optimization algorithms. IEEE Transactions
on Evolutionary Computation, 26(3):402–416.

Campelo, F., and Aranha, C. (2018). EC Bestiary: A bestiary of evolutionary, swarm and
other metaphor-based algorithms. Retrieved from https://zenodo.org/record/1293352
#.ZCLYqnbMJPY

Campelo, F., and Aranha, C. d. C. (2021). Sharks, zombies and volleyball: Lessons from the evo-
lutionary computation bestiary. In Proceedings of the CEUR Workshop, p. 6. Vol. 3007.

Chacón, J., and Segura, C. (2018). Analysis and enhancement of simulated binary crossover. In
Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1–8.

Chatzilygeroudis, K., Cully, A., Vassiliades, V., and Mouret, J.-B. (2021). Quality-diversity opti-
mization: a novel branch of stochastic optimization. In Black box optimization, machine learn-
ing, and no-free lunch theorems, pp. 109–135. Springer.

Chellapilla, K., and Fogel, D. B. (1999a). Evolution, neural networks, games, and intelligence.
Proceedings of the IEEE, 87(9):1471–1496. 10.1109/5.784222

Chellapilla, K., and Fogel, D. B. (1999b). Evolving neural networks to play checkers without re-
lying on expert knowledge. IEEE Transactions on Neural Networks, 10(6):1382–1391. 10.1109/
72.809083

Chiang, C.-W., Lee, W.-P., and Heh, J.-S. (2010). A 2-Opt based differential evolution for global
optimization. Applied Soft Computing, 10(4):1200–1207. 10.1016/j.asoc.2010.05.012

Chootinan, P., and Chen, A. (2006). Constraint handling in genetic algorithms using a gradient-
based repair method. Computers & Operations Research, 33(8):2263–2281.

Coello, C.A.C. (2022). Constraint-handling techniques used with evolutionary algorithms. In Ge-
netic and Evolutionary Computation Conference Companion (GECCO), pp. 1310–1333.

Coello, C.A.C., and Montes, E. M. (2002). Constraint-handling in genetic algorithms through the
use of dominance-based tournament selection. Advanced Engineering Informatics, 16(3):193–
203. 10.1016/S1474-0346(02)00011-3

108 Evolutionary Computation Volume 31, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/31/2/81/2133989/evco_a_00325.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1007/s10489-007-0091-x
https://zenodo.org/record/1293352#.ZCLYqnbMJPY
https://doi.org/10.1109/5.784222
https://doi.org/10.1109/72.809083
https://doi.org/10.1016/j.asoc.2010.05.012
https://doi.org/10.1016/S1474-0346(02)00011-3


Evolutionary Algorithms 30 Years Later

Coello Coello, C. (2006). Evolutionary multi-objective optimization: A historical view of the field.
IEEE Computational Intelligence Magazine, 1(1):28–36. 10.1109/MCI.2006.1597059

Corne, D. W., Jerram, N. R., Knowles, J. D., and Oates, M. J. (2001). PESA-II: Region-based selec-
tion in evolutionary multiobjective optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO), pp. 283–290.

Corus, D., and Oliveto, P. S. (2017). Standard steady state genetic algorithms can hillclimb faster
than mutation-only evolutionary algorithms. IEEE Transactions on Evolutionary Computation,
22(5):720–732. 10.1109/TEVC.2017.2745715

Costa, A., Celano, G., Fichera, S., and Trovato, E. (2010). A new efficient encoding/decoding pro-
cedure for the design of a supply chain network with genetic algorithms. Computers & In-
dustrial Engineering, 59(4):986–999.

Cully, A., and Demiris, Y. (2018). Hierarchical behavioral repertoires with unsupervised descrip-
tors. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 69–76.

Dang, D.-C., Friedrich, T., Kötzing, T., Krejca, M. S., Lehre, P. K., Oliveto, P. S., Sudholt, D., and
Sutton, A. M. (2017). Escaping local optima using crossover with emergent diversity. IEEE
Transactions on Evolutionary Computation, 22(3):484–497. 10.1109/TEVC.2017.2724201

Das, S., Maity, S., Qu, B.-Y., and Suganthan, P. N. (2011). Real-parameter evolutionary multimodal
optimization—A survey of the state-of-the-art. Swarm and Evolutionary Computation, 1(2):71–
88. 10.1016/j.swevo.2011.05.005

Das, S., Mullick, S. S., and Suganthan, P. N. (2016). Recent advances in differential evolution—An
updated survey. Swarm and Evolutionary Computation, 27:1–30. 10.1016/j.swevo.2016.01.004

Das, S., and Suganthan, P. N. (2011). Differential evolution: A survey of the state-of-the-art. IEEE
Transactions on Evolutionary Computation, 15(1):4–31. 10.1109/TEVC.2010.2059031

Dasgupta, D., and Michalewicz, Z. (2013). Evolutionary algorithms in engineering applications.
Springer Science & Business Media.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems. PhD
thesis, University of Michigan.

de Nobel, J., Vermetten, D., Wang, H., Doerr, C., and Bäck, T. (2021a). Tuning as a means of as-
sessing the benefits of new ideas in interplay with existing algorithmic modules. In Genetic
and Evolutionary Computation Conference Companion (GECCO), pp. 1375–1384.

de Nobel, J., Ye, F., Vermetten, D., Wang, H., Doerr, C., and Bäck, T. (2021b). IOHexperimenter:
Benchmarking platform for iterative optimization heuristics. arXiv:2111.04077

de Winter, R., Bronkhorst, P., van Stein, B., and Bäck, T. (2022). Constrained multi-objective opti-
mization with a limited budget of function evaluations. Memetic Computing, 14(2):151–164.
10.1007/s12293-022-00363-y

Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods
in Applied Mechanics and Engineering, 186(2-4):311–338. 10.1016/S0045-7825(99)00389-8

Deb, K. (2007). Current trends in evolutionary multi-objective optimization. International Journal
for Simulation and Multidisciplinary Design Optimization, 1(1):1–8. 10.1051/ijsmdo:2007001

Deb, K. (2009). Multi-objective optimization using evolutionary algorithms. Wiley.

Deb, K., and Agrawal, R. B. (1995). Simulated binary crossover for continuous search space. Com-
plex Systems, 9(2):115–148.

Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197. 10.1109/
4235.996017

Evolutionary Computation Volume 31, Number 2 109

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/31/2/81/2133989/evco_a_00325.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1109/MCI.2006.1597059
https://doi.org/10.1109/TEVC.2017.2745715
https://doi.org/10.1109/TEVC.2017.2724201
https://doi.org/10.1016/j.swevo.2011.05.005
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.1007/s12293-022-00363-y
https://doi.org/10.1016/S0045-7825(99)00389-8
https://doi.org/10.1051/ijsmdo:2007001
https://doi.org/10.1109/4235.996017


T.H.W. Bäck et al.

Deb, K., Anand, A., and Joshi, D. (2002). A computationally efficient evolutionary algo-
rithm for real-parameter optimization. Evolutionary Computation, 10(4):371–395. 10.1162/
106365602760972767

Deb, K., and Jain, H. (2013). An evolutionary many-objective optimization algorithm us-
ing reference-point-based nondominated sorting approach, part I: Solving problems with
box constraints. IEEE Transactions on Evolutionary Computation, 18(4):577–601. 10.1109/
TEVC.2013.2281535

Deb, K., Sindhya, K., and Okabe, T. (2007). Self-adaptive simulated binary crossover for real-
parameter optimization. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), pp. 1187–1194.

Doerr, B., and Doerr, C. (2015). A tight runtime analysis of the (1 + (λ, λ)) genetic algorithm
on OneMax. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pp. 1423–1430.

Doerr, B., Doerr, C., and Ebel, F. (2015). From black-box complexity to designing new genetic
algorithms. Theoretical Computer Science, 567:87–104. 10.1016/j.tcs.2014.11.028

Doerr, B., Gießen, C., Witt, C., and Yang, J. (2019). The (1+λ) evolutionary algorithm with self-
adjusting mutation rate. Algorithmica, 81(2):593–631. 10.1007/s00453-018-0502-x

Doerr, B., Jansen, T., Sudholt, D., Winzen, C., and Zarges, C. (2013). Mutation rate matters
even when optimizing monotonic functions. Evolutionary Computation, 21(1):1–27. 10.1162/
EVCO_a_00055

Doerr, B., Johannsen, D., and Winzen, C. (2012). Multiplicative drift analysis. Algorithmica,
64(4):673–697. 10.1007/s00453-012-9622-x

Doerr, B., Le, H. P., Makhmara, R., and Nguyen, T. D. (2017). Fast genetic algorithms. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO), pp. 777–784.

Doerr, B., and Neumann, F. (Eds.). (2020). Theory of evolutionary computation—Recent developments
in discrete optimization. Natural Computing Series. Springer.

Doerr, B., and Neumann, F. (2021). A survey on recent progress in the theory of evolutionary algo-
rithms for discrete optimization. ACM Transactions on Evolutionary Learning and Optimization,
1(4):16:1–16:43. 10.1145/3472304

Doerr, B., and Qu, Z. (2022a). A first runtime analysis of the NSGA-II on a multimodal problem. In
Proceedings of the 17th International Conference on Parallel Problem Solving from Nature, pp. 399–
412. Lecture Notes in Computer Science, Vol. 13399. 10.1007/978-3-031-14721-0_28

Doerr, B., and Qu, Z. (2022b). From understanding the population dynamics of the NSGA-II to
the first proven lower bounds. CoRR, abs/2209.13974.

Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O. M., and Bäck, T. (2020). Benchmarking dis-
crete optimization heuristics with IOHprofiler. Applied Soft Computing, 88:106027. 10.1016/
j.asoc.2019.106027

Douguet, D. (2010). e-LEA3D: A computational-aided drug design web server. Nucleic acids re-
search, 38(Web-Server-Issue):615–621. 10.1093/nar/gkq322

Drake, J. H., Kheiri, A., Özcan, E., and Burke, E. K. (2020). Recent advances in selection hyper-
heuristics. European Journal of Operational Research, 285(2):405–428. 10.1016/j.ejor.2019.07.073

Droste, S., Jansen, T., and Wegener, I. (2002). On the analysis of the (1+1) evolutionary algorithm.
Theoretical Computer Science, 276(1–2):51–81. 10.1016/S0304-3975(01)00182-7

Eberhart, R., and Kennedy, J. (1995). Anew optimizer using particle swarm theory. In International
Symposium on Micro Machine and Human Science, pp. 39–43.

110 Evolutionary Computation Volume 31, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/31/2/81/2133989/evco_a_00325.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1162/106365602760972767
https://doi.org/10.1109/TEVC.2013.2281535
https://doi.org/10.1016/j.tcs.2014.11.028
https://doi.org/10.1007/s00453-018-0502-x
https://doi.org/10.1162/EVCO_a_00055
https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1145/3472304
https://doi.org/10.1007/978-3-031-14721-0_28
https://doi.org/10.1016/j.asoc.2019.106027
https://doi.org/10.1093/nar/gkq322
https://doi.org/10.1016/j.ejor.2019.07.073
https://doi.org/10.1016/S0304-3975(01)00182-7


Evolutionary Algorithms 30 Years Later

Eiben, A. E., and Rudolph, G. (1999). Theory of evolutionary algorithms: A bird’s eye view. The-
oretical Computer Science, 229(1–2):3–9. 10.1016/S0304-3975(99)00089-4

Eiben, A. E., and Smit, S. K. (2011). Parameter tuning for configuring and analyzing evolu-
tionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31. 10.1016/j.swevo.2011
.02.001

Eimer, T., Biedenkapp, A., Reimer, M., Adriaensen, S., Hutter, F., and Lindauer, M. (2021).
DACBench: A benchmark library for dynamic algorithm configuration. In Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, pp. 1668–1674.

ElHara, O. A., Auger, A., and Hansen, N. (2013). A median success rule for non-elitist evolution
strategies: study of feasibility. In Genetic and Evolutionary Computation Conference (GECCO),
pp. 415–422.

Eshelman, L. J., and Schaffer, J. D. (1992). Real-coded genetic algorithms and interval-schemata.
In Proceedings of the Second Workshop on Foundations of Genetic Algorithms, pp. 187–202.

Faury, L., Calauzènes, C., and Fercoq, O. (2019). Benchmarking GNN-CMA-ES on the BBOB
noiseless testbed. In Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion (GECCO), pp. 1928–1936.

Flageat, M., and Cully, A. (2020). Fast and stable MAP-Elites in noisy domains using deep grids.
In Proceedings of 2020 Conference on Artificial Life, pp. 273–282.

Fogel, D. (1992). An analysis of evolutionary programming. In Proceedings of the 1st Annual Con-
ference on Evolutionary Programming, pp. 43–51.

Fogel, D. B. (1993). Using evolutionary programing to create neural networks that are capable
of playing tic-tac-toe. In Proceedings of International Conference on Neural Networks, pp. 875–
880.

Fogel, D. B. (1994). Evolutionary programming: An introduction and some current directions.
Statistics and Computing, 4(2):113–129. 10.1007/BF00175356

Fogel, D. B. (2000). Evolving a checkers player without relying on human experience. Intelligence,
11(2):20–27. 10.1145/337897.337996

Fogel, D. B. (2002). Blondie24: Playing at the edge of AI. Morgan Kaufmann.

Fogel, D. B. (2023). Personal reflections on some early work in evolving strategies in the iterated
prisoner’s dilemma. Evolutionary Computation, 31(2):157–161.

Fogel, D. B., Fogel, L. J., and Porto, V. W. (1990). Evolutionary programming for training neural
networks. In International Joint Conference on Neural Networks, pp. 601–605.

Fogel, D. B., Hays, T. J., Hahn, S. L., and Quon, J. (2006). The Blondie25 chess program competes
against Fritz 8.0 and a human chess master. In 2006 IEEE Symposium on Computational Intel-
ligence and Games, pp. 230–235.

Fogel, L., Owens, A., and Walsh, M. (1966). Artificial intelligence through simulated evolution. Wiley.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1965). Intelligent decision-making through a sim-
ulation of evolution. IEEE Transactions on Human Factors in Electronics, HFE-6(1):13–23.
10.1109/THFE.1965.6591252

Gaier, A., Asteroth, A., and Mouret, J.-B. (2017). Aerodynamic design exploration through
surrogate-assisted illumination. In 18th AIAA/ISSMO Conference on Multidisciplinary Anal-
ysis and Optimization, p. 3330.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous hitting times for binary mutations.
Evolutionary Computation, 7(2):173–203. 10.1162/evco.1999.7.2.173

Evolutionary Computation Volume 31, Number 2 111

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/31/2/81/2133989/evco_a_00325.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1016/S0304-3975(99)00089-4
https://doi.org/10.1016/j.swevo.2011.02.001
https://doi.org/10.1007/BF00175356
https://doi.org/10.1145/337897.337996
https://doi.org/10.1109/THFE.1965.6591252
https://doi.org/10.1162/evco.1999.7.2.173


T.H.W. Bäck et al.

Giel, O., and Lehre, P. K. (2006). On the effect of populations in evolutionary multi-objective op-
timization. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
pp. 651–658.

Gießen, C., and Witt, C. (2017). The interplay of population size and mutation probability in the
(1+λ) EA on OneMax. Algorithmica, 78(2):587–609.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison
Wesley.

Goldberg, D. E., and Lingle, R. (1985). Alleles, loci, and the traveling salesman problem. In Pro-
ceedings of the 1st International Conference on Genetic Algorithms, pp. 154–159.

Gong, W., and Cai, Z. (2013). Differential evolution with ranking-based mutation operators. IEEE
Transactions on Cybernetics, 43(6):2066–2081. 10.1109/TCYB.2013.2239988

Grefenstette, J. J. (1986). Optimization of control parameters for genetic algorithms. IEEE Trans-
actions on Systems, Man, and Cybernetics, 16(1):122–128. 10.1109/TSMC.1986.289288

Hagg, A., Asteroth, A., and Bäck, T. (2018). Prototype discovery using quality-diversity. In Parallel
Problem Solving from Nature, pp. 500–511.

Hagg, A., Asteroth, A., and Bäck, T. (2019). Modeling user selection in quality diversity.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 116–
124.

Hagg, A., Preuss, M., Asteroth, A., and Bäck, T. (2020). An analysis of phenotypic diversity in
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