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Abstract
Connection patterns among Local Optima Networks (LONs) can inform heuristic design
for optimisation. LON research has predominantly required complete enumeration of a
fitness landscape, thereby restricting analysis to problems diminutive in size compared
to real-life situations. LON sampling algorithms are therefore important. In this article,
we study LON construction algorithms for the Quadratic Assignment Problem (QAP).
Using machine learning, we use estimated LON features to predict search performance
for competitive heuristics used in the QAP domain. The results show that by using ran-
dom forest regression, LON construction algorithms produce fitness landscape features
which can explain almost all search variance. We find that LON samples better relate to
search than enumerated LONs do. The importance of fitness levels of sampled LONs
in search predictions is crystallised. Features from LONs produced by different algo-
rithms are combined in predictions for the first time, with promising results for this
“super-sampling”: a model to predict tabu search success explained 99% of variance.
Arguments are made for the use-case of each LON algorithm and for combining the
exploitative process of one with the exploratory optimisation of the other.

Keywords
Combinatorial optimisation, fitness landscapes, local optima networks, funnel land-
scapes.

1 Introduction

A Local Optima Network (LON) (Ochoa et al., 2008) is a fitness landscape model used to
understand or predict interaction between configuration spaces and search algorithms.
LONs consist of local optima for nodes, and the edges are trajectories between local
optima. Studying LON objects has brought colour and clarity to our understanding of
how optimisation problems and search algorithms interact (Daolio et al., 2011; Ochoa
and Veerapen, 2016; Herrmann, 2016; Hernando et al., 2017).

Principally, studies have enumerated the fitness landscape to build a comprehen-
sive LON (Ochoa et al., 2008; Tomassini et al., 2008; Daolio et al., 2011; Verel et al., 2011;
Herrmann et al., 2016; Veerapen et al., 2016; Verel et al., 2018). Their focus was on smaller
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problems and every candidate solution was mapped to a local optimum within its basin
of attraction.

The baseline and the proof-of-concepts were necessary to establish LONs as promis-
ing tools. They now have attracted attention (Ochoa and Veerapen, 2018; Bozejko et al.,
2018; Herrmann et al., 2018; Fieldsend, 2018; Chicano et al., 2018; Simoncini et al., 2018;
Liu et al., 2019), and will likely be applied to increasing numbers of real (and much
larger) problems. In anticipation of these requirements, refined LON sampling methods
are needed. The literature concerning how to sample LONs is in its embryonic stages.

A few LON construction algorithms have been proposed, but have not been exten-
sively tested. We describe here those proposed for the Quadratic Assignment Problem
(QAP). Note that in lieu of formal naming by the various authors, we have labelled
them as we see fit.

Two-Phase LON Sampling. Iclanzan et al. (2014) proposed a LON algorithm to sample
n-dimension QAP instances, which had separate phases for recording nodes and edges.
Initially, local optima were found by hill-climbing from 2000 × n starting solutions, and
thereafter the local optima have a kick or perturbation applied. If the obtained local
optimum is also in the node set, an edge is added (or, if it exists already, the edge weight
is incremented). This algorithm is not used in our study as it seems to be a particular
case of the two more recent proposals.

Markov-Chain LON Sampling. Ochoa and Herrmann (2018) introduced a LON algo-
rithm for the QAP built with a competitive heuristic, Iterated Local Search (ILS) (Stützle,
2006). For the remainder of this study, this is labelled Markov-Chain LON Sampling, to
avoid confusion with the ILS optimisation heuristic itself. The sampling is comprised
of multiple ILS runs, each being an adaptive walk on the local optima space. Every
local optimum and connection between optima is recorded. The same framework for
Travelling Salesman Problem LONs has been used with some success (Ochoa and Veer-
apen, 2018); this is also instrumented on top of a competitive heuristic in the domain—
Chained Lin-Kernighan (Applegate et al., 2003).

Snowball LON Sampling. The same year, Verel et al. (2018) presented a Snowball LON
Sampling algorithm. A random walk takes place on the local optima level. From each
node in the walk, a recursive branching or snowballing samples the direct (locally opti-
mal) neighbours. The local optima are found using kicks followed by hill-climbing, as
in Markov-Chain LON Sampling.

The literature has not asked which method is more representative of the LON be-
ing sampled; that is, are the sampled landscapes similar to those induced by search
heuristics during optimisation? There is also vagueness about whether particular LON
construction algorithms relate more earnestly to particular search heuristics. A further
open issue is that computational cost has not necessarily been considered with regards
to LON construction algorithms. Therefore, can their efficiency be compared? And fi-
nally, is sampling bias inherent within the methods themselves?

This work has a heavy focus on the relevance of sampled LONs to empirical search
difficulty, which manifests as performance prediction using LON features as predictors.
We argue this is fruitful in contrast to the analysis of LON features (without aligning
them with search variance)—this seems arbitrary and counterintuitive to the purpose
of LONs. Search variance prediction is important because it helps ascribe algorithm
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proficiency to particular topological features and produces insight about how algorith-
mic operators interact with a problem.

The results and experiments of this study come in four parts. First, the comparison
of LON samples with fully enumerated LONs; next LON construction algorithms are
provided a fixed computational budget; then LON methods are given various sets of
input parameters; and finally the best features from each LON type are taken together
into regression models.

The first comparison of sampled versus enumerated LONs, in terms of predictive
power for search variance is given. For the first time LON construction algorithms are
given equal computational budget and the effect studied. We created a new set of fea-
tures, which contains features obtained with the two different sampling methods, as
opposed to sets of features coming from a single method.

The remainder of the article is structured as follows. Section 2 provides the baseline
definitions to keep the work self-contained; our methods are in Section 3. Experimental
setup is detailed in Section 4, followed by the results in Section 5, and discussion and
conclusions in Sections 6 and 7, respectively.

2 Definitions

2.1 Fitness Landscapes

A fitness landscape is both a mathematical object and a metaphor for understanding op-
timisation processes. For evolutionary computation, a landscape is the tuple (S,N, f )
where S is the set of all potential solutions, N : S −→ 2S , a function that defines the
adjacency between solutions; that is, N (s) is the set of neighbouring solutions of the
solution s, and f—a fitness function which assigns a fitness value to each solution as
f : S −→ R (Stadler, 2002). When we consider that search heuristics typically use mul-
tiple operators (the operator corresponds to the fitness landscape component N as a
notion of connectivity between solutions), it becomes clear that search algorithms in-
duce empirical fitness landscapes that are much more complex than the basic singu-
lar neighbourhood (S,N, f ) model. Two different search algorithms moving on the
same configuration space can manufacture completely dissimilar topological landscape
features.

2.2 Local Optima Networks

A subspace of the fitness landscape is considered, reducing the solution set exclusively
to local optima. The neighbourhood now defines the accessibility between local optima
often based on the original neighborhood relation of the fitness landscape. This is a Local
Optima Network as per Ochoa et al. (2008).

2.2.1 Nodes
The set of vertices, LO, consists of local optima (labelled with an index and correspond-
ing fitness). For a minimisation optimisation problem, we define each such local opti-
mum loi to satisfy the condition of superior fitness over all other solutions, x, in its
neighbourhood: ∀x ∈ N (loi ) : f (x) � f (loi ), where N (loi ) is the neighbourhood of loi .

2.2.2 Edges
The network edges, E, are weighted and oriented. For Markov-Chain Sampling and
Snowball Sampling LONs, we have an edge if combining perturbation and hill-climbing
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Figure 1: Abstracted from high-dimensional space, a suboptimal funnel (left) and the
primary (optimal) funnel on the right, for a minimisation problem.

can transform the source to the destination. The edge weight is the probability of that
transformation occurring. Formally, local optima loi and loj form the source and desti-
nation of an edge iff wij > 0.

Joining the nodes and edges induces a LON, LON = (LO,E), a directed graph with
nodes loi ∈ LO, and there exists an edge eij ∈ E, with weight wij , between two nodes
loi and loj iff wij > 0. Note that, in most cases, wij �= wji .

2.3 Funnels

Funnels are documented fitness landscape features in combinatorial optimisation (Hains
et al., 2011; Ochoa et al., 2017) but originate in the study of physical energy landscapes
(Doye et al., 1999). The precise definition in evolutionary computation is an area of
active research but a series of papers (Ochoa et al., 2017; Ochoa and Veerapen, 2018;
McMenemy et al., 2018) consider them to be a basin of attraction at the local optima
level. In Figure 1, we see multiple small basins; overall though, these conform to two
much larger basins. The large basins are funnels, and they contain many local optima
organised in a fitness hierarchy. In this minimisation example, there exists a shallower
suboptimal funnel (on the left) and a deeper, optimal funnel (on the right). In use for this
work is the associated definition that a funnel is the collection of monotonically improv-
ing (in fitness transformations) paths through local optima which terminate at a single
local optimum (a funnel-floor). To find the paths, the funnel-floors are identified from a
LON—simply the nodes with no outgoing improving (destination node of edge has su-
perior fitness to source node) edges. From those, a breadth-first search is conducted on
the LON, exposing the set of paths which terminate at that funnel-floor. These paths
together (both the nodes and the edges) comprise the funnel.

3 Methodology

3.1 The Quadratic Assignment Problem

A Quadratic Assignment Problem (QAP) (Lawler, 1963) requires allocation of facilities
to available locations. A permutation of facilities assigned to the indexed locations is
the solution representation. Instance specification for a QAP is formed by two matrices:
one for pairwise distances between facilities and locations, the other, pairwise flows
between them. Mathematically, with the problem dimension being N , the QAP is an
assignment of N facilities to N locations where each pair of facilities and locations,
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filj , have a distance separating them, Dij , and a flow value, Fij . These are encoded
in the distance and flow matrices. A solution is a permutation of length N , has fit-
ness calculated as the product of distances, and flows between adjacent assignments.
The objective function, g, for a QAP solution x is minimisation of this product where
g(x) = ∑N

i=1
∑N

j=1 DijFij ,∀x ∈ S. The QAP is NP-Hard and manifests in many real-
world problems; it remains a testbed for new fitness landscape analysis (Tayarani-N
and Prügel-Bennett, 2016; Verel et al., 2018; Ochoa and Herrmann, 2018). This reality
combined with the availability of QAP LON construction algorithms lead us to select
QAP for this study.

3.2 Instances

In our analysis, we consider the widely accepted benchmark library, Quadratic Assign-
ment Problem Library (QAPLIB) (Burkard et al., 1997). The library contains 128 in-
stances which also have the optimum fitness evaluations provided. We use 124 of these
128, omitting the largest three due to computational cost (tho150, tai150b, and tai256c),
and also esc16f because all entries in the distance matrix are zero. Our set results in
N � 128. Aset of sixty additional instances (N = 11) not in QAPLIB also play a part in the
results. Their size enables a complete enumeration of the LONs, which is required for
comparison to sampled LONs of the same instances. As there is an insufficient number
of small instances in the benchmark QAPLIB, this set is desirable to perform statistical
analysis.

QAP instances usually conform to four categories (Stützle, 2006), differentiated
by distributions in the distance and flow matrices. The four categories are: uniform
random distances and flows, random flows on grids, real-world problems, and ran-
dom real-world like problems. Below we describe our chosen instances in relation to
these categories. Note that in QAPLIB, the problem dimension is given in the instance
name.

Uniform random distances and flows. Distance and flow values for instances from this
category are randomly sampled from a Gaussian distribution. The spread of locations
on the plane is random. From QAPLIB we use tai{12a, 15a, 17a, 20a, 25a, 30a, 35a, 40a,
50a, 60a, 64c, 80a, 100a} alongside rou{12, 15, 20}. Within this class are 30 of our size-11
generated instances.

Random flows on grids. Distance values are organised—locations lie in a defined
square on a grid. Flow entries are random. From this category, the QAPLIB instances
had{12,14, 16, 18, 20}, nug{12, 14, 16a-b, 17, 18, 20, 21, 22, 24, 30}, scr{12, 15, 20}, sko{42, 56,
64, 72, 81, 90, 100{a-f}}, tho{30,40}, and wil{50, 100} are considered.

Real-world. Instances of the QAP can be formulated from real-world problems. This
is the case for some QAPLIB instances. In use in this study are bur instances, which
comprise of stenotypist typing data; kra instances, formulated to plan a hospital layout;
esc instances, for the testing of sequential circuits; the ste set, for fixing units on a grid;
and els19, which deals with flows of hospital patients moving between departments.
Our analysis includes QAPLIB sets bur{a-h}, {els19}, esc{16a-e, g-j, 32e, 32g, 128}, kra{30a-
b, 32}, lipa{20a-b, 30a-b, 40a-b, 50a-b, 60a-b, 70a-b, 80a-b, 90a-b}, and ste36{a-c}.

Random Real-World Like. Although not strictly “real-world,” these simulate real-
world conditions by placing locations in clusters on the plane. In this way, distance
values are either small (intra-cluster) or large (inter-cluster). Flows are random. From
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QAPLIB we use tai{12b, 15b, 20b, 25b, 30b, 35b, 40b, 50b, 60b, 80b, 100b}. As above, within
this class are 30 of our size-11 generated instances.

Miscellaneous. The QAPLIB chr set do not seem to fit neatly into a category. The only
constraint is that flows form a mathematical tree. The instances chr{12a-c, 15a-c, 18a-b,
20a-c, 22a-b, 25a} are used.

3.3 LON Algorithm 0: Exhaustive Enumeration

The method for exhaustively enumerating a local optima network was introduced
alongside the model itself (Ochoa et al., 2008) and then adapted for the QAP (Daolio
et al., 2011). LONs are enumerated using a best-improvement algorithm which uses the
elementary operator for QAP—a pairwise exchange of facilities. The local optimum x

for each solution is found by best-improvement pivot rule and in this way the nodes in
the network are added. The escape edges are defined according to the distance d (num-
ber of pairwise swaps between solutions), and a threshold for the LON D > 0. An edge
eij is traced between xi and xj if a solution s exists such that d(s, xi ) ≤ D and h(s) = xj .
The weight wij of this edge is wij = |{s ∈ S : d(s, xi ) ≤ D and h(s) = xj }|. This weight
can be normalised by the number of solutions, |{s ∈ S : d(s, xi ) ≤ D}|, within reach at
distance D. In the present study, we set D = 2. The best-improvement algorithm is de-
scribed in Algorithm 1.

3.4 LON Algorithm 1: Markov-Chain LON Sampling

We label the first LON sampling candidate (Ochoa and Herrmann, 2018) Markov-Chain
LON Sampling for the duration of this study. LON nodes and edges are logged during
multiple runs of an iterated local search. Each run starts at a random solution, hill-climbs
to a local optimum, before “kicking” or perturbing with a large mutation. Hill-climbing
is applied to the perturbed solution to obtain a local optimum, which becomes the input
for the next perturbation and hill-climb cycle. The ILS used (Stützle, 2006) is competitive
for QAP. To build a LON, 200 runs of ILS track each local optimum and each movement
between local optima. Each of these traces is combined to form a single LON.

The algorithm process is in Algorithm 2. There are parameters which will affect the
sample: the number of ILS runs (runs), the termination condition (iterations without
improvement, t), the pivot rule of hill-climbing (best improvement or first, hc-type), and
the strength of kick or perturbation (k). The sample can be regarded as a joined group
of adaptive walks on the local optima level. The multiple start points of the individual
runs should—in principle—negate any issue of anisotropy (directional dependency) in
the fitness landscape.
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3.5 LON Algorithm 2: Snowball LON Sampling

The second LON algorithm candidate is called Snowball LON Sampling. Put concisely,
it is a branching random walk at the local optima level. The process of snowballing
has been around for decades in social science (Goodman, 1961) but was not considered
for LON sampling until late 2018 (Verel et al., 2018). Snowball LON Sampling starts at a
random solution and hill-climbs to a local optimum (LO) which is taken to be the first
node in a random walk of LO. From this node, a recursive expansion of LO neighbours
begins. Specifically, perturbations followed by hill-climbs are taken from the node, to
find LO neighbours. All are added to the growing sample. The process is then repeated
for the neighbours, to find their own neighbours. Thereafter, Snowball LON Sampling
returns to the first node on the main walk path, and goes to a random LO neighbour
(again by perturbation and hill-climbing) which becomes node two on the walk. The
expansion of node two begins. This continues until the random walk is complete.

The pseudocode is shown in Algorithm 3. Parameters exist which can be used to
tune the sample: the length of the walk (l), the number of neighbours included in a LO
expansion (m), and the depth of the expansion (number of steps away from original
path, d).

3.6 LON Features

LON features are chosen with care for our study—a critical component of our analysis
utilises them as predictors in regression for performance prediction.

Standard features taken from Markov-Chain LON Sampling LONs are the number of
LON nodes sampled (denoted as number optima); edges sampled (edges); mean sampled
fitness (mean fitness); mean out-degree (mean outgoing edges from nodes, out-degree);
and the diameter of the LON (longest path between nodes), diameter.

Funnel-based LON features are included. Our choices are the proportion of LON
edges pointing at the global optimum funnel-floor (incoming global); and mean funnel-
floor fitness (funnel-floor fitness).

All features mentioned thus far are useful for Markov-Chain LON Sampling LONs
but not Snowball LONs. Snowball samples do not fit well with funnel metrics as heuris-
tic trajectories are uniformly restricted by the nature of the sampling. In fact, the sam-
pling would induce a consistent and increasingly large number of apparent “funnels”
(according to our definition in Section 2.3). The short branching paths during node
expansion would also lead to numerous nodes with no outgoing edges, which are
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technically defined as funnel-floors. In reality, improving transformations from these
nodes is likely possible. Similarly, standard features of the samples such as quantities
of nodes, edges, and out-degrees in Snowball Sampling LONs are redundant as predic-
tors; they are artefacts of the sampling parameters (length of the random walk, number
of edges, and depth of snowball expansion).

We see in Figure 2 that even for a diminutive N = 11 instance, the LON construc-
tion algorithms capture rather different things. Taking a bird’s eye view, the Markov-
Chain LON seems to be sparser in terms of nodes, edges, and edge density. In fact, the
enumerated LON has 53 nodes, 1134 edges; Markov-Chain LON Sample has 36 nodes,
122 edges; and Snowball LON Sample has 43 nodes, and 272 edges.

For Snowball LON Sampling, features are based on the attributes encoded in the
nodes and edges: the fitness distribution and the edge weight distribution. These are
more appropriate to what the sample has to offer. Metrics based on the density and
connection pattern of edges will not give meaningful information because these are an
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Figure 2: Three LONs extracted from the same N = 11 QAP instance (from class “random
real-like”). All produced with different algorithms as indicated in the subcaptions. Node
size is proportional to fitness (larger is fitter). Global optimum is shown in red, all other
nodes in grey.

artefact of the chosen sampling parameters, instead of an inherent structure. In partic-
ular, funnel metrics calculated on Snowball LONs demonstrated that almost all nodes
were identified as funnel-floors. Instead, included in the chosen metric set is the mean
weight of self-loops (weight loops); mean weight disparity of outgoing edges (weight dis-
parity); and fitness-fitness correlation between neighbours (fitness correlation). Statistics
collected during snowballing are included too, namely: mean length of hill-climb to
local optimum (mean HC length); maximum length of hill-climb to local optimum (maxi-
mum HC length); and maximum number of paths to local optimum (maximum HC paths).

4 Experimental Setup

In this section, we detail the setup of the LON construction algorithms, the predictive
models used, and the QAP search algorithms.

4.1 Markov-Chain LON Sampling: Details

For the main QAPLIB study, seven parameter configurations are given to the Markov-
Chain LON sampling algorithm, producing seven Markov-Chain LONs for each QAPLIB
instance. Parameter choices are amongst those provided and suggested by the author
of the base ILS heuristic (Stützle, 2006), using the form {perturbation, type local search},
and they are: { n

16 , first}; { n
16 , best}; { n

8 , first}; { n
8 , best}; { n

4 , first}; { n
2 , first}; { 3n

4 , first}. For all,
200 runs are started from a random solution, so that diverse regions of the local optima
space will be sampled. Each run terminates when there has not been an improvement
in 1000 iterations. During preliminary runs, this condition was found to be sufficiently
large such that local optima are not prematurely considered to be inescapable funnel-
floors (recall Section 2.3), but low enough that computational cost is reasonable. Con-
cerning the sensitivity of the results to the parameter choices: if the number of runs
were lower, the relation from the constructed LONs to optimiser performance would
be proportionally weaker. A lower value for the termination condition would produce
LONs riddled with pseudo-funnel floors, presenting an image of the local optima space
which is more complex than the empirical reality. The full process is given in Section 3
and Algorithm 2.

Seven sampling configurations for 124 problem instances gives us 868 LONs for
QAPLIB instances as produced by Markov-Chain LON Sampling. In addition, Markov-
Chain LON Sampling LONs for the 60 synthetic size-11 instances and for the fixed-
evaluations QAPLIB LONs were constructed using { n

2 , first}.
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4.2 Snowball LON Sampling: Details

Parameter configurations for Snowball LON Sampling lie in the form {l, m, d} and are
as follows: {100, 20, 2}; {100, 30, 2}; {100, 50, 2}; {100, 60, 2}; {200, 30, 2}; {400, 30, 2}; and
{400, 50, 2}. The choices are based on those suggested by the algorithm’s author (Verel
et al., 2018). To reiterate, we start once from a random solution, and hill-climb to a local
optimum, which is the first in the random walk. The algorithm will terminate when
the walk length and node expansion is complete, as in Section 3 and Algorithm 3. Like
Markov-Chain LON Sampling, there are 868 (seven parameter sets × 124 instances) for
QAPLIB produced by this algorithm. Snowball LON Sampling LONs for the synthetic
size-11 instances and for the fixed-evaluations QAPLIB LONs were constructed using
{100, 60, 2}.

4.3 Predictive Models: Details

Linear and random forest regression are used for algorithm performance prediction.
Linear regression models describe the linear effect of predictors on the response vari-
able; random forest is known for capturing nonlinear interactions between variables.
For each, random repeated subsampling cross-validation (also known as bootstrap-
ping) is conducted for 100 iterations, each time shuffling the observations randomly.
We do this with an 80-20 training-test split. The predictors xj are normalised and reduce
to standard deviation one as (xj −E(xj ))

sd(xj ) . The random forest regressions use 500 decision

trees; the number of features sampled as candidates during splits is 1
3n, where n is the

number of features.
For the bulk of our models (results Sections 5.2, 5.3, and 5.4) the R2 is a reported

statistic. This quantifies the amount of variance in the response variable—which is the
obtained fitness (after 1000 iterations) as a proportion of the desired fitness—which is
explainable using the set of predictors. Also in use is the mean-squared error (MSE), a no-
tion of how accurate predictions from the model are. For the random forest regressions,
the predictor importance rankings are reported. A portion of our study is comparing LON
enumerations with LON samples. For this, we have a different environment for mod-
elling. Because the LON must be fully enumerable, the instances are bounded at N = 11
and are synthetic. There are 60 observations (feature vectors for 60 LONs), arising from
two QAP classes (random “real-like” and uniformly random, respectively). Accounting
for effects caused by QAP class is an objective for this set of experiments (the results are
in Section 5.1), in particular because of the limited number of observations. These “ran-
dom effects” can be controlled for in a hierarchical linear mixed model, also known as
a mixed-effects model.

To formalise the hierarchical modelling approach, let us take yik to be the search
performance (for example, success rate or runtime) observed on instance i from class k

(k is real-like or uniform-random). The linear model is then:

yik = β0 +
p∑

j=1

βjxjik + αk + εik, εik ∼ N (0, σ 2),

where xjik is the value of predictor j (e.g., number of local optima, number of funnels,
etc.) of instance i from class k, βj is its corresponding fixed effect on search performance,
αk are the random effects conditional on problem class k, which represent random de-
viations from the common intercept β0, and finally εik are the model residuals.

The summary statistics used for this subset of regression models (Section 5.1) are
the conditional R 2, the marginal R2, and the Root Mean Squared Error (RMSE) (given as
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a proportion of the response variable’s range). Conditional R2 is the variance explained
by the complete model. Marginal R2 is the ratio of variance that is explained by only the
fixed effects (Nakagawa and Schielzeth, 2013) (negating or controlling for the random
effects from QAP instance class). The fixed effects are the LON features. RMSE captures
the standard deviation of the model predictions (also known as residuals) and is there-
fore useful for estimating the variability of predictions. RMSE is in the same unit range
as the response variable. For ease of interpretation, RMSE is taken as a proportion of
the total range for the response variable (search performance).

4.4 QAP Search Algorithms

For our regression response variables, search algorithm performance on the QAP in-
stances is used. The search algorithms are two competitive search algorithms for the
QAP: Improved Iterated Local Search (ILS, Stützle, 2006), and Robust Taboo Search (TS,
Taillard, 1991). These are run 100 times on every QAP instance and after 1000 iterations
the obtained fitness is taken as a proportion of the desired fitness. This is our measure
for how difficult the instance was for ILS or TS and is the response variable in the mod-
els seen in results Sections 5.2, 5.3, and 5.4. This metric does not hold up well though
for our N = 11 instances: they are easy for ILS and TS, meaning the obtained fitness is
frequently the desired fitness. For those experiments (models reported in results Sec-
tion 5.1) the metric number of iterations to reach the global optimum is instead used as our
algorithm response variable.

ILS comes with a wealth of viable parameter configurations. The choices for this
study are first improvement hill-climbing, in combination with a perturbation strength
of 3n

4 pairwise exchanges of facilities. This perturbation strength is known to be well-
performing (Stützle, 2006) and is chosen to generate a sufficiently different solution
from the previous local optimum.

5 Results

This section reports the experimental results, mostly in the form of regression model
summaries. The primary aim is analysing the relationship between the LONs and search
algorithm performance.

5.1 Approximating the LON Enumeration

5.1.1 Features
Let us begin a brief look at the relationships between features of LONs produced by the
construction algorithms. Figure 3 plots the number of local optima in the LON (right),
and the number of edges (left). The scatterplot is the feature (nodes or edges) from LON
enumeration (x-axis) and the same feature from Markov-Chain LON Sampling (y-axis).
The random “real-like” LONs are red, uniform random in green.

The two plots share similar trends. The uniform random LONs in green suggest a
reasonable correlation between the estimation and the true number of nodes, and edges.
The numbers of nodes and edges are, as expected, smaller when produced by the sam-
pling algorithm instead of the enumeration. Although less obvious from the plots, the
same is true of the random real-like LONs (in red). In fact, taking all 60 LONs together
carries an associated 0.926 Pearson correlation between enumerated node count and
sampled node count. The edge count correlation stands lower at 0.793. Snowball LON
Sampling generates LONs with stronger still correlation plots. There is a 0.996 corre-
lation with enumeration in terms of nodes; 0.977 for edges. These positive trends are
seen in Figure 4. Let us clarify that extrapolating from these results to larger instances is
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Figure 3: Scatterplots for features of fully enumerated LONs (x-axis) versus features of
sampled Markov-Chain LONs (y-axis).

Figure 4: Scatterplots for features of fully enumerated LONs (x-axis) versus features of
sampled Snowball LONs (y-axis).
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Table 1: Mixed-effects model summary statistics, for the N = 11 LONs. Marginal (fixed
effects) R2, conditional (fixed and random effects) R2, and root mean squared error are
shown.

LON Method Response Variable Marginal R2 Conditional R2 RMSE

Exhaustive ILS 0.159 0.832 0.21
Exhaustive TS 0.148 0.719 0.18
Markov-Chain ILS 0.406 0.406 0.20
Markov-Chain TS 0.220 0.816 0.20
Snowball ILS 0.370 0.374 0.20
Snowball TS 0.147 0.745 0.23

difficult. Although Snowball LON Sampling often extracts a node set with size represen-
tative of the enumerated LON set, this might only be the case for very small instances.
The algorithm is based on a single start point; therefore, the sample could potentially
reflect a low-quality region of local optima.

5.1.2 Predictive Models
Consider now Table 1 for performance prediction models using features from differ-
ent types of LON sampling. In terms of explanation of variance in the {ILS, T S} re-
sponses (see Marginal R2 column), the models are somewhat weak after controlling
for the random effects (allowing for difference in problem type). This can be seen by
comparing the smaller Marginal R2 values with the Conditional R2 ones. The confu-
sion of the response variable is likely due to the small number of observations (60) and
smaller still number belonging to a particular class (30 each). The purpose of the mod-
els is comparison between LON construction algorithms though. The models do have
low relative RMSE—typically one-fifth of the range of the response variable. Taking the
Marginal R2 as indication of quality, the two strongest models are using sampled
(Markov-Chain and Snowball) LONs to predict ILS response on the problem. Notice that
the Marginal R2 and Conditional R2 are equal for the former. This means there was no
detectable random effects coming from difference in problem class. The result that sam-
pled LONs explain more variance than enumerated is noteable—intuition would tell us
that the enumerated LON (rows one and two in Table 1) would give superior informa-
tion about the problem. Markov-Chain LON Sampling and Snowball LON Sampling are,
however, based on operator combinations which are in search algorithms used in prac-
tice on the QAP. Enumeration of LONs is simply running a local search from every pos-
sible solution to assign a local optimum. This may not mirror actual algorithm-problem
interactions. This result is interesting given that most LON work has analysed enumer-
ated LONs (Ochoa et al., 2008; Daolio et al., 2011; Herrmann et al., 2016).

5.2 LON Sampling: Equal Computational Threshold

For this section, LONs were produced using a comparable computational budget. Each
LON algorithm was allowed 50,000 fitness function evaluations. Now we investigate
which provides more predictive information about search difficulties under these re-
stricted conditions.

Table 2 gives model summaries, including the LON algorithm used to produce
the samples, the type of regression, the chosen response variable (ILS or TS, meaning
the normalised fitness they obtained on the problem), the R2, and the mean-squared
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Table 2: Linear and random forest regression model summary statistics, for the fixed-
evaluations QAPLIB LONs. R2 and MSE are given.

LON Method Regression Response Variable R2 MSE

Markov-Chain Linear ILS 0.471 0.002
Markov-Chain Linear TS 0.336 0.132
Markov-Chain RandomForest ILS 0.245 0.002
Markov-Chain RandomForest TS 0.154 0.144
Snowball Linear ILS 0.303 0.002
Snowball Linear TS 0.418 0.024
Snowball RandomForest ILS 0.230 0.002
Snowball RandomForest TS 0.521 0.013

Table 3: Predictor rankings for RF models using fixed-evaluations Markov-Chain
QAPLIB LONs. Fitness features in italics.

Predicting ILS Importance Value Predicting TS Importance Value

incoming global 0.058 mean fitness 2.130
out-degree 0.023 funnel-floor fitness 2.127
number optima 0.023 edges 1.742
mean fitness 0.022 number optima 1.736
edges 0.021 out-degree 0.349
funnel-floor fitness 0.019 incoming global 0.304

Table 4: Predictor rankings for RF models using fixed-evaluations Snowball QAPLIB
LONs. Fitness features in italics.

Predicting ILS Importance Value Predicting TS Importance Value

maximum HC length 0.043 maximum HC length 0.656
weight disparity 0.028 mean fitness 0.320
mean fitness 0.025 mean HC length 0.310
maximum HC paths 0.017 fitness correlation 0.273
fitness correlation 0.015 weight disparity 0.193
weight loops 0.014 weight loops 0.156
mean HC length 0.014 maximum HC paths 0.141

error (MSE). Tables 3 and 4 then record the random forest predictor rankings for Markov
LON Sampling and Snowball LON Sampling respectively. Looking over the ILS rows in
Table 2, it can be seen that the MSE rates are comparable for the LON construction algo-
rithms; however, the R2 values are higher for both types of regression for Markov-Chain
over Snowball. This being said, Snowball LON, with features predicting TS using ran-
dom forest regression, is the strongest model shown, with around 52% of variance ex-
plained. This is especially interesting with the consideration that typically the R2 values
are smaller for random forest over linear, but this model is the only exception. Snowball
LON sampling is superior to its competitor when taking tabu search (TS) to be the re-
sponse variable. This can be seen by comparing rows 2 and 4 with rows 6 and 8. The
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Table 5: Linear and random forest regression model summary statistics for full QAPLIB
LON set. R2 and MSE are given.

LON Method Regression Response Variable R2 MSE

Markov-Chain Linear ILS 0.043 0.002
Markov-Chain Linear TS 0.180 0.081
Markov-Chain RandomForest ILS 0.645 0.000
Markov-Chain RandomForest TS 0.925 0.008
Snowball Linear ILS 0.057 0.003
Snowball Linear TS 0.252 0.029
Snowball RandomForest ILS 0.804 0.000
Snowball RandomForest TS 0.922 0.003

Table 6: Predictor rankings for main QAPLIB RF models—Markov-Chain LON sam-
ples. Fitness features in italics.

Predicting ILS Predicting TS

mean fitness mean fitness
funnel-floor fitness funnel-floor fitness
number optima edges
incoming global diameter
edges number optima
diameter out-degree
out-degree incoming global

R2 values are higher and the error rates are smaller (by an order of magnitude) in the
Snowball models, compared to those of Markov.

5.3 LONs to Predict QAPLIB Problem Difficulty

In this section, the set of 868 LON samplings (for each LON algorithm, totalling 1,736)
for QAPLIB is used. Recall that these are associated with 124 QAPLIB instances, each
having seven LONs produced per algorithm (differentiated by sampling parameter con-
figuration). Table 5 shows the algorithmic performance prediction model summaries,
indicating the strength of the models in terms of R2 and MSE. Tables 6 and 7 record
predictor rankings for the random forest models for Markov-Chain LON Samples and
Snowball LON Samples, respectively. Rows 1 and 5 of Table 5 (linear regression to pre-
dict ILS response) show that neither Markov-Chain nor Snowball LON features build a
good model. The R2 values are just too weak. However, when we look at the equiv-
alent random forest models (rows 3 and 7) we have strong models with around 64%
(Markov-Chain) and 80% (Snowball) of variance explained, and very small relative MSE
values. This could reflect the capability of regression trees to capture nonlinearity and
complex interactions between predictors. The same trend is seen in the tabu search pre-
diction models in Table 5. Linear models (rows 2 and 6) are weak, with small R2 and
comparably larger MSE. The random forest results (rows 4 and 8) are strong, with 90%
or over variance explained by features of LONs produced by both LON construction
algorithms.

Evolutionary Computation Volume 28, Number 4 635

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/28/4/621/1859008/evco_a_00271.pdf by guest on 08 Septem
ber 2023



S. L. Thomson et al.

Table 7: Predictor rankings for main QAPLIB RF models using Snowball LONs.

Predicting ILS Predicting TS

mean fitness mean fitness
maximum HC paths fitness correlation
fitness correlation maximum HC paths
mean HC length weight disparity
weight disparity maximum HC length
maximum HC length mean HC length
weight loops weight loops

Taking Markov-Chain and Snowball as rivals for predicting ILS response, Snowball
is slightly superior; for TS, they are roughly indistinguishable for predictive power—
Markov-Chain has slightly higher R2 but also higher error.

Now let us consider the contributions of the Markov-Chain Sampling predictors in
our models from Table 6. These variable importances are calculated as such; for all trees,
the subsample of observations not used in the building of the tree has prediction accu-
racy calculated on it. To get the importance of a variable (predictor), a random shuffle
is applied to the variable values in the subsample. Everything else is kept constant. The
prediction accuracy is then tested again on these permuted data. This accuracy decrease
is averaged over the trees to obtain variable importance for a predictor.

Each column is for a random forest model, and the predictors from top to bot-
tom are best to worst. Immediately apparent is the importance of the sampled fitness
distribution. In fact, mean fitness is the top predictor for all four models. Funnel-
floor fitness is the second best predictor for both Markov models, telling us again the
role of sampled fitness levels. Out-degree is not an important Markov-Chain LON fea-
ture for algorithm performance prediction, ranking lowest and second-lowest in the
models.

Table 7 reports the rankings for the Snowball LON Sampling RF models. Just like in
Table 6, mean fitness is top-ranked in each. Also important for predicting TS is fitness cor-
relation, appearing second. In the middle are the local search metrics collected during
the Snowball LON process and the weight disparity. Ranking lowest is weight loops, per-
taining to unsuccessful escape attempts from local optima. These findings are unusual:
the bulk of LON literature focuses heavily on edge connection patterns and densities in
the LON (Herrmann et al., 2016; Thomson et al., 2017; McMenemy et al., 2018) rather
than simply the fitness distribution the sample reflects.

5.4 Best of Both Sampling Methods?

Markov-Chain LON Sampling and Snowball LON Sampling produce LONs which capture
different fitness landscape information. Features to do with edge and node density, as
well as those relating to path lengths, are redundant as predictors when calculated on a
Snowball LON: they are prescribed by the sampling algorithm parameters. Aspeculation
is put forward now that the union of different features from LON types, for the same
problem instances, might predict more accurately than using one LON type only. The
three best-ranked predictors (according to Section 5.3) for each response variable (ILS
or TS) and each LON method (Markov or Snowball) are bundled together into single
models. The results are in Table 8. Rankings are in Table 9. Table 8 illuminates further
that linear regression may not suit LON performance prediction models, with rows 1
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Table 8: Model summary statistics when using features from both LON types.

Regression Response Variable R2 MSE

Linear ILS 0.076 0.003
Linear TS 0.254 0.026
RandomForest ILS 0.972 0.000
RandomForest TS 0.991 0.000

Table 9: Predictor rankings for RF models using both LON types.

Predicting ILS Predicting TS

mean fitness (Snowball LONs) mean fitness (Snowball LONs)
funnel-floor fitness funnel-floor fitness
mean fitness (Markov LONs) mean fitness (Markov LONs)
number optima maximum HC paths
maximum HC length fitness correlation
mean HC length edges

and 2 showing weak R2 values. The lack of specificity suggests they miss nonlinear
interactions between variables. This is in contrast to the random forest counterparts,
rows 3 and 4, strikingly stronger than the linear models. They account for 97% (ILS)
and 99% (TS) of search variance explained. The error rates (see MSE column) appear to
be low. The R2 values surpass those seen when using features from one type of LON.

In Table 9, we show the six features ranked by importance in the RF models. As in
Section 5.3, the prestige of the fitness features is obvious. Both models share the same
three features. The mean sampled Snowball LON fitness (mean fitness (Snowball LONs))
is top-ranked. In second place is funnel-floor fitness, calculated on Markov LONs only.
In third place is the Markov LON mean fitness. As in Section 5.3, the role of the LON
connectivity variable (edges) is weak, ranking last in its model.

6 Discussion

Markov-Chain LON Sampling has not been validated against “ground truth” enumer-
ated LONs before. Section 5.1 showed that for small (N = 11) QAP instances, both
Markov-Chain LON Sampling and Snowball LON Sampling produced accurate approxi-
mation of the number of nodes (local optima) and edges (optima transformations) when
comparing to the “ground-truth” fully enumerated LON. Markov-Chain LON Sampling
did not find all of them but the quantities correlated with the enumerated LON val-
ues. The latter found almost the same number of nodes and edges as the enumerated
LON.

Although this is encouraging, there must be caution when tempted by extrapo-
lations to larger problems. Both LON construction algorithms are designed for large
problems, and use the according amount of computation. There may be a particular
consideration for scaling Snowball LON Sampling to larger problems: The process uses
short, restricted paths through local optima and is not based on optimisation. Therefore,
it is argued Snowball LON Sampling may be highly dependent on the random starting
solution; the rest of the sample is based around that. In a large fitness landscape, the
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obtained sample may actually be rather low-quality local optima, far from the promis-
ing regions near the global optimum. In future work, the intention is to examine the re-
lationship between LON sampling parameter choices and problem dimension for both
algorithms.

Another engaging observation from the sampling validation attempt (Section 5.1)
was that generally, sampled LON features explained more search variance than those
of the enumerated LONs. This is important because the vast majority of LON research
(Ochoa et al., 2008; Daolio et al., 2011; Verel et al., 2011; Herrmann et al., 2016) dissected
fully enumerated LONs, even using their features for algorithm performance prediction
(Daolio et al., 2012; Herrmann et al., 2018; Thomson et al., 2018). Our results suggest that
LON construction algorithms may approximate or infer yet unseen fitness landscapes
better than best-improvement exhaustive enumeration of the local optima level. This
does, intuitively, conform to logic: LON sampling algorithms use search operators—
and sequences of operators—which overlap with search algorithm operators used to
optimise QAP instances.

In Section 5.2, we saw that capping the LON construction algorithms to 50,000 fit-
ness function evaluations produces LONs whose features can explain up to around 50%
of search variance. The Snowball LON Sampling seemed to infer the tabu search response
variable better than its competitor; Markov-Chain Sampling LONs did slightly better on
the ILS response.

The main QAPLIB LONs told us that they have solid predictive power for search
algorithms in Section 5.3. Both Markov-Chain LON Sampling and Snowball LON Sampling
seem to produce samples that infer prospective fitness landscapes, with much variance
in search being explained with the features.

Sections 5.3 and 5.4 showed us that random forest trees yield more promising re-
gression models than linear regression. This suggests the use of RF in future algorithm
performance prediction models using fitness landscape features, in pursuit of capturing
complex variable interactions.

Another aspect of the results was the apparent importance of the fitness levels sam-
pled by the LON construction algorithms, seen in Sections 5.3 and 5.4. Metrics about
the distribution were repeatedly present in the top two predictors for random forest
models.

The strongest models we saw were when the best features from Markov-Chain LONs
were combined with the best features from the Snowball LONs in Section 5.4, account-
ing for 97% (ILS) and 99% (TS) of search variances. The suggestion is therefore combin-
ing features from both LON construction algorithms as a “super-sample” in predictive
models. In the future, the intention is to implement a combined LON algorithm which
draws on both the exploitation of the Snowball algorithm and the exploration of the
Markov algorithm.

There are certainly limitations to the approach and indeed the results presented.
The results are valid but currently hold only for our particular search operator choices,
configurations of LON construction algorithms, choices of QAP heuristic search algo-
rithms, choice for quantifying search success, chosen neighbourhood function, and the
features taken from the LONs. There is also the issue of the nondeterminism in the sam-
pling algorithms.

7 Conclusions

Local Optima Network (LON) construction algorithms have been scrutinised to gain in-
formation about their ability to infer future fitness landscapes. The two most recent LON
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sampling algorithms were studied, and they were named Markov-Chain LON Sampling
and Snowball LON Sampling. The aim was to compare them and assess the quality of
the resultant LON samples for predicting performance on the problems. We also used
an algorithm for exhaustively enumerating LONs. All were applied to the Quadratic
Assignment Problem, but the frameworks could easily be modified to a different prob-
lem in the manner of metaheuristic framework. The QAP instance set included both
benchmark and generated problems.

The study began with validation of LON samples by comparison with “ground
truth” (the enumerated LON for the same instance). Then Markov-Chain LON Sampling
and Snowball LON Sampling were given 50,000 fitness evaluations to produce LONs of
QAPLIB instances. After that Markov-Chain LON Sampling and Snowball LON Sampling
were given default computation (according to the algorithms specification by the LON
algorithm authors). A large set of QAPLIB instances up to N = 128 had fourteen LONs
mapped in this way. Finally, the three most important features for each type of LON
sample were taken and joined into one model.

The results suggested that for optimisation predictions made by LON features, ran-
dom forest trees better capture the nonlinear effects between variables in the fitness
landscape. Repeatedly, the apparent key role of sampled fitness levels in explaining
search algorithm variance was seen. A lot of LON literature focuses on edge connectiv-
ity patterns and not the fitness distribution amongst local optima—is this misguided?
A surprising result was that the enumerated LON, when compared to sampled LON,
had less predictive power. An intuitive thought is that a better prediction comes from
more extensive fitness landscape information. This is not the case here. An argument
is made that this stems from LON sampling algorithms sharing similar operators, or
indeed sequences of operators, with heuristics used in QAP research.

This study ends with a note that there is an abundant field of work waiting to be
done in this area, and we are excited to explore it. In particular, we acknowledge that
our results are of course dependent on our algorithm configurations, neighbourhood
function choice, choices for search algorithms, choice of problem domain, and so on.
The pursuit of different choices is the next endeavour.
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