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Abstract
Infinite population models are important tools for studying population dynamics of
evolutionary algorithms. They describe how the distributions of populations change
between consecutive generations. In general, infinite population models are derived
from Markov chains by exploiting symmetries between individuals in the population
and analyzing the limit as the population size goes to infinity. In this article, we study
the theoretical foundations of infinite population models of evolutionary algorithms
on continuous optimization problems. First, we show that the convergence proofs in
a widely cited study were in fact problematic and incomplete. We further show that
the modeling assumption of exchangeability of individuals cannot yield the transition
equation. Then, in order to analyze infinite population models, we build an analyti-
cal framework based on convergence in distribution of random elements which take
values in the metric space of infinite sequences. The framework is concise and math-
ematically rigorous. It also provides an infrastructure for studying the convergence of
the stacking of operators and of iterating the algorithm which previous studies failed to
address. Finally, we use the framework to prove the convergence of infinite population
models for the mutation operator and the k-ary recombination operator. We show that
these operators can provide accurate predictions for real population dynamics as the
population size goes to infinity, provided that the initial population is identically and
independently distributed.

Keywords
Evolutionary algorithms, infinite population models, population dynamics, conver-
gence in distribution, theoretical analysis.

1 Introduction

Evolutionary algorithms (EAs) are general purpose optimization algorithms with great
successes in real-world applications. They are inspired by the evolutionary process
in nature. A certain number of candidate solutions to the problem at hand are mod-
eled as individuals in a population. The algorithm evolves the population by mutation,
crossover, and natural selection so that individuals with more preferable objective func-
tion values have higher survival probability. By the “survival of the fittest” principle, it
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is likely that after many generations the population will contain individuals with high
fitness values such that they are satisfactory solutions to the problem at hand.

Though conceptually simple, the underlying evolutionary processes and the behav-
iors of EAs remain to be fully understood. The difficulties lie in the fact that EAs are cus-
tomizable population-based iterative stochastic algorithms, and the objective function
also has great influence on their behaviors. A successful model of EAs should describe
both the mechanisms of the algorithm and the influence from the objective function.
One way to study EAs is to model them as dynamical systems. The idea is to pick a
certain quantity of interest first, such as the distribution of the population or a certain
statistic about it. Then, transitions in the state space of the picked quantity are modeled.
A transition matrix (when the state space is finite) or a difference equation (when the
state space is not finite) for Markov chain is derived to describe how the picked quantity
changes between consecutive generations.

In order to characterize the population dynamics accurately, the state space of the
Markov chain tends to grow rapidly as the population size increases. As a result, even
for time-homogeneous EAs with moderate population size, the Markov chain is often
too large to be analyzed or simulated. To overcome this issue, some researchers turn
to studying the limiting behaviors of EAs as the population size goes to infinity. The
idea is to exploit some kind of symmetry in the state space (such as all individuals
having the same marginal distribution), and prove that in the limit the Markov chain
can be described by a more compact model. Models built in this way are called infinite
population models (IPMs).

In this article, we follow this line of research and study IPMs of EAs on continuous
space. More specifically, we aim at rigorously proving the convergence of IPMs. In this
study, by “convergence” we usually mean that IPMs characterize limiting behaviors of
real EAs. “An IPM converges loosely” means that as the population size goes to infinity,
the population dynamics of the real EA converge in a sense to the population dynamics
predicted by this model. This usage is different from conventional ones where it means
that the EA eventually locates and gets stuck in some local or global optima. Conver-
gence results are the foundations and justifications of IPMs.

The main results of the article can be summarized as follows. First, we show that
a widely cited research on convergence of IPM was problematic. It is mainly because
the core assumption of exchangeability of individuals in their proof cannot lead to
the convergence conclusion. Then, we build an analytical framework from a different
perspective and show that it defines convergence in general settings. Then, to show
the effectiveness of our framework, we prove the convergence of IPM of simple EA
with mutation and crossover operators when the initial population follows an identi-
cal and independent distribution (i.i.d.). Finally, we discuss the results and point out
that the convergence of IPM of simple EA with proportionate selection is yet to be
developed.

To our knowledge, there are very few research efforts which directly studied the
convergence of IPMs. Among them, Vose (1999b) and Qi and Palmieri (1994a,b) are the
classic ones. We focus on Qi and Palmieri (1994a,b) in this article as their results are for
EA on continuous solution space and most relevant here. In the first part of their study,
the authors built a model of simple EA with only mutation and proportionate selection.
A transition equation is constructed which describes how the probability density func-
tions (p.d.f.s) of marginal distribution of the population change between consecutive
generations. The authors proved that if individuals are exchangeable in a population,
as the population size goes to infinity, the marginal p.d.f.s of populations of simple EA
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will converge point-wise to the p.d.f.s. calculated by the following transition equation:

fxk+1 (x) =
∫
F
fxk

(y)g(y)fw(x|y)dy∫
F
fxk

(y)g(y)dy
, (1)

where F is the solution space, fxk
is the predicted marginal p.d.f. of the kth generation, g

is the objective function to be maximized, and fw(x|y) is the conditional p.d.f. decided
by the mutation operator. In the second part of the research, the authors further ana-
lyzed the crossover operator and modified the transition equation to include all three
operators in the simple EA.

In Section 2, we will examine Qi’s model and show that their study is unsound and
incomplete. First, we provide a counterexample to show that in the authors’ proof a key
assertion about the law of large numbers (LLN) for exchangeable random vectors is
generally not true. Therefore, the whole proof is unsound. Furthermore, we show that
the modeling assumption of exchangeability of individuals cannot yield the transition
equation in general. This means that under the authors’ modeling assumption, the con-
clusion (1) cannot be reached.

In addition, we show that the authors’ proofs in Qi and Palmieri (1994a,b) are in-
complete. The authors did not address the convergence of the stacking of operators
and of recursively iterating the algorithm. In essence, the authors attempted to prove
the convergence of the IPM for only one iteration step. Even if the proof for (1) is cor-
rect, it only shows that as n → ∞ the marginal p.d.f.s of the (k + 1)th population con-
verges point-wise to fxk+1 (x), provided that the marginal p.d.f. of the kth generation is
fxk

(x). However, this convergence does not automatically hold for all subsequent gen-
erations. As a result, (1) cannot be iterated to make predictions for subsequent (>k + 1)
generations.

Besides Qi and Palmieri (1994a,b), we found no other studies that attempted to
prove the convergence of IPMs for EAs on continuous space. Therefore, in Section 3 we
propose a general analytical framework. The novelty of our framework is that from the
very start of the analysis, we model generations of the population as random elements
taking values in the metric space of infinite sequences, and we use convergence in dis-
tribution instead of point-wise convergence to define the convergence of IPMs.

To illustrate the effectiveness of our framework, we perform convergence analysis
of IPM of the simple EA in Sections 4 and 5. In Section 4, we adopted a “stronger”
modeling assumption that individuals of the same generation in the IPM are identically
and independently distributed (i.i.d.), and we gave sufficient conditions under which
the IPM is convergent. For general EA, this assumption may seem restricted at first
sight, but it turns out to be a reasonable one. In Section 5, we analyze the mutation
operator and the k-ary recombination operator. We show that these commonly used
operators have the property of producing i.i.d. populations, in the sense that if the initial
population is i.i.d., as the population size goes to infinity, in the limit all subsequent
generations are also i.i.d. This means that for these operators, the transition equation in
the IPM can predict the real population dynamics as the population size goes to infinity.
We also show that our results hold even if these operators are stacked together and
iterated repeatedly by the algorithm. Finally, in Section 6 we conclude the article and
propose future research.

To be complete, regarding Qi and Palmieri (1994a,b), there is a comment by Yong
et al. (1998) with a reply published. However, the comment was mainly about the latter
part of Qi and Palmieri (1994a), where the authors analyzed the properties of EAs based
on the IPM. It did not discuss the proof for the model itself. For IPMs of EAs on discrete
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optimization problems, extensive research was done by Vose et al. in a series of studies
(Nix and Vose, 1992; Vose, 1999b, 1999a, 2004). The problems under consideration were
discrete optimization problems with finite solution space. The starting point of the au-
thors’ analysis was to model each generation of the population as an “incidence vector,”
which describes for each point in the solution space the proportion of the population it
occupies. Based on this representation the authors derived transition equations between
incidence vectors of consecutive generations and analyzed their properties as the popu-
lation size goes to infinity. However, for EAs on continuous solution space, the analyses
of Vose et al. are not immediately applicable. This is because for continuous optimiza-
tion problems the solution space is not denumerable. Therefore, the population cannot
be described by a finite-dimensional incidence vector.

2 Discussion of the Works of Qi et al.

In this section we analyze the results of Qi and Palmieri (1994a,b). We begin by intro-
ducing some preliminaries for the analysis. Then, in Section 2.2, following the notations
and derivations in the authors’ papers, we provide a counterexample to show that the
convergence proof for the transition equation in Qi and Palmieri (1994a) is problematic.
We further show that the modeling assumption of exchangeability cannot yield the tran-
sition equation in general. In Section 2.3, we show that the analyses in Qi and Palmieri
(1994a,b) are incomplete. The authors did not prove the convergence of IPMs in the
cases where operators are stacked together and the algorithm is iterated for multiple
generations.

2.1 Preliminaries

In the authors’ paper (Qi and Palmieri, 1994a), the problem to be optimized is

arg max
x

g(x) s.t. x ∈ F ⊆ R
m, (2)

where F is the solution space and g is some given objective function. The analysis in-
tends to be general; therefore, no explicit form of g is assumed. The algorithm to be
analyzed is the simple EA with proportionate selection and mutation. Let Xk = (xj

k )N
j=1

denote the kth generation produced by the EA, where N is the population size. To gener-
ate the (k + 1)th population, proportionate selection produces intermediate populations
X′

k following the conditional probability that

P(x′i
k = xj

k |Xk ) = g(xj

k )∑N
l=1 g(xl

k )
, for all i, j = 1, 2, . . . , N. (3)

After selection, each individual in X′
k is mutated to generate individuals in Xk+1. Muta-

tion follows the conditional probability that

f (xi
k+1 = x|x′i

k = y) = fw(x|y). (4)

Overall the algorithm is illustrated in Figure 1.
After presenting the optimization problem and the algorithm, the authors proved

the convergence of the IPM if the distributions of individuals in the population are ex-
changeable. It is the main result in Qi and Palmieri (1994a).

Theorem 1 (Theorem 1 in Qi and Palmieri, 1994a): Assume that the fitness function g(x)
in (2) and the mutation operator of simple EA described by (4) satisfy the following conditions:
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Figure 1: The pseudocode of the simple EA.

1. 0 < gmin ≤ g(x) ≤ gmax < ∞,∀x ∈ F.

2. sup
x,y∈Rd fw(x|y) ≤ M < ∞.

Then as n → ∞, the time history of the simple EA can be described by a sequence of random
vectors (xk )∞k=0 with densities

fxk+1 (x) =
∫
F
fxk

(y)g(y)fw(x|y) dy∫
F
fxk

(y)g(y) dy
. (5)

In Theorem 1, fxk
is the marginal p.d.f. of the kth generation predicted by the IPM.

It should be emphasized that in Qi and Palmieri (1994a,b), the authors proved this the-
orem under the assumption that simple EA has exchangeable individuals in the popu-
lation. Though not explicitly stated in the theorem, the assumption of exchangeability
is the core assumption in their proof and an integral part of their formulation of the
theorem.

For analyses in this article, we use the concept of exchangeability in probability
theory. Its definition and some basic facts are listed.

Definition 1 (Exchangeable random variables, Definition 1.1.1 in Taylor et al., 1985):
A finite set of random variables {xi}ni=1 is said to be exchangeable if the joint distribution of
(xi )ni=1 is invariant with respect to permutations of the indices 1, 2, . . . , n. A collection of ran-
dom variables {xα : α ∈ �} is said to be exchangeable if every finite subset of {xα : α ∈ �} is
exchangeable.

Definition 1 can also be extended to cover exchangeable random vectors or ex-
changeable random elements by replacing the term “random variables” in the defini-
tion with the respective term. One property of exchangeability is that if {xi}ni=1 are n ex-
changeable random elements, then the joint distributions of any 1 ≤ k ≤ n distinct ones
of them are always the same (Proposition 1.1.1 in Taylor et al., 1985). When k = 1 this
property indicates that {xi}ni=1 have the same marginal distribution. Another property is
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that a collection of random elements are exchangeable if and only if they are condition-
ally independent and identically distributed (c.i.i.d.) given some σ -field G (Theorem
1.2.2 in Taylor et al., 1985). Conversely, a collection of c.i.i.d. random elements are al-
ways exchangeable. Finally, it is obvious that i.i.d. random elements are exchangeable,
but the converse is not necessarily true.

It can be seen that the simple EA generates c.i.i.d. individuals given the current
population. Therefore, the individuals within the same generation are exchangeable,
and they have the same marginal distribution. It is the core assumption of the proof in
Qi and Palmieri (1994a,b) and Condition 3 in the Theorem 1.

2.2 Convergence Proof of the Transition Equation

In this section, we analyze the proof of Theorem 1 and show that it is incorrect. The
proof by Qi et al. is in Appendix A of Qi and Palmieri (1994a). In the proof, the authors
assumed that individuals in the same generation are exchangeable; therefore, they have
the same marginal distribution. After a series of derivation steps, the authors managed
to obtain a transition equation between the density functions of xi

k+1 and Xk :

fxi
k+1

(x) =
∫ ∫

FN

g(yj )fw(x|yj )

1
N

N∑
l=1

g(yl )
fXk

(y1, y2, . . . , yn)

dy1dy2 . . . dyn for any fixed i, j

= E
[
ξ k (x)
ηN

k

]
, (6)

where in (6),

ξ k (x) � g(xj

k )fw(x|xj

k ) for any fixed j, (7)

ηN
k � 1

N

N∑
l=1

g(xl
k ). (8)

Eq. (6) is correct. It accurately describes how the marginal p.d.f. for any individual
in the next generation can be calculated from the joint p.d.f. of individuals in the cur-
rent generation. Noticing that ηN

k is the average of the exchangeable random variables
{g(xj

k )}N
j=1, by the LLN for exchangeable random variables, the authors asserted that

lim
N→∞

ηN
k = ηk almost surely (a.s.). (9)

The authors further asserted that ηk is itself a random variable, satisfying

E[ηk] = E[g(xj

k )] for any j. (10)

Eqs. (9) and (10) correspond to (A13) and (A14) in Appendix A of Qi and Palmieri
(1994a), respectively. The authors’ proof is correct until this step. However, the authors
then asserted that

ηk is independent of ηN
k for any finite N. In particular, ηk is independent of

η1
k = g(xj

k ) for all j = 1, 2, . . . , N. (11)

Based on this assertion the authors then proved that for all k and x,

lim
N→0

∣∣∣∣E [ξ k (x)
ηN

k

]
− E [ξ k (x)]

E [ηk]

∣∣∣∣ = 0. (12)
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As a result, the p.d.f. in (6) converges point-wisely to E[ξ k (x)]
E[ηk ] , which is equal to the right

hand side of (5). Hence the authors claimed that Theorem 1 is proved.
In the following, we provide a counterexample to show that assertion (11) is not true

when N ≥ 2 (N = 1 is the degenerate case). Then, we carry out further analysis to show
that under the modeling assumption of exchangeability, conclusion (12) or equivalently
Theorem 1 cannot be true in general.

2.2.1 On Assertion (11)
We first reformulate the assertion. Since {xl

k}Nl=1 are exchangeable, {g(xl
k )}N

l=1 are ex-
changeable (Property 1.1.2 in Taylor et al., 1985). Let yl = g(xl

k ), l = 1, . . . , N . Then the
premises of Theorem 1 imply

{yl}Nl=1 are exchangeable and gmin ≤ yl ≤ gmax. (13)

Let y = ηk . According to (8), (9), and (10), y has the properties that{
lim

N→∞
1
N

∑N
l=1 yl = y, a.s., (14)

E(y) = E(yl ) for any l. (15)

Since g is a general function, there are no other restrictions for {yl}Nl=1 and y. Therefore,
(11) is equivalent to the following assertion:

For any {yl}Nl=1 and y satisfying (13), (14), and (15), y and
1
N

∑N

l=1
yl are

independent for any finite N. In particular, y is independent of yl for any l.

(16)

However, we use the following counterexample (modified from Example 1.1.1 and
related discussions on pages 11–12 in Taylor et al. (1985), to show that assertion (16) is
not true. Therefore, (11) is not true.

2.2.2 Counterexample
Let {zl}∞l=1 be a sequence of i.i.d. random variables satisfying

−gmax − gmin

4
≤ zl ≤ gmax − gmin

4
and E(zl ) = 0

for all l. Let y be a random variable independent of {zl}∞l=1 satisfying

gmax + 3gmin

4
≤ y ≤ 3gmax + gmin

4
and

E(y) = gmax + gmin

2
.

Finally, let yl = zl + y for all l.
It can easily be verified that {yl}∞l=1 and y satisfy (13) and (15). Since zl is bounded,

E(|zl|) < ∞ for any l. By the strong law of large numbers (SLLN) for i.i.d. random vari-
ables, 1

N

∑N
l=1 zl → 0 a.s. as N → ∞; therefore, (14) is also satisfied, that is, y is the limit

of 1
N

∑N
l=1 yl as N → ∞. However, because 1

N

∑N
l=1 yl = y + 1

N

∑N
l=1 zl and y is inde-

pendent of {zl}∞l=1, it can be seen that 1
N

∑N
l=1 yl is not independent of y except for some

degenerate cases (e.g., when y equals to a constant). In particular, in general yl = y + zl

is not independent of y for any l. Therefore, assertion (16) is not true. Equivalently, as-
sertion (11) is not true. This renders the authors’ proof for (12) invalid.
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2.2.3 Further Analysis
In the following, we carry out further analysis to show that (12) cannot be true even
considering other methods of proof and adding new sufficient conditions. Therefore, in
general, Theorem 1 cannot be true.

To begin with, consider the random variable ξ k (x)
ηN

k

. We prove the following lemma.

Lemma 1: E
(

ξ k (x)
ηN

k

)
→ E

(
ξ k (x)
ηk

)
as N → ∞.

Proof: According to (9), ηN
k

a.s.→ ηk , since gmin ≤ ηN
k ≤ gmax, 0 < gmin ≤ ηk ≤ gmax almost

surely.
Since h(x) = 1

x
is continuous on (0,∞),

h(ηN
k ) = 1

ηN
k

a.s.→ h(ηk ) = 1
ηk

(Proposition 47.2 in Port, 1994).

Then
ξ k (x)
ηN

k

a.s.→ ξ k (x)
ηk

(Proposition 47.4 (ii) in Port, 1994).

Finally, by the conditions in Theorem 1, 0 ≤ ξ k (x)
ηN

k

≤ Mgmax
gmin

. By the Lebesgue’s Dom-

inated Convergence Theorem (Proposition 11.30 in Port, 1994), E
(

ξ k (x)
ηN

k

)
→ E

(
ξ k (x)
ηk

)
as

N → ∞. �
Now by Lemma 1, (12) is equivalent to

E
(

ξ k (x)
ηk

)
= E [ξ k (x)]

E [ηk]
. (�)

Now it is clear that if the only assumption is exchangeability, (
) is not true even
considering other methods of proof. Of course, if (11) is true, ξ k (x) and ηk are indepen-
dent, then (
) is true. However, as already shown by the counterexample, (11) is not
true in general. Therefore, (
), and equivalently Theorem 1, are in general not true.

A natural question then arises: Is it possible to introduce some reasonable suffi-
cient conditions such that (
) can be proved? One of such conditions frequently used
is that ηk = E[g(xj

k )]. However, the following analysis shows that given the modeling
assumption of exchangeability, this condition is not true in general. Therefore, it cannot
be introduced.

For exchangeable random variables {g(xl
k )}N

l=1, we have

V(ηk ) = lim
N→∞

V(ηN
k ) (17)

= lim
N→∞

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩E

⎡⎢⎢⎢⎣
N∑

l=1
g(xl

k )

N

⎤⎥⎥⎥⎦
2

−

⎡⎢⎢⎢⎣E

N∑
l=1

g(xl
k )

N

⎤⎥⎥⎥⎦
2
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

= lim
N→∞

1
N2

{
N∑

l=1

V
[
g(xl

k )
] +

N∑
i=1

N∑
j=1,j �=i

C
[
g(xi

k ), g(xj

k )
]⎫⎬⎭
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Table 1: Population dynamics of EAn under operator H.

k
EAn 0 1 2 . . .

EA1 P1
0 H1(P1

0) H1(H1(P1
0)) …

...
...

...
...

EAn Pn
0 Hn(Pn

0 ) Hn(Hn(Pn
0 )) …

...
...

...
...

EA∞ P∞
0 H∞(P∞

0 ) H∞(H∞(P∞
0 )) …

= lim
N→∞

{
V
[
g(x1

k )
]

N
+ N − 1

N
C
[
g(x1

k ), g(x2
k )
]}

(18)

= C
[
g(x1

k ), g(x2
k )
]
, (19)

where V(x) is the variance of x and C(x, y) is the covariance of x and y. (17) is by the
boundedness of ηN

k and the Lebesgue’s Dominated Convergence Theorem, (18) is by
the exchangeability of {xj

k}Nj=1, and (19) is by the boundedness of g and pushing N

to infinity. Now it is clear that if the only modeling assumption is exchangeability,
there is no guarantee that C

[
g(x1

k ), g(x2
k )
] = 0. Therefore, in general ηN

k does not con-
verge to a constant. Thus this condition cannot be introduced as a sufficient condition
for (
).

2.3 The Issue of the Stacking of Operators and Iterating the Algorithm

In the following, we discuss IPMs from another perspective and show that the proofs
in Qi and Palmieri (1994a,b) are incomplete, as they only consider convergence of one
iteration. Because discussion in this section relates very closely to our proposed frame-
work, we will use our notation from here on in our article consistently, which is dif-
ferent from the previous two sections where we followed strictly the notations of Qi
and Palmieri (1994a,b).

Consider an EA with only one operator. Let the operator be denoted by H. When
the population size is n, denote this EA by EAn and the operator it actually uses by Hn.
Let Pn

k = (xn
k,i )

n
i=1 denote the kth generation produced by EAn. Then the transition rules

between consecutive generations produced by EAn can be described by Pn
k+1 = Hn(Pn

k ).
In Table 1, we write down the population dynamics of EAn. Each row in Table 1 shows
the population dynamics produced by EAn. In the table Pn

k is expanded as [Hn]k (Pn
0 ).

Let EA∞ denote the IPM, and P∞
k = [H∞]k (P∞

0 ) denote the populations predicted by
EA∞. Then we can summarize the results in Qi and Palmieri (1994a) in the following

way.
Assume that the initial population comes from a known sequence of individuals,

represented by P0 = (xi )
∞
i=1. For EAn, its initial population Pn

0 consists of the first n

elements of P0; that is, Pn
0 = (xi )ni=1. Let P∞

0 = P0. This setting represents the fact that
EAn and EA∞ use the same initial population. Hn can be viewed as operators on P0

which takes only the first n elements to produce the next generation. Then the authors
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essentially proved that

Hn(P0)
m.p.w.−→ H∞(P0) as n → ∞, (20)

where m.p.w. stands for point-wise convergence of marginal p.d.f.s.
However, apart from the fact that this proof is problematic, the authors’ proof cov-

ers only one iteration step, corresponding to the column-wise convergence of the k = 1
column in Table 1. The problem is that even if (21) is true, it does not automatically lead

to the conclusion that for the arbitrary kth step, [Hn]k (P0)
m.p.w.−→ [H∞]k (P0) as n → ∞. In

other words, one has to study whether the transition equation for one step can be it-
erated recursively to predict populations after multiple steps. In Table 1, this problem
corresponds to whether other columns have similar column-wise convergence property
when the convergence of the k = 1 column is proved.

To give an example, consider the column of k = 2 in Table 1. To prove column-wise
convergence, the authors need to prove that given (20),

Hn(Pn
1 )

m.p.w.−→ H∞(P∞
1 ), or equivalently (21)

[Hn]2(P0)
m.p.w.−→ [H∞]2(P0) (22)

as n → ∞. Comparing (20) with (21) and (22), (21) has the same sequence of operators
but with a sequence of converging inputs, (22) has the same input but with a sequence
of different operators. Therefore, they are not necessarily true even if (20) is proved.
A similar problem exists when considering the arbitrary kth generation. We call this
problem the issue of iterating the algorithm. As studies in Qi and Palmieri (1994a,b)
ignored this issue, we believe their proofs are incomplete.

The issue of the stacking of operators is similar. Given some operator H satisfy-

ing (20) and some operator G satisfying Gn(P0)
m.p.w.−→ G∞(P0) as n → ∞, it is not nec-

essarily true that Hn(Gn(P0))
m.p.w.−→ H∞(G∞(P0)) as n → ∞. However, the authors in Qi

and Palmieri (1994b) totally ignored this issue and combined the transition equations
for selection, mutation and crossover together (in Section III of Qi and Palmieri 1994b)
without any justification.

In addition, there are several statements in the authors’ proofs in Qi and Palmieri
(1994b) that are questionable. First, in the first paragraph of Appendix A (the proof for
Theorem 1 in that paper), the authors considered a pair of parents xk and x′

k for the uni-
form crossover operator. xk and x′

k are “drawn from the population independently with
the same density of fxk

≡ fx′
k
.” Then, the authors claimed that “the joint density of xk

and x′
k is therefore fxk

· fx′
k
.” This is simply not true. Two individuals drawn indepen-

dently from the same population are conditionally independent, they are not necessarily
independent. In fact, without the i.i.d. assumption, it is very likely that individuals in
the same population are dependent. Therefore, the joint density function of xk and x′

k is
not necessarily fxk

· fx′
k
, and the authors’ proof for Theorem 1 in Qi and Palmieri (1994b)

is dubious at best. On the other hand, if the authors’ modeling assumption is i.i.d. of in-
dividuals for the uniform crossover operator, this assumption is incompatible with the
modeling assumption of exchangeability in Qi and Palmieri (1994a) for selection and
mutation. Therefore, combining the transition equations for all these three operators is
problematic, because the i.i.d. assumption cannot hold beyond one iteration step.

Another issue in Qi and Palmieri (1994b) is that the uniform crossover operator pro-
duces two dependent offspring at the same time. As a result, after uniform crossover, the
intermediate population is not even exchangeable because it has pair-wise dependency
between individuals. Then the same incompatible assumption problem arises: that is,
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the transition equation for the uniform crossover operator cannot be combined with the
transition equations for selection and mutation. Besides, the transition equation for the
uniform crossover operator cannot be iterated beyond one step and still hold i.i.d. or
exchangeability as its modeling assumption.

In summary, several issues arise from previous studies on IPMs for EAs on continu-
ous optimization problems. Therefore, new frameworks and proof methods are needed
for analyzing the convergence of IPMs and studying the issue of the stacking of opera-
tors and iterating the algorithm.

3 Proposed Framework

In this section, we present our proposed analytical framework. In constructing the
framework we strive to achieve the following three goals.

1. The framework should be general enough to cover real-world operators and to
characterize the evolutionary process of real EA.

2. The framework should be able to define the convergence of IPMs and serve as
justifications of using them. The definition should match one’s intuition and at
the same time be mathematically rigorous.

3. The framework should provide an infrastructure to study the issue of the stack-
ing of operators and iterating the algorithm.

The contents of this section roughly reflect the pursuit of the first two goals. The
third goal is reflected in the sufficient conditions for convergence and i.i.d. IPM con-
struction in Section 4 and the analyses of the simple EA in Section 5. More specifically,
in Section 3.1, we introduce notations and preliminaries for the remainder of this ar-
ticle. In Section 3.2, we present our framework. In the framework, each generation is
modeled by a random sequence. This approach unifies the spaces of random elements
modeling populations of different sizes. In Section 3.3, we define the convergence of the
IPM as convergence in distribution on the space of random sequences. We summarize
and discuss our framework in Section 3.4.

3.1 Notations and Preliminaries

In the remainder of this article, we focus on the unconstrained continuous optimization
problem

arg max
x

g(x) s.t. x ∈ R
d , (23)

where g is some given objective function. Our framework is general enough such that
it does not require other conditions on the objective function g. However, to prove the
convergence of IPMs for mutation and recombination, conditions such as those in The-
orem 1 are sometimes needed. We will introduce them when they are required.

From now on we use N to denote the set of nonnegative integers and N+ the set of
positive integers. For any two real numbers a and b, let a ∧ b be the smaller one of them
and a ∨ b be the larger one of them. Let x, y be random elements of some measurable
space (�,F ). We use L(x) to represent the law of x. If x and y follow the same law, that
is, P(x ∈ A) = P(y ∈ A) for every A ∈ F , we write L(x) = L(y). Note that L(x) = L(y)
and x = y have different meanings. In particular, x = y indicates dependency between
x and y.

We use the notation (xi )ni=m to represent the array (xm, xm+1, . . . , xn). When n = ∞,
(xi )∞i=m represents the infinite sequence (xm, xm+1, . . .). {xi}ni=m and {xi}∞i=m represent the
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collections {xm, xm+1, . . . , xn} and {xi |i = m,m + 1, . . .}, respectively. When the range is
clear, we use (xi )i and {xi}i or (xi ) and {xi} for short.

Let S denote the solution space R
d . This simplifies the notation system when we

discuss the spaces S
n and S

∞. In the following, we define metrics and σ -fields on S, Sn

and S
∞ and state properties of the corresponding measurable spaces.

S is equipped with the ordinary metric ρ(x, y) = [
∑d

i=1(xi − yi )2]
1
2 . Let S denote

the Borel σ -field on S generated by the open sets under ρ. Together (S,S ) defines a
measurable space.

Similarly, Sn is equipped with the metric ρn(x, y) = [
∑n

i=1 ρ2(xi, yi )]
1
2 , and the corre-

sponding Borel σ -field under ρn is denoted by S ′n. Together (Sn,S ′n) is the measurable
space for n tuples.

Next, consider the space of infinite sequences S
∞ = {(x1, x2, . . .) | xi ∈ S, i ∈ N+}. It

is equipped with the metric ρ∞(x, y) = ∑∞
i=1

1
2i · ρ(xi ,yi )

1+ρ(xi ,yi ) . The Borel σ -field on S
∞ under

ρ∞ is denoted by S ′∞. Then (Sn,S ′∞) is the measurable space for infinite sequences.
Since S is separable and complete, it can be proved that Sn and S

∞ are also sep-
arable and complete (Appendix M6 in Billingsley, 1999). In addition, because of sep-
arability, the Borel σ -fields S ′n and S ′∞ are equal to Sn and S∞, respectively. In other
words, the Borel σ -fields S ′n and S ′∞ generated by the collection of open sets under
the corresponding metrics coincide with the product σ -fields generated by all measur-
able rectangles (Sn) and all measurable cylinder sets (S∞), respectively (Lemma 1.2 in
Kallenberg, 2002). Therefore, from now on we write Sn and S∞ for the corresponding
Borel σ -fields. Finally, let M, Mn and M

∞ denote the set of all random elements of S, Sn

and S
∞, respectively.

Let πn : S∞ → S
n be the natural projection: πn(x) = (x1, x2, . . . , xn). Since given

x ∈ M
∞, (πn ◦ x) : � → S

n defines a random element of Sn projected from S
∞, we also

use πn to denote the mapping: πn : M∞ → M
n where πn(x) = (x1, x2, . . . , xn). By defini-

tion, πn is the operator which truncates random sequences to random vectors. Given
A ⊂ S

∞, we use πn(A) to denote the projection of A; that is, πn(A) = {x ∈ S
n : x =

πn(y) for some y ∈ A}.
3.2 Analytical Framework for EA and IPMs

In this section, we present an analytical framework for the EA and IPMs. First, the mod-
eling assumptions are stated. We deal only with operators that generate c.i.i.d. individ-
uals. Then, we present an abstraction of the EA and IPMs. This abstraction serves as
the basis for building our framework. Finally, the framework is presented. It unifies the
range spaces of the random elements and defines the convergence of IPMs.

3.2.1 Modeling Assumptions
We assume that the EA on the problem (23) is time homogeneous and Markovian, such
that the next generation depends only on the current one, and the transition rule from
the kth generation to the (k + 1)th generation is invariant with respect to k ∈ N. We
further assume that individuals in the next generation are c.i.i.d. given the current gen-
eration. As this assumption is the only extra assumption introduced in the framework,
it may need some further explanation.

The main reason for introducing this assumption is to simplify the analysis. Con-
ditional independence implies exchangeability, therefore individuals in the same gen-
eration k ∈ N+ are always exchangeable. As a result, it is possible to exploit the sym-
metry in the population and study the transition equations of marginal distributions.
Besides, it is because of conditional independence that we can easily expand the random
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elements modeling finite-sized populations to random sequences, and therefore define
convergence in distribution for random elements of the corresponding metric space. In
addition, many real world operators in EAs satisfy this assumption, such as the pro-
portionate selection operator and the crossover operator analyzed in Qi and Palmieri
(1994a,b). Finally, we emphasize that exchangeability is a property that facilitates the
analysis of convergence across multiple iterations and different operators. Because of
the generational nature of EA, we want a property that leads to convergence for one it-
eration and also holds as a premise for the analysis of the next iteration. Exchangeability
serves as this property in our analysis. By exchangeability the convergence results can
be extended to further iterations and stacked with results from other operators.

However, we admit that there are some exceptions to our assumption. A most no-
table one may be the mutation operator, though it does not pose significant difficul-
ties. The mutation operator perturbs each individual in the current population inde-
pendently, according to a common conditional p.d.f. If the current population is not
exchangeable, then after mutation the resultant population is not exchangeable, either.
Therefore, it seems that mutation does not produce c.i.i.d. individuals. However, con-
sidering the fact that mutation is often used along with other operators, as long as
these other operators generate c.i.i.d. populations, the individuals after mutation will
be c.i.i.d., too. Therefore, a combined operator of mutation and any other operator sat-
isfying the c.i.i.d. assumption can satisfy our assumption. An example can be seen in
Qi and Palmieri (1994a), where mutation is analyzed together with proportionate selec-
tion. On the other hand, an algorithm which only uses mutation is very simple. It can
be readily modeled and analyzed without much difficulty.

Perhaps more significant exceptions are operators such as selection without replace-
ment, or the crossover operator which produces two dependent offspring at the same
time. In fact, for these operators not satisfying the c.i.i.d. assumption, it is still possible to
expand the random elements modeling finite-sized population to random sequences.
For example, the random elements can be padded with some fixed constants or ran-
dom elements of known distributions to form the random sequences. In this way, our
definition of the convergence of IPMs can still be applied. However, whether in this
scenario convergence in distribution for these random sequences can still yield mean-
ingful results similar to the transition equation is another research problem. It may need
further investigation. Nonetheless, our assumption is equivalent to the exchangeability
assumption generally used in previous studies.

3.2.2 The Abstraction of EA and IPMs
Given the modeling assumptions, we develop an abstraction to describe the population
dynamics of the EA and IPMs.

Let the EA with population size n be denoted by EAn, and the kth (k ∈ N) gener-
ation it produces be modeled as a random element Pn

k = (xn
k,i )

n
i=1 ∈ M

n, where xn
k,i ∈ M

is a random element representing the ith individual in Pn
k . Without loss of generality,

assume that the EA has two operators, G and H. In each iteration, the EA first employs
G on the current population to generate an intermediate population, on which it then
employs H to generate the next population. Notice that here G and H are just terms
representing the operators in the real EA. They facilitate describing the evolutionary
process. For EAn, G and H are actually instantiated as functions from M

n to M
n, de-

noted by Gn and Hn, respectively. For example, if G represents proportionate selection,
the function Gn : Mn → M

n is the actual operator in EAn generating n c.i.i.d. individu-
als according to the conditional probability (3). Of course, for the above abstraction to
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be valid, the operators used in EAn should actually produce random elements in M
n;

that is, the newly generated population should be measurable on (Sn,Sn). As most op-
erators in real EAs satisfy this condition and this is the assumption implicitly taken in
previous studies, we assume that this condition is automatically satisfied.

Given these notations, the evolutionary process of EAn can be described by the
sequence (Pn

k )∞k=0, where the initial population Pn
0 is known and the generation of Pn

k , k ∈
N+ follows the recurrence equation

Pn
k+1 = (Hn ◦ Gn)(Pn

k ). (24)

Then understanding the population dynamics of the EA can be achieved by studying
the distributions and properties of Pn

k .
Let the IPM of the EA be denoted by EA∞. The population dynamics it produces

can be described by the sequence (P∞
k ∈ M

∞)∞k=0, where P∞
0 is known and the generation

of P∞
k , k ∈ N+ follows the recurrence equation

P∞
k+1 = (H∞ ◦ G∞)(P∞

k ), (25)

in which G∞, H∞ : M∞ → M
∞ are operators in EA∞ modeled after G and H. Then, the

convergence of EA∞ basically requires that (Pn
k )∞n=1 converges to P∞

k for every genera-
tion k.

3.2.3 The Proposed Framework
As stated before, for each generation k ∈ N, the elements of the sequence (P1

k, P2
k, . . .)

and the limit P∞
k are all random elements of different metric spaces. Therefore, the core

of developing our model is to expand Pn
k to random sequences, while ensuring that this

expansion will not affect modeling the evolutionary process of the real EA. The result
of this step is the sequence of random sequences (Qn

k ∈ M
∞)∞k=0 for each n ∈ N+, which

completely describes the population dynamics of EAn. For the population dynamics of
EA∞, we just let Q∞

k = P∞
k .

The expansion of Pn
k and the relationships between Pn

k , Qn
k , and Q∞

k are the core of
our framework. In the following, we present them rigorously.

3.2.4 The Expansion of Pn
k

We start by decomposing each of Gn and Hn to two operators. One operator is from S
∞

to S
n. It corresponds to how to convert random sequences to random vectors. A natural

choice is the projection operator πn.
To model the evolutionary process, we also have to define how to expand random

vectors to random sequences. In other words, we have to define the expansions of Gn

and Hn, which are functions from S
n to S

∞.
Definition 2 (The expansion of operator): For an operator Tn : Mn → M

n satisfying the
condition that for any x ∈ M

n, the elements of Tn(x) are c.i.i.d. given x, the expansion of Tn is
the operator T̃n : Mn → M

∞, satisfying that for any x ∈ M
n,

1. Tn(x) = (πn ◦ T̃n)(x).

2. The elements of T̃n(x) are c.i.i.d. given x.

In Definition 2, the operator T̃n is the expansion of Tn. Condition 1 ensures that Tn

can be safely replaced by πn ◦ T̃n. Condition 2 ensures that the paddings for the sequence
are generated according to the same conditional probability distribution as that used by
Tn to generate new individuals. In other words, if the operator Ṫn : Mn → M describes
how Tn generates each new individual from the current population, Tn is equivalent to
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Figure 2: Relationships between Pn
k , Qn

k , and Q∞
k .

invoking Ṫn independently on the current population for n times, and T̃n is equivalent to
invoking Ṫn independently for infinite times. Finally, because Tn satisfies the condition
in the premise, the expansion T̃n always exists.

By Definition 2, the operators in EAn can be decomposed as Gn = πn ◦ G̃n and
Hn = πn ◦ H̃n, respectively. Then, the evolutionary process of EAn can be described by
the sequence of random sequences [Qn

k = (yn
k,i )

∞
i=0 ∈ M

∞]∞k=0, satisfying the recurrence
equation

Qn
k+1 = (H̃n ◦ πn ◦ G̃n)(Pn

k ), (26)
where Pn

k follows the recurrence equation (24), and Qn
0 = (Pn

0, 0, 0, . . .). It can also be
proved that

Pn
k = πn(Qn

k ). (27)
Essentially, (26) and (27) describe how the algorithm progresses in the order

. . . , Qn
k , Pn

k , Qn
k+1, Pn

k+1, . . .. It fully characterizes the population dynamics (Pn
k )k , and it

is clear that the extra step of generating Qn
k does not introduce modeling errors.

For EA∞, because P∞
k ∈ M

∞, there is no need for expansion. For convenience we
simply let

Q∞
k = P∞

k (28)
for k ∈ N.

In summary, the relationships between Pn
k , Qn

k and Q∞
k are better illustrated in Fig-

ure 2. This is the core of our framework for modeling the EA and IPMs. For clarity,
we also show the intermediate populations generated by G (denoted by P′n

k ), their ex-
pansions (denoted by Q′n

k ), and their counterparts generated by G∞ (denoted by Q′∞
k ),

respectively. How they fit in the evolutionary process can be clearly seen in the figure.
In Figure 2, a solid arrow with an operator on it means that the item at the arrow

head equals the result of applying the operator on the item at the arrow tail. For exam-
ple, from the figure it can be read that Qn

1 = H̃n(P′n
0 ). Dashed arrow with a question mark

on it signals the place to check whether convergence in distribution holds. For example,
when k = 2, it should be checked whether (Qn

2 )∞n=1 converges to Q∞
2 as n → ∞.

Finally, one distinction needs special notice. For EAm and EAn (m �= n), consider
the operators to generate Pm

k and Pn
k . It is clear that Gm : Mm → M

m and Gn : Mn → M
n

are two different operators because their domains and ranges are all different. The dis-
tinction still exists when we consider Qn

k , though it is more subtle and likely to be ig-
nored. In Figure 2, if we consider the operator Ĝn = πn ◦ G̃n : M∞ → M

∞, it is clear
that Ĝn uses the same mechanism to generate new individuals as the one used in
Gn = G̃n ◦ πn, and Q′n

k = Ĝn(Qn
k ) describes the same population dynamics as that gener-

ated by P′n
k = Gn(Pn

k ). However, if we choose m �= n, Ĝm and Ĝn are both functions from
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M
∞ to M

∞. Therefore, checking domains and ranges are not enough to discern Ĝm and
Ĝn. It is important to realize that the distinction between Ĝm and Ĝn lies in the contents of
the functions. Ĝm and Ĝn use m and n individuals in the current population to generate
the new population, respectively, although the new population contains infinite number
of individuals. In short, EAm and EAn are the EA instantiated with different population
sizes. Mathematically, the corresponding population dynamics are modeled by stochas-
tic processes involving different operators, even though their domains and ranges may
be the same. The same conclusion also holds for the operator H.

3.3 Convergence of IPMs

Given the framework modeling the EA and IPMs, first, we define convergence in distri-
bution for random elements of S∞. This is standard material. Then, the convergence of
IPMs is defined by requiring that the sequence (Q1

k, Q2
k, . . .) converges to Q∞

k for every
k ∈ N.

3.3.1 Convergence in Distribution
As Qn

k are random elements of S∞, in the following we define convergence in distribu-
tion for sequences of S∞-valued random elements. Convergence in distribution is equiv-
alent to weak convergence of induced probability measures of the random elements. We
use the former theory because when modeling individuals and populations as random
elements, the former theory is more intuitive and straightforward. The following mate-
rials are standard. They contain the definition of convergence in distribution for random
elements, as well as some useful definitions and theorems which are used in our analy-
sis of the simple EA. Most of the materials are collected from the theorems and examples
in Sections 1–3 of Billingsley (1999). The definition of Prokhorov metric is collected from
Section 11.3 in Dudley (2002).

Let x, y, xn, n ∈ N+ be random elements defined on a hidden probability space
(�,F , P) taking values in some separable metric space T. T is coupled with the Borel
σ -field T . Let (T′, T ′) be a separable measurable space other than (T, T ).

Definition 3 (Convergence in distribution): If the sequence (xn)∞
n=1 satisfies the condition

that E [h(xn)] → E [h(x)] for every bounded, continuous function h : T → R, we say (xn)∞n=1

converges in distribution to x, and write xn
d→ x.

For ε > 0, let Aε = {y ∈ T : d(x, y) < ε for some x ∈ A}. Then it is well known that
convergence in distribution on separable metric spaces can be metricized by the
Prokhorov metric.
Definition 4 (Prokhorov metric): For two random elements x and y, the Prokhorov metric
is defined as

ρd(x, y) = inf{ε > 0 : P(x ∈ A) ≤ P(y ∈ Aε ) + ε,∀A ∈ T }.
Call a set A in T an x-continuity set if P(x ∈ ∂A) = 0, where ∂A is the boundary set

of A.
Theorem 2 (The Portmanteau theorem): The following statements are equivalent.

1. xn
d→ x.

2. lim sup
n

P(xn ∈ F ) ≤ P(x ∈ F ) for all closed set F ∈ T .

3. lim infn P(xn ∈ G) ≥ P(x ∈ G) for all open G ∈ T .

4. P(xn ∈ A) → P(x ∈ A) for all x-continuity set A ∈ T .
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Theorem 3 (The mapping theorem): Suppose h : (T, T ) → (T′, T ′) is a measurable func-

tion. Denote by Dh the set of discontinuities of h. If xn
d→ x and P(Dh) = 0, then h(xn)

d→ h(x).

Let a, an be random elements of T, b, bn be random elements of T′, then (a b)T and
(an bn)T are random elements of T × T

′. Note that T × T
′ is separable.

Theorem 4 (Convergence in distribution for product spaces): If a is independent of b and

an is independent of bn for all n ∈ N+, then (an bn)T
d→(a b)T if and only if an

d→ a and bn
d→ b.

Theorem 4 is adapted from Theorem 2.8 (ii) in Billingsley (1999).
Let z, zn, n ∈ N+ be random elements of S∞.

Theorem 5 (Finite-dimensional convergence): zn
d→ z if and only if πm(zn)

d→ πm(z) for
any m ∈ N+.

Theorem 5 basically asserts that convergence in distribution for countably infinite
dimensional random elements can be studied through their finite-dimensional projec-
tions. It is adapted from Example 1.2 and Example 2.4 in Billingsley (1999). In Billings-
ley (1999), the metric space under consideration is R

∞. However, as both R and S are
separable, it is not difficult to adapt the proofs for R

∞ to a proof for Theorem 5. Note
that πm(z) are random elements defined on (�,F , P) taking values in (Sm,Sm), and
P[πm(z) ∈ A] = P(z ∈ A × S × S × . . .) for every A ∈ Sm. The same is true for πm(zn).

3.3.2 Convergence of IPM
As convergence in distribution is properly defined, we can use the theory to define
convergence of IPMs. The idea is that IPM is convergent (thus justifiable) if and only if it
can predict the limit distribution of the population dynamics of EAn for every generation
k ∈ N as the population size n goes to infinity. It captures the limiting behaviors of real
EAs.
Definition 5 (Convergence of IPMs): An infinite population model EA∞ is convergent if

and only if for every k ∈ N, Qn
k

d→ Q∞
k as n → ∞, where Qn

k , Q∞
k and the underling Pn

k , P∞
k are

generated according to (26), (28), (24), and (25).

Definition 5 is essentially the core of our proposed framework. It defines the con-
vergence of IPM and is rigorous and clear.

3.4 Summary

In this section, we built a framework to analyze the convergence of IPMs. The most
significant feature of the framework is that we model the populations as random se-
quences, thereby unifying the ranges of the random elements in a common metric space.
Then, we gave a rigorous definition for the convergence of IPMs based on the theory of
convergence in distribution.

Our framework is general. It only requires that operators produce c.i.i.d. individu-
als. In fact, any EA and IPM satisfying this assumption can be put into the framework.
However, to obtain meaningful results, the convergence of IPMs has to be proved. This
may require extra analyses on IPM and the inner mechanisms of the operators. These
analyses are presented in Sections 4 and 5.

Finally, there is one question worth discussing. In our framework, the expansion of
operator is carried out by padding the finite population with c.i.i.d. individuals follow-
ing the same marginal distribution. Then a question naturally arises: why not pad the
finite population with some other random elements, or just with the constant 0? This
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idea deserves consideration. After all, if the expansion is conducted by padding 0s, the
requirement of c.i.i.d. can be discarded, and the framework and the convergence of IPMs
stay the same. However, we did not choose this approach. The reason is that padding
the population with c.i.i.d. individuals facilitates the analysis of the IPM. For example,
in our analysis in Sections 4 and 5, the sufficient conditions for the convergence of IPMs
require us to consider �m(Qn

k ), where � is the operator under analysis. �m uses the first
m elements of Qn

k to generate new individuals. Now if m > n and Qn
k is expanded from

Pn
k by padding 0s, �m(Qn

k ) does not make any sense because the m individuals used by
�m have (m − n) 0s. This restricts our option in proving the convergence of IPMs.

4 Sufficient Conditions for Convergence of IPMs and I.I.D. IPM
Construction

In this section, we give applicable sufficient conditions for convergence of IPMs. In Sec-
tion 4.1, we give sufficient conditions for the convergence of IPMs. To appreciate the
necessity, consider the framework in Figure 2. To prove the convergence of IPM, by

Definition 5, we should check whether Qn
k

d→ Q∞
k as n → ∞ for every k ∈ N. However,

this direct approach is usually not viable. To manually check the convergence for all
values of k is wearisome and sometimes difficult. This is because as k increases, the dis-
tributions of Qn

k and Q∞
k change. Therefore, the method needed to prove Qn

k

d→ Q∞
k as

n → ∞ may be different from the method needed to prove Qn
k+1

d→ Q∞
k+1 as n → ∞. Of

course, after proving the cases for several values of k, it may be possible to discover
some patterns in the proofs, which can be extended to cover other values of k, thus
proving the convergence of the IPM. But this process is still tedious and uncertain.

In view of this, a “smarter” way to prove the convergence of IPM may be the fol-
lowing method. First, the convergence of IPM for one iteration step for each operator
is proved. Then, the results are combined and extended to cover the whole population
dynamics. The idea is that if the convergence holds for one generation number k, then
it can be passed on automatically to all subsequent generations. For example, in Figure
2, consider the operators G∞ and G̃n ◦ πn. The first step is to prove that

if Qn
k

d→ Q∞
k as n → ∞, then Q′n

k

d→ Q′∞
k as n → ∞. (29)

In other words, G∞ can model G̃n ◦ πn for one iteration step. Then, after obtaining simi-
lar results for H∞ and H̃n ◦ πn, we combine the results together and the convergence of
the overall IPM is proved.

However, this approach still seems difficult because we have to prove this pass-on
relation (30) holds for every k. In essence, this corresponds to whether the operators
in IPM can be stacked together and iterated for any number of steps. This is the issue
of the stacking of operators and iterating the algorithm. Therefore, in Section 4.1, we
give sufficient conditions for this to hold. These conditions are important. If they hold,
proving the convergence of the overall IPM can be broken down to proving the conver-
gence of one iteration step of each operator in IPM. This greatly reduces the difficulty
in deriving the proof.

To model real EAs, IPM has to be constructed reasonably. As shown in Section 2,
exchangeability cannot yield the transition equation for the simple EA. This creates the
research problem of finding a suitable modeling assumption to derive IPM. Therefore,
in Section 4.2, we discuss the issue and propose to use i.i.d. as the modeling assumption
in IPM.
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4.1 Sufficient Conditions for Convergence of IPMs

To derive sufficient conditions for the convergence of the overall IPM, the core step is
to derive conditions under which the operators in the IPM can be stacked and iterated.

As before, let EAn and EA∞ denote the EA with population size n and the IPM
under analysis, respectively. Let � be an operator in the EA, and �n : M∞ → M

∞ and
�∞ : M∞ → M

∞ be its corresponding expanded operators in EAn and EA∞, respec-
tively. Note that �n and �∞ generate random elements of S∞. To give an example, �n

and �∞ may correspond to πn ◦ G̃n and G∞ in Figure 2, respectively.
We define a property under which �∞ can be stacked with some other operator �∞

satisfying the same property without affecting the convergence of the overall IPM. In
other words, for an EA using � and � as its operators, we can prove the convergence
of IPM by studying � and � separately. We call this property “the stacking property.”
It is worth noting that if � = �, then this property guarantees that �∞ can be iterated
for any number of times. Therefore, it also resolves the issue of iterating the algorithm.

Let Aα be random elements in M
∞ for α ∈ N+ ∪ {∞}. We have the following results.

Definition 6 (The stacking property): Given U ⊂ M
∞, if for any converging sequence

An
d→ A∞ ∈ U, �n(An)

d→ �∞(A∞) ∈ U as n → ∞ always holds, then we say that �∞ has
the stacking property on U.

Theorem 6: If �∞ and �∞ have the stacking property on U, then �∞ ◦ �∞ has the stacking
property on U.

Proof: For any converging sequence An
d→ A∞ ∈ U ⊂ M

∞, because �∞ has the stacking

property on U, we have �n(An)
d→ �∞(A∞) ∈ U. Then, (�n(An))n is also a converging

sequence. Since �∞ has the stacking property on U, then by definition we immediately

have (�n ◦ �n)(An)
d→(�∞ ◦ �∞)(A∞) ∈ U. �

By Theorem 6, any composition of �∞ and �∞ has the stacking property on U.
In particular, (�∞)m has the stacking property on U. The stacking property essentially
guarantees that the convergence on U can be passed on to subsequent generations.

Theorem 7 (Sufficient condition 1): For an EA consisting of a single operator �, let � be
modeled by �∞ in the IPM, EA∞ and �∞ have the stacking property on some space U ⊂ M

∞.
If the initial populations of both EA and EA∞ follow the same distribution PX for some X ∈ U,
then EA∞ converges.

Proof: Note that for EAn and EA∞, the kth populations they generate are (�n)k (X) and
(�∞)k (X), respectively. By Theorem 6, (�∞)k has the stacking property on U. Because

the sequence (X, X, . . .) converges to X ∈ U, by Definition 6, (�n)k (X)
d→(�∞)k (X) ∈ U as

n → ∞. Since this holds for any k ∈ N, by Definition 5, EA∞ converges. �
By Theorems 6 and 7, we can prove the convergence of the overall IPM by proving

that the operators in the IPM have the stacking property. Comparing with (30), it is
clear that the stacking property is a sufficient condition. This is because the stacking
property requires that (�n(An))n converges to a point in U for any converging sequence

(An)n satisfying (An)n
d→ A∞ ∈ U, while (29) requires the convergence to hold only for

the specific converging sequence (Qn
k )n. Since (Qn

k )n is generated by the algorithm, it may
have special characteristics regarding converging rate, distributions, etc. On the other
hand, checking the stacking property may be easier than proving (29). This is because
the stacking property is independent of the generation number k.
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Another point worth discussing is the introduction of U in Definition 6. Of course, if
we omit U (or equivalently let U = M

∞), the stacking property will become “stronger”
because if it holds, the convergence of the IPM is proved for the EA starting from any
initial population. However, in that case the condition is so restricted that the stacking
property cannot be proved for many operators.

In Definition 6, it is required that �n(An)
d→ �∞(A∞) ∈ U as n → ∞. The sequence

under investigation is (�n(An))n, which is a sequence of changing operators (�n)n on a
sequence of changing inputs (An)n. As both the operators and the inputs change, the
convergence of (�n(An))n may still be difficult to prove. Therefore, in the following, we
further derive two sufficient conditions for the stacking property.

First, let Bα,β = �β (Aα ), where α, β ∈ N+ ∪ {∞}. Then, we have the following suffi-
cient conditions for the stacking property.

Theorem 8 (Sufficient condition 2): For a spaceU and all converging sequences An
d→ A∞ ∈

U, if the following two conditions

1. ∃M ∈ N+, such that for all m > M , Bn,m
d→ B∞,m uniformly as n → ∞, i.e.

sup
m>M

ρd(Bn,m, B∞,m) → 0 as n → ∞,

2. B∞,m
d→ B∞,∞ ∈ U as m → ∞,

are both met, then �∞ has the stacking property on U.

Theorem 9 (Sufficient condition 3): For a spaceU and all converging sequences An
d→ A∞ ∈

U, if the following two conditions

1 ∃N ∈ N+, such that for all n > N , Bn,m
d→ Bn,∞ uniformly as m → ∞, i.e.

sup
n>N

ρd(Bn,m, Bn,∞) → 0 as m → ∞,

2. Bn,∞
d→ B∞,∞ ∈ U as n → ∞,

are both met, then �∞ has the stacking property on U.

Since Theorems 8 and 9 are symmetric in m and n, proving one of them leads to
the other. In the following, we prove Theorem 8. Recall that ρd is the Prokhorov metric
(Definition 4) and ∨ gets the maximal in the expression.

Proof: ∀ε > 0, by condition 1 in Theorem 8, ∃N s.t. sup
m>M

ρd(Bn,m, B∞,m) < 1
2ε for all

n > N . By condition 2 in Theorem 8, ∃M̃ s.t. ρd(B∞,m, B∞,∞) < 1
2ε for all m > M̃ . Now

for all l > M ∨ N ∨ M̃ ,

ρd(Bl,l , B∞,∞) ≤ ρd(Bl,l , B∞,l ) + ρd(B∞,l , B∞,∞) ≤ 1
2
ε + 1

2
ε = ε.

Therefore, Bn,n
d→ B∞,∞ as n → ∞. �

To understand these two theorems, consider the relationships between Aα and Bα,β

illustrated by Figure 3. In the figure, the solid arrow represents the premise in Definition

6; that is, An
d→ A∞ ∈ U as n → ∞. The double line arrow represents the direction to

be proved for the stacking property on U, i.e. Bn,n
d→ B∞,∞ ∈ U as n → ∞. The dashed

arrows are the directions to be checked for Theorem 8 to hold. The wavy arrows are the
directions to be checked for Theorem 9 to hold.
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Figure 3: Relationships between Aα and Bα,β .

Now it is clear that Theorems 8 and 9 bring benefits. For example, for Theorem 8,
instead of proving the convergence for a sequence generated by changing operators and

inputs (Bn,n
d→ B∞,∞), this sufficient condition considers the convergence of sequences

generated by the same operator on changing inputs (Bn,m
d→ B∞,m) and of the sequence

generated by changing operators on the same input (B∞,m
d→ B∞,∞).

The reason we introduce M and N in Theorems 8 and 9, respectively, is to exclude
some of the starting columns and rows in Figure 3, if necessary. This is useful in proving
the convergence of the IPM of the k-ary recombination operator.

4.2 The I.I.D. Assumption

In this section, we address the issue of how to construct IPM. This issue also corresponds
to how to choose the space U for the stacking property.

Before introducing the i.i.d. assumption, let us give an example. Consider the
space U = {x ∈ M

∞| P[x = (c, c, . . .)] = 1 for some c ∈ S}. If the initial population fol-
lows some distribution from U, then the population consists of all identical individuals.
If an EA with proportionate selection and crossover operates on this initial population,
then all subsequent populations stay the same as the initial population. An IPM of this
EA can be easily constructed, and it can be easily proved that the stacking property
holds as long as the EA chooses its initial population from U. However, this is not a
very interesting case. This is because U is too small to model real EAs.

On the other hand, if U = {x ∈ M
∞|x is exchangeable}, U may be too big to derive

meaningful results. This can be seen from our analysis in Section 2 which shows that
under exchangeability it is not possible to derive transition equations of marginal dis-
tributions for the simple EA.

Therefore, choosing U should strike a balance between the capacity and the com-
plexity of the IPM. In the following analysis, we choose U to be UI = {x ∈ M

∞|x is i.i.d.}.
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IPMs of EAs are constructed using the i.i.d. assumption, and we prove the convergence
of the overall IPM by proving that the operators in the IPM have the stacking property
on UI.

We choose UI for the following reasons. First, in the real world, many EAs generate
i.i.d. initial populations. Therefore this assumption is realistic. Secondly, i.i.d. random
elements have the same marginal distributions. Therefore, IPM can be described by
transition equations of marginal distributions. Finally, there is abundant literature on
the converging laws and limit theorems of i.i.d. sequences. Therefore, the difficulty in
constructing IPM can be greatly reduced compared with using other modeling assump-
tions.

In the following, we show how to construct IPM under the i.i.d. assumption. This
process also relates to condition 2 in Theorem 8. It essentially describes how the IPM
generates new populations.

Let the operator in the EA be �, and the corresponding operator in EAm be �m :
M

∞ → M
∞. Recall that in our framework we only study EAs consisting of c.i.i.d. oper-

ators, therefore �m generates c.i.i.d. outputs by using the first m elements of its input.
The process that �m generates each output can be described by the conditional p.d.f.
f�m

(x|y1, y2, . . . , ym). Let a = (ai )∞i=1 ∈ M
∞ be the input and b = (bi )∞i=1 = �m(a) be the

output, then the distribution of b can be completely described by its finite-dimensional
p.d.f.s

fπl (b)(x1, . . . , xl ) =
∫ ∫

Sm

l∏
i=1

f�m
(xi |y1, . . . , ym) · fπm(a)(y1, . . . , ym) dy1 . . . dym (30)

for every l ∈ N+.
To derive the IPM �∞ for �, consider the case when l = 1 and a ∈ UI in (30). Noting

that in this case fπm(a)(y1, . . . , ym) =
m∏

i=1
fa1 (yi ), we have

fb1 (x) =
∫ ∫

Sm

f�m
(x|y1, . . . , ym) ·

m∏
i=1

fa1 (yi ) dy1 . . . dym. (31)

Now taking m → ∞, (32) in the limit becomes the transition equation describing
how �∞ generates each new individual. Let the transition equation be

fb1 = T�[fa1 ], (32)

and let c = (ci )∞i=1 = �∞(a). Then how �∞ generates l individuals can be described by
the finite-dimensional p.d.f.s of c:

fπl (c)(x1, . . . , xl ) =
l∏

i=1

T�[fa1 ](xi ) (33)

for every l ∈ N+. Overall, (34) describes the mapping �∞ : UI → UI.
To better understand the construction, it is important to realize that for �∞ both the

input and the output are i.i.d. In other words, �∞ generates i.i.d. population dynamics to
simulate the real population dynamics produced by �, only that the transition equation
in �∞ is derived by mimicking how � generates each new individual on i.i.d. inputs and
taking the population size to infinity. In fact, if the stacking property on UI is proved
and the initial population is i.i.d., �∞ will always take i.i.d. inputs and produce i.i.d.
outputs. The behaviors of �∞ on UI are well-defined. On the other hand, �∞(A /∈ UI )
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is not defined in the construction. This leaves us freedom. We can define �∞(A /∈ UI )
freely to facilitate proving the stacking property of �∞. In particular, Bn,∞ for n ∈ N+ in
Figure 3 can be defined freely to facilitate the analysis.

In fact, under the i.i.d. assumption, deriving the transition equation for most opera-
tors is the easy part. The more difficult part is to prove the stacking property of �∞ onUI.
To give an example, consider the transition equation (5) constructed in Qi and Palmieri
(1994a), which models the joint effects of proportionate selection and mutation. As our
analysis in Section 2 shows, it does not hold under the assumption of exchangeability.
However, if the modeling assumption is i.i.d., the transition equation can be immedi-
ately proved (see our analysis in Section 2). This also applies to the transition equation
built by the same authors for the uniform crossover operator (in Theorem 1 of Qi and
Palmieri, 1994b), where the transition equation is in fact constructed under the i.i.d. as-
sumption. Therefore, in the following analyses, we do not refer to the explicit form of
the transition equation, unless it is needed. We only assume that the transition equa-
tion is successfully constructed, and it has the form (32) which is derived from (31) as
m → ∞.

The construction of the IPM also relates partly to condition 2 in Theorem 8. Com-
paring with this condition, it can be seen that for a successfully constructed �∞, the
following two facts are proved in the construction (m.p.w. stands for point-wise con-
vergence of marginal p.d.f.s.).

1. B∞,m

m.p.w.−→ B∞,∞ as m → ∞.

2. B∞,∞ ∈ UI.

Of course, these two facts are not sufficient for this condition to hold. One still needs
to prove B∞,m

d→ B∞,∞ as m → ∞. In other words, one has to consider convergence of
finite dimensional distributions.

Finally, we sometimes use x for x1, . . . , xl if l is clear in the context. For example (30)

can be rewritten as fπl (b)(x) = ∫ ∫
Sm

l∏
i=1

f�m
(xi |y) · fπm(a)(y) dy, where l takes m’s place

and means the population size which the operator is operating on.

5 Analysis of the Simple EA

In this section, we use the sufficient conditions to prove the convergence of IPMs for
various simple EA operators. The operators of mutation and k-ary recombination are
readily analyzed in Sections 5.1 and 5.2, respectively. In Section 5.3, we summarize this
section and discuss our results.

5.1 Analysis of the Mutation Operator

Having derived sufficient conditions for the stacking property and constructed the IPM,
we prove the convergence of the IPM of the mutation operator first. Mutation adds an
i.i.d. random vector to each individual in the population. If the current population is
A ∈ M

∞, then the population after mutation satisfies L[B = �m(A)] = L(A + X) for all
m ∈ N+, where X ∈ UI is a random element decided by the mutation operator. As the
content of the mutation operator does not depend on m, we just write � to represent
�m. To give an example, X may be the sequence (x1, x2, . . .) with all xi ∈ M mutually
independent and xi ∼ N (0, Id ) for all i ∈ N+, where N (a, B ) is the multivariate normal
distribution with mean a and covariance matrix B, and Id is the d-dimensional identity
matrix. Note that every time � is invoked, it generates perturbations independently.
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For example, let A1 and A2 be two populations, then we can write �(Ai ) = Ai + Xi for
i = 1, 2 satisfying L(X1) = L(X2) = L(X) and {Xi}i=1,2 are mutually independent and
independent from {Ai}i=1,2.

Next, consider �∞. Recall that as an IPM, �∞ simulates real population dynamics
by taking i.i.d. inputs and producing i.i.d. outputs. If the marginal p.d.f.s of A and X
are fa and fx, respectively, then �∞(A) generates i.i.d. individuals whose p.d.f.s are fa ∗
fx, where ∗ stands for convolution. Given the construction, we can prove the stacking
property of �∞.

Theorem 10 (Mutation): Let � be the mutation operator, and �∞ be the corresponding oper-
ator in the IPM constructed under the i.i.d. assumption, then �∞ has the stacking property on
UI.
Proof: We use the notations and premises in Theorem 8. Refer to Figure 3. In particular,

the sequence (An) and the limit A∞ are given and An
d→ A∞ ∈ UI as n → ∞.

Apparently,

[�m(A∞)]∞m=1 = [�(A∞),�(A∞), . . .]
d→ �(A∞) = �∞(A∞) ∈ UI.

Therefore, condition 2 in Theorem 8 is satisfied.
Noting that condition 1 in Theorem 8 is equivalent to �(An)

d→ �(A∞), we prove

this condition by proving that πi[�(An)]
d→ πi[�(A∞)] for all i ∈ N+. Then by Theorem

5, condition 1 in Theorem 8 holds. Then, as both conditions in Theorem 8 are satisfied,
this theorem is proved.

Now, we prove πi[�(An)]
d→ πi[�(A∞)] for all i ∈ N+. First, note that �(Aα ) = Aα +

Xα for all α ∈ N ∪ {∞}. {Xα ∈ M
∞} are i.i.d. and independent from {Aα ∈ M

∞}. In addi-
tion, for every α, L(Xα ) = L(X).

Since L(Xα ) = L(X), it is apparent that Xn
d→ X∞. Then by Theorem 5, we have

πi (Xn)
d→ πi (X∞) and πi (An)

d→ πi (A∞).
Consider the product space S

i × S
i . It is both separable and complete. Since πi (Aα )

and πi (Xα ) are independent, by Theorem 4, it follows that[
πi (An)
πi (Xn)

]
d→
[

πi (A∞)
πi (X∞)

]
. (34)

Note that

πi[�(Aα )] = [
I I
] [πi (Aα )

πi (Xα )

]
= h

([
πi (Aα )
πi (Xα )

])
, (35)

where I is the identity matrix of appropriate dimension and h : Si × S
i → S

i is a func-

tion satisfying h(
[

x

y

]
) = [ I I ]

[
x

y

]
. Apparently h is continuous. Then by (34), (35), and

Theorem 3, πi[�(An)]
d→ πi[�(A∞)] for any i ∈ N+. �

In the proof, we concatenate the input (An) and the randomness (Xn) of the mutation
operator in a common product space, and represent � as a continuous function in that
space. This technique is also used when analyzing other operators.

5.2 Analysis of k-ary Recombination

Consider the k-ary recombination operator and denote it by �. In EAm, the operator is
denoted by �m. �m works as follows. To generate a new individual, it first samples k

individuals from the current m-sized population randomly with replacement. Assume
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the current population consists of {xi}mx=1, and the selected k parents are {yi}ki=1, then
{yi}ki=1 follows the probability:

P(yi = xj ) = 1
m

for all i ∈ {1, . . . , k}, j ∈ {1, . . . , m}. (36)

After the k parents are selected, �m produces a new individual x following the for-
mula

x =
k∑

i=1

Uiyi , (37)

where {Ui}ki=1 are random elements of Rd×d (recall that x and yi are random elements of
S = R

d modeling individuals in our framework). {Ui}ki=1 are also independent of {yi}i ,
and the joint distribution of (Ui )i is decided by the inner mechanism of �. Overall, �m

generates the next population by repeatedly using this procedure to generate new in-
dividuals independently.

Our formulation seems strange at first sight, but it covers many real world recom-
bination operators. For example, consider k = 2 and U1 = U2 = 1

2 I. This operator is the
crossover operator taking the mean of its two parents. On the other hand, if k = 2 and
the distributions of U1 and U2 satisfy{

U1 = Diag(s1, s2, . . . , sd )
U2 = I − U1

,

where Diag constructs a diagonal matrix from its inputs, {si} are i.i.d. random variables
taking values in {0, 1} satisfying P(si = 0) = P(si = 1) = 1/2, then this operator is the
uniform crossover operator which sets value at each position from the two parents with
probability 1

2 .
Consider the IPM �∞. As stated in Section 4.2, we do not give the explicit form of

the transition equation in �∞. We assume that the IPM is successfully constructed, and
the transition equation is derived by taking m → ∞ in (31). The reason for this approach
is not only because deriving the transition equation is generally easier than proving the
convergence of the IPM, but also the formulation in (36) and (37) encompasses many
real-world k-ary recombination operators. We do not delve into details of the mecha-
nisms of these operators and derive a transition equation for each one of them. Instead,
our approach is general in that as long as the IPM is successfully constructed, our anal-
ysis on the convergence of the IPM can always be applied.

The following theorem is the primary result of our analysis for the k-ary recombi-
nation operator.

Theorem 11 (k-ary recombination): Let � be the k-ary recombination operator, and �∞ be
the corresponding operator in the IPM constructed under the i.i.d. assumption, then �∞ has the
stacking property on UI.

Proof: We use the notations and premises in Theorem 9. Refer to Figure 3. In particular,

the sequence (An) and the limit A∞ are given and An
d→ A∞ ∈ UI as n → ∞.

We prove that

πi (Bn,n)
d→ πi (B∞,∞) (38)

as n → ∞ for any i ∈ N+. Then by Theorem 5, the conclusion follows.
The overall idea to prove (38) is that we first prove the convergence in distribution

for the k · i selected parents; then because the recombination operator is continuous,
(39) follows.
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First, we decompose the operator πi ◦ �m : M∞ → M
i . πi ◦ �m generates the i c.i.i.d.

outputs one by one. This generation process can also be viewed as first selecting the
i groups of k parents at once from the first m elements of the input (in total the inter-
mediate output is k · i parents not necessarily distinct), then producing the i outputs
one by one by using each group of k parents. In the following, we describe this process
mathematically.

Consider �m : M∞ → M
k·i . Let x = (xj )∞j=1 ∈ M

∞ and y = (yj )k·i
j=1 = �m(x). Let �m

be described by the probability

P(yj = xl ) = 1
m

for all j ∈ {1, . . . , k · i} and l ∈ {1, . . . , m}. (39)

In essence, �m describes how to select the k · i parents from x.
Consider � : Mk·i → M

i . Let

u = (u1,1, u1,2, . . . , u1,k, u2,1, u2,2, . . . , u2,k, . . . . . . , ui,1, ui,1, . . . , ui,k ) ∈ M
k·i .

Let v = (vj )i
j=1 = �(u). Let � be described by

vj =
k∑

l=1

Uj,luj,l for all j ∈ {1, . . . , i} (40)

in which L[(Uj,l )kl=1] = L[(Ul )kl=1], where {Ul} are decided by the recombination oper-
ator � as in (37), and (Uj,l )kl=1 are independent for different j . In essence, � describes
how to generate the i individuals from the k · i parents.

Now it is obvious that πi ◦ �m = � ◦ �m. Therefore,

πi (Bm,α ) = (πi ◦ �m)(Aα ) = (� ◦ �m)(Aα ) (41)

for all m ∈ N+ and α ∈ N+ ∪ {∞}.
Next, consider πi ◦ �∞ : M∞ → M

i . Let �∞ = πk·i , we prove that

L[(πi ◦ �∞)(A)] = L[(� ◦ �∞)(A)],∀A ∈ UI. (42)

Eq. (42) is almost obvious because both operators generate i.i.d. outputs, and both
marginal p.d.f.s of the outputs follow the same distribution decided by � on k i.i.d.
parents from A. In other words, � ◦ �∞ is a model of πi ◦ �∞ on i.i.d. inputs. The out-
puts they generate on the same i.i.d. input follow the same distribution.

Since A∞ ∈ UI, by (42),

L[πi (B∞,∞) = (πi ◦ �∞)(A∞)] = L[(� ◦ �∞)(A∞)]. (43)

Then (38) is equivalent to

(� ◦ �n)(An)
d→(� ◦ �∞)(A∞). (44)

as n → ∞ for any i ∈ N+.
To prove (44), we prove the following two conditions.

1. ∃N ∈ N+, such that for all n > N , �m(An)
d→ �∞(An) uniformly as m → ∞; that

is, sup
n>N

ρd[�m(An),�∞(An)] → 0 as m → ∞.

2. �∞(An)
d→ �∞(A∞) as n → ∞ and �∞(A∞) is i.i.d.
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These two conditions correspond to the conditions in Theorem 9. Since �α is from
M

∞ to M
k·i , we cannot directly apply Theorem 9. However, it is easy to extend the proof

of Theorem 9 to prove that these two conditions lead to �n(An)
d→ �∞(A∞) as n → ∞.

Then, by (40) it is apparent that � is a continuous function of its input and inner random-
ness. By concatenating the input and the inner randomness using the same technique as
that used in the proof for Theorem 10, (44) can be proved. Then this theorem is proved.

In the remainder of the proof, we prove conditions 1 and 2. These conditions can be
understood by replacing the top line with �m in Figure 3. �

Proof of Condition 2

Since �∞ = πk·i : S∞ → S
k·i (recall that πk·i can be viewed both as a mapping from S

∞ to
S

k·i and from M
∞ to M

k·i), �∞ is continuous (see Example 1.2 in Billingsley, 1999). Since

An
d→ A∞, by Theorem 3, �∞(An)

d→ �∞(A∞). Apparently, �∞(A∞) is i.i.d. Therefore
condition 2 is proved.

It is worth noting that this simple proof comes partly from our extension of � ◦ �∞
to inputs A /∈ UI. In fact, the only requirement for �∞ is (42); that is, � ◦ �∞ should
model πi ◦ �∞ on i.i.d. inputs. By defining �∞ to be πk·i , it can take non-i.i.d. inputs such
as An. Thus this condition can be proved. In Figure 3, this corresponds to our freedom
of defining Bn,∞, n ∈ N+.

Proof of Condition 1

To prove condition 1, we first give another representation of �m(Aα ), where m > k · i

and α ∈ N+ ∪ {∞}. This representation is based on the following mutually exclusive
cases.

1. The k · i parents chosen from Aα by �m are distinct.

2. There are duplicates in the k · i parents which are chosen from Aα by �m.

Let sm,α be random variables taking values in {0, 1}, with probability

p(m) = P(sm,α = 1)

= P(�m chooses k · i distinct parents from Aα )

= m · (m − 1) · · · · · (m − k · i + 1)
mk·i . (45)

Let xm,α ∈ M
k·i follow the conditional distribution of the k · i parents when sm,α = 1, and

ym,α ∈ M
k·i follow the conditional distribution of the k · i parents when sm,α = 0, then

�m(Aα ) can be further represented as

�m(Aα ) = sm,α · xm,α + (1 − sm,α ) · ym,α. (46)

For our purpose, it is not necessary to explicitly describe the distribution of xm,α and
ym,α . The only useful fact is that by exchangeability of Aα ,

L(xm,α ) = L[�∞(Aα )]. (47)

To put it another way, xm,α and �∞(Aα ) both follow the same distribution of k · i distinct
individuals from the current exchangeable population Aα . Also note that {sm,α}α are i.i.d.
random variables. They are independent of xm,α and ym,α .
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Now consider P[�m(An) ∈ A] for any A ∈ Sk·i . By conditioning on whether the k · i

parents are distinct, we have

P[�m(An) ∈ A] = p(m) · P(xm,n ∈ A) + [1 − p(m)] · P(ym,n ∈ A).

Then by (47),

P[�m(An) ∈ A] − P[�∞(An) ∈ A]

= [p(m) − 1] · P[�∞(An) ∈ A] + [1 − p(m)] · P(ym,n ∈ A). (48)

Since p(m), P[�∞(An) ∈ A] and P(ym,n ∈ A) are all less than or equal to 1,

p(m) − 1 ≤ [p(m) − 1] · P(�∞(An) ∈ A)

≤ P[�m(An) ∈ A] − P[�∞(An) ∈ A]

≤ [p(m) − 1] · P(�∞(An) ∈ A) + [1 − p(m)]

≤ 1 − p(m),

i.e.
∣∣ P[�m(An) ∈ A] − P[�∞(An) ∈ A]

∣∣ ≤ 1 − p(m) for all A. Taking supremum over all
A, we have

sup
A∈Sk·i

∣∣ P[�m(An) ∈ A] − P[�∞(An) ∈ A]
∣∣ ≤ 1 − p(m) (49)

The left-hand side of (49) is the total variation distance between �m(An) and
�∞(An). It is an upper bound of the Prokhorov distance (see Gibbs and Su, 2002 for
its definition and properties). Since the bound 1 − p(m) is uniform with respect to n

and p(m) → 1 as m → ∞, we have

sup
n

ρd[�m(An),�∞(An)] ≤ 1 − p(m) → 0 as m → ∞. (50)

This is exactly condition 1. Therefore this theorem is proved.
Or, if we do not want to use the total variance distance, we have the following result

for any �∞(A∞)-continuity set A ∈ S
k·i .∣∣ P[�n(An) ∈ A] − P[�∞(A∞) ∈ A]

∣∣
≤ ∣∣ P[�n(An) ∈ A] − P[�∞(An) ∈ A]

∣∣+ ∣∣ P[�∞(An) ∈ A] − P[�∞(A∞) ∈ A]
∣∣

≤ 1 − p(n) + ∣∣ P[�∞(An) ∈ A] − P[�∞(A∞) ∈ A]
∣∣. (51)

Since we already proved �∞(An)
d→ �∞(A∞), by 4) in Theorem 2,

∣∣P[�∞(An) ∈ A] −
P[�∞(A∞) ∈ A]

∣∣ → 0. Then apparently (51) converges to 0. Noting that A is arbitrary,

by applying 4) in Theorem 2 again, �n(An)
d→ �∞(A∞) is proved. �

We give a brief discussion of the proof. In our opinion, the most critical step of our
proof is decomposing the k-ary recombination operator to two suboperators: one is re-
sponsible for selecting parents (�), the other is responsible for combining them (�).
In addition, for parent selection, the suboperator does not use the information of fitness
values. Rather, it selects parents “blindly” according to its own rules (uniform sampling
with replacement). This makes the operator � easier to analyze because the way it se-
lects parents does not rely on its input. Therefore, we can prove uniform convergence
in (50).

Another point worth mentioning is the choice of Theorem 9 in our proof. Though
Theorems 8 and 9 are symmetric, the difficulties of proving them are quite different. In
fact, it is very difficult to prove the uniform convergence condition in Theorem 8.
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Finally, our proof can be easily extended to cover k-ary recombination operators
using uniform sampling without replacement to select parents for each offspring. The
overall proof framework roughly stays the same.

5.3 Summary

In this section, we analyzed the simple EA within the proposed framework. As the anal-
ysis shows, although the convergence of IPM is rigorously defined, actually proving the
convergence for operators usually takes a lot of effort. We did analysis under the IPM
construction and sufficient conditions from Section 4, and used various techniques to
analyze the mutation operator and the k-ary recombination operator. It can be seen that
although the sufficient conditions can provide general directions for the proofs, there
are still many details to be worked out in order to analyze different operators.

To appreciate the significance of our work, it is worth noting that in Qi and Palmieri
(1994a,b), the convergence of the IPMs of the mutation operator, the uniform crossover
operator and the proportionate selection operator was not properly proved, and the
issue of stacking of operators and iterating the algorithm was not addressed at all. In this
article, however, we have proved the convergence of IPMs of several general operators.
Since these general operators cover the operators studied in Qi and Palmieri (1994a,b)
as special cases, the convergence of the IPMs of mutation and uniform crossover are
actually proved in this article. Besides, our proof does not depend on the explicit form
of the transition equation of the IPM. As long as the IPM is constructed under the i.i.d.
assumption, our proof is valid.

As a consequence of our result, consider the explicit form of the transition equation
for the uniform crossover operator derived in Section II in Qi and Palmieri (1994b).
As the authors’ proof was problematic and incomplete, the derivation of the transition
equation was not well founded. However, it can be seen that the authors’ derivation is
in fact equivalent to constructing the IPM under the i.i.d. assumption. Since we have
already proved the convergence of IPM of the k-ary crossover operator, the analysis in
Qi and Palmieri (1994b) regarding the explicit form of the transition equation can be
retained.

6 Conclusion and Future Research

In this article, we revisited the existing literature on the theoretical foundations of IPMs,
and proposed an analytical framework for IPMs based on convergence in distribution
for random elements taking values in the metric space of infinite sequences. Under the
framework, commonly used operators such as mutation and recombination were ana-
lyzed. Our approach and analyses are new. There are many topics worth studying for
future research.

Perhaps the most immediate topic is to analyze the proportionate selection operator
in our framework. The reason that the mutation operator and the k-ary recombination
operator can be readily analyzed is partly because they do not use the information of
the fitness value. Also to generate a new individual, these operators draw information
from a fixed number of parents. On the other hand, to generate each new individual, the
proportionate selection operator actually gathers and uses fitness values of the whole
population. This makes analyzing proportionate selection difficult.

We think further analysis on proportionate selection can be conducted in the fol-
lowing two directions.
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1. In the analyses we tried to prove the stacking property on UI for the IPM of
proportionate selection. Apart from more efforts trying to prove/disprove this
property, it is worth considering modifying the space UI. For example, we can
incorporate the rate of convergence into the space. If we can prove the stack-
ing property on UI ∩ U where U is the space of converging sequences with rate
O(h(n)), it is also a meaningful result.

2. Another strategy is to bypass the sufficient conditions and return to Definition 5

to prove Qn
k

d→ Q∞
k for every k. This is the original method. In essence, it requires

studying the convergence of nesting integrals.

Apart from proportionate selection, it is also worth studying whether other oper-
ators, such as ranking selection, can be analyzed in our framework. As many of these
operators do not generate c.i.i.d. offspring, it makes deriving the IPM and proving its
convergence difficult, if not impossible. In this regard, we believe new techniques of
modeling and extensions of the framework are fruitful directions for further research.

Finally, it is possible to extend the concept of “incidence vectors” proposed by Vose
to the continuous search space. After all, as noted by Vose himself, incidence vectors can
also be viewed as marginal p.d.f.s of individuals. As a consequence, the cases of EAs on
discrete and continuous solution spaces indeed do bear some resemblance. By an easy
extension, the incidence vectors in the continuous space can be defined as functions
with the form

∑
ciδ(xi ), where δ is the Dirac function and ci is the rational number

representing the fraction that xi appears in the population. If similar analyses based on
this extension can be carried out, many results in Nix and Vose (1992) and Vose (1999b,a,
2004) can be extended to the continuous space.
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