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Abstract
Model management is an essential component in data-driven surrogate-assisted evo-
lutionary optimization. In model management, the solutions with a large degree of
uncertainty in approximation play an important role. They can strengthen the explo-
ration ability of algorithms and improve the accuracy of surrogates. However, there is
no theoretical method to measure the uncertainty of prediction of Non-Gaussian pro-
cess surrogates. To address this issue, this article proposes a method to measure the
uncertainty. In this method, a stationary random field with a known zero mean is used
to measure the uncertainty of prediction of Non-Gaussian process surrogates. Based on
experimental analyses, this method is able to measure the uncertainty of prediction of
Non-Gaussian process surrogates. The method’s effectiveness is demonstrated on a set
of benchmark problems in single surrogate and ensemble surrogates cases.

Keywords
Evolutionary computation, data-driven evolutionary optimization, surrogate, model
management, Non-Gaussian process.

1 Introduction

Data-driven optimization problems usually involve objective and constraint functions
that are not available, and the evaluation of these functions is time-consuming and com-
plex. There are only small data from physical experiments, numerical simulations, or
daily life, and the evaluation of these functions involves a number of computationally
expensive numerical simulations or costly physical experiments (Preen and Bull, 2016;
Wang et al., 2016; Jin et al., 2018).
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Evolutionary algorithms (EAs) are population-based search methods that mimic
natural biological evolution and species’ social behavior. They are promising in solv-
ing non-convex, constrained, multiobjective, or dynamic problems (Michalewicz and
Schoenauer, 1996; Hart et al., 1998; Li et al., 2014; Zhang, Mei et al., 2021). However,
most existing research on EAs usually assumes that the analytic objective and con-
straint functions are available, and evaluating these functions is cheap and simple.
Therefore, EAs cannot be directly used to solve the data-driven optimization prob-
lems. Surrogate-assisted evolutionary algorithms (SAEAs) are considered to address
the limitation of EAs in solving these problems (Jin et al., 2000; Tong et al., 2019; Zhang,
Li et al., 2021; Wang et al., 2022). In SAEAs, many machine learning models can be
used as surrogates to approximate the exact functions, including polynomial regres-
sion (PR), Gaussian process (GP), artificial neural network (ANN), radial basis function
network (RBFN), support vector machine (SVM), and the ensemble of these surrogates.
A limited number of exact function evaluations are carried out, and a small amount of
data is used to train these surrogates (Braun et al., 2009; Jin et al., 2000; Chugh et al.,
2019).

For all surrogates mentioned above, GP is usually used (Emmerich et al., 2006;
Coelho and Bouillard, 2011; Chugh et al., 2016; Zhan and Xing, 2021). There is provided
prediction and uncertainty information by GP, which is important in SAEAs. Then the
existing infill sampling criteria can be used to guide the search of EAs and the update of
surrogates, such as the lower confidence bound (LCB) (Torczon and Trosset, 1998), the
expected improvement (EI) (Jones et al., 1998) and the probability of improvement (PoI)
(Ulmer et al., 2003). On the contrary, although many Non-Gaussian process (Non-GP)
surrogates can also provide a good prediction, they cannot provide the uncertainty of
prediction of surrogates. In this case, these Non-GP surrogates have significant limita-
tions: (1) Because there is no uncertainty information of prediction of surrogates, it is
hard to improve the exploration of EAs and the accuracy of surrogates; (2) The existing
infill sampling criteria cannot be used to guide the search of EAs.

It should be emphasized that the uncertainty information of prediction of surro-
gates plays an essential role in model management in SAEAs, because (1) solutions
with a large degree of uncertainty indicate that the fitness landscape around them has
not been well explored, and therefore the evaluation of these solutions is likely to find
a better solution (Branke and Schmidt, 2005); (2) evaluating these solutions can most
effectively improve the accuracy of surrogates (Jin, 2011).

Several methods are used to measure the uncertainty of prediction of Non-GP sur-
rogates. For instance, Bayesian neural networks can measure the uncertainty of predic-
tion of neural networks (Gal and Ghahramani, 2015). Cross-validation also can be used
to measure the uncertainty of prediction of surrogates (Hutter et al., 2019). However,
there is a significant limitation for the two methods: the accuracy of uncertainty highly
depends on the size of training data. However, there is not much training data in data-
driven optimization progress. Besides, the prior distribution also needs to be known
for Bayesian Neural Networks. Based on the limitation, the two methods will not be
investigated in the article.

In addition to the above methods, there are also three typical methods: (1) The dis-
tance from the solutions to the existing training data has been used as an uncertainty
measure in Branke and Schmidt (2005). Since ensemble surrogates have been proven
to provide uncertainty information, two methods have been proposed to measure the
uncertainty of prediction of ensemble surrogates. (2) The literature (Wang et al., 2017)
defined the uncertainty measurement to be the maximum difference between outputs
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of ensemble members. (3) The variance of predictions output by the base surrogates of
ensemble is used to estimate the uncertainty of prediction of ensemble surrogates (Guo
et al., 2018).

Among the three methods above, the first method is a qualitative uncertainty mea-
surement method. In theory, it is not able to accurately measure the uncertainty of pre-
diction of surrogates. Instead, it indicates only the crowded degree of the neighborhood
of a solution. The second method is the disagreement among the outputs of ensemble
members for the prediction of surrogates. This method was proposed based on Query-
by-Committee (QBC) in active learning, which shows that the query with the maxi-
mum disagreement strategy can efficiently enhance the accuracy of surrogates (Wang
et al., 2017). In essence, this method describes the difference of predictions among en-
semble members in a solution. In the third method, the uncertainty of prediction of
surrogates is defined by the variance of predictions output by the base surrogates of
ensemble. It indicates the average squared deviation of the base surrogates about the
output of ensemble. In the probability and statistic viewpoint, these methods for mea-
suring the uncertainty of prediction of Non-GP surrogates are not a sound method.
These methods mentioned above cannot address one important issue: to measure the
uncertainty of prediction of Non-GP surrogates. Therefore, it can be confirmed that
there is no a theoretical sound method to measure the uncertainty of prediction of
Non-GP surrogates.

To address the issue mentioned above, this article proposes an uncertainty measure
for the prediction (UMP) of Non-GP surrogates. This method can be written in the form
of a random field model. In detail, it consists of two components: regression function
(namely Non-GP surrogate) and residual variation (also known as uncertainty). In this
method, two components are uncorrelated. In the first term, Non-GP surrogate as re-
gression function only depends on decision variables, and the second term represents
the uncertainty of prediction of Non-GP surrogate based on a stationary random field.
Thus, based on the random field model, the uncertainty of prediction of Non-GP sur-
rogate can be measured. Then, the existing infill sampling criteria can be used to guide
the search of algorithms and the update of surrogates.

In this article, an uncertainty measure for the prediction of Non-GP Surrogates is
proposed to overcome the drawbacks of existing uncertainty methods. The main con-
tribution of this article can be summarized as follows:

(1) An uncertainty measure for the prediction of Non-GP surrogates is proposed,
which overcomes the drawbacks of existing uncertainty methods;

(2) The effectiveness of the proposed method is investigated on a set of benchmark
problems and analysed on Rastrigin function in both single surrogate and ensemble
surrogates cases. The experimental results demonstrate that the proposed method is
promising in solving data-driven optimization problems.

The rest of this article is structured as follows. Section 2 presents a brief review of
the used surrogates, ensemble surrogates, and infill sampling criterion in this article.
Section 3 presents the proposed uncertainty measure for the prediction of Non-GP sur-
rogates. Section 4 demonstrates and discusses experimental results. Finally, Section 5
concludes the article with a summary and looks into the future work.

2 Related Work

Surrogates and infill sampling criteria are essential components in online surrogate-
assisted evolutionary algorithms. This section presents a brief review of surrogates and
the infill sampling criterion involved in this article.
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2.1 Polynomial Regression

Polynomial regression adopts the statistical tools of regression and analysis of variance
to obtain the minimum variance of regression. It is widely used in approximating exact
objective and constraint functions. The formulation of the polynomial regression at any
untested x is defined as follows

f̂ (x) = β0 + �d
i=1βixi + �d

i=1,j=1,i≤jβi,j xixj + �d
i=1,j=1,k=1,i≤j≤kβi,j,kxixj xk + · · · (1)

where β0, βi, βi,j , βi,j,k are the coefficients to be estimated, d is the dimension of prob-
lems; usually, the least square method (LSM) is often used to estimate these coefficients
in the surrogate.

2.2 Radial Basis Function Network

Like other neural networks, RBFN has an input layer, hidden layer, and output layer. It
uses radial basis functions as its activation functions. In RBFN, the input layer is directly
connected to the hidden one, and the output of RBFN at an untested x has the following
expression

f̂ (x) =
M∑
i=1

ωiψ (‖ x − ci ‖p ), (2)

where ψ is activation function; ci can be any point vector (e.g., origin or center); M is the
number of nodes of the hidden layer; and ω is the unknown weights to be estimated,
which can be determined by LSM or backpropagation based on gradient descent; p is
norm.

2.3 Support Vector Machine

SVM is one of the popular surrogates based on statistical learning theory and is often
used as a surrogate by constructing a hyperplane in high-dimensional space. The SVM
at an untested x is expressed as

f̂ (x) = ωT φ(x) + b, (3)

where φ(x) is feature vector; coefficient vector ω and coefficient b need to be estimated.
The unknown parameter ω and b can be obtained by optimizing a constrained op-

timization problem (Cristianini and Shawe-Taylor, 2000) based on observed values yi at
xi for i = 1, · · ·, N , which is shown as

min
1
2
‖ω‖2 + L

N∑
i=1

(ξi + ξ ′
i )

st

⎧⎪⎨
⎪⎩

yi − ωT φ(xi ) − b ≤ ε + ξi

ωT φ(xi ) + b − yi ≤ ε + ξ ′
i

ξ ′
i , ξi ≥ 0,

(4)

where L = 1.0 and ε = 0.1 are prespecified values in this article, and ξi and ξ ′
i are slack

variables representing upper and lower constraints.

2.4 Ensemble Surrogates

The ensemble surrogates have been proven to outperform most of the single surrogates.
They are able to generate more reliable predictions of fitness landscape of problems
than single surrogates (Liu et al., 2000; Queipo et al., 2005), when little is known about

56 Evolutionary Computation Volume 31, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/31/1/53/2071932/evco_a_00316.pdf by guest on 07 Septem
ber 2023



An Uncertainty Measure for Prediction of Non-Gaussian Process Surrogates

the problem to be optimized at hand. The prediction of ensemble surrogates f̂ ens (x) is
formulated as

f̂ ens (x) =
K∑

i=1

wif̂ i (x),
K∑

i=1

wi = 1, (5)

where f̂ i (x) represents the output of the ith member in the ensemble; K is the number
of members in the ensemble, K = 3 in this article; in this article, wi is the weight of the
ith member defined by

wi = 0.5 − ei

2(
∑K

j=1 ej )
, (6)

where ei and ej are the root mean square error (RMSE) of the ith and j th member in the
ensemble, respectively.

The ensemble surrogates also have been proven to provide uncertainty information
of prediction of ensemble surrogates, and two methods have been proposed to measure
the uncertainty information. The literature (Wang et al., 2017) defined the uncertainty
measurement to be the maximum difference between outputs of ensemble members, as
shown in Eq. (7).

U (x) = max(f̂ i (x) − f̂ j (x)), (7)

where the uncertainty U (x) at x is the maximum difference between the outputs of two
ensemble members f̂ i (x) and f̂ j (x).

The literature (Guo et al., 2018) used the variance of predictions output by the base
members of ensemble to estimate the uncertainty of prediction of ensemble surrogates,
as shown in Eq. (8).

U (x) = 1
K − 1

K∑
i=1

(f̂ i (x) − f̂ ens (x))2. (8)

2.5 Lower Confidence Bound

The LCB was suggested (Lewis et al., 2000; Emmerich et al., 2002) to select potential
candidate solutions, especially in solving multimodal optimization problems. LCB can
prevent premature convergence and enhance the search toward less explored regions
in search space. The expression of LCB is

fLCB (x) = f̂ (x) − ωŝ(x), (9)

where f̂ (x) and ŝ(x) are prediction mean and variance (uncertainty degree) from sur-
rogates, respectively; the parameter ω scales the impact of the variance; a reasonable
choice is ω = 2, which leads to a high confidence probability (around 97%) (Emmerich
et al., 2002).

3 Uncertainty Measure for Prediction of Non-GP Surrogates

We aim to address the issue that there is no theoretical method to measure the uncer-
tainty of prediction of Non-GP surrogates. Hence, an uncertainty measure for predic-
tion of Non-GP surrogates is proposed in this article. This method can be written in the
form of random field model. In detail, it consists of two components: regression func-
tion (namely Non-GP surrogate) and residual variation (the uncertainty of prediction
of Non-GP surrogate). In this method, the two components are uncorrelated. In the first
term, Non-GP surrogate as regression function only depends on decision variables, and
the second term represents the uncertainty of prediction of Non-GP surrogate based on
a stationary random field.
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3.1 Formulation for Uncertainty Measure for Prediction

The UMP is formulated as
F (x) = m(x) + ε(x), (10)

where m(x) as a regression function can be any Non-GP surrogate or ensemble Non-GP
surrogates, ε(x) is a mean 0 random field with distribution N (0, σ 2).

In this article, the UMP makes the assumptions in building a cheap surrogate for
an expensive function y = f (x), x ∈ Rd , F (x) ∼ N (m(x), σ 2) is a random variable, and
ε(x) ∼ N (0, σ 2). For any x, x′ ∈ Rd , the correlation between ε(x) and ε(x′), depends on
the distance between x and x′. The correlation function c(x, x′) in this article is shown
in Eq. (11).

c(x, x′
� θ ) = exp

(
−

d∑
i=1

θi |xi − x ′
i |2

)
, (11)

where d is dimension of problems; θ = [θ1, · · ·, θd ]T measures the importance or activity
of the variable x.

3.1.1 Hyperparameter Estimation
In UMP, the hyperparameters σ 2, and θ can be determined by maximizing the log like-
lihood function based on observe values yi at xi (i = 1, · · ·, N ), which is shown as

−1
2

[Nlog(2πσ 2) + log(det (C )) + ( y − m)T C−1( y − m)/σ 2], (12)

where m = (m(xi )), i = 1, · · ·, N , is a known N-dimensional column vector of Non-GP
surrogate among training data; C is a known N × N correlation matrix among training
data; y is a N-dimensional column observed vector among training data.

The estimation of σ 2 can be obtained by taking the partial derivative of Eq. (12) with
respect to σ 2

σ̂ 2 = ( y − m)T C−1( y − m)
N

. (13)

Substituting Eq. (13) into Eq. (12), the maximum of log likelihood over σ̂ 2 is

−Nlog2πσ̂ 2 + log(det (C )) + N

2
, (14)

since Eq. (14) depends only on parameters within C , thus above the maximum of log
likelihood can be

−Nlog2πσ̂ 2 − log(det (C )), (15)

3.1.2 Prediction Distribution
When all unknown hyperparameters are determined, then the prediction distribution at
any untested point x can be obtained by using conditional distribution. The uncertainty
(conditional variance) of prediction of Non-GP surrogates is

ŝ(x) = σ̂ 2[1 − rT C−1r], (16)

where r is a known N × 1 correlation matrix of the untested point x with training data.

3.2 Instantiation of UMP Framework

In UMP, any Non-GP surrogate can be considered to be the first term of the UMP. In
this article, the first term will be instantiated with RBFN, QP, and SVM as a surrogate,
respectively.
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3.2.1 UMP with RBFN
The form of RBFN is described in Eq. (2). Here, the cubic kernel function is used as its
activation function

ψ (‖x − c‖p ) = ‖x − c‖3
p, (17)

where c is a center point vector, p = 2 in this article.
In this article, 2d + 1 cubic kernel functions are considered, based on the suggestion

in Sprecher (1993). Based on the self-organizing method, 2d + 1 center point vectors are
obtained by k-means algorithm (MacQueen, 1967).

3.2.2 UMP with Quadratic Polynomial
The quadratic polynomial (QP, second-order polynomial) is one of the most widely used
polynomial regression models. Due to its simplicity and flexibility, QP is usually used
as a surrogate and has a wide range of applications in various fields of science and
engineering. It can be expressed as follows

f̂ (x) = β0 + �d
i=1βixi + �d

i=1,j=1,i≤jβi,j xixj , (18)

where β0, βi and βi,j are the coefficients to be estimated; x = [x1, . . . , xd ]T ; QP is imple-
mented using the Python tool-box (Pedregosa et al., 2011) in this article.

3.2.3 UMP with SVM
SVM is one of the regression techniques that have been introduced in Section II. In this
article, the radial basis kernel function is adopted in SVM

κ (x, x′) =< φ(x), φ(x′) >= exp(−γ ‖x − x′‖2), (19)

where the SVM is carried out using the Python tool-box (Pedregosa et al., 2011), the
parameters γ is set as ′scale′ in this article.

3.3 Workflow of UMP

The pseudocode for the workflow of UMP is presented in the Algorithm 1. Initially,
11d − 1 samples in the search space are generated using Latin hypercube sampling
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(LHS) (Stein, 1987) and evaluated by exact functions. Then these samples are archived in
an initial database. τ latest samples in the database are selected as training data to train
the Non-GP surrogate. The Non-GP surrogate replace the exact functions in evolving a
population of NP individuals for T generations with a DE. Then a potential candidate
solution is selected in the population by using LCB and evaluated by exact functions.
After that, the solution is added to the database. Finally, when the computational bud-
get is exhausted, the best solution in the database is chosen as the output.

4 Results and Discussion

To investigate the performance of the proposed UMP, a set of experiments is carried
out in both single and ensemble surrogates by Algorithm 1, respectively. The Non-GP
surrogates involving RBFN, QP, and SVM are considered in this article.

For the single surrogate, two experiments are carried out. First, the experiment com-
pares Non-GP surrogates with and without UMP, and they are named UMP/RBFN,
UMP/QP, UMP/SVM, RBFN, QP, and SVM, respectively. Second, the UMP compares
with the existing uncertainty method in Branke and Schmidt (2005), which is the dis-
tance from the solutions to the existing training data (DUM). The three algorithms with
the UMP are named UMP/RBFN, UMP/QP, and UMP/SVM, and the compared algo-
rithms are named DUM/RBFN, DUM/QP, and DUM/SVM.

Regarding ensemble surrogates, the proposed UMP compares with method Uens

which is the maximum difference between the outputs of the ensemble members (Wang
et al., 2017) and VUM which is variance of predictions output by the base surrogates of
the ensemble (Guo et al., 2018), respectively. In this article, the ensemble surrogates
consist of three surrogates: RBFN, QP, and SVM. These algorithms with the proposed
method and two compared methods are named UMP/ensemble, Uens/ensemble, and
VUM/ensemble, respectively.

4.1 Parameter Settings

There are several parameters in experiments. The setting of these parameters is given
below.

(1) The computational budget with exact function evaluations FEs = 100 was per-
formed in this article, based on the assumption that the optimization algorithm is only
allowed to evaluate a small number of candidate solutions during optimization. The
number of the run was 25.

(2) DE parameters: DE/rand/1/bin was employed in this article. The evolution
generations T = 100, population size NP = 20, scaling factor F = 0.5, and the crossover
rate CR = 0.9.

(3) Initial samples 11d − 1 were randomly generated by LHS.
(4) The range of values for parameters θ was [1.0e − 6, 20].
(5) Training data τ = 50 for dimension d = 2, τ = 11d − 1 for d = 5, 10 was consid-

ered. τ training data in the database was selected under considering both the quality
and the computational cost of Non-GP surrogate.

4.2 Test Problems

The effectiveness of the proposed method is verified on benchmark problems CEC 2014
(Liu et al., 2014) with 2, 5, and 10 dimensions. The benchmark problems are listed in
Table 1.
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Table 1: Test problems.

Problem Objective function name f ∗ Property

F1 Shifted Sphere 0 Unimodal
F2 Shifted Ellipsoid 0 Unimodal
F3 Shifted and Rotated Ellipsoid 0 Unimodal
F4 Shifted Step 0 Unimodal, Discontinuous
F5 Shifted Ackley 0 Multi-modal
F6 Shifted Griewank 0 Multi-modal
F7 Shifted and Rotated Rosenbrock 0 Multi-modal with very narrow valley
F8 Shifted and Rotated Rastrigin 0 Very complicated multi-modal

4.3 Comparison on Single Non-GP Surrogate

4.3.1 Effect of the UMP
To investigate the effectiveness of the proposed UMP, a set of comparative experiments
are carried out for algorithms with and without UMP. Table 2 presents all algorithms’
average best fitness values on test problems with 2, 5, and 10 dimensions. Figures 1, 2,
and 3 present the comparison of convergence curves of different algorithms on F1, F5,
and F8 test problems with different dimensions, respectively.

From Table 2 and Figures 1–3, the results of UMP/RBFN, UMP/QP, and UMP/SVM
are significantly better than those of the other algorithms in most test problems. The per-
formance of the three algorithms (UMP/RBFN, UMP/QP, and UMP/SVM) is always
better than the other on both unimodal or multimodal problems, especially in 5- and
10-dimensional test problems. The results are mainly attributed to the fact that there
is uncertainty information in the three algorithms that can be used to guide the search
of algorithms and the update of surrogates. The test problems are more complex as
the number of dimensions increases, and there are many local optima for multimodal
problems. The uncertainty information is able to strengthen the exploration ability of
algorithms and improve the accuracy of the surrogates.

4.3.2 Comparison with Peer Algorithms
To further investigate the effectiveness of the proposed UMP, the proposed UMP is
compared with the uncertainty method DUM, which is shown in Eq. (20). Table 3
presents the average best fitness values obtained by proposed algorithms UMP/RBFN,
UMP/QP, and UMP/SVM, and the compared algorithms DUM/RBFN, DUM/QP, and
DUM/SVM. Figures 4, 5, and 6 present the comparison of convergence curves of dif-
ferent algorithms on F1, F5, and F8 with different dimensions, respectively.

U (x) = 1∑L
i=1

1
dxx′

i

, (20)

where U (x) represents the uncertainty of prediction of a solution x, dxx′
i
is the Euclidean

distance from solution x to solution x′
i in the training data τ , and L is the number of

solutions in the neighborhood used for estimation; L is equal to the number of training
data τ in this article.

The Table 3 and Figures 4–6 show that UMP/RBFN, UMP/QP, and UMP/SVM
achieve significantly better performance than the other algorithms on most test prob-
lems. There is a significant difference in 10 dimensional test problems, especially for F3,
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An Uncertainty Measure for Prediction of Non-Gaussian Process Surrogates

Figure 1: Comparison of with and without UMP on convergence curves for F1, F5, and
F8 on 2d, respectively.

Figure 2: Comparison of with and without UMP on convergence curves for F1, F5, and
F8 on 5d, respectively.

Figure 3: Comparison of with and without UMP on convergence curves for F1, F5, and
F8 on 10d, respectively.

F5, and F7, which maybe due to the accuracy of DUM that is unreliable. Thus, the DUM
cannot efficiently guide the search of algorithms when there are many local optima on
F5 and F7 in 10-dimensional test problems, and it cannot accurately fit the fitness land-
scape of F3, F5, and F7 in 10-dimensional test problems. Instead, the proposed UMP
still has good performance in these problems with 10 dimension.

A comparison experiment is carried out to analyze further the proposed method
on F8, with the results shown in Figure 7. In the figure, the RBFN surrogate is used
as a regression function to approximate the exact function, and the UMP and DUM
methods are used to estimate the uncertainty of prediction of RBFN. From Figure 7a,
there is a significant error between the prediction values of RBFN and the exact function.
The proposed UMP is able to measure the error more accurately than DUM. Besides,
the values adjusting to the prediction of RBFN from the proposed UMP are better at
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An Uncertainty Measure for Prediction of Non-Gaussian Process Surrogates

Figure 4: Comparison of UMP and DUM on convergence curves for F1, F5, and F8 on
2d, respectively.

Figure 5: Comparison of UMP and DUM on convergence curves for F1, F5, and F8 on
5d, respectively.

Figure 6: Comparison of UMP and DUM on convergence curves for F1, F5, and F8 on
10d, respectively.

approximating the exact function values than DUM, according to the assumption of
random field model as Eq. (10). Therefore, the proposed UMP has better performance
in the measurement of uncertainty for the prediction of RBFN than DUM. The validity
of the proposed UMP also is investigated in Figure 7b, and it shows that fLCB of UMP
is a better approximation to the lower bound for the exact function values than that
of DUM. The DUM method indicates the crowded degree of the neighborhood of a
solution. Thus it cannot accurately measure the uncertainty of prediction of RBFN.

4.4 Comparison on Ensemble Surrogates

An experiment is carried out to show the effectiveness of the proposed UMP on ensem-
ble surrogates case. The proposed method is compared with the uncertainty method
Uens in Eq. (7) and method VUM in Eq. (8), respectively. Table 4 presents the average
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Figure 7: (a) Illustration of UMP and DUM methods on a 1-d toy example with F8 func-
tion; the number of training points 100 is considered; red curve represents the exact
function; green dashed curve represents the prediction from RBFN; shaded regions rep-
resent the confidence interval of the prediction of RBFN; (b) y − fLCB plot on F8 in
single surrogate RBFN case.

best fitness values obtained by UMP/ensemble, Uens/ensemble, and VUM/ensemble
algorithms on a set of test problems. Figures 8, 9, and 10 present the comparison of con-
vergence curves of different algorithms on F1, F5, and F8 with different dimensions,
respectively.

From Table 4 and Figures 8–10, the UMP/ensemble significantly outperforms
Uens/ensemble and VUM/ensemble on most test problems. In the results, the per-
formance of VUM/ensemble is worst. The performance of UMP/ensemble and
Uens/ensemble is similar on F4 in 2 and 5 dimensions, and Uens/ensemble is slightly bet-
ter than UMP/ensemble on F6, F7, and F8 in 5 dimension. However, UMP/ensemble
is worse than Uens/ensemble on F8 in 10 dimension, probably because the number
of computational budget FEs = 100 is too small. Most of the reevaluation solutions
are consumed due to a large degree of uncertainty, resulting in less opportunity for
UMP/ensemble to exploit the search space sufficiently.

The effectiveness is further analyzed on ensemble surrogates case in Figure 11. In
the figure, the ensemble of RBFN, QP, and SVM surrogates is used as regression function
to approximate the exact F8 function, and the UMP, VUM, and Uens methods are used
to estimate the uncertainty of prediction of the ensemble, respectively. From Figure 11a,
there is a significant error between the prediction values of the ensemble and the exact
function. The proposed UMP is best to approximate the error, and the uncertainty of
the ensemble from VUM and Uens methods is similar in general. Besides, the values
obtained by UMP are the best approximation of the exact function values than VUM
and Uens in general, according to the assumption of random field model as Eq. (10).
Figure 11b also verifies fLCB of UMP is a best approximation to the lower bound for the
exact function values.

Regarding the uncertainty method Uens , it is maximum difference among the out-
puts of the ensemble members for the prediction of a solution. In essence, this method
describes the prediction difference among ensemble members in a solution. Likewise,
for the method VUM, the uncertainty of prediction of a solution is measured by the
variance of the prediction output by the base surrogates of the ensemble. This method
indicates the average squared deviation of the base surrogates about the output of
the ensemble surrogates. From the probability and statistic viewpoint, these methods
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Table 4: Comparing the averages fitness values (shown as Avg ± Std) of UMP/
ensemble, Uens/ensemble, and VUM/ensemble. Statistically significant results evalu-
ated using a Friedman test.

Problem d UMP/ensemble VUM/ensemble Uens/ensemble

F1 2 7.7161E-5 ± 1.5035E-4 1.3604 ± 1.2453 9.3382E-3 ± 0.0197
5 0.0011 ± 0.0012 12.1513 ± 8.6543 0.1555 ± 0.0832
10 1.0012 ± 0.7830 23.5616 ± 9.8029 9.3609 ± 3.5025

F2 2 2.0820E-4 ± 2.2511E-4 3.7257 ± 2.9982 0.0810 ± 0.1031
5 0.0526 ± 0.0614 77.1360 ± 38.0107 2.6106 ± 2.0893
10 33.0773 ± 25.3703 284.9453 ± 95.0346 141.5993 ± 40.6508

F3 2 4.1281E-4 ± 5.1014E-4 3.4762 ± 2.0919 0.6851 ± 1.3881
5 0.1005 ± 0.1455 28.3199 ± 11.8856 2.5193 ± 1.5458
10 537.8770 ± 150.8156 1204.2153 ± 381.1870 889.4860 ± 271.9350

F4 2 0.0 ± 0.0 1.3200 ± 1.3181 0.0 ± 0.0
5 0.1200 ± 0.3249 12.600 ± 11.0381 0.1200 ± 0.3249
10 3.2400 ± 1.9448 21.0000 ± 8.4332 10.2000 ± 4.8249

F5 2 2.7002 ± 1.1667 10.3965 ± 4.9964 3.8192 ± 1.8471
5 3.5092 ± 0.7333 13.8540 ± 2.8998 8.4735 ± 1.5095
10 5.5079 ± 0.5751 13.1730 ± 0.9270 10.8165 ± 1.1127

F6 2 0.0872 ± 0.0544 0.6791 ± 0.3800 0.1351 ± 0.0789
5 0.6518 ± 0.2003 1.3107 ± 0.3293 0.6159 ± 0.1419
10 1.0563 ± 0.1378 1.3724 ± 0.3217 1.4022 ± 0.3057

F7 2 0.0076 ± 0.0090 0.1469 ± 0.1503 0.2916 ± 0.2351
5 63.8693 ± 30.8029 81.6944 ± 35.7565 59.3588 ± 38.5356
10 235.0830 ± 119.8799 585.8805 ± 231.1875 334.1423 ± 157.4397

F8 2 1.7132 ± 1.1547 3.3034 ± 1.8626 2.7242 ± 1.3798
5 19.9698 ± 5.5287 24.4794 ± 5.4224 17.1605 ± 4.8970
10 69.4359 ± 7.8951 74.3970 ± 11.7897 58.7404 ± 8.5256

Average rank 1.27 2.83 1.90

Figure 8: Comparison of UMP, Uens and VUM on convergence curves for F1, F5, and
F8 on 2d, respectively.
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Figure 9: Comparison of UMP, Uens and VUM on convergence curves for F1, F5, and
F8 on 5d, respectively.

Figure 10: Comparison of UMP, Uens and VUM on convergence curves for F1, F5, and
F8 on 10d, respectively.

Figure 11: (a) Illustration of UMP, Uens and VUM methods on a 1-d toy example with
F8 function; the number of training points 100 is considered; red curve represents the
exact function; green dashed curve represents the ensemble prediction from the weight
sum of prediction of RBFN, QP and SVM; shaded regions represent confidence interval
of the ensemble prediction; (b) y − fLCB plot on F8 in ensemble surrogates case.

measuring the uncertainty of prediction can be insufficient. Therefore, these compared
methods are potentially unreliable in measuring the uncertainty of the prediction of
surrogates.

5 Conclusion

This article mainly addresses the issue that there is no theoretical method to measure
the uncertainty of prediction of Non-GP surrogates. This article proposes a theoretical
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method to measure the uncertainty. In this method, a stationary random field with a
known zero mean is used to measure the uncertainty of prediction of Non-KGP sur-
rogates. The method’s effectiveness has been verified based on some experiments in
single and ensemble surrogates cases. The experimental results demonstrate that the
proposed method is more promising than other methods on a set of test problems.

Although the performance of the proposed method is competitive, the computa-
tional cost of this method is higher than others. The computational cost of UMP, DUM,
Uens and VUM is O(N3), O(N ), O(1), and O(1), respectively. N is the number of training
samples. Thus, the main limitation of the method is that it needs more computational
cost in measuring the uncertainty for the prediction of Non-GP surrogates. Therefore,
our future work is to solve this drawback using transfer learning.
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