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Abstract
We establish global convergence of the (1 + 1) evolution strategy, that is, convergence
to a critical point independent of the initial state. More precisely, we show the existence
of a critical limit point, using a suitable extension of the notion of a critical point to mea-
surable functions. At its core, the analysis is based on a novel progress guarantee for
elitist, rank-based evolutionary algorithms. By applying it to the (1 + 1) evolution strat-
egy we are able to provide an accurate characterization of whether global convergence
is guaranteed with full probability, or whether premature convergence is possible. We
illustrate our results on a number of example applications ranging from smooth (non-
convex) cases over different types of saddle points and ridge functions to discontinuous
and extremely rugged problems.
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1 Introduction

Global convergence of an optimization algorithm refers to convergence of the iterates to
a critical point independent of the initial state—in contrast to local convergence, which
guarantees this property only for initial iterates in the vicinity of a critical point.1 For ex-
ample, many first order methods enjoy this property (Gilbert and Nocedal, 1992), while
Newton’s method does not. In the realm of direct search algorithms, mesh adaptive
search algorithms are known to be globally convergent (Torczon, 1997).

Evolution strategies (ES) are a class of randomized search heuristics for direct
search in R

d . The (1 + 1)-ES is the maybe simplest such method, originally developed
by Rechenberg (1973). A particularly simple variant thereof, which was first defined by
Kern et al. (2004), is given in Algorithm 1. Its state consists of a single parent individual
m ∈ R

d and a step size σ > 0. It samples a single offspring x ∈ R
d per generation from

the isotropic multivariate normal distribution N (m, σ 2I ) and applies (1 + 1)-selection;
that is, it keeps the better of the two points. Here, I ∈ R

d×d denotes the identity ma-
trix. The standard deviation σ > 0 of the sampling distribution, also called global step
size, is adapted online. The mechanism maintains a fixed success rate usually chosen as
1/5, in accordance with Rechenberg’s original approach. It is discussed in more detail
in Section 3. In effect, step size control enables linear convergence on convex quadratic
functions (Jägersküpper, 2006a), and therefore locally linear convergence on twice dif-
ferentiable functions. In contrast, algorithms without step size adaptation can converge

1Some authors refer to global convergence as convergence to a global optimum. We do not use the
term in this sense.
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as slowly as pure random search (Hansen et al., 2015). Furthermore, being rank-based
methods, ESs are invariant to strictly monotonic transformations of objective values. ESs
tend to be robust and suitable for solving difficult problems (rugged and multimodal
fitness landscapes), a capacity that is often attributed to invariance properties.

Although the (1 + 1)-ES is the oldest evolution strategy in existence, we do not yet
fully understand how generally it is applicable. In this article, we cast this open prob-
lem into the question on which functions the algorithm will succeed to locate a local
optimum, and on which functions it may converge prematurely, and hence fail. We aim
at an as complete as possible characterization of these different cases.

By modern standards, the (1 + 1)-ES cannot be considered a competitive optimiza-
tion method. The covariance matrix adaptation evolution strategy (CMA-ES) by Hansen
and Ostermeier (2001) and its many variants mark the state of the art. The algorithm
goes beyond the simple (1 + 1)-ES in many ways: it uses nonelitist selection with a pop-
ulation, it adapts the full covariance matrix of its sampling distribution (effectively re-
sembling second order methods), and it performs temporal integration of direction in-
formation in the form of evolution paths for step size and covariance matrix adaptation.
Still, its convergence order on many relevant functions is linear, and that is thanks to
the same mechanism as in the (1 + 1)-ES, namely step size adaptation.

To date, convergence guarantees for ESs are scarce. Some results exist for convex
quadratic problems, which essentially implies local convergence on twice continuously
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differentiable functions. In this situation it is natural to start with the simplest ES,
which is arguably the (1 + 1)-ES. The variant defined by Kern et al. (2004) is given in
Algorithm 1; it is discussed in detail in Section 3.

Jägersküpper (2003, 2005, 2006a,b) analyzed the (1 + 1)-ES2 on the sphere function
as well as on general convex quadratic functions. His analysis ensures linear conver-
gence with overwhelming probability, that is, with a probability of 1 − exp

(
�(dε )

)
for

some ε > 0, where d is the problem dimension. In other words, the analysis is asymp-
totic in the sense d → ∞, and for fixed (finite) dimension d ∈ N, no concrete value or
bound is attributed to this probability. A dimension-dependent convergence rate of
�(1/d ) is obtained.

A related and more modern approach relying explicitly on drift analysis was pre-
sented by Akimoto et al. (2018), showing linear convergence of the algorithm on the
sphere function, and providing an explicit, non-asymptotic runtime bound for the first
hitting time of a level set.

The analysis by Auger (2005) is based on the stability of the Markov chain defined
by the normalized state m/σ , for a (1, λ)-ES on the sphere function. Since the chain is
shown to converge to a stationary distribution and the problem is scale-invariant, lin-
ear convergence or divergence is obtained, with full probability. There exists sufficient
empirical evidence for convergence; however, this is not covered by the result.

A different approach to proving global convergence is to modify the algorithm un-
der consideration in a way that allows for an analysis with well established techniques.
This route was explored by Diouane et al. (2015), where step size adaptation is subject
to a forcing function in order to guarantee a sufficient decrease condition, akin to, for
example, the Wolfe conditions for inexact line search (Wolfe, 1969). This is a powerful
approach since the resulting analysis is general in terms of the algorithms (the same
step size forcing mechanism can be added to virtually all ES) and the objective func-
tions (the function must be bounded from below and Lipschitz near the limit point)
at the same time. The price is that the analysis does not apply to algorithms regularly
applied within the EC community, and that we do not obtain new insights about the
mechanisms of these algorithms. Furthermore, the forcing function decays slowly, forc-
ing a linearly convergent algorithm into sublinear convergence (but still much faster
than random search). From a more technical point of view the Lipschitz condition is
unfortunate since it is not preserved under monotonic transformations of fitness val-
ues. We improve on this approach by providing sufficient decrease of a transformed
objective function, which holds for all randomized elitist, rank-based algorithms, and
hence does not require a forcing function or any other algorithmic changes.

The global convergence guarantee by Akimoto et al. (2010) is closest to the present
article. Also, that analysis is extremely general in the sense that it covers a broad range
of problems and algorithms. The objective function is assumed to be continuously dif-
ferentiable, and the only requirement for the algorithm is that it successfully diverges on
a linear function. This includes all state-of-the-art evolution strategies and many more
algorithms. Since continuously differentiable functions are locally arbitrarily well ap-
proximated by linear functions (first order Taylor polynomial), it is concluded that any
limit point must be stationary, since there the linear term vanishes and higher order
terms take over. This is an elegant and powerful result. Its main restriction is that it ap-
plies only to continuously differentiable functions. This is a huge class, but it can still be

2Jägersküpper analyzed a different step size adaptation rule. However, it exhibits essentially the
same dynamics as Algorithm 1.
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considered a relevant limitation because on continuously differentiable problems ESs
are in direct competition with gradient-based methods, which are usually more efficient
if gradients are available.

For this reason, solving smooth and otherwise easy problems cannot be the focus of
evolution strategies. Therefore, in this article we seek to explore the most general class of
problems that can be solved with an evolution strategy. In other words, we aim to push
the limits beyond the well-understood cases, towards really difficult ones. Our goal is to
establish the largest possible class of problems that can be solved reliably by an ES, and
we also want to understand its limitations, i.e., which problems cannot be solved, and
why. For this purpose, we focus on the simplest such algorithm, namely the (1 + 1)-ES
defined in Algorithm 1. It turns out that the limitations of the algorithm are closely tied
to its success-based step size adaptation mechanism. To capture this effect we introduce
a novel regularity condition ensuring proper function of success-based step-size control.
The new condition is arguably much weaker than continuous differentiability, in a sense
that will become clear as we discuss examples and counter-examples.

From a bird’s eye’s perspective, our contributions are as follows:

1. we provide a general progress or decrease guarantee for rank-based elitist algo-
rithms,

2. we show how general the (1 + 1)-ES is applicable, that is, on which problems it
will find a local optimum.

The article and the proofs are organized as follows. In the next section we establish
a progress guarantee for rank-based elitist algorithms. This result is extremely general,
and it is in no way tied to continuous search spaces and the (1 + 1)-ES. Therefore, it is
stated in general terms, in the expectation that it will prove useful for the analysis of al-
gorithms other than the (1 + 1)-ES. Its role in the global convergence proof is to ensure
a sufficient rate of optimization progress as long as the step size is well adapted and
the progress rate is bounded away from zero. In Section 3, we discuss properties of the
(1 + 1)-ES and introduce the regularity condition. Based on this condition we show that
the step size returns infinitely often to a range where non-trivial progress can be con-
cluded from the decrease theorem. Based on these achievements we establish a global
convergence theorem in Section 4, essentially stating that there exists a subsequence of
iterates converging to a critical point, the exact notion of which is defined in Section 3.
We also establish a negative result, showing that a nonoptimal critical point results in
premature convergence with positive probability, which excludes global convergence.
In Section 5, we apply the analysis to a variety of settings and demonstrate their impli-
cations. We close with conclusions and open questions.

2 Optimization Progress of Rank-Based Elitist Algorithms

In this section, we establish a general theorem ensuring a certain rate of optimization
progress for randomized rank-based elitist algorithms. We consider a general search
space X. This space is equipped with a σ -algebra and a reference measure denoted �.
The usual choice of the reference measure is the counting measure for discrete spaces
and the Lebesgue measure for continuous spaces. The objective function f : X → R, to
be minimized, is assumed to be measurable. The parent selection and variation oper-
ations of the search algorithm are also assumed to be measurable; indeed we assume
that these operators give rise to a distribution from which the offspring is sampled, and
this distribution has a density with respect to �.
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A rank-based optimization algorithm ignores the numerical fitness scores (f -
values), and instead relies solely on pairwise comparisons, resulting in exactly one of the
relations f (x) < f (x ′), f (x) = f (x ′), or f (x) > f (x ′). This property renders it invariant
to strictly monotonically increasing (rank preserving) transformations of the objective
values. Therefore it “perceives” the objective function only in terms of its level sets, not
in terms of the actual function values. For f : X → R let

Lf (y) :=
{
x ∈ X

∣∣∣ f (x) = y
}

S<
f (y) :=

{
x ∈ X

∣∣∣ f (x) < y
}

S≤
f (y) :=

{
x ∈ X

∣∣∣ f (x) ≤ y
}

denote the level set of f , and the sub-level sets strictly below and including level y ∈ R.
For m ∈ X we define the short notations Lf (m) := Lf

(
f (m)

)
, S<

f (m) := S<
f

(
f (m)

)
and

S≤
f (m) := S≤

f

(
f (m)

)
.

Due to the assumption that the offspring generation distribution is �-measurable,
with full probability, the algorithm is invariant to the values of the objective function
restricted to zero sets (sets Z of measure zero, fulfilling �(Z) = 0). The following defi-
nition captures these properties. It encodes the “essential” level set structure of an ob-
jective function.

Definition 1: We call two measurable functions f, g : X → R equivalent and write

f ∼̂g

if there exists a zero set Z ⊂ X and a strictly monotonically increasing function φ : f (X) →
g(X) such that g(x) = φ

(
f (x)

)
for all x ∈ X \ Z. Here f (X) and g(X) denote the images of

f and g, respectively. We denote the corresponding equivalence class in the set of measurable
functions by [f ] := {g : X → R

∣∣ g∼̂f
}
.

It follows immediately from the definition that the sublevel sets of equivalent objective
functions f ∼̂g coincide outside a zero set.

In the next step we construct a canonical representative for each equivalence class,
which we can think of as a normal form of an objective function.

Definition 2: For f : X → R we define the spatial suboptimality functions

f̂ <
� : X → R ∪ {∞}, x 
→ �

(
S<

f (x)
)

f̂ ≤
� : X → R ∪ {∞}, x 
→ �

(
S≤

f (x)
)
,

computing the volume of the success domain, that is, the set of improving points. If f̂ <
� and

f̂ ≤
� coincide then we drop the upper index and simply denote the spatial suboptimality function

by f̂�.

The definition is illustrated with two examples in Figures 1 and 2. In the follow-
ing, m ∈ X will denote the elite (or parent) point, and m(t ) is the elite point in iteration
t ∈ N of an iterative algorithm, that is, an evolutionary algorithm with elitist selection.
For two very different reasons, namely 1) to avoid divergence of the algorithm in the
case of unbounded search spaces, and 2) for simplicity of the technical arguments in
the proofs, we restrict ourselves to the case that the sublevel set S≤

f

(
m(0)
)

of the initial
iterate m(0) is bounded and has finite spatial suboptimality. For most reasonable refer-
ence measures, boundedness implies finite spatial suboptimality. For X = R

d equipped
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Figure 1: Objective function f : R → R with plateau and jump (left). Corresponding
spatial suboptimality f̂ <

� (dotted) and f̂ ≤
� (solid) (right).

Figure 2: All relevant properties of the sphere function f : R2 → R for rank-based opti-
mization are specified by its circular level sets, illustrated in blue on the domain (ground
plane). The spatial suboptimality of the point x is the Lebesgue measure of the gray area,
which coincides with the function value f̂�(x) indicated by the bold red vertical arrow.
In this example it holds f̂�(x) = π · ‖x‖2, irrespective of the rank-preserving (and hence
level-set preserving) transformation applied to f .

with the Lebesgue measure this is equivalent to the topological closure S≤
f

(
m(0)
)

being
compact. The assumptions immediately imply that S<

f (y) and S≤
f (y) are bounded for

all y ≤ f
(
m(0)
)
, and that restricted to S≤

f (m(0) ) the functions f̂ <
� and f̂ ≤

� take values in
the bounded range

[
0, f̂�

(
m(0)
)]

. Since an elitist algorithm never accepts points outside
S≤

f (m(0) ), we will from here on ignore the issue of infinite f̂�-values.3

In the continuous case, a plateau is a level set of positive Lebesgue measure. When
defining a local optimum as the best point within an open neighborhood, then an

3An alternative approach to avoiding infinite values is to apply a bounded reference measure with
full support, for example, a Gaussian on R

d . In the absence of a uniform distribution on X, the price to
pay for a bounded and everywhere positive reference measure is a nonuniform measure, which does
not allow for a uniform, positive lower bound. The resulting technical complications seem to outweigh
the slightly increased generality of the results.
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interior point of a plateau is a local optimum, which may not always be intended. Any-
way, when analyzing the (1 + 1)-ES we will not handle plateaus and instead assume
that level sets of f are zero sets. This also implies that f̂ ≤

� and f̂ <
� agree. For now the

only slightly weaker statement of the following lemma is sufficient, which does allow
for plateaus.

Lemma 1: Let f : X → R be measurable. If f̂ ≤
� (x) is finite for all x ∈ X, then it holds

f̂ ≤
� ∼̂f ∼̂f̂ <

� .

The proof is found in the appendix. We use f̂ ≤
� and f̂ <

� (or simply f̂� if possible) as a
canonical representative of its equivalence class (if the function values are finite, but see
the discussion above). These functions have the property

f̂ ≤
� (x) = �

(
Sf̂ ≤

�
(x)
)

f̂ <
� (x) = �

(
Sf̂ <

�
(x)
)

that is, f̂� encodes the Lebesgue measure of its own sublevel sets. We will measure
optimization progress in terms of f̂�-values. Decreasing the spatial suboptimality f̂�

by δ > 0 amounts to reducing the volume of better points by δ.
Due to the rank-based nature of the algorithms under study we cannot expect to

fulfill a sufficient decrease condition based on f -values. This is because a functional gain
� := f (x) − f (x ′) > 0 achieved by moving from x to x ′ can be reduced to an arbitrarily
small or large gain φ(f (x)) − φ(f (x ′)), where ϕ is strictly monotonically increasing, and
the class of transformations does not allow to bound the difference uniformly, neither
additively nor multiplicatively. Instead, the following theorem establishes a progress or
decrease guarantee measured in terms of the spatial suboptimality function f̂�. It gets
around the problem of inconclusive values in objective space (which, in case of single-
objective optimization, is just the real line) by considering a quantity in search space,
namely the reference measure of the sublevel set.

The algorithm is randomized; hence the decrease follows a distribution. The fol-
lowing definition captures properties of this distribution.

Definition 3: Let P denote a probability distribution on X with a bounded density with respect
to � and let f : X → R be a measurable objective function. The quantity

u := sup
{

P (A)
�(A)

∣∣∣∣ A ⊂ X measurable with �(A) > 0
}

is an upper bound on the density. Consider a sample x ∼ P . Define the functions

r< : R → [0, 1], z 
→ Pr
(
f (x) < z

) = P
(
S<

f (z)
)

r≤ : R → [0, 1], z 
→ Pr
(
f (x) ≤ z

) = P
(
S≤

f (z)
)

of probabilities of strict and weak improvements. Furthermore, we define s : [0, 1] → R as a
measurable inverse function fulfilling r<

(
s(q )
) ≤ q ≤ r≤(s(q )

)
for all q ∈ [0, 1]. We collect

the discontinuities of r< and r≤ in the set Z := {z ∈ R
∣∣ r<(z) < r≤(z)

}
and define the sum

ζ :=
∑
z∈Z

(
r≤(z) − r<(z)

)2

of squared improvement jumps.

Note that u, r<, r≤, s, Z, and ζ implicitly depend on �, P , and f . This is not indicated
explicitly in order to avoid excessive clutter in the notation.
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If the function f is continuous with continuous domain X and without plateaus,
then r< and r≤ coincide, we have ζ = 0, and s maps each probability q ∈ [0, 1] to the
corresponding unique quantile of the distribution of f (x) under P . However, if there
exists a plateau within the support of P (a level set of positive P -measure, that is, if X

is discrete), then ζ is positive and on Z the function s takes values anywhere between
the lower quantile P (f (x) < z) and the upper quantile P (f (x) ≤ z). The exact value
does not matter, since the only use of s-values is as arguments to one of the r-functions.
Indeed, r<(s(q )) and r≤(s(q )) “round” the probability q down or up, respectively, to the
closest value that is attainable as the probability of sampling a sublevel set. The freedom
in the choice of s can also be understood in the context of Figure 1: if the point z in the
definitions of r< and r≤ is located on the plateau, then s(q ) can be the anywhere between
the probability mass of the sub-level set excluding and including the plateau.

With these definitions in place, the following theorem controls the expected value
as well as the quantiles of the decrease distribution.

Theorem 1: Let P denote a probability distribution on X with a bounded density with respect
to � and let f : X → R be a measurable objective function. We use the notation of the above
definition. Fix a reference point m ∈ X and let p := r<

(
f (m)

)
denote the probability of strict

improvement of a sample x ∼ P over m. Then for each q ∈ [0, p], the q-quantile of the f̂ <
� -

decrease is bounded from below by
p−r<
(
s(q )
)

u
and the q-quantile of the f̂ ≤

� -decrease is bounded

by
p−r≤
(
s(q )
)

u
+ �
(
Lf (m)

)
, i.e.,

Pr

(
f̂ <

� (m) − f̂ <
� (x) ≥ p − r<

(
s(q )
)

u

)
≥ q,

Pr

(
f̂ ≤

� (m) − f̂ ≤
� (x) ≥ p − r≤(s(q )

)
u

+ �
(
Lf (m)

)) ≥ q.

The expected f̂ <
� -decrease is bounded from below by

E

[
max

{
0, f̂ <

� (m) − f̂ <
� (x)

}] ≥ p2 + ζ

2u
,

and the expected f̂ ≤
� -decrease is bounded from below by

E

[
max

{
0, f̂ ≤

� (m) − f̂ ≤
� (x)

}] ≥ p2 + ζ

2u
+ �
(
Lf (m)

)
.

Proof: We start with the first two claims, which provide lower bounds on the q-
quantiles of probabilities of improvement by some margin δ ≥ 0. The argument here
is elementary: an f̂�-improvement of δ from m to x means that the f̂�-sublevel set of
x is smaller than that of m by �-mass δ (due to the offspring x improving upon its
parent m). This corresponds to a difference in P -mass of the same f̂�-sublevel sets of
at most u · δ, which will correspond to q in the following. Note that the probabilities
(Pr(. . .)-notation) correspond to the same distribution P from which x is sampled, and
that f̂�-values and s-values directly correspond to �-mass. The situation is illustrated
in Figure 3.

To make the above argument precise we fix q and define the f -level

yq := inf

({
y ∈ R

∣∣∣P (S≤
f (y)) ≥ q

})
.

34 Evolutionary Computation Volume 28, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/28/1/27/2020373/evco_a_00248.pdf by guest on 07 Septem
ber 2023



Global Convergence of the (1 + 1) Evolution Strategy to a Critical Point

Figure 3: Illustration of the quantile decrease, here in the continuous case. The optimum
is marked with a flag. In this example, the level lines of the objective function f are
star-shaped. The circle with the dashed shading on the right indicates the sampling
distribution, which has ball-shaped support in this case. The probability of the area
A ∪ B is the value p = P (A ∪ B ), and q = P (A) is the probability of the event of interest,
corresponding to a significant improvement. The area �(B ) is a lower bound on the
improvement in terms of f̂�. It is lower bounded by P (B )

u
= p−q

u
. The (bold) level line

separating A and B belongs to A, and not to B. Therefore, if this set has positive measure,
then we can only guarantee q ≤ P (A) (in contrast to equality), and the lower bound
becomes p−r<(s(q ))

u
≤ �(B ).

For q = 0 the first two statements are trivial. For q > 0 the infimum is attained and it
thus holds P

(
S≤

f (yq )
) ≥ q. We define three disjoint sets: A := S<

f (yq ), B := Lf (yq ), and
C := S<

f (m) \ S≤
f (yq ). The nested sublevel sets S<

f (yq ) = A, S≤
f (yq ) = A ∪ B, and S<

f (m) =
A ∪ B ∪ C are unions of these sets. By the definitions of p and q the probability of the
set C is upper bounded by P (C) = P (S<

f (m)) − P (S≤
f (yq )) ≤ p − q, and the probability

of A ∪ B is lower bounded by P (A ∪ B ) ≥ q.
We will show that the event of interest for the first claim, namely f̂ <

� (m) − f̂ <
� (x) ≥

p−r<(s(q ))
u

, implies x ∈ S≤
f (yq ) = A ∪ B. To this end we define the f̂ <

� -level z<
q := f̂ <

� (m) −
p−r<(s(q ))

u
and the set �<

q := S<

f̂ <
�

(m) \ S≤
f̂ <

�

(z<
q ). We have

�(�<
q ) = �

(
S<

f̂ <
�

(m)
)

︸ ︷︷ ︸
=f̂ <

� (m)

− �
(
S≤

f̂ <
�

(z<
q )
)

︸ ︷︷ ︸
≥f̂ <

� (m)− p−r< (s(q ))
u

≤ p − r<(s(q ))
u

,

and hence P (�<
q ) ≤ p − r<(s(q )) by the definition of u. Together with Lemma 1, this

implies �<
q ⊂ B ∪ C, and hence A ⊂ S≤

f̂ <
�

(z<
q ). However, due to the definition of S≤ (in

contrast to S<), the sublevel set A being a subset of S≤
f̂ <

�

(z<
q ) implies that also the level

set B is contained in S≤
f̂ <

�

(z<
q ). This shows the first claim.

For the second claim we define the f̂ ≤
� -level z≤

q := f̂ ≤
� (m) − p−r≤(s(q ))

u
− �
(
Lf (m)

)
and the set �≤

q := S<

f̂ ≤
�

(m) \ S≤
f̂ ≤

�

(zq ), and we note that it holds f̂ ≤
� (m) − �

(
Lf (m)

) =
f̂ <

� (m). Then, with an analogous argument as above we obtain P (�<
q ) ≤ p − r≤(s(q )). In

this case we immediately arrive at �≤
q ⊂ C and hence at A ∪ B ⊂ S≤

f̂ ≤
�

(z≤
q ), which shows

the second claim.
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Let Q denote the quantile function (the generalized inverse of the cdf) of the
f̂ <

� -improvement max
{
0, f̂ <

� (m) − f̂ <
� (x)

}
. Then the expectation is lower bounded by

E

[
max

{
0, f̂ <

� (m) − f̂ <
� (x)

}] =
∫ 1

0
Q(q ) dq

≥
∫ p

0

p − r<
(
s(q )
)

u
dq

=
∫ p

0

p − q

u
dq +

∫ p

0

q − r<
(
s(q )
)

u
dq

=
∫ p

0

p − q

u
dq +

∑
z∈Z

∫ r≤(z)

r<(z)

q − r<(z)
u

dq

= p2

2u
+
∑
z∈Z

(
r≤(z) − r<(z)

)2
2u

= p2 + ζ

2u
.

The proof of the expected f̂ ≤
� improvement is analogous. The additional term �

(
Lf (m)

)
again comes from f̂ ≤

� (m) = f̂ <
� (m) + �

(
Lf (m)

)
. �

In our application of the above theorem to the (1 + 1)-ES x corresponds to the offspring
point sampled from a Gaussian centered on m.

Due to the term �
(
Lf (m)

)
in the decrease of f̂ ≤

� , the theorem covers the fitness-level
method (Droste et al., 2002; Wegener, 2003). However, in particular for search distribu-
tions spreading their probability mass over many level sets, the theorem is considerably
stronger.

In the continuous case, in the absence of plateaus, the statement can be simplified
considerably:

Corollary 1: Under the assumptions and with the notation of Definition 3 and Theorem 1
we assume in addition that all level sets of f have measure zero. Then for each q ∈ [0, p], the
q-quantile of the f̂�-decrease is bounded from below by

Pr
(

f̂�(m) − f̂�(x) ≥ p − q

u

)
≥ q,

and the expected f̂�-decrease is bounded from below by

E

[
max

{
0, f̂�(m) − f̂�(x)

}] ≥ p2

2u
.

The following corollary is a broken down version for Gaussian search distributions
N (m,C) with mean m and covariance matrix C, which has the density

ϕ(x) = 1

(2π )d/2
√

det(C)
exp
(

−1
2

(x − m)T C−1(x − m)
)

.

Corollary 2: Consider the search space R
d and the Lebesgue measure �. Let f : Rd → R

denote a measurable objective function with level sets of measure zero. Consider a normally
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Global Convergence of the (1 + 1) Evolution Strategy to a Critical Point

distributed sample x ∼ N (m,C). Under the assumptions and with the notation of Definition 3
and Theorem 1, for each q ∈ [0, p], the q-quantile of the f̂�-decrease is bounded from below by

Pr
(
f̂�(m) − f̂�(x) ≥ (2π )d/2 ·

√
det(C) · (p − q )

)
≥ q,

and the expected f̂�-decrease is bounded from below by

E

[
max

{
0, f̂�(m) − f̂�(x)

}] ≥ (2π )d/2 ·
√

det(C) · p2

2
.

An isotropic distribution with component-wise standard deviation (step size) σ > 0
has covariance matrix C = σ 2I , where I ∈ R

d×d is the identity matrix; hence we have√
det(C) = σd . In the context of continuous search spaces, Jägersküpper (2003) refers

to f̂�-progress as “spatial gain.” He analyzes in detail the gain distribution of an
isotropic search distribution on the sphere model. This result is much less general than
the previous corollary, since we can deal with arbitrary objective functions, which are
characterized (locally) only by a single number, the success probability. For the special
case of a Gaussian mutation and the sphere function, Jägersküpper’s computation of the
spatial gain is more exact, since it is tightly tailored to the geometry of the case, in con-
trast to being based on a general bound. We lose only a multiplicative factor of the gain,
which does not impact our analysis significantly. However, it should be noted that in
the problem analyzed by Jägersküpper, the factor grows with the problem dimension d.
The spatial gain is closely connected to the notion of a progress rate (Rechenberg, 1973),
in particular if the gain is lower bounded by a fixed fraction of the suboptimality. For a
fixed objective function like the sphere model f (x) = ‖x‖2 it is easy to relate functional
suboptimality f (x) − f ∗ to spatial suboptimality f̂�(x).

3 Success-Based Step Size Control in the (1 + 1)-ES

In this section, we discuss properties of the (1 + 1)-ES algorithm and provide an anal-
ysis of its success-based step size adaptation rule that will allow us to derive global
convergence theorems. To this end we introduce a nonstandard regularity property.

From here on, we consider the search space R
d , equipped with the standard Borel

σ -algebra, and � denotes the Lebesgue measure. Of course, all results from the previous
section apply, with X = R

d .
In each iteration t ∈ N, the state of the (1 + 1)-ES is given by (m(t ), σ (t ) ) ∈ R

d ×
R

+. It samples one candidate offspring from the isotropic normal distribution x (t ) ∼
N (m(t ),

(
σ (t ) )2I

)
. The parent is replaced by successful offspring, meaning that the off-

spring must perform at least as well as the parent.
The goal of success-based step size adaptation is to maintain a stable distribution

of the success rate, for example, concentrated around 1/5. This can be achieved with
a number of different mechanisms. Here we consider the maybe simplest such mech-
anism, namely immediate adaptation based on “success” or “failure” of each sample.
Pseudocode for the full algorithm is provided in Algorithm 1.

Constants c− < 0 and c+ > 0 in Algorithm 1 control the change of log(σ ) in case of
failure and success, respectively. They are parameters of the method. For c+ + 4 · c− = 0
we obtain an implementation of Rechenberg’s classic 1/5-rule (Rechenberg, 1973). We
call τ = c−

c−−c+
the target success probability of the algorithm, which is always assumed

to be strictly less than 1/2. This is equivalent to c+ > −c−. A reasonable parameter set-
ting is c−, c+ ∈ �

( 1
d

)
.
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Two properties of the algorithm are central for our analysis: it is rank-based and
it performs elitist selection, ensuring that the best-so-far solution is never lost and the
sequence f (m(t ) ) is monotonically decreasing.

Since step-size control depends crucially on the concept of a fixed rate of successful
offspring, we define the success probability of the algorithm, which is the probability
of a sampled point outperforming the parent in the search distribution center.

Definition 4: For a measurable function f : Rd → R, we define the success probability func-
tions

p<
f : Rd × R

+ → [0, 1], (m, σ ) 
→ Pr
(
f (x) < f (m)

∣∣∣ x ∈ N (m, σ 2I )
)

=
∫

S<
f (m)

1
(2π )d/2σd

· exp
(

−‖x − m‖2

2σ 2

)
dx,

p≤
f : Rd × R

+ → [0, 1], (m, σ ) 
→ Pr
(
f (x) ≤ f (m)

∣∣∣ x ∈ N (m, σ 2I )
)

=
∫

S≤
f (m)

1
(2π )d/2σd

· exp
(

−‖x − m‖2

2σ 2

)
dx.

The function p≤
f computes the probability of sampling a point at least as good as m,

while p<
f computes the probability of sampling a strictly better point. If p<

f and p≤
f co-

incide (i.e., if there are no plateaus), then we write pf . A nice property of the success
probability is that it does not drop too quickly when increasing the step size:

Lemma 2: For all m ∈ R
d , σ > 0 and a ≥ 1 it holds

p<
f (m, a · σ ) ≥ 1

ad
· p<

f (m, σ ),

p≤
f (m, a · σ ) ≥ 1

ad
· p≤

f (m, σ ).

The proof is found in the appendix; this is the case for a number of technical lemmas in
this section. The next step is to define a plausible range for the step size.

Definition 5: For p ∈ [0, 1] and a measurable function f : Rd → R, we define upper and
lower bounds

ξf
p (m) := inf

{
σ ∈ R

+
∣∣∣p<

f (m, σ ) ≤ p
}

ηf
p (m) := sup

{
σ ∈ R

+
∣∣∣p≤

f (m, σ ) ≥ p
}

on the step size guaranteeing lower and upper bounds on the probability of improvement.

We think of ξ
f
p (m) with p > τ as a “too small” step size at m. Similarly, for p < τ , η

f
p (m)

is a “too large” step size at m. Assume that the two values of p are chosen so that a
sufficiently wide range of “well-adapted” step sizes exists in between the “too small”
and “too large” ones. We aim to establish that if the step size is outside this range, then
step size adaptation will push it back into the range. The main complication is that the
range for σ depends on the point m.

The following lemma establishes a gap between lower and upper step size bound,
that is, a lower bound on the size of the step size range.

Lemma 3: For 0 ≤ pH ≤ pT ≤ 1 it holds d
√

pH · ξ
f
pT

(x) ≤ d
√

pT · η
f
pH

(x) for all x ∈ R
d .
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Global Convergence of the (1 + 1) Evolution Strategy to a Critical Point

Figure 4: Illustration of a contour line with a kink opening up in an angle indicated
by the dashed lines. The circles are iso-density lines on the isotropic Gaussian search
distribution centered on the kink.

The following definition is central. It captures the ability of the (1 + 1)-ES to recover
from a state with a far too small step size. This property is needed to avoid premature
convergence.

Definition 6: For p > 0, a function f : Rd → R is called p-improvable in x ∈ R
d if ξ

f
p (x)

is positive. The function is called p-improvable on Y ⊂ R
d if ξ

f
p

∣∣
Y

(the function ξ
f
p restricted

to Y ) is lower bounded by a positive, lower semi-continuous function ξ̃
f
p : Y → (0, 1]. A point

x ∈ R
d is called p-critical if it is not p-improvable for any p > 0.

The property of p-improvability is a nonstandard regularity condition. The concept
applies to measurable functions; hence we do not need to restrict ourselves to smooth
or continuous objectives. On the one hand side, the property excludes many measur-
able and even some smooth functions. On the other hand, it is far less restrictive than
continuity and smoothness, in the sense that it allows the objective function to jump
and the level sets to have kinks. Intuitively, in the two-dimensional case illustrated in
Figure 4, if for each point the sublevel set opens up in an angle of more than 2πp, then
the function is p-improvable. This is the case for many discontinuous functions, how-
ever, not for all smooth ones. The degree three polynomial f (x1, x2) = x3

1 + x2
2 can serve

as a counter example, since every point of the form (x1, 0) is p-critical. All of its con-
tour lines form cuspidal cubics; see Figure 6 in Section 5.3. Local optima are always
p-critical, but many critical points of smooth functions are not (see below). The above
example demonstrates that some saddle points share this property; however, if x is p-
critical but not locally optimal, then p<

f (x, σ ) > 0 for all σ > 0. This means that such a
point can be improved with positive probability for each choice of the step size, but in
the limit σ → 0 the probability of improvement tends to zero.

We should stress the difference between point-wise p-improvability, which simply
demands that ξ

f
p is positive, and set-wise p-improvability, which in addition demands

that ξ
f
p is lower bounded by a lower semicontinuous positive function. The latter prop-

erty ensures the existence of a positive lower bound for ξ
f
p on a compact set. In this

sense, set-wise p-improvability is uniform on compact sets. In Sections 5.5 and 5.6, we
will see examples where this makes a decisive difference.

Intuitively, the value of p of a p-improvable function is critical: if it is below τ , then
the algorithm may be endangered to systematically decrease its step size while it should
better do the contrary.
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The next lemma establishes that smooth functions are p-improvable in all regular
points, and also in most saddle points.

Lemma 4: Let f : Rd → R be continuously differentiable.

1. For a regular point x ∈ R
d , f is p-improvable in x for all p < 1

2 .

2. Let Y denote the set of all regular points of f , then f is p-improvable on Y , for all p < 1
2 .

3. Let x ∈ R
d denote a critical point of f , let f be twice continuously differentiable in a

neighborhood of x, and let H = ∇2f (x) denote the Hessian matrix. If H has at least one
negative eigen value, then x is not p-critical.

Similarly, we need to ensure that the step size does not diverge to ∞. This is easy, since
the spatial suboptimality is finite:

Lemma 5: Consider the state (m(t ), σ (t ) ) of the (1 + 1)-ES. For each p ∈ (0, 1), if

σ (t ) ≥ d
√

f̂�(m(t ) )
p · (2π )d/2

then p<
f (m(t ), σ (t ) ) ≤ p.

In other words, a too large step size is very likely to produce unsuccessful offspring.
The probability of success decays quickly with growing step size, since the step size
bound grows slowly in the form �(p−1/d ) as the success probability p decays to zero.
Applying the above inequality to p < τ implies that for large enough step size σ (t ), the
expected change E[log(σ (t+1)) − log(σ (t ) )] in the (1 + 1)-ES (Algorithm 1) is negative.

The following lemma is elementary. It is used multiple times in proofs, with the
interpretation of the event “1” meaning that a statement holds true. It has a similar role
as drift theorems in an analysis of the expected or high-probability behavior (Lehre and
Witt, 2013; Lengler and Steger, 2016; Akimoto et al., 2018); however, here we aim for
almost sure results.

Lemma 6: Let X(t ) ∈ {0, 1} denote a sequence of independent binary random variables. If there
exists a uniform lower bound Pr(X(t ) = 1) ≥ p > 0, then almost surely there exists an infinite
subsequence (tk )k∈N so that X(tk ) = 1 for all k ∈ N.

In applications of the lemma, the events of interest are not necessarily independent;
however, they can be “made independent” by considering a sequence of independent
events that imply the events of interest. In our applications, this is the case if the events
of actual interest hold with probability of at least p; then an i.i.d. sequence of Bernoulli
events implying corresponding sub-events with probability of exactly p does the job.
In other words, we will have a sequence X̃(t ) of independent events, where X̃(t ) = 1
implies X(t ) = 1. The above lemma is then applied to X̃(t ), which trivially yields the
same statement for X(t ). We imply this construction in all applications of the lemma.

The following lemma establishes, under a number of technical conditions, that the
step size control rule succeeds in keeping the step size stable. If the prerequisites are
fulfilled, then the result yields an impossible fact, namely that the overall reduction
of the spatial suboptimality is unbounded. So the lemma is designed with proofs by
contradiction in mind.

Lemma 7: Let
(
m(t ), σ (t )

)
denote the sequence of states of the (1 + 1)-ES on a measurable ob-

jective function f : Rd → R. Let pT , pH ∈ (0, 1) denote probabilities fulfilling pH < τ < pT

40 Evolutionary Computation Volume 28, Number 1

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/28/1/27/2020373/evco_a_00248.pdf by guest on 07 Septem
ber 2023



Global Convergence of the (1 + 1) Evolution Strategy to a Critical Point

and pH

pT
≤ ed·c− , and assume the existence of constants 0 < bT < bH such that

bT ≤ ξf
pT

(m(t ) ) and ec+ · ηf
pH

(m(t ) ) ≤ bH

for all t ∈ N. Then, with full probability, there exists an infinite subsequence (tk )k∈N of iterations
fulfilling

σ (tk ) ∈
[
ξf
pT

(
m(tk )), ηf

pH

(
m(tk ))] (1)

for all k ∈ N.

Equation (1) is a rather weak condition demanding that step-size adaptation works
as desired. However, the requirement of a uniform lower bound bT on the step size
together with Theorem 1 implies that the (1 + 1)-ES would make infinite f̂�-progress
in expectation. This is of course impossible if f̂�(m(0) ) is finite, since f̂� is by definition
non-negative. Therefore the lemma does not describe a typical situation observed when
running the (1 + 1)-ES, but quite in contrast, an impossible situation that needs to be
excluded in the proof of the main result in the next section.

4 Global Convergence

In this section, we establish our main result. The theorem ensures the existence of a limit
point of the sequence m(t ) in a subset of desirable locations. In many cases this amounts
to convergence of the algorithm to a (local) optimum.

Theorem 2: Consider a measurable objective function f : Rd → R with level sets of measure
zero. Assume that K0 := S≤

f

(
m(0)
)

is compact, and let K1 ⊂ K0 denote a closed subset. If f is
p-improvable on K0 \ K1 for some p > τ , then the sequence

(
m(t )
)
t∈N has a limit point in K1.

Proof: Lemma 5 ensures the existence of 0 < pH < e−d·c− · τ and

bH := d
√

f̂�

(
m(0)
)

pH · (2π )d/2

such that it holds η
f
pH

(x) ≤ bH uniformly for all x ∈ K0. In particular, bH is a uniform
upper bound on η

f
pH

.
Let B(x, r ) denote the open ball of radius r > 0 around x ∈ R

d and define the com-
pact set

K (r ) := K0

∖ ⋃
x∈K1

B(x, r ).

It holds K (r ) ⊂ K0 \ K1 and
⋃

r>0 K (r ) = K0 \ K1; hence K (r ) is a compact exhaustion
of K0 \ K1.

Fix r > 0, and assume for the sake of contradiction that all points m(t ), t > t0, are
contained in K (r ). We set pT := p. Let ξ̃

f
pT

denote the positive lower semicontinuous
lower bound on ξ

f
pT

, which is guaranteed to exist due to the p-improvability of f . We
define

bT := min
{
ξ̃ f
pT

(m)
∣∣∣m ∈ K (r )

}
> 0

and apply Lemma 7 to obtain an infinite subsequence of states with step size lower
bounded by σ (t ) ≥ bT > 0. According to Lemma 2, the success probability is lower
bounded by pf

(
m(t ), σ (t )

) ≥ pI := (bT /bH )d · pT > 0 for all m ∈ K (r ) and σ ∈ [bT , bH ].
Corollary 2 ensures that in each such state the probability to decrease the f̂�-value

by at least (2π )d/2 · bd
T · pI/2 is lower bounded by pI/2 > 0. We apply Lemma 6 with
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the following construction. For each state (m, σ ) we pick a set E(m, σ ) ⊂ R
d of proba-

bility mass pI/2 improving on f̂�(m) by at least (2π )d/2 · bd
T · pI/2. Then we model the

sampling procedure of the (1 + 1)-ES in iteration t as a two-stage process: first we draw
a binary variable X̃(t ) ∈ {0, 1} with Pr(X̃(t ) = 1) = pI/2, and then we draw x (t ) from a
Gaussian restricted to E(m(t−1), σ (t−1)) if X̃(t ) = 1, and restricted to the complement oth-
erwise. The variables X̃(t ) are independent, by construction.

Then Lemma 6 implies that the overall f̂�-decrease is almost surely infinite, which
contradicts the fact that f̂�(m(0) ) is finite and f̂� is lower bounded by zero. Hence, the
sequence m(t ) leaves K (r ) after finitely many steps, almost surely. For r = 1/n, let tn
denote an iteration fulfilling m(tn ) �∈ K (r ). The sequence

(
m(tn )
)
n∈N does not have a limit

point in K0 \ K1 (since that point would be contained in K (r ) for some r > 0), however,
due to the Bolzano-Weierstraß theorem it has at least one limit point in K0, which must
therefore be located in K1. �

The above theorem is of primary interest if K1 is the set of (local) minima of f , or
at least the set of critical or p-critical points. Due to the prerequisites of the theorem we
always have {

x ∈ K0

∣∣∣ x is p-critical
}

⊂ K1,

that is, p-critical points are candidate limit points.
In accordance with Akimoto et al. (2010), the following corollary establishes con-

vergence to a critical point for continuously differentiable functions.

Corollary 3: Let f : Rd → R be a continuously differentiable function with level sets of mea-
sure zero. Assume that K0 = S≤

f

(
m(0)
)

is compact. Then the sequence
(
m(t )
)
t∈N has a critical

limit point.

Proof: Define K1 := {x ∈ K0 | ∇f (x) = 0} as the set of critical points. This set is com-
pact. Lemma 4 ensures that f is p-improvable on K0 \ K1 for all p < 1/2. Then the claim
follows immediately from Theorem 2. �

Technically the above statements do not apply to problems with unbounded sub-
level sets. However, due to the fast decay of the tails of Gaussian search distributions we
can often approximate these problems by changing the function “very far away” from
the initial search distribution, in order to make the sublevel sets bounded. We may then
even apply the theorem with empty K1, which implies that after a while the approxi-
mation becomes insufficient since the algorithm diverges. In this sense we can conclude
divergence, for example, on a linear function. We will use this argument several times
in the next section, mainly to avoid unnecessary technical complications when defining
saddle points and ridge functions.

We may ask whether p-improvability for p > τ is not only a sufficient but also a
necessary condition for global convergence. This turns out to be wrong. The quadratic
saddle point case discussed in Section 5.2 is a counter example, where the algorithm di-
verges reliably even if the success probability is far smaller than τ . In contrast, the ridge
of p-critical saddle points analyzed in Section 5.3 results in premature convergence, de-
spite the fact that the critical points form a zero set, and this can even happen for a
ridge of p-improvable points with p < τ ; see Section 5.4. Drift analysis is a promising
tool for handling all of these cases. Here we provide a rather simple result, which still
suffices for many interesting cases. A related analysis for a nonelitist ES was carried out
by Beyer and Meyer-Nieberg (2006).
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Theorem 3: Consider a measurable objective function f : Rd → R with level sets of measure
zero. Let m ∈ R

d be a p-critical point. If the success probability decays sufficiently quickly, that
is, if

∞∑
k=0

p≤
f (m, ek·c− ) < ∞

then for each given p < 1 there exists an initial condition such that the (1 + 1)-ES converges to
m with probability of at least p.

Proof: Define the zero sequence SK :=∑∞
k=K p≤

f (m, ek·c− ). For given p < 1, there exists
a K0 such that SK0 < 1 − p. By definition, the probability of never sampling a successful
offspring when starting the algorithm in the initial state m(0) = m, σ (0) = eK0·c− is given
by SK0 ; in this case we have m(t ) = m for all t ∈ N. �
The above theorem precludes global convergence to a (local) optimum with full proba-
bility in the presence of a suitable nonoptimal p-critical point.

5 Case Studies

In this section, we analyze various example problems with very different character-
istics, by applying the above convergence analysis. We characterize the optimization
behavior of the (1 + 1)-ES, giving either positive or negative results in terms of global
convergence. We start with smooth functions and then turn to less regular cases of non-
smooth and discontinuous functions. On the one hand side, we show that the theorem
is applicable to interesting and nontrivial cases; on the other hand we explore its limits.

5.1 The 2-D Rosenbrock Function

The two-dimensional Rosenbrock function is given by

f (x1, x2) := 100(x2
1 − x2)2 + (x1 − 1)2.

This is a degree four polynomial. The function is unimodal (has a single local minimum),
but not convex. Moreover, it does not have critical points other than the global optimum
x∗ = (1, 1). The function is illustrated in Figure 5.

The Rosenbrock function is a popular test problem because it requires a diverse set
of optimization behaviors: the algorithm must descend into a parabolic valley, follow
the valley while adapting to its curved shape, and finally converge into the global opti-
mum, which is a smooth optimum with nontrivial (but still moderate) conditioning.

Corollary 3 immediately implies convergence of the (1 + 1)-ES into the global opti-
mum. It does not say anything about the speed of convergence; however, Jägersküpper
(2006a) established linear convergence in the last phase with overwhelming probability
(however, using a different step size adaptation rule).

Taken together, these results give a rather complete picture of the optimization pro-
cess: irrespective of the initial state we know that the algorithm manages to locate the
global optimum without getting stuck on the way. Once the objective function starts
to look quadratic in good enough approximation, Jägersküpper’s result indicates that
linear convergence can be expected. The same analysis applies to all twice continuously
differentiable unimodal functions without critical points other than the optimum.

5.2 Saddle Points—The p-Improvable Case

We consider the quadratic objective function

f (x1, x2) := a · x2
1 − x2

2
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Figure 5: The 2-D Rosenbrock function in the range [−2, 2] × [−1, 3].

with parameter a > 0. The origin is a saddle point. It is p-improvable for all p <

2 cot−1(
√

a)/π (see the appendix for details). For small enough a, the success proba-
bility is larger than τ and Corollary 3 applies, while for large values of a the success
probability decays to zero and we lose all guarantees.

Simulations show that the ES overcomes the zero level set containing the saddle
point without a problem, also for large values of a. It seems that p-improvable sad-
dle points do not result in premature convergence of the algorithm, irrespective of the
value of p > 0. However, this statement is based on an empirical observation, not on a
rigorous proof.

5.3 Saddle Points—The p-Critical Case

The cubic polynomial
f (x1, x2) := x3

1 + x2
2

has p-critical saddle points on the line R × {0} ⊂ R
2 forming a ridge; see Figure 6. With-

out loss of generality we consider m = 0 ∈ R
2 in the following. A successful offspring

x ∈ R
2 fulfills x3

1 + x2
2 ≤ 0. For small enough σ and hence for small enough ‖x‖ � 1,

‖x‖ ∈ �(σ ), this implies −x1 � |x2| and hence −x1 ∈ �(σ ) and |x2| ∈ o(σ ). Plugging this
into the above inequality we obtain |x2| ∈ O(−x1 · √

σ ). Therefore, for small σ we have
p≤

f (0, σ ) ∈ O(
√

σ ). This implies that the cumulative success probability
∞∑
t=0

p≤
f (0, et ·c− ) = O

( ∞∑
t=0

et ·c−/2

)
= O

(
1

1 − ec−/2

)
= O(1)

is finite, and Theorem 3 yields (premature) convergence with arbitrarily high
probability.

5.4 Linear Ridge

Consider the linear ridge objective

f (x1, x2) := x1 + a · |x2|
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Global Convergence of the (1 + 1) Evolution Strategy to a Critical Point

Figure 6: Level lines of the function f (x1, x2) = x3
1 + x2

2 in the range [−1, 1]2. The inset
shows a zoom of factor 10.

with parameter a > 0. The function is continuous, and its level sets contain a kink.
Again, the line R × {0} is critical; this is where the function is nondifferentiable. The
function is p-improvable for p < cot−1(a)/π < 1/2 (see the appendix). For a → ∞ the
success probability decays to zero.

As long as cot−1(a)/π > τ we can conclude divergence of the algorithm (the in-
tended behavior) from Theorem 2. Otherwise we lose this property, and it is well known
and easy to check with simulations that for large enough a the algorithm indeed con-
verges prematurely.

5.5 Sphere with Jump

Our next example is an “essentially discontinuous” problem in the sense that in general
no function in the equivalence class [f ] is continuous. We consider objective functions
of the form

f (x) := ‖x‖2 + 11S (x),

where 11S denotes the indicator function of a measurable set S ⊂ R
d . If S has a suffi-

ciently simple shape then this problem is similar to a constrained problem where S is
the infeasible region (Arnold and Brauer, 2008), at least for small enough σ . As long as
m(t ) ∈ S the (1 + 1)-ES essentially optimizes the sphere function, and as soon as m(t ) �∈ S

the (soft) constraint comes into play.
If S is the complement of a star-shaped open neighborhood of the origin then it is

easy to see that the function is unimodal and p-improvable for all p < 1/2. Theorem 2
applied with K1 := {0} yields the existence of a subsequence converging to the origin,
which implies convergence of the whole sequence due to monotonicity of f

(
m(t )
)
. The

results of Jägersküpper (2005) and Akimoto et al. (2018) imply linear convergence.
Other shapes of S give different results. For example, for d ≥ 2, if S is a ball not

containing the origin then the function is still unimodal. For example, define S as the
open ball of radius 1/2 around the first unit vector e1 = (1, 0, . . . , 0) ∈ R

d . Then at m :=
3/2 · e1 we have ξ

f
p (m) = 0 for all p > 0, and according to Theorem 3 the algorithm can

converge prematurely if the step size is small. Alternatively, if S is the closed ball, then

Evolutionary Computation Volume 28, Number 1 45

D
ow

nloaded from
 http://direct.m

it.edu/evco/article-pdf/28/1/27/2020373/evco_a_00248.pdf by guest on 07 Septem
ber 2023



T. Glasmachers

all points except the origin are p-improvable for all p < 1/2; however, there does not
exist a positive lower semicontinuous lower bound on ξ

f
p in any neighborhood of m =

3/2 · e1, and again the algorithm can converge to this point, irrespective of the target
success probability τ .

Now consider the strip S := (a,∞) × (0, 1) ⊂ R
2 with parameter a > 0. An elemen-

tary calculation of the success rate at m := (a + ε, 1) for σ → 0 shows that the (1 + 1)-
ES is guaranteed to converge to the optimum irrespective of the initial conditions if
tan−1(a)/(2π ) < τ (details are found in the appendix), that is, if a is large enough; oth-
erwise the algorithm can converge prematurely to a point on the edge (a,∞) × {1} of S.

5.6 Extremely Rugged Barrier

Let us drive the above discontinuous problem to the extreme. Consider the one-
dimensional problem

f (x) := x + 11S (x),
where S ⊂ [−1, 0] is a Smith-Volterra-Cantor set, also known as a fat Cantor set. S is
closed, has positive measure (usually chosen as �(S) = 1/2), but is nowhere dense.
Counterintuitively, the function is unimodal in the sense that no point is optimal re-
stricted to an open neighborhood (which is what commonly defines a local optimum).
Still, intuitively, S should act as a barrier blocking optimization progress with high prob-
ability.

The function is point-wise p-improvable everywhere. However, similar to the
closed ball case in the previous section, there is no positive, lower semicontinuous
lower bound on ξ

f
p . Therefore Theorem 2 does not apply. Indeed, unsurprisingly, sim-

ulations4 show that the algorithm gets stuck with positive probability when initialized
with 0 < x (0) � 1 and σ � 1. When removing 0 from S, then analogous to Section 5.3
we obtain p≤

f (m, σ ) ∈ O(
√

σ ) for m = 0 and small σ , and hence Theorem 3 applies.
In contrast, if S is a Cantor set of measure zero then the algorithm diverges success-

fully, since it ignores zero sets with full probability.

6 Conclusions and Future Work

We have established global convergence of the (1 + 1)-ES for an extremely wide range of
problems. Importantly, with the exception of a few proof details, the analysis captures
the actual dynamics of the algorithm and hence consolidates our understanding of its
working principles.

Our analysis rests on two pillars. The first one is a progress guarantee for rank-
based evolutionary algorithms with elitist selection. In its simplest form, it bounds the
progress on problems without plateaus from below. It seems to be quite generally appli-
cable, for example, to runtime analysis and hence to the analysis of convergence speed.

The second ingredient is an analysis of success-based step size control. The cur-
rent method barely suffices to show global convergence. It is not suitable for deducing
stronger statements such as linear convergence on scale invariant problems. Control of
the step size on general problems therefore needs further work.

Many natural questions remain open, the most significant are listed in the follow-
ing. These open points are left for future work.

4Special care must be taken when simulating this problem with floating point arithmetic. Our simula-
tion is necessarily inexact; however, not beyond the usual limitations of floating point numbers. It does
reflect the actual dynamics well. The fitness function is designed such that the most critical point for
the simulation is zero, which is where standard IEEE floating point numbers have maximal precision.
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• The approach does not directly yield results on the speed of convergence. How-
ever, the progress guarantee of Theorem 1 is a powerful tool for such an anal-
ysis. It can provide us with drift conditions and hence yield bounds on the
expected runtime and on the tails of the runtime distribution. But for that to be
effective we need better tools for bounding the tails of the step size distribution.
Here, again, drift is a promising tool.

• The current results are limited to step-size adaptive algorithms and do not in-
clude covariance matrix adaptation. One could hope to extend the proceeding
to the (1 + 1)-CMA-ES algorithm (Igel et al., 2007), or to (1 + 1)-xNES (Glas-
machers et al., 2010). Controlling the stability of the covariance matrix is ex-
pected to be challenging. It is not clear whether additional assumptions will
be required. As an added benefit, it may be possible to relax the condition
p > τ for p-improvability, by requiring it only after successful adaptation of
the covariance matrix.

• Plateaus are currently not handled. Theorem 1 shows how they distort the dis-
tribution of the decrease. Worse, they affect step size adaptation, and they make
it virtually impossible to obtain a lower bound on the one-step probability of a
strict improvement. Therefore, proper handling of plateaus requires additional
arguments.

• In the interest of generality, our convergence theorem only guarantees the exis-
tence of a limit point, not convergence of the sequence as a whole. We believe
that convergence actually holds in most cases of interest (at least as long as
there are no plateaus; see above). This is nearly trivial if the limit point is an
isolated local optimum; however, it is unclear for a spatially extended opti-
mum, for example, a low-dimensional variety or a Cantor set.

• Our current result requires a saddle point to be p-improvable for some p > τ ,
otherwise the theorem does not exclude convergence of the ES to the saddle
point. We know from simulations that the (1 + 1)-ES overcomes p-improvable
saddle points reliably, also for p � τ . A proper analysis guaranteeing this be-
havior would allow the establishment of statements analogous to work on
gradient-based algorithms that overcome saddle points quickly and reliably;
see for example, Dauphin et al. (2014). However, this is clearly beyond the
scope of the present article.

• We provide only a minimal negative result stating that the algorithm may in-
deed converge prematurely with positive probability if there exists a p-critical
point for which the cumulative success probability does not sum to infinity. In
Section 5.5, it becomes apparent that this notion is rather weak, since the state-
ment is not formally applicable to the case of a closed ball, which however
differs from the open ball scenario only on a zero set. This makes clear that
there is still a gap between positive results (global convergence) and negative
results (premature convergence). Theorem 3 can certainly be strengthened, but
the exact conditions remain to be explored. A single p-improvable point with
p < τ is apparently insufficient. A p-critical point may be sufficient, but it is
not necessary.
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Appendix

Here we provide the proofs of technical lemmas that were omitted from the main text
in the interest of readability.

Proof of Lemma 1: We have to show that the level sets of all three functions agree out-
side a set of measure zero. It is immediately clear from definition 1 that the level sets of
f are a refinement of the level sets of f̂ ≤

� and f̂ <
� , i.e., f (x) = f (x ′) implies f̂ ≤

� (x) =
f̂ ≤

� (x ′) and f̂ <
� (x) = f̂ <

� (x ′), and f̂ ≤
� (x) < f̂ ≤

� (x ′) and f̂ <
� (x) < f̂ <

� (x ′) both imply
f (x) < f (x ′).

It remains to be shown that f̂ ≤
� and f̂ <

� do not join f -level sets of positive measure.
Let y ∈ R denote a level so that Y = (f̂ <

�

)−1(y) has positive measure �(Y ) > 0. We have
to show that this measure (not necessarily the whole set, only up to a zero set) is covered
by a single f -level set. Assume the contrary, for the sake of contradiction. Then we find
ourselves in one of the following situations:

1. There exist x, x ′ ∈ Y fulfilling a := f (x) < f (x ′) =: a′ and it holds �
(
f −1(a)

)
> 0

and �
(
f −1(a′)

)
> 0. So the mass of Y is split into at least two chunks of positive

measure. This implies f̂ <
� (x ′) − f̂ <

� (x) ≥ �
(
f −1(a)

)
> 0, which contradicts the

assumption that x and x ′ belong to the same f̂ <
� -level.

2. There exist x, x ′ ∈ Y fulfilling a = f (x) < f (x ′) = a′ and it holds �
(
f −1(I )

)
> 0

for the open interval I = (a, a′). So Y consists of a continuum of level sets of
measure zero. Again, this implies f̂ <

� (x ′) − f̂ <
� (x) ≥ �

(
f −1(I )

)
> 0, leading to

the same contradiction as in the first case.

The argument for f̂ ≤
� is exactly analogous. �

Proof of Lemma 2: It holds

p<
f (m, a · σ ) =

∫
S<

f (m)

1
(2π )d/2adσ d

· exp
(

−‖x − m‖2

2a2σ 2

)
dx
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≥ 1
ad

·
∫

S<
f (m)

1
(2π )d/2σd

· exp
(

−‖x − m‖2

2σ 2

)
dx

= 1
ad

· p<
f (m, σ ).

The computation for p≤
f is analogous. �

Proof of Lemma 3: Fix x and define ξ := ξ
f
pT

(x). The cases pH = 0 and ξ = 0 are trivial,
so in the following we treat the case that both are positive. For a ≥ 1 it holds

pT =
∫

S<
f (x)

1
(2π )d/2ξd

exp
(

−‖x ′ − x‖2

2ξ 2

)
dx ′

= ad ·
∫

S<
f (x)

1
(2π )d/2adξd

exp
(

−‖x ′ − x‖2

2ξ 2

)
dx ′

≤ ad ·
∫

S<
f (x)

1
(2π )d/2adξd

exp
(

−‖x ′ − x‖2

2a2ξ 2

)
dx ′.

In other words, the success probability for step size a · ξ is at least pT /ad . Hence, in order
to push the success probability below pT /ad , the step size must be at least ξ · a, which
therefore bounds η

f

pT /ad (x) from below. Applying the above argument with a = d
√

pT /pH

completes the proof. �
Proof of Lemma 4: In a small enough neighborhood of a regular point x the function f

can be approximated arbitrarily well by a linear function (its first order Taylor polyno-
mial). In particular, the level set of f is arbitrarily well approximated by a hyperplane,
for which the probability of strict improvement is exactly 1/2. Hence we have

lim
σ→0

p<
f (x, σ ) = 1

2
,

which immediately implies the first statement.
We have already seen that the second statement holds point-wise. It remains to

be shown that ξ
f
p |Y is lower bounded by a positive, lower semicontinuous function.

To this end we show that ξ
f
p itself is lower-semicontinuous, and we note that ξ

f
p |Y

takes positive values. Consider a convergent sequence (at )t∈N → x ∈ R
d and define

ξa := lim inft→∞ ξ
f
p (at ) and ξx := ξ

f
p (x). We have to show that it holds ξx ≤ ξa for all

choices of x and (at )t∈N. We define

Sx :=
{
σ ∈ R

+
∣∣∣p<

f (x, σ ) ≤ p
}

and Sa :=
{
σ ∈ R

+
∣∣∣ ∃(tk )k∈N : p<

f (atk , σ ) ≤ p ∀k ∈ N

}
,

which allows us to write ξa = inf(Sa ) and ξx = inf(Sx ). Fix σ ∈ Sa and a correspond-
ing subsequence (tk )k∈N so that it holds p<

f (atk , σ ) ≤ p ∀k ∈ N. From the continuity of f

it follows that the success probability function p<
f is lower semicontinuous (and even

continuous in its second argument, the step size). From limk→∞ atk = x and lower semi-
continuity of p<

f it follows σ ∈ Sx . We conclude Sa ⊂ Sx and therefore ξx ≤ ξa .
To show the last statement we construct a cone of improving steps centered at x.

This cone makes up a fixed fraction of each ball centered on x, which shows that x is
p-improvable, where p is any number smaller than the volume of the intersection of
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ball and cone divided by the volume of the ball, which is well-defined and positive
in the limit when the radius tends to zero. Let v denote an eigen vector of H fulfill-
ing vT Hv < 0. For σ → 0, the objective function is well approximated by the quadratic
Taylor expansion

f (x ′) ≈ g(x ′) = f (x) + (x − x ′)T H (x − x ′).
The sublevel set S<

f (x) is locally well approximated by S<
g (x), which is a cone centered

on x. Whether a ray x + R · z belongs to S<
g (x) or not depends on whether zT Hz < 0 or

not. Now, the eigen vector v has this property, and due to continuity of g, the same holds
for an open neighborhood N of v. The cone x + R · N is contained in S<

g (x) and has the
same positive probability s<

g (x, σ ) = p > 0 under N (x, σ 2I ) for all σ > 0. We conclude

lim
σ→0

p<
f (x, σ ) ≥ p > 0,

which completes the proof. �
Proof of Lemma 5: We use the short notation m := m(t ) and σ = σ (t ). Let S = S<

f (m)
denote the region of improvement, with Lebesgue measure f̂�(m). The probability of
sampling from this region is bounded by

p<
f (m) =

∫
S

1
(2π )d/2σd

exp
(

−‖x − m‖2

2σ 2

)
dx

= 1
(2π )d/2σd

∫
S

exp
(

−‖x − m‖2

2σ 2

)
dx

<
1

(2π )d/2σd

∫
S

dx

= f̂�(m)
(2π )d/2σd

≤ p,

where the last inequality is equivalent to the assumption. �
Proof of Lemma 6: Assume the contrary, for the sake of contradiction. Then

∞∑
t=1

X(t ) < ∞.

Fix N ∈ N. Hoeffding’s inequality applied with ε = p/2 and n ≥ 2N
p

yields

Pr

(
n∑

t=1

X(t ) ≤ N

)
≤ exp

(
−n · p2

2

)
n → ∞−→0.

Hence, for n → ∞, with full probability the infinite sum exceeds N . Since N was arbi-
trary, we arrive at a contradiction. �
Proof of Lemma 7: In each iteration, the step size σ is multiplied by either ec− or ec+ .
According to Lemma 3, the condition pH

pT
≤ ed·c− yields

η
f
pH

(
m(tk )
)

ξ
f
pT

(
m(tk )
) ≥ e−c− .

An unsuccessful step of the (1 + 1)-ES in iteration t results in a reduction of the step size
by the factor σ (t+1)

σ (t ) = ec− < 1 and leaves m(t+1) = m(t ) unchanged. We conclude that no
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such step can overjump the interval
[
ξ

f
pT

(
m(t )
)
, η

f
pH

(
m(t )
)]

, in the sense of σ (t ) ≥ η
f
pH

(
m(t )
)

and σ (t+1) ≤ ξ
f
pT

(
m(t )
)
. The above property also implies bH

bT
≥ e−c− .

The central proof argument works as follows. First, we exclude that the step size
remains outside [bT , bH ] for too long. The same argument does not work for the target
interval defined in Equation (1) because of its time dependency—we could overjump
the moving target. Instead we show that the only way for the step size to avoid the target
interval for an infinite time is to overjump, that is, to find itself above and below the
interval infinitely often. Finally, an argument exploiting the properties of unsuccessful
steps allows us to consider a static target, which cannot be overjumped by the property
already shown above.

First, we show that there exists an infinite subsequence of iterations t fulfilling
σ (t ) ∈ [bT , bH ]. This statement is strictly weaker than the assertion to be shown. It is
still helpful in the following because then we know that the step sizes return to a fixed,
t-independent interval for an infinite number of times. Assume for the sake of contradic-
tion that there exists t0 such that σ (t ) ≤ bT for all t ≥ t0. The logarithmic step size change
δ(t ) := log(σ (t+1)) − log(σ (t ) ) takes the values c+ > 0 with probability at least pT > τ and
c− < 0 with probability at most 1 − pT < 1 − τ , hence

E
[
δ(t )] ≥ � := pT · c+ + (1 − pT ) · c− > 0.

For t1 > t0 we consider the random variable log(σ (t1 ) ) = log(σ (t0 ) ) +∑t1−1
t=t0

δ(t ). The vari-
ables δ(t ) are not independent. We create independent variables as follows. For each
candidate state (m, σ ) fulfilling σ < bT we fix a set I (m, σ ) ⊂ S<

f (m) of improving steps
with probability mass exactly pT under the distribution N (m, σ 2I ). Let δ̃(t ) denote the
step size change corresponding to δ(t ) for which the step size is increased only if the
iterate m(t+1) is contained in I (m, σ ). Note that these hypothetical step size changes do
not influence the actual sequence of algorithm states. Therefore, the sequence is i.i.d.,
and it holds δ̃(t ) ≤ δ(t ). From Hoeffding’s inequality applied with ε = �/2 to

∑t1−1
t=t0

δ̃(t ) ≤∑t1−1
t=t0

δ(t ) we obtain

Pr
{

log(σ (t1 ) ) ≤ log(σ (t0 ) ) + (t1 − t0) · �

2

}
≤ exp

(
−(t1 − t0) · �2

2(c+ − c−)2

)
,

that is, the probability that the log step size grows by less than �/2 per iteration on
average is exponentially small in t1 − t0. For t1 � t0 + 2/� · ( log(bT ) − log(σ (t0 ) )

)
the

probability becomes minuscule, and for t1 → ∞ it vanishes completely. Hence, with
full probability, we arrive at a contradiction. The same logic contradicts the assumption
that σ (t ) ≥ bH for all t ≥ t0. Hence, with full probability, subepisodes of very small and
very large step size are of finite length, and according to Lemma 6 the sequence of step
sizes returns infinitely often to the interval [bT , bH ].

Next we show that there exists an infinite subsequence of iterations fulfilling Equa-
tion (1). Again, assume the contrary. We know already that σ (t ) does not stay below bT or
above bH for an infinite time. Hence, there must exist an infinite subsequence fulfilling
either

σ (t ) ∈
[
bT , ξf

pT

(
m(t ))] (2)

or
σ (t ) ∈

[
ηf

pH

(
m(t )), bH

]
. (3)
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Assume an infinite subsequence fulfilling Equation (2). For each of these iterations, the
success probability is lower bounded by pT . Consider the case of consecutive successes.
Until the event

σ (t ) ≥ ξf
pT

(
m(t )) (4)

the probability of success remains lower bounded by pT > 0. The condition is fulfilled
after at most n+ := ( log(bH ) − log(bT )

)/
c+ successes in a row, hence the probability of

such an episode occurring is lower bounded by pn+
T > 0. Lemma 6 ensures the existence

of an infinite subsequence of iterations with this property. Each such episode contains a
point fulfilling either Equation (1) or Equation (4). By assumption, the former happens
only finitely often, which implies that the latter happens infinitely often.

Hence, this case as well as the alternative assumption of an infinite sequence fulfill-
ing Equation (3), handled with an analogous argument, result in an infinite subsequence
with the property

σ (t ) ∈
[
ηf

pH

(
m(t )), ec+ · bH

]
.

Following the same line of arguments as above, as long as σ (t ) ≥ η
f
pH

(
m(t )
)
, the prob-

ability of an unsuccessful step is lower bounded by 1 − pH > 0. After at most n− :=(
log(bT ) − log(bH ) + c+

)/
c− unsuccessful steps in a row, called an episode in the fol-

lowing, the step size must have dropped below bT ≤ η
f
pH

(
m(t )
)
, hence the probability of

such an episode occurring is lower bounded by (1 − pH )n
−

> 0. According to Lemma 6,
an infinite number of such episodes occurs.

By construction, these episodes consist entirely of unsuccessful steps, and therefore
m(t ) remains unchanged for the duration of an episode. This comes in handy, since this

means that also the target interval
[
ξ

f
pT

(
m(t )
)
, η

f
pH

(
m(t )
)]

remains fixed, and this again
means that at least one iteration of the episode falls into this interval. We have thus con-
structed an infinite subsequence of iteration within the above interval, in contradiction
to the assumption. �

Finally, we provide details on the computations of success rates in the examples.
In Section 5.2, the set where the function f (x1, x2) := a · x2

1 − x2
2 takes the value zero

consists of two lines through the origin in directions (1,
√

a) and (−1,
√

a). The cone
is bounded by these lines in the success domain. The angle between their directions
divided by π corresponds to the success rate. It is two times the angle between (1,

√
a)

and (1, 0), and hence 2 cot−1(
√

a). Dividing by π yields the result.
The threshold p < cot−1(a)/π in Section 5.4 follows the exact same logic, with the

difference that the square root vanishes in the direction vectors, and we lose a factor of
two, since the success domain is only one half of the cone.

In Section 5.5, the circular level line in the corner point (a, 1) is tangent to the vector
(−1, a). The angle tan−1(a) between (−1, a) and (−1, 0), divided by 2π , is a lower bound
on the success rate at m = (a + ε, 1) with σ � ε. The bound is precise for ε → 0.
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