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Abstract

The most relevant property that a quality indicator (QI) is expected to have is Pareto
compliance, which means that every time an approximation set strictly dominates an-
other in a Pareto sense, the indicator must reflect this. The hypervolume indicator
and its variants are the only unary QIs known to be Pareto-compliant but there are
many commonly used weakly Pareto-compliant indicators such as R2, IGD", and €™.
Currently, an open research area is related to finding new Pareto-compliant indicators
whose preferences are different from those of the hypervolume indicator. In this article,
we propose a theoretical basis to combine existing weakly Pareto-compliant indicators
with at least one being Pareto-compliant, such that the resulting combined indicator is
Pareto-compliant as well. Most importantly, we show that the combination of Pareto-
compliant QIs with weakly Pareto-compliant indicators leads to indicators that inherit
properties of the weakly compliant indicators in terms of optimal point distributions.
The consequences of these new combined indicators are threefold: (1) to increase the
variety of available Pareto-compliant Qls by correcting weakly Pareto-compliant in-
dicators, (2) to introduce a general framework for the combination of QIs, and (3) to
generate new selection mechanisms for multiobjective evolutionary algorithms where
it is possible to achieve/adjust desired distributions on the Pareto front.

Keywords

Performance indicators, Pareto compliance, multiobjective optimization indicator-
based selection.

1 Introduction

The quality assessment of Pareto front approximations! (also known as approxima-
tion sets) has been a critical factor to compare multi-objective evolutionary algorithms
(MOEAs) (Coello Coello et al., 2007). When assessing an approximation set, three qual-
ity aspects have been commonly considered: convergence towards the Pareto front,
spread, and diversity of solutions (Zitzler et al., 2000). The first evaluation method con-
sisted in qualitative comparisons by plotting the approximation sets (Horn et al., 1994).
However, a visual comparison is insufficient when the number of objective functions,

! A Pareto front approximation is a finite set of objective vectors that aims to represent a Pareto front.
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Table 1: Relations on approximation sets based on Pareto dominance relations (Zitzler
et al., 2003; Guerreiro and Fonseca, 2020).

Relation Description Name

A=<xB For every element be B, there is at least an element a € A Weak dominance
such that @ < b.

A< B A=< Band B £ A. Strict dominance

A< B A # ) and for every element be B, there is at least an Strict elementwise
element @ € A such that @ < b. dominance

A<<B A # () and for every element be B, there is at least an Strong dominance

element @ € A such that @ << b.

MOEAs, and the cardinality of the approximation sets increases. To overcome this is-
sue, researchers extended the Pareto dominance relation and its variants (which give a
general notion of optimality) to be applied on approximation sets. In this regard, given
two objective vectors #, v € R™, i Pareto dominates v (denoted as & < v) if and only if
u; <v;foralli =1,2,...,mand there exists at least an index j € {1, 2, ..., m} such that
uj < vj.Incasethatu; < v, foralli,itissaid that # weakly Pareto dominates v (denoted
as i < V). If u; < v; for all i, i strongly Pareto dominates v (denoted as i@ << v). The
extended Pareto dominance relations are shown in Table 1. An important drawback of
these set-based binary relations is their impossibility to take into account the spread and
diversity of solutions. To alleviate the issues of the two previous comparison methods,
quality indicators (Qls) were proposed as a quantitative methodology focused on mea-
suring the three main quality aspects previously indicated (Veldhuizen, 1999; Zitzler
et al., 2003; Jiang et al., 2014; Liefooghe and Derbel, 2016; Li and Yao, 2019).

Quality indicators are set functions that assign a real value to one or more approxi-
mation sets simultaneously, according to specific preference information (Zitzler et al.,
2003; Li and Yao, 2019). Mathematically, an l-ary Ql is a function / : A; x --- x A — R,
where each A; C R, j =1,...,1 is a non-empty approximation set. Due to its math-
ematical definition, they impose a total order on the set W of all approximation sets
related to a multiobjective optimization problem. Hence, this property makes QlIs a re-
markable option to compare the performance of MOEAs. In the specialized literature,
there are several Qls that aim to assess convergence, spread and uniformity of approxi-
mation sets (Li and Yao, 2019). Qls focused on measuring convergence have a notewor-
thy relevance since they have been used to assess the performance of MOEAs and also to
design their selection mechanisms (Falcén-Cardona and Coello Coello, 2020). Regard-
ing the assessment of MOEAs, Pareto compliance is a critical property of convergence
QIs? that allows them to reflect the order imposed by the <-relation (see Table 1). It is
worth noting that throughout the years, the term Pareto compliance has been commonly
used. However, Hansen and Jaszkiewicz (1998) firstly named this property as compati-
bility with an outperformance relation; Zitzler et al. (2003) denoted these indicators as
<-complete; and, finally, Zitzler, Knowles, et al. (2008) refined the term as strict monotonic-
ity. In the following, we define the Pareto compliance and the weak Pareto compliance

2From this point onwards, convergence Qls will be denoted just as Qls.
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Combined Pareto-Compliant Indicators

properties, assuming, without loss of generality, that a lower indicator value implies a
better quality.

ProPERTY 1 (Pareto compliance): Given two approximation sets A and B, a unary indicator
I is <-compliant (Pareto-compliant) if A< B = I(A) < I(B).

ProPERTY 2 (Weak Pareto compliance): Given two approximation sets A and B, a unary
indicator I is weakly <\-compliant (weakly Pareto-compliant) if A<t B = I(A) < I(B).

Pareto compliance implies that every time an approximation set A strictly dominates
another set B, the indicator I will reflect this situation by assigning a lower indicator
value to A. In contrast, weak Pareto compliance indicates that .A and B at least have
the same quality. If the QI does not reflect the order imposed by the extended domi-
nance relations, then it is denoted as a non Pareto-compliant indicator. The importance
of Pareto-compliant indicators when assessing MOEAs lies in their impossibility of con-
tradicting the structure of order imposed by the <-relation (Zitzler et al., 2003). Hence,
when comparing MOEAs, Pareto compliance avoids the generation of misleading con-
clusions regarding the use of Pareto dominance.

Among the plethora of convergence Qls currently available, the hypervolume indi-
cator (HV) is the only unary QI that is Pareto-compliant (Zitzler, 1999; Zitzler et al., 2003,
Zitzler, Knowles, et al., 2008). The HV measures the extent of the volume dominated by
an approximation set and bounded by a user-supplied reference point that should be
dominated by all points in the Pareto front approximation. For nonlinear Pareto front
shapes, the set of size u that approximates the solution to the HV-based subset selec-
tion problem presents a non-uniform distribution of objective vectors (Shang, Ishibuchi,
He, et al., 2020). The consequences of these non-uniform optimal p-distributions are
twofold: (1) HV penalizes uniform Pareto front approximations in comparison to certain
non-uniform approximation sets, and (2) MOEAs that use HV-based selection mech-
anisms, produce non-uniform approximation sets. To improve the uniformity of the
optimal p-distributions of HV, the weighted HV (Zitzler et al., 2007), logarithmic HV
(Friedrich et al., 2011), free HV (Emmerich et al., 2014), and the transformation-based
HYV (Shang, Ishibuchi, Nan, et al., 2020), which are all variants of HV, have been pro-
posed. Moreover, these variants preserve the Pareto compliance property of HV. Addi-
tionally, some other QIs have been proposed, having different preferences to those of
the HV but being weakly Pareto-compliant or non Pareto-compliant. For instance, the
most noteworthy weakly Pareto-compliant QIs are R2 (Brockhoff et al., 2012), the In-
verted Generational Distance plus (IGD™) (Ishibuchi et al., 2015), and the unary additive
¢ indicator (¢T) (Zitzler et al., 2003), while IGD (Coello Coello and Cruz Cortés, 2005)
and Generational Distance (Veldhuizen, 1999) are non-Pareto-compliant indicators.

Due to the imperative need to propose new Pareto-compliant QIs whose prefer-
ences are significantly different to those of the HV, we propose in this article a method-
ology to generate new Pareto-compliant Qls. It is worth noting that in this article we
provide both a theoretical and an experimental extension of the work introduced by
Falcon-Cardona et al. (2019). Under this methodology, we combine one or more weakly
Pareto-compliant indicators with at least one Pareto-compliant QI, using an order-
preserving combination function. Under these conditions, we demonstrate that the
combined indicators preserve the Pareto compliance property. Additionally, we show
through preference analysis and the approximate optimal u-distributions, that our
framework allows to create Pareto-compliant QIs with different preferences to those
of the HV in two ways: (1) by exploiting the conflict that sometimes exists between
the preferences of indicators, such that the combined indicator shows intermediate
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preferences, and (2) by keeping the original preferences of the weakly Pareto-compliant
QIs but using a correcting factor derived from the Pareto-compliant QI being used.
Overall, the contributions of this article are the following;:

1. We provide guidelines for the construction of new Pareto-compliant QIs whose
preferences are essentially different from those of the HV.

2. Our proposed framework allows correcting weakly Pareto-compliant QIs, such
as R2, IGD™, and €™, so that they can become Pareto-compliant.

3. We provide an empirical study of the optimal u-distribution of solutions gen-
erated by a steady-state MOEA based on some (selected) new Pareto-compliant

Qls.

The remainder of the article is organized as follows. Section 2 defines the quality
indicators that we use throughout the article. The previous related work is described in
Section 3. Our mathematical framework for the construction of new Pareto-compliant
QlIs is introduced in Section 4. The experimental results using the combined indicators
is presented in Section 5. Finally, the main conclusions and future work are described
in Section 6.

2 Background

In this article, we consider, without loss of generality, multiobjective optimization prob-
lems (MOPs) for minimization which are defined as follows (Coello Coello et al., 2007):

min {£(¥) = (fi(2). (2. (3D}

where ¥ = (x1,...,x,)" € Qis a vector of n decision variables, and 2 € R” is the de-
cision space. f(X) is a vector of m > 2 objective functions f; : @ — R, Vi € {1,2, ..., m}
where some or all of them are mutually in conflict. Since there is no single decision
vector X whose objective vector f(X) minimizes all objective functions simultaneously,
the goal is to find the so-called Pareto optimal solutions whose images in the objective
function space represent the best possible trade-offs among the objective functions. A
decision vector ¥ € Q is Pareto optimal if there is no other y € Q@ such that f(¥) < f(¥).
The set of all Pareto optimal solutions P* is called Pareto set and its image, given by
PF* = f(P*),is known as the Pareto front.

In the following, we provide the mathematical definitions of HV, R2, IGD", and ¢,
which are extensively used throughout the article. In all cases, let A denote an approx-
imation set and Z be a reference set.

DEeriNtTION 1 (Hypervolume indicator): Let A denote the Lebesque measure in R™, the hy-
pervolume indicator (HV) is defined as follows:

HV(A, Zop) = A (U{?c |G <% < z,ef}> ,
deA
where Z,.; € R™ is a reference point which should be dominated by all points in A.
HV measures the extent of volume jointly dominated by the points in 4 and
bounded by Z,.;. Currently, HV and the closely related logarithmic HV (Friedrich et al.,
2011), the weighted HV (Auger et al., 2009), the free HV (Emmerich et al., 2014), and

the transformation-based HV (Shang, Ishibuchi, Nan, et al., 2020) are the only Pareto-
compliant QIs known so far. The two main drawbacks of the HV are the following. First,
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under NP # P, its computational cost increases super-polynomially with the number of
objective functions (Bringmann and Friedrich, 2009, 2010). The other issue is related to
Zref, since the preferences of HV strongly depend on it (Auger et al., 2009; Ishibuchi,
Imada, et al., 2017). In other words, the specification of the reference is dependent on
the Pareto front shape. It has been shown that the distribution of points is often concen-
trated on the boundary and in knee-point regions.

DErFINITION 2 (Unary R2 indicator): The unary R2 indicator is defined as follows:

R2(A, W) = |W| me{uw(a)}

where W is a set of m-dimensional weight vectors and uy : R™ — R is a utility function, pa-
rameterized by w € W, that assigns a real value to each solution vector.

The R2 indicator is a convergence-diversity QI that measures the average minimum
utility values of the approximation set with respect to a set of weight vectors (Hansen
and Jaszkiewicz, 1998; Brockhoff et al., 2012). Its computational cost is in © (m|W]| - | A]).
Unlike the hypervolume indicator, the time complexity of R2 grows linearly with the
number of objectives. Its time complexity is, however, proportional to the number of
weight vectors,®> which has to grow exponentially in size, if the number of objectives
increases and the same resolution of sampling is desired. A major conceptual difference
with respect to the hypervolume indicator is that the R2 indicator does not require an
anti-optimal reference point. Instead, it works with an ideal or utopian reference point.
In many applications involving, for instance, error or cost minimization, there is a nat-
ural choice for an ideal point, but it is difficult to define an anti-optimal reference point.
So, in such cases, the R2 indicator could be a better choice than the hypervolume.

A problem, however, arises due to the fact that the R2 indicator is not Pareto-
compliant, and it is only weakly Pareto-compliant (Hansen and Jaszkiewicz, 1998;
Brockhoff et al., 2012). This makes it possible that a set might have equal R2 indicator
values than another set, although it is dominated in the set order, or that sets degen-
erate if this indicator is used as a guide in a Pareto optimization process. One might
argue that these are rare cases, as they always involve shared coordinate values among
points, and in most cases, the R2 indicator works well when comparing sets. In fact, in
continuous unconstrained optimization, such cases might occur with low probability,
but they are relatively likely to occur in continuous optimization and in cases in which
box constraints are introduced.

DerINITION 3 (Inverted Generational Distance plus): The IGD*, for minimization, is de-
fined as follows:

IGD"(A4, 2) = mli’lld+ a, ?),
oz dc

where d* (a \/Z (max{a; — z¢, 0})%.

Ishibuchi et al. (2015) proposed IGD™ as an improvement of the IGD indicator
(Coello Coello and Cruz Cortés, 2005). Both QIs measure convergence and diversity of

3The Simplex-Lattice-Design method is usually employed to construct the set of weight vectors (Das
and Dennis, 1998). Using this method, the number of weight vectors is the following combinatorial
number: N = CZ/*"~1 where H € N s a user-supplied parameter that determines the number of divi-

sions of the space, and m is the number of objectives.
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solutions simultaneously. However, IGD" is weakly Pareto-compliant while IGD is not
Pareto-compliant (Bezerra et al., 2017). IGD" measures the average distance from the
reference set to the dominated space of the approximation set. Its computational cost is
O(@m|Z| - |A]). A critical aspect is how to specify the reference set when no information
is available about P F* (Ishibuchi et al., 2014).

DErFINITION 4 (Unary e* indicator): Mathematically, it is defined as follows:

et (A, Z) = maxmin max {z; — a;}.
7eZ deAl<i<m

The unary e*-indicator gives the minimum distance by which a Pareto front ap-
proximation needs to or can be translated in all dimensions at once in objective space
such that a reference set is weakly dominated. In consequence, this QI exclusively mea-
sures convergence to PF* and it is weakly Pareto-compliant. A remarkable aspect is
that €™ does not require any parameters but, as in the case of IGD™, a reference set has
to be supplied. Additionally, €* is not very sensitive to local changes in the solutions in
A (Bringmann et al., 2011).

Recently, the combination of the high interest in solving MOPs with more than
three objective functions and the expensive calculation of the HV have promoted the
utilization of weakly and non-Pareto-compliant Qls in spite of their clear drawbacks
when comparing MOEAs (Deb and Jain, 2014; Yuan et al., 2016; Tian et al., 2018; Li
et al., 2018). In the following, we analyze, using two examples, why weakly and non-
Pareto-compliant QIs are not good enough for comparing MOEAs (Zitzler, Knowles,
et al., 2008 also discussed these issues). First, Figure 1 shows two approximation sets
A and B, where A <1 B, for which the HV, IGD*, and IGD* values are calculated. It is
worth noting that a lower value of IGD* and IGD means higher quality in contrast to
the HV which aims to maximize the dominated volume. Due to its Pareto compliance,
the HV effectively shows that A strictly dominates 3 since HV(A, Z,.r) = 0.781875 and
HV(B, Z..f) = 0.671250. On the other hand, IGD* cannot reflect that A <1 B since the
same IGD* value (0.125) is assigned to both approximation sets. In contrast, IGD de-
termines that B is better because IGD(B, Z) = 0.125 and IGD(A, Z) = 0.167705, even
though it is strictly dominated by .A. Regarding the second example, let’s consider a
QI which we will call “Zero indicator”. It is defined as Z : ¥ — R with Z = 0. Clearly,
for every A, B € ¥ such that A< B, it implies Z(A) = Z(B), i.e., Z is weakly Pareto-
compliant. Although indicators such as R2, IGD* and €* are more complex than Z in a
mathematical sense, all of them are only weakly Pareto-compliant as the Zero indicator.
Based on the discussed examples, we can see that is not enough to construct weakly and
non Pareto-compliant QIs, since they can lead to misleading conclusions when compar-
ing approximation sets (Zitzler, Knowles, et al., 2008). Consequently, this is a motivation
to construct new Pareto-compliant Qls.

3 Previous Related Work

In this section, we briefly describe the previous work done in the direction of the em-
ployment of multiple QIs. Additionally, we first provide a discussion on the use of dif-
ferent terms to denote the Pareto compliance property.

4Given an approximation set A and a reference set Z, the IGD indicator is defined as follows:
IGD(A, 2) = é (X sz minz_,d(d, Z)”)1/p, where d is the Euclidean distance and p > 0 is a user-
supplied parameter, usually set to 2.
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@® Approximation set A — — - Volume dominated by A

B Approximation set B — Volume dominated by B
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Figure 1:Let A = {(0.125,0.875), (0.375,0.625), (0.575,0.6), (0.625,0.375), (0.875,
0.125)}, B = {(0.125,1), (0.375,0.75), (0.5,0.625), (0.75,0.375), (1,0.125)}, and Z =

{(0,1),(0.25,0.75), (0.5, 0.5), (0.75, 0.25), (1, 0)}. Even though A < B, IGD prefers 5 and
IGD™ assigns the same quality to both sets, HV prefers A since it is Pareto-compliant.

3.1 Pareto Compliance

Pareto compliance (defined in Property 1) is a characteristic of convergence QlIs which
allows them to reflect the order structure imposed by the <-relation defined in Table 1.
Over the years, this property has been named in different ways, namely, compatibility,
completeness, and strict monotonicity. The origin of this property dates back to the work
of Hansen and Jaszkiewicz (1998). In that paper, the authors defined the general notion
of an outperformance relation® R as a set-based binary order relation to compare approx-
imation sets. Based on the general outperformance relation, Hansen and Jaszkiewicz
defined the term compatibility, which is currently known as Pareto compliance, as
follows:

5Based on the general outperformance relation, Hansen and Jaszkiewicz defined four relations where
three of them were based on Pareto dominance and the remaining one was focused on utility functions
(Miettinen, 1999; Pescador-Rojas et al., 2017).
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DEFINITION 5: Compatibility with an outperformance relation (Hansen and Jaszkiewicz, 1998).
A comparison method R is compatible with an outperformance relation R if for each pair of
approximation sets A and B, such that ARB, R will evaluate A as being better than B.

DEFINITION 6: Weak compatibility with an outperformance relation (Hansen and Jaszkiewicz,
1998). A comparison method R is weakly compatible with an outperformance relation R if for
each pair of approximation sets A and BB, such that ARB, R will evaluate A as being not worse
than B.

The comparison method R in the above definitions can be replaced by a quality
indicator. Hence, assuming that a lower indicator value implies better quality, then
ARB = I1(A) < Z(B) and ARB = I(A) < Z(B) imply that I is compatible and weakly
compatible, respectively. In case that R is replaced by <, we obtain Properties 1 and 2.

Following the definitions of Hansen and Jaszkiewicz, Zitzler et al. (2003) denoted
the compatibility as completeness with respect to an arbitrary binary relation R. How-
ever, the main diference was the consideration of an indicator vector T = (I, ..., I;)
instead of a single QI. Moreover, the comparison method R was redefined as a func-
tionCy . : A x B — {true, false}, where E : R* x R¥ — {true, false} is an interpretation
function. This newly defined comparison method aims to determine by a Boolean value
if A is better than B. The comparison method C 7e=E (1(A), 1(B)) is denoted as
R-complete if either for any A, B € ¥, it holds ARB = C; (A, B). This definition ex-
tended the compatibility of Hansen and Jaszkiewicz to consider multiple QlIs when
comparing approximation sets. We can easily derive the compatibility definition from
the completeness one.

Finally, Zitzler, Knowles, et al. (2008) employed the term strict monotonicity to de-
note a QI for which the following holds: VA, B € W: A < B = I(A) < I(B), where <
corresponds to the strict elementwise dominance in Table 1. According to Zitzler et al.
(2003), A < B = A < B, thus, for these subset of approximation sets for which < holds,
we can employ the <-relation as it is stated in the compatibility and completeness
definitions.

3.2 Combination of Multiple Indicators

Even though quality indicators have been widely employed by the evolutionary multi-
objective optimization community, the exploration of quantitative methods using mul-
tiple QIs has been scarce. In this section, we discuss some previous works in which the
combination of multiple indicators was discussed. Particularly, we focus on the works of
Zitzler et al. (2003), Knowles et al. (2006), Zitzler, Knowles, et al. (2008), and Zitzler et al.
(2010).

When assessing MOEAs, it is a common strategy to employ several QlIs to charac-
terize different quality aspects of approximation sets. In this regard, Zitzler et al. (2003)
proposed to analyze such combinations or, more formally, quality indicator vectors
I = (I, ..., It) to better interpret the results, based on multiple quality aspects, when
comparing two approximation sets. To this aim, the authors proposed to use compar-
ison methods based on interpretation functions E (defined in the previous section) to
analyze the indicator vectors. Depending on the several possibilities to define E, differ-
ent claims could be produced when comparing two approximation sets. However, no
theoretical properties about 7 or the interpretations functions were provided.

Knowles et al. (2006) briefly explained that the combination of indicators, ideally
using Pareto-compliant ones, could lead to powerful interpretations in contrast to em-
ploying a single QI. However, no mathematical definition was provided to support this
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claim. In a subsequent work, Zitzler, Knowles, et al. (2008) explained that the combina-
tion of indicators could allow us to overcome the difficult situation of finding an ideal
indicator, that is, a QI being Pareto-compliant, scaling invariant, and cheap to compute.
To this aim, one has to look for a way to combine the resulting indicator values. Hence,
they were the first to suggest the use of a sequence of indicators to evaluate approxima-
tion sets.

Zitzler et al. (2010) mathematically defined a multi-indicator preference relation R
that sequentially applies preference relations based on a single quality indicator. R uti-
lizes a sequence S = (=, <p,, . .., <y,), where each <, is a preference relation based on
the indicator /; that compares the indicator values of two given approximation sets.
The backbone of this proposal is to create a chain of refinements of indicator prefer-
ences to compare two given approximation sets and, in this way, break ties (i.e., when
a QI cannot decide which approximation is better). Based on this idea, the authors pro-
posed an algorithm for the evaluation of .4 and B similar to the non-dominated sorting
algorithm (Deb et al., 2002). First, an index j is set to 1 to use <y, i.e., the value I;_;
is calculated for both A and B. If 1;(A) = I;(B), then j is increased to point to the next
indicator-based preference relation in the sequence if it exists. In case that <;, claims an
approximation set with better quality, the decision is returned. In consequence, the use
of these indicator-based preference relations could increase the sensitivity of an order
relation by solving cases of incomparability. Furthermore, Zitzler et al. proposed that
the first 1 < ¢ < k indicators are weakly Pareto-compliant and the remaining ones are
Pareto-compliant. This way, the Pareto-compliant QIs could be employed to refine the
preferences of the weakly Pareto-compliant indicators.

It is worth noting at this point what is the main focus of these multi-indicator-based
preference relations. Zitzler, Thiele, et al. (2008) and Zitzler et al. (2010) employed these
preference relations to construct the Set Preference Algorithm for Multiobjective Opti-
mization (SPAM) that uses populations as individuals instead of single decision vectors.
The reason to use populations as individuals is related to the utilization of the indicator-
based preference relations that require a population (a set of objective vectors) as an
input parameter. Internally, SPAM manages three populations: the main population P,
the randomly mutated population P’, and the heuristically mutated population P”. P is
compared with P’ and P”, using the indicator-based preference relations, to determine
the one that possibly replaces P. In case of using HV in the sequence of indicators, the
high computational cost of HV-based MOEAs such as the S-Metric Selection Evolution-
ary Multiobjective Algorithm (SMS-EMOA) (Beume et al., 2007) is avoided because it is
necessary to calculate only two HV values at each generation if necessary, that is, when
HV needs to refine the preferences. However, SPAM needs more function evaluations
than a usual MOEA due to the utilization of three populations.

From the above discussion, it is clear that the indicator-based preference rela-
tions show remarkable advantages to derive set-based MOEAs such as SPAM. Fur-
thermore, another utilization of these binary relations could be the comparison of the
Pareto front approximations generated by different MOEAs. This is possible since the
indicator-based preference relations are basically a lexicographic order based on a se-
quence S = (=y,, =<5, ..., =<1,)- Thus, they impose a preorcler6 on the set of all approxi-
mation sets. In spite of the possibility of using the indicator-based preference relations to

®As long as we are concerned with how approximation sets are ordered, the indicator-based pref-
erence relations are not anti-symmestric since different approximation sets may have equal indicator
values.
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compare MOEAs, there are some issues that should be pointed out. The preference
relation on its own, only determines what is the relationship between two given ap-
proximation sets but it does not numerically indicate the difference in quality between
them. Even though if we inspect the indicator values produced by the preference rela-
tion, there is a possibility that some of the comparisons do not employ the same <, € S.
Hence, we would have performance evaluations in a different scale of measure.

In the next section, we present a generalization of the multi-indicator-based prefer-
ence relations proposed by Zitzler et al. (2010). Our proposal is a framework to combine
multiple Qls in order to define new unary indicators. The resulting combined unary in-
dicator merges the preferences of all the baseline Qls, defining new preferences and
a common numerical field of comparisons to determine the difference in quality be-
tween Pareto front approximations. Another important aspect is that the user can spec-
ify the relative importance of all the baseline QlIs in the combination. Furthermore, this
framework allows the construction of new Pareto-compliant indicators by combining as
many weakly Pareto-compliant indicators as needed, but including at least one Pareto-
compliant QI to retain the Pareto compliance property. Due to the use of at least one
Pareto-compliant QI, we refine the preferences of the weakly Pareto-compliant indica-
tors in a similar way as the one proposed by Zitzler et al.

4 New Pareto-Compliant Indicators

In this section, we propose a systematic framework for combining QIs, following the
basic idea introduced by Falcén-Cardona et al. (2019). Additionally, we provide the
mathematical argumentation to ensure that when combining Qls with specific prop-
erties, the resulting combined indicator will be Pareto-compliant. This leads not only
to new types of indicators but also proves to be a way to create new Pareto-compliant
indicators with very different properties than those of the HV in terms of the distribu-
tion of points that they favor, and in terms of the parameters provided by the user. In
the following, we present the mathematical framework for the combination of Qls. Let
A be an approximation set in W.

DerINITION 7 (Combination function): A combination function C : R¥ — R assigns a real
value to a vector 1(A) = (I1(A), L(A), ..., I,(A)), where each 1;(A) is the value of the j®
unary indicator.

DEFINITION 8 (Combined Indicator): Given an indicator vector 1(A) = (I1(A), L(A), ...,
I (A)) and a combination function C, a combined indicator Z(A) is defined as follows: Z(A) =
C(1(A)).

Regarding Definition 8, a combined indicator Z is a Ql as well (since Z : ¥ — R) but
it requires the combination function C to transform an indicator vector 1(A) to a real
value. Figure 2 shows how to map Pareto front approximations (in objective space) to
the quality space O C R¥, where each axis corresponds to a specific indicator. Then, the
indicator vectors in Q are assigned a real value, using the combination function C. Based
on the above definitions, nothing can be said about the properties of Z at this point.
Hence, for getting more important theoretical results, we should say something about
the properties of each I;, j =1, ..., k and the combination function C. We are interested
in analyzing the Pareto compliance of Z. Based on Properties 1 and 2, we construct a
special vector of indicators that is necessary for the refinement of the combined indicator
model.
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Figure 2: The objective space contains the approximation sets X', Y, and Z that are
mapped to the quality space using an indicator vector. The points 1(X), 1(Y),and 1(2)
in quality space are then transformed each to a single real value by the combination
function C : R> — R to generate the real values Z(X), Z()), and Z(Z2).

DerINITION 9 (Compliant Indicator Vector): 1(A) = (I1(A), L(A),..., (A) € Q is
called a compliant indicator vector (CIV) if Vj =1, ..., k, I; is weakly Pareto-compliant and
there exists at least one indext € {1, ..., k} such that I, is Pareto-compliant. Q C R¥ is denoted
as the quality space.

For the following theorem, let us assume, without loss of generality, that the unary
indicators I, ..., I; are to be minimized.

THEOREM 1 (Construction of Pareto-compliant combined indicators): Let I, ..., Iy be
unary indicators that form a compliant indicator vector 1. A combined indicator T, based on the
combination function C(1), is <-compliant (Pareto-compliant) if C has the order-preserving
property:

Vi, ve Q, i < V= C(id) < C(V).

Proor: Consider two approximation sets A and B such that A< B and let 7 be a
CIV. Then, A< B = 1(A) < 1(B) because the Pareto-compliant indicators get better
and the weakly Pareto-compliant ones get better or stay equal. Moreover, by defini-
tion 7(A) < 1(B) = C(1(A)) < C(1(B)). Hence, by transitivity of = and considering
that Z(A) = C(1(A)) and Z(B) = C(1(B)), it holds A< B = Z(A) < Z(B), that is, Z is
Pareto-compliant. O

Theorem 1 provides a sufficient condition for constructing Pareto-compliant
combined indicators on the basis of compliant indicator vectors. In other words, a com-
bined indicator preserves the Pareto compliance property because of the use of order-
preserving combination functions.

ReEMARK 1: The condition of Theorem 1 is suffcient but not necessary. For instance, given
1(A) = (I1(A), L(A), ..., I(A)) where I is Pareto-compliant and the /;, j =2, ...,k
are not Pareto-compliant, the “combined” indicator Z(A) = C (1(A)) = I1(A) is also
Pareto-compliant. Hence, there is a large number of possibilities to construct combined
and compliant indicators.

There exist many combination functions that have the property of Theorem 1. In
this article, we focus on order-preserving utility functions u : R* — R (Miettinen, 1999;
Pescador-Rojas et al., 2017). A utility function (UF) is a model of the decision maker
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preferences that assigns to each k-dimensional vector a utility value. Thus, a combi-
nation function C can be defined in terms of these functions. Generally, UFs employ a
convex weight vector @ € [0, 1]* such that Zf‘:l w; = 1, w; > 0. However, for the combi-
nation of QIs, we need w; > Oforalli =1, ..., k such that all QIs contribute to the com-
bined indicator value. Based on the above, we denote u;(1(A)) as a Pareto-compliant
utility indicator (PCUI) if u is order preserving and 7 is a CIV.

5 Experimental Results

Throughout this section, we analyze six newly created PCUIs, emphasizing the dis-
tribution of points in different Pareto fronts that they prefer. To define the PCUIs, we
focused our attention on two well-known utility functions that are order-preserving,
namely, the weighted sum function (WS) and a slightly modified augmented Tcheby-
cheff function (ATCH) (Pescador-Rojas et al., 2017). Let I € R* be an indicator vector
and @ € (0, 1)* be a convex weight vector. In the following, we define WS and ATCH as
garding ATCH, we modified its original definition by not considering the absolute value
of the term w;x; such that the function is order-preserving in the whole R and & > 0 is
a user-supplied parameter. Since a PCUI requires all its baseline QlIs to be minimized,
we exclusively consider —HV in their definition. The proposed PCUIs, defined in the
following, correspond to Pareto-compliant versions of the indicators R2, IGD™, and €™*:

- WS;(~HV, R2) and ATCH;(—HV, R2);
- WS;(~HV, IGD") and ATCH,(—HV, IGD");
- WS;(—HV, e*) and ATCH;(—HV, €*).

In the following sections, we are interested in understanding the properties of the
adopted PCUISs as performance assessment functions to compare MOEAs’ performance.
To this aim, we proposed two main experiments. The first experiment aims to com-
pare how the PCUIs and their baseline QIs rank several state-of-the-art MOEAs that
produce Pareto front approximations with different specific distributions of objective
vectors (we employed the Lamé and Mirror superspheres problems proposed by Em-
merich and Deutz (2007)). The comparison is based on measuring the correlation of
preferences between all the adopted PCUIs and QlIs, following the methodology of
Liefooghe and Derbel (2016). On the other hand, the second experiment analyzes the
approximate optimal pu-distributions related to PCUIs to reinforce the preference in-
formation. To obtain the approximate optimal u-distributions, we set up a steady-state
MOEA similar to the S-Metric Selection Evolutionary Multiobjective Algorithm (SMS-
EMOA) (Beume et al., 2007), that uses the PCUISs as part of its density estimator. The
proposed algorithm, denoted as PCUI-EMOA, is tested on MOPs from the Deb-Thiele-
Laumanns-Zitzler (DTLZ) (Deb et al., 2005), Walking-Fish-Group (WFG) (Huband et al.,
2006) test suites, and their minus versions, DTLZ~' and WFG™! (Ishibuchi, Setoguchi,
et al., 2017), respectively. It is worth noting that we turned off all the search difficulties
of these problems to avoid issues related to the PCUI-EMOA'’s performance.

5.1 Weight Vector Effect

Before studying the properties of the newly created PCUIs, we need to punctualize the
relationship between the order-preserving functions and the PCUIs and we also need
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Figure 3: Landscapes of ATCH function varying the weight vector w = (w1, wy).

to clarify what is the effect of the combination weight vector w that the PCUIs require.
First, PCUISs are invariant to the indicator scales because of the order-preserving com-
bination function u. Regardless of the order-preserving function being used, it ensures
that if X < y, then u(X) < u(y). However, if X and y are mutually nondominated, we
cannot say what will be the relation between u(¥) and u(¥) unless we know the def-
inition of u. In consequence, each u expresses specific preferences when dealing with
non-dominated solutions and such preferences depend on the landscape of u (see Fig-
ure 3). On the other hand, PCUIs require a weight vector w = (wq, ..., wy) where w; > 0
foralli =1,..., k. Each w; assigns a relative importance to its associated indicator 7;.
Hence, this can control the impact of each indicator to the final preferences of the PCUI.
Figure 3 shows the landscape of the ATCH function for three different settings of w.
This image shows that depending on the setting of w, the preferences of the PCUIs
may change, that is, the total ordering induced by the order-preserving functions. In
specific cases where the preferences of the baseline QIs are in conflict, the weight vector
could lead to exploit the trade-off between them. In other words, when all w; are equal,
the PCUI preferences are the intermediate point between the preferences of its baseline
QIs. For the other two cases in Figure 3, the preferences of the PCUI will be biased to the
indicator having the greatest w;. If we assume that a PCUI is integrated in the selection
mechanism of a MOEA, we could control the final distribution of points by defining w.

5.2  Analysis of Preferences

In this experiment, we are interested in analyzing how similarly the six adopted PCUIs
and their baseline QIs rank different Pareto front approximations corresponding to
the Lamé and Mirror superspheres problems with unimodal difficulty (Emmerich
and Deutz, 2007). The correlation analysis is based on the methodology proposed by
Liefooghe and Derbel (2016) where the main focus is the comparison of rankings of ap-
proximation sets obtained within each QI. The reason to use the Lamé superspheres
is their scalability in the objective space and the controlling of the Pareto front shapes.
Regarding the latter, a parameter y controls the Pareto front geometry. For Lamé prob-
lems,y € (0,1),y =1,and y > 1 correspond to convex, linear, and concave Pareto front
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geometries. In case of the Mirror problems, y € (0, 1) corresponds to a concave geom-
etry while y > 1 is related to convex shapes. For both Lamé and Mirror problems, we
employed y = 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 6.00 for 2, 3, and 4 objective functions.

Following the med-Q sampling methodology of Liefooghe and Derbel where a
black-box MOEA (they employed NSGA-II) produces Pareto front approximations, we
selected MOEAs that exhibit particular distribution characteristics to have a represen-
tative sample of the set W. For each test instance, 30 independent executions were pro-
duced by each MOEA, where all the algorithms shared the same settings. For all the
objective functions, the size of all the produced approximation sets was 120. To avoid
performance issues of the selected MOEAs, all of them used Pareto optimal solutions
as their initial population.” Hence, during the execution time, the MOEAs explore these
initial solutions to impose their own preferences. The adopted MOEAs are classified in
five classes as follows:

¢ Indicator-based MOEAs: SMS-EMOA (Beume et al., 2007), MOMBI2 (Hernan-
dez Gémez and Coello Coello, 2015), IGD"-MaOEA (Falcon-Cardona and
Coello Coello, 2018), and A ,-MaOEAS.

 Pareto-based MOEAs: NSGA-II (Deb et al., 2002) and SPEA2 (Zitzler et al.,
2001).

» Reference set-based MOEAs: NSGA-III (Deb and Jain, 2014).
* Decomposition-based MOEAs: MOEA /D (Zhang and Li, 2007).
+ Image analysis-based MOEAs: MOVAP (Herndndez Gémez et al., 2016).

Regarding the assessment of the Pareto front approximations generated by the
adopted MOEAs, we used the following settings on the Qls and PCUIs. We set 7.y =
(1.12,...,1.12) to calculate HV for all test instances. A set of convex weight vec-
tors (constructed by the Simplex-Lattice-Design method; Das and Dennis, 1998) was
employed as the set W for R2. The reference sets for IGD" and €™ are constructed by
collecting all the Pareto front approximations and, then, obtaining a set of 120 nondom-
inated solutions using a subset selection based on the Riesz s-energy as proposed by
Falcén-Cardona et al. (2020). For all the six adopted PCUISs, the weight vector was set as
w = (0.0001, 0.9999), where 0.0001 is the weight associated with the HV and 0.9999 is re-
lated to the weakly Pareto-compliant QI. This setting was employed to mostly preserve
the preferences of the weakly Pareto-compliant QIs while producing Pareto-compliant
results due to the use of the HV as a correction factor.

We aim to correlate the rankings of MOEAs within each indicator, that is, by how
much the PCUIs and QIs rank the MOEAs (i.e., the characteristic Pareto front approxi-
mations) similarly. For each test instance and QI, the MOEAs are ranked by their mean
indicator value (as proposed by Liefooghe and Derbel (2016), using the med-Q sam-
pling). The ranks of MOEAs are then analyzed for correlation with the remaining QlIs

"To generate the initial populations, we executed the algorithms several times to gather in and
archive the best-found solutions. Then, each time an algorithm runs, it randomly selects a subset of
the archive as its initial population.

8We proposed this algorithm based on the framework of IGD*-MaOEA (Falcén-Cardona and Coello
Coello, 2018) but using the A, indicator as the density estimator.
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Figure 4: Heatmap Kendall rank correlation t for each pair of quality indicators and
each Lamé problem on different dimensions of the objective space.

using the Kendall’s 7 correlation coefficient. It is worth emphasizing that Kendall’s 7
quantifies the difference between the proportion of concordant and discordant pairs
among all possible pairwise MOEAs. Since t € [—1, 1], where 7 = —1 means perfect dis-
agreement and v = 1 means perfect agreement of ranks, we decided to create intervals
of 7 values in order to represent them using Heatmaps. Such intervals are the follow-
ing: [-1, —0.75), [-0.75, —0.5), [-0.5, 0.5], (0.5, 0.75], and (0.75, 1]. It is worth noting
that we consider T € [—0.5, 0.5] as a result of no correlation between two different rank-
ings. Figures 4 and 5 show the 7 values based on the intervals, using heatmaps for all
the adopted Lamé and Mirror test instances, respectively.

5.2.1 Correlation between PCUIs and Baseline Qls

Regarding the correlation analysis on Lamé problems in Figure 4, we have the fol-
lowing conclusions. For problems with y = 0.75, 1.00, 1.50, the PCUIs are consistently
correlated with their baseline Qls (the correlation is stronger with the weakly Pareto-
compliant indicator), regardless of the dimension of the objective space. Regarding y =
1.00, the Kendall’s 7 is in (0.75, 1.0] in almost all comparisons although for three- and
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Figure 5: Heatmap Kendall rank correlation t for each pair of quality indicators and
each Mirror problem on different dimensions of the objective space.

four-objective MOPs, the correlation with all of the QIs with HV gets weaker (r €
(0.5, 0.75]). This behavior can be explained from the studies where it is stated that in-
dicators such as HV, R2, IGD*, and €* have strongly correlated preferences for MOPs
with linear Pareto front shapes (Jiang et al., 2014; Liefooghe and Derbel, 2016; Falcon-
Cardona and Coello, 2019). For both highly convex and highly concave Pareto fronts,
the correlation is strongly positive with the weakly Pareto-compliant QI (i.e., R2, IGD*,
and €¥) and, overall, there is no significant correlation with HV (i.e., r € [-0.5, 0.5]).
For three- and four-objective MOPs, all the PCUIs present consistently a strong correla-
tion with their baseline weakly Pareto-compliant Qls. In contrast, they do not exhibit a
significant correlation with HV in most cases except for y = 0.75, 1.00, 1.50. From the re-
sults, we have a preference bias towards the weakly Pareto-compliant indicators. This
is an effect of giving more importance to these indicators, that is, using w, = 0.9999.
Hence, the preferences of the PCUIs are very similar to those of their baseline weakly
Pareto-compliant indicators. In other words, the PCUIs exhibit different preferences to
those of HV but they still are Pareto-compliant regardless of the Pareto front shape and
the dimensionality of the objective space.

396 Evolutionary Computation =~ Volume 30, Number 3

€20z Joquisydas /0 uo 3senb Aq ypd°L0£00 € 09A8/0680102/18E/E/0E/HPd-0|01E/00AS/NPS HWIJOR.IP//:dRY WO papeojumod



Combined Pareto-Compliant Indicators

For the Mirror problems in Figure 5, we have some similar results. However, in
these problems which represent inverted Pareto front shapes of the Lamé problems,
the PCUIs tend to be even more correlated to their baseline weakly Pareto-compliant
QIs. The only exception is the two-objective Mirror problem with y = 1.00 where all the
PCUIs and QIs are positively correlated. This result is consistent with that of the two-
objective Lamé problem, using the same y value due to the same Pareto front shape.
For all the other test instances, the preferences of the PCUIs are different to those of HV
because in almost all cases, the t correlation value is in the interval [—0.5, 0.5]. A clear
example of the previous claim is the 4-objective Mirror problem with y = 6.00 where no
PCULI is correlated with HV while they present a Kendall’s 7 € (0.75, 1.0] with respect
of their baseline weakly Pareto-compliant QIs.

In summary, there are two important points to emphasize. The use of a setting of w
that gives more importance to the weakly Pareto-compliant QI in the combination, will
promote that the PCUISs inherit its preferences, leaving HV just as a correction factor to
make the PCUI Pareto-compliant. This is a remarkable result since we can create new
Pareto-compliant QIs but having preferences mostly different to those of HV. Hence,
we can increase the number of Pareto-compliant indicators that researchers can employ
for different comparison situations (e.g., when comparing MOEAs that can produce
evenly distributed solutions). The second point relates to the design of new selection
mechanisms where the distribution of solutions can be adjusted depending on the QlIs
to combine. In other words, PCUISs could be employed to manipulate the distribution
properties of MOEAs while maintaining the Pareto compliance property.

5.2.2 Correlation between PCUIs

We analyzed the correlation between the preferences of all PCUIs to ensure that the
combination does produce different indicators. Concerning both the Lamé and Mirror
problems, the correlation analysis indicates that the PCUIs based on the same weakly
Pareto-compliant QI are strongly correlated between them. In consequence, the use of
WS or ATCH is basically producing the same PCUI although they have different land-
scapes. In the next section, we analyze that in some cases, the preferences of indicators
are in conflict which promotes the formation of a Pareto front in the Quality Space.
Hence, the PCUI could exploit this trade-off to show preferences similar to those of its
baseline QIs or biased to one of them.

Another remarkable conclusion is that the preferences of PCUIs based on a different
weakly Pareto-compliant QI are, in general, independent. Hence, each class of PCUIs
are presenting distinct preferences. This is explained by the analysis of the correlation
between R2-IGD™, R2-¢*, and IGD*-¢* that are mostly independent as shown in Fig-
ures 4 and 5. Additionally, due to the use of w = (0.0001, 0.9999), each PCUI inherits
the preferences of its weakly Pareto-compliant QI. Hence, the PCUI will behave in a
similar way to its weakly Pareto-compliant QI but maintaining the Pareto compliance

property.
5.2.3 Pareto Fronts in Quality Space

In objective space, we find Pareto fronts that represent the solution to a MOP. These
Pareto fronts are formed due to the conflict among objective functions. In Quality Space
(see Figure 2), it is also possible to find Pareto fronts when the preferences of an indicator
are in conflict with the preferences of other QI. Based on the correlation analysis previ-
ously explained, we found that when there is independence of preferences between two
QIs or when the preferences are negatively correlated (as in the case of —HV and R2 for
the Lamé problem with y = 0.25in 2D), a Pareto front in the Quality Space Q is formed.
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Figure 6: From left to right, it is shown the Quality Spaces: —HV vs R2 for Lamé y = 0.25
2D, —HV vs R2 for Lamé y = 0.50 4D, —HV vs IGD™ for Mirror y = 2.00 3D, and —HV
vs et for Mirror y = 6.00 4D. All cases tend to show a Pareto front in Quality Space. We
use —HV to show the QIs in each plot for minimization.

Figure 6 shows four examples where it is possible to see the tendency to a Pareto front
in quality space. These plots present the indicator vectors associated with each execu-
tion of the adopted MOEAs in the correlation study for a specific test instance. Since
we are minimizing HV, R2, IGD™, and €™ to use the PCUTISs, it is possible to see that all
plots introduce convex Pareto front shapes. Hence, this fact supports the observation
that there is no critical difference when using WS or ATCH for constructing PCUIs. The
rest of the cases of independence on both heatmaps in Figures 4 and 5 present convex
Pareto fronts. In case a PCUI is employed in the selection mechanism of a MOEA, a
compromise between the indicators will be found, resulting in new distributions on the
Pareto fronts that represent the solution to a MOP. In conclusion, this result supports
the fact that PCUIs could be employed to better control the diversity of a MOEA but
maintaining the Pareto compliance.

5.3 Analysis of Optimal u-Distributions

In this section, we investigate the optimal p-distributions of the selected PCUISs. To this
aim, we considered the framework of SMS-EMOA that uses a density estimator (DE)
based on HV but, in our case, a PCUI is employed in the DE. Algorithm 1 presents the
general framework of our proposed PCUI-EMOA whose main loop is in lines 2 to 12. At
each generation, a new solution is created using genetic operators and, then, this newly
created solution is added to the population P to create the temporary population Q.
Then, in line 5, a set of ranks Ry, ..., R, are created using the nondominated sorting
algorithm (Deb et al., 2002), where R; has the worst solutions according to the Pareto
dominance relation. If R, has more than one solution, the individual contributions to
the PCUI are computed to delete the worst-contributing solution in line 11. Finally, the
Pareto front approximation is returned when the stopping criterion is fulfilled.

We focused our attention on studying the approximate optimal p-distributions pro-
duced by PCUI-EMOA in comparison with those of four steady-state MOEAs based on
the indicators HV, R2, IGD™, and €*, that is, SMS-EMOA, R2-EMOA, IGD"-MaOEA,
and €*-MaOEA. The latter is similar to IGD*-MaOEA. Regarding PCUI-EMOA, we
employed the six PCUIs of the previous section. Since all the adopted indicator-based
MOEAs (IB-MOEAs) share the same structure, the parameters settings are the follow-
ing. For all objective functions, the population size is 120. All MOEAs use simulated
binary crossover and polynomial-based mutation as their genetic operators (Deb et al.,
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Algorithm 1 PCUI-EMOA general framework
Require: PCUI um(f),where f(Il,Ig ..... Iy).

Ensure: Approximation to the Pareto front
1: Randomly initialize population P
2: while stopping criterion is not fulfilled do
3: q + Variation(P)
Q «+ PU{q}
{R1,..., R} + NondominatedSorting(Q)
if |[R¢| > 1 then
Puorst = arg maxge r, {ug ([(R:)) — ug (I(R: \ {p}))}

else

o *® N Tk

Let pworst be the sole solution in Ry
10: end if

11: P+ Q\ {Bworst}

12: end while

13: return P

2002), where, for all cases, the crossover probability is set to 0.9, the mutation proba-
bility is 1/n (n is the number of decision variables), and both the crossover and muta-
tion distribution indexes are set to 20. PCUI-EMOA employs the combination vector as
w = (0.5, 0.5) to look for the knee point on the Pareto front in quality space, that is, to
generate distributions similar to both baseline Qls. We tested the adopted MOEAs on 14
MOPs from the benchmarks DTLZ, WFG, DTLZ ™!, and WFG™! for 2, 3, and 4 objective
functions. We employed the problems DTLZ1, DTLZ2, DTLZ5, DTLZ7, WEG1, WFG2,
WEFGS3, and their minus versions. It is worth noting that we turned off all the difficulties
of these MOPs to avoid biasing the results such that we can observe the approximate
optimal p-distributions of the selected MOEAs. We adopted these MOPs since they pos-
sess Pareto fronts with different geometries, namely, linear, concave, convex, degener-
ate, mixed, disconnected, correlated with the simplex shape, and not correlated with it
(Ishibuchi, Setoguchi, et al., 2017).

The study proposed here is focused on determining the similarity between the ap-
proximate optimal p-distributions produced by the six PCUI-EMOAs and those of the
selected IB-MOEAs. For each test instance, the MOEAs were executed N = 30 indepen-
dent times. Thus, each one produced N approximation sets for each MOP. We investi-
gate the similarity between two sets of approximation sets produced by two MOEAs,
using a similarity measure based on the Hausdorff distance that we propose in the fol-
lowing:

DEerFINITION 10 (One-sided Hausdorff-based similarity measure): Given two sets A =
{A1,..., Ay} and B = (B, ..., By}, each one consisting of N Pareto front approximations,
the one-sided Hausdorff-based similarity measure S is given as follows:

1 X
S(A,B) = v Zmedian(Ai,IB%),
i=1
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where median(A;, B) computes all the Hausdorff-Pompeiu distances from A; to every element
in B and returns the median value. The median is used here to prevent outliers.

S(A, B) calculates the similarity of A to (most) elements in B. It is worth noting that
S is a similarity measure, not a metric (distance function), as it is not symmetrical. It
attains small values if every set in A is similar to at least half of the sets in B. It can,
however, be the case that B contains a number of sets that by no means resemble sets
in A. In that sense it is not symmetrical. To make it symmetrical, one would have to
compute also S(B, A) and take the maximum of these two values, as it is done in the
Hausdorff-Pompeiu Distance (on the level of points sets). In consequence, we propose
the two-sided Hausdorff-based similarity measure which is symmetric.

DzerINITION 11 (Two-sided Hausdorff-based similarity measure): Given two sets A =
{A1,..., Ay} and B = (B, ..., By}, each one consisting of N Pareto front approximations,
the two-sided Hausdorff-based similarity measure H is given as follows:

H(A, B) = max(S(A, B), S(B, A)).
In the case that we are given three sets of approximation sets A, B, and C and we

would like to know if A is similar to B, to C, to both, or to none of them, a classification
function is required. Such classifier is given as follows.

DErINITION 12 (Classifier): Given three sets of approximation sets A, B, and C and a threshold
€ > 0, the classifier function is given as follows:

=1, HA,B)<eAHAC)>c¢
0, HA,B)<e AH(A,C) <e
1, HA,B) > e AH(A,C) > ¢
2, HA,C)<e ANH(AB) > ¢

where —1 means that A is exclusively similar to B; 0 means that A is similar to both B and C;
1 means that A is not similar to B nor C; and, 2 means that A is exclusively similar to C.

C.(H(A,B),H(A,C)) =

Based on the classification function, we analyzed the similarities between the ap-
proximation sets produced by the PCUI-EMOAs and their corresponding IB-MOEAs
that use the baseline indicators for the construction of the PCUI. Table 2 shows the re-
sults for all the considered test instances using € = /m/10. Since all PCUI-EMOAs use
w = (0.5,0.5) as the combination weight vector for the order-preserving utility func-
tions, our hypothesis is that the Pareto front approximations should be similar to both
IB-MOEAs that employ the baseline indicators. This hypothesis is true for several cases
related to the DTLZ and DTLZ~! problems. Nevertheless, for most of the WFG and
WEG™! problems, the PCUI-EMOA tends to produce approximation sets with particular
distributions that are not similar to the baseline IB-MOEAs. This fact could be explained
by the independence of preferences between HV and the weakly Pareto-compliant in-
dicators on these MOPs. Considering the linear problems DTLZ1 and DTLZ17}, it is
clear that in most cases the PCUI-EMOAs produce approximation sets similar to the
IB-MOEAs using their baseline indicators. This result is explained by the correlation
analysis of Section 5.2 where in almost all cases HV, R2, IGD", and €' are strongly
correlated. The most important observation is related to the PCUI-EMOAs based on
WSz (—HV, R2) and ATCH(—HV, R2). On the one hand, SMS-EMOA produces uni-
formly distributed solutions in convex and linear Pareto fronts and there is a bias to-
wards the knee and boundaries of concave Pareto fronts. Additionally, SMS-EMOA
presents good results in degenerate problems such as DTLZ5 and WFG3. On the other
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Table 2: Distribution similarities between each PCUI-EMOA and the IB-MOEAs based
on the indicators HV, R2, IGD™, and €*. For each test instance, it is shown if the distri-
bution of the PCUI-EMOA is similar to one or other baseline indicator, to both or none

of them.

A

& 7 ¢ o

& > 9 > .Y >

2 | & | & |

s % an = an =

| | e | ;

e o e o - )

% e o SO B

MOP Dim. = < = < = <
DTLZ1 2 Both Both Both Both Both Both
3 Both  Both Both Both  Both  Both
4 Both Both Both Both Both Both
DTLZ17! 2 Both Both Both Both Both  Both
3 Both Both  Both  Both  Both  Both
4 HV HV Both Both HV None
DTLZ2 2 Both Both Both  Both  Both  Both
3 R2 R2 Both Both Both Both
4 R2 R2 None None None None
DTLZ2! 2 HV HV Both Both  Both  Both
3 HV HV None None None None
4 None None None None None None
DTLZ5 2 Both Both Both Both Both Both
3 Both  Both Both Both  Both  Both

4 HV HV IGD* IGD™* et et
DTLZ57! 2 HV HV Both  Both  Both  Both
3 HV HV IGD"™ None None None
4 None None None None None None
DTLZ7 2 Both  Both Both Both  Both  Both
3 None None IGD"™ None None None
4 None None None None None None
DTLZ7! 2 Both Both Both Both Both  Both
3 R2 R2 Both Both Both Both
4 None None None et et None
WFG1 2 None None None None None None
3 None None None None None None
4 None None IGD' IGD™" et None
WFG1! 2 R2 R2 None None None None
3 None None None None None None
4 None None None None None None
WEG2 2 None None None None None None
3 None None None None None None
4 None None None None None None
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Table 2: Continued.

7
8 5 & _ =
& > Q > % >
S S S
| | |
e e T
= 5 = 5 = 5
MOP Dim. = < = < = <
WFG2! 2 None None None None None None
3 R2 R2 None None None None
4 None None None None None None
WEG3 2 None None None None None None
3 Both Both Both Both Both Both
4 None None IGD" IGD* €T €r
WEG3™! 2 R2 R2 None None None None
3 Both  Both Both Both  Both  Both
4 HV HV Both  Both HV HV

hand, R2-EMOA (Brockhoff et al., 2015) does not produce uniformly distributed solu-
tions in convex Pareto fronts, but it does in linear and concave ones. Regarding degen-
erate MOPs, R2-EMOA does not produce good results since its weight vectors do not
completely intersect the Pareto front shape. Hence, SMS-EMOA and R2-EMOA have
specific strengths and weaknesses depending on the MOP being tackled. We refer to
strengths and weaknesses of an IB-MOEA (and, more specifically, to the underlying QI)
as its capacity to generate (or failure to generate) Pareto front approximations with good
diversity. For instance, SMS-EMOA does not produce a uniform distribution in DTLZ2
(which has a concave Pareto front) because of the inner preferences of the HV while
R2-EMOA can produce uniformly distributed solutions in this problem.

Regarding DTLZ2 having three and four objective functions and concave Pareto
fronts, it is possible to see that the distribution of the PCUI-EMOAs based on
WS;(—HV, R2) and ATCH;(—HV, R2) are similar to the preferences of R2, that is, R2-
EMOA. When we analyze the minus version DTLZ2"! for the same objective functions,
the distributions are similar to those of SMS-EMOA. This also happens for DTLZ5~! 3D
which is inverted convex where the distributions are similar to those of SMS-EMOA as
well. Hence, we have empirical evidence on the compensation of weaknesses of one in-
dicator with the strengths of the other baseline indicator when employing PCUI-EMOA.
Figure 7 shows some examples of this remarkable compensation.

54 Computational Complexity

Theorem 1 proposes the combination of as many weakly Pareto-compliant Qls as
required with at least one Pareto-compliant indicator. Currently, the only Pareto-
compliant QI available is the hypervolume indicator whose computational cost in-
creases super-polynomially with the number of objective functions (Bringmann and
Friedrich, 2009, 2010). In terms of computational cost, it is clear that the runtime com-
plexity of HV dominates those of R2, IGD*, and €™, which implies that a PCUI and,
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Figure 7: Pareto fronts that show the compensation of weaknesses of one indicator with
the strengths of other when coupled to PCUI-EMOA.

in general, all the QIs constructed by Theorem 1 inherit the cost of HV. Hence, one
may argue that this a clear disadvantage of the proposed method. However, we need
to emphasize that even though we showed that a PCUI can be utilized to guide the
evolutionary process of a MOEA (in fact, we used PCUI-EMOA to study the approxi-
mate optimal p-distributions of PCUISs), the primary focus of PCUIs is to increase the
number of available Pareto-compliant indicators for performance assessment. In con-
sequence, when using a PCUI to compare MOEAs, one may use fast HV calculation
methods such as the Walking-Fish-Group (WFG) algorithm (While et al., 2012) that sig-
nificantly reduces the computational time to get exact HV values. Although following
Theorem 1 allows the construction of new Pareto-compliant QIs, this does not overcome
the runtime complexity of the HV, and it does not theoretically increase the overall com-
putational cost.” Additionally, these combined indicators provide different preferences
to those of the HV and they are controlled by the user when setting the weight vec-
tor w. Hence, we argue that we obtain more advantages than drawbacks by using our
proposed framework.

At this point, it is worth comparing the PCUIs and the multi-indicator-based pref-
erence relations proposed by Zitzler et al. (2010) in terms of computational cost. Due to
the sequential application of the indicator-based preference relations (=), it is likely
that a multi-indicator-based preference relation avoids the computational cost of cal-
culating HV whenever a cheaper QI could solve the comparison. In contrast, PCUIs
do always require the calculation of HV in furtherance of obtaining extra flexibility to

Even in practice, the calculation of as many weakly Pareto-compliant QIs as required does not ag-
gregate a considerable overhead when computing a PCUI value.
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control how the preferences are combined. Moreover, from the discussion throughout
this article, it is possible to visualize two distinct application paths. On the one hand,
PCUIs are useful for performance assessment of MOEAs, considering the Pareto com-
pliance property and offering different preferences to those of HV. On the other hand,
the multi-indicator-based preference relations are a promising direction to construct
set-based MOEAs as in the case of SPAM (Zitzler et al., 2010). In consequence, each
approach is specialized in different areas of evolutionary multiobjective optimization.
Nevertheless, it is worth noting that PCUIs and, in general, our proposed framework for
the combination of multiple QIs represent a generalization of the multi-indicator-based
preferences relations proposed by Zitzler et al. (2010).

6 Conclusions and Future Work

In this article, we proposed to construct new Pareto-compliant indicators by combin-
ing existing Qls, under specific conditions. In order to ensure the Pareto compliance
property, it is mandatory to combine at least one Pareto-compliant indicator (such as
the hypervolume indicator) with as many weakly Pareto-compliant Qls as required, by
using an order-preserving function. Following this framework, we proposed six new
Pareto-compliant QIs based on the combination of HV with R2, IGD™, and €™, using
the weighted sum and augmented Tchebycheff utility functions as order-preserving
combination functions. We studied the properties of these six PCUIs from a prefer-
ences and approximate optimal p-distributions perspective. Our experimental results
showed that the proposed PCUIs do exhibit different preferences to those of the HV
which implies that they can be used as an alternative to the HV to assess performance
of MOEAs while ensuring the Pareto compliance property. These results were sup-
ported by an analysis of approximate optimal p-distributions. Furthermore, when using
a steady-state MOEA based on a PCUI, we observed that the non-uniform distributions
produced by one of the baseline QIs of the PCUI could be compensated by the uni-
form distribution strengths of another baseline QI. It is worth emphasizing that the
main focus of PCUIs is the performance assessment of MOEAs. In this direction, we
discussed that even though a PCUI requires the calculation of the HV, the main ad-
vantage of PCUIs lies on their different preferences with respect to those of the HV.
Additionally, PCUIs have the same theoretical runtime complexity as the HV while al-
lowing to draw conclusions supported by the Pareto compliance property. As part of
our future work, we aim to provide a mechanism that adapts the combination vector
depending on the geometrical features of the MOP. Moreover, we aim to theoretically
analyze the properties of PCUIs in order to define in which cases they can be used to
provide better information. Finally, an analysis considering MOPs with more than four
objective functions is also a task that we would like to undertake as part of our future
work.
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