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The growth of generated data in the industry requires new efficient big d ata integra-
tion approaches for uniform data access by end-users to perform better business operations.
Data virtualization systems, including Ontology-Based Data Access (ODBA) query data
on-the-fly against the original data sources without any prior data materialization. Existing
approaches by design use a fixed model e.g., TABULAR as the only Virtual Data Model - a
uniform schema built on-the-fly to load, transform, and join relevant data. While other data
models, such as GRAPH or DOCUMENT, are more flexible and, thus, can be more suitable
for some common types of queries, such as join or nested queries. Those queries are hard to
predict because they depend on many criteria, such as query plan, data model, data size, and
operations. To address the problem of selecting the optimal virtual data model for queries
on large datasets, we present a new approach that (1) builds on the principal of OBDA to
query and join large heterogeneous data in a distributed manner and (2) calls a deep learn-
ing method to predict the optimal virtual data model using features extracted from SPARQL
queries. OPTIMA - implementation of our approach currently leverages state-of-the-art Big
Data technologies, Apache-Spark and Graphx, and implements two virtual data models,
GRAPH and TABULAR, and supports out-of-the-box five data sources m odels: property
graph, document-based, e.g., wide-columnar, relational, and tabular, stored in Neo4j, Mon-
goDB, Cassandra, MySQL, and CSV respectively. Extensive experiments show that our
approach is returning the optimal virtual model with an accuracy of 0.831, thus, a reduction
in query execution time of over 40% for the tabular model selection and over 30% for the
graph model selection.

Keywords: Data Virtualization, Big Data, OBDA, Deep Learning.

1. INTRODUCTION

Massive data generated by applications, transactions, or machines keep increasing
drastically over the years [1]. However, the information extracted from this data is un-
exploited and less used, leading to a knowledge gap [2]. Consequently, the growing
volume of data consumed by different applications raises the need for effective data in-
tegration approaches [3,4]. The aim is to get more insights by enabling the process of
a large volume of data that is stored in various sources (Oracle, MongoDB, etc.), that
is resided in different platforms (cloud, mainframes), and is represented in different for-
mats (relational, graph, no-relational [5]). Modern approaches “Data virtualization [6]”

© 2023 Chinese Academy of Sciences. Published under a Creative Commons Attribution
4.0 International (CC BY 4.0) license.
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tackle this challenge by creating a virtual data model under which the heterogeneous for-
mats are homogenized on-the-fly without data materialization [7], thus reducing cost, and
simplifying data management, updates, and maintenance. Ontology-based data access
(OBDA) [8] also implements a virtual data model and addressed data integration chal-
lenges with practical knowledge representation models, ontology-based mappings, and a
unique query language SPARQL' [9].

Existing approaches [10, 11, 12] use by design only one virtual data model® (e.g.,
TABULAR) to load and transform the requested data into a uniform model to be joined
and aggregated; while other data models, such as GRAPH or DOCUMENT, are more
suitable [13]. For instance, approaches using a fixed TABULAR virtual model (TABU-
LAR is a model that uses predefined structures, i.e., table definitions) can have downside
performances for SPARQL queries that involve many join operations on very large data.
In contrast, other data models such as GRAPH (a model that structures data into a set
of nodes, relationships, properties, and, most importantly, stores relationships at the indi-
vidual record level) perform better for such queries. On the other hand, the TABULAR
model performs better for queries that involve selection or projection. The problem to be
addressed in this paper is defined as, given a query, "which virtual data model is optimal
i.e., the model that has the lowest query execution time (cost)? and how to select it?”.

It is very challenging, however, to automatically select the optimal virtual model
based on queries since it is not realistic to compute the query execution time for all
SPARQL queries against all virtual data models to get the actual cost. Furthermore,
the query behavior on data virtualization is quite hard to predict since the behavior de-
pends not only on the virtual data model but also on query planning. To the best of our
knowledge, existing machine learning techniques [14,15,16] [17] were established in the
literature for cost estimation of SPARQL queries; most of them, however, are designed
for querying uniform data, e.g., RDF> and not for distributed data sources.

To address these research questions, we developed OPTIMA - an OBDA extensible
framework that predicts the optimal virtual data model GRAPH or TABULAR, using a
deep learning algorithm to join data from sources databases that support Property Graph,
Relational, Tabular Document-based, and Wide-Columnar models. The proposed algo-
rithm uses one hot vector encoding to transform different SPARQL features into hidden
representations. Next, it embeds these representations into a tree-structured model, which
is used to classify the virtual model GRAPH or TABULAR that has the lowest query
execution time.

Extensive experiments show that our approach is successfully running, returning the
optimal virtual model with an accuracy of 0.831, thus reducing the query execution time
of over 40% for the TABULAR model selection and over 30% for the GRAPH model
selection.

The article is structured as follows. The underlying concepts about ontology-based
big data access are given in Section 2. Our approach is described in detail in Section 3.
Further description of deep learning model is presented in Section 4. Experimental results
are reported and explained in Section 5. Related Work is presented in Section 6. Section 7

'SPARQL is a query language for Resource Description Framework (RDF).

2We denote GRAPH and TABULAR when referring to the type of virtual data model; while we denote Property
Graph, Document-based, Wide-Columnar, Relational, and Tabular when addressing the source model.
3Resource Description Framework (RDF) is a standard designed as a data model for describing metadata.
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concludes with an outlook on possible future work.

2. Preliminaries

Our proposed approach requires the following inputs (1) data sources using different
models. (2) Semantic Mapping that describes mapping in RDF Mapping Language, (3)
information about data sources (password, etc.), and (4) a set of SPARQL queries. To
guide the subsequent description of our approach, we provide the following definitions:

Definition 1 (Data Source Schema) Dataset Schema is a set of Sq U Sc U S, U Sg U §;
considered by our approach; we introduce each model briefly as follows:

* Document-based Sy [18]: A document d is a JSON object 0. An object is formed by a
set of key/value pairs (aka fields) o = { ki ...k, }; a key is a string, while a value can
be either a primitive value (e.g., a string), an array of values, an object, or null.

» Wide-Columnar S, [19]: A table t is the unit of wide-column identified by name and
composed by a set of column-families f. The table’s rows are identified by a unique key.
Each row of the table can contain up to n records. The record is a pair of identifiers id
and a value. A wide-column is, in fact, a Hash structure expressed as: t= Hashtable <
key, Hashrow < f,Hashrecord < id,value >>>.

* Relational S, [20]: A relation schema R with a set ¥ of PKs,FKs and attributes A =<
Ay,...,A, > is denoted R(Ay,...,A,) is a set of n—tuples < dj,...,d, > where each
di is an element of dom(Ai) or is null. The relation instance is the extension of the
relation. A value of null represents a missing or unknown value.

* Property Graph Sg [21] G = (V,E,A, 1) is a directed, edge-labeled, attributed multi-
graph where V is a set of nodes, E C (VxV) is a set of directed edges, A :E — X is an edge
labeling function assigning a label from the alphabet ¥ to each edge. Properties can be
assigned to edges and nodes by the function u : (VUE)xK — S where K is a set of property
keys and S the set of property values.

o Tabular S, [22] is a set of tables T = { t| ...t, }. Each table t integrates one or
more column groups, as t, = { GC| ... GC, }. Each column group integrates different
columns representing the atomic values to be stored in the table, GC; = { C{ ... Cx }.

We denote an entity of a data source by €5 = {a;}, representing either a node, a table or
an object; where s is the schema entity, x its name and a; are its attributes representing
either edges or columns. A data source consists of one or more entities, d = {e;}.

Definition 2 (Semantic Mapping) Semantic mappings are bridges (links) between the
ontology and sources schemata elements. We differentiate between two types of semantic
mappings [12]:

o Entity mapping: m®" = (e,c) a relation mapping an entity e from d onto an ontology
class c.

d-ajoEAUIP/NPS )W 0B.IP//:dY WOl papeojumoq

©7)UIP/620.212/91200 € IUIP/Z9L L 0L/1OP/P

€20z Jequieydes 20 uo ysenb Aq ypd'91200



Data Intelligence Just Accepted MS.
https://doi.org/10.1162/dint a 00216

4 CHAHRAZED B.BACHIR BELMEHDI, ABDERRAHMANE KHIAT AND NABIL KESKES

o Attribute mapping: m*=(a, p) a relation mapping an attribute a from an entity e onto
an ontology property p.

Definition 3 (Star-Shaped Query) A Star-Shaped Query (SSQ) is a set of triples (sub-
ject, predicate, object) patterns - BGPs* sharing the same subject [23]. We denote
SSQ by sty = {tiz (x, piy0i) | tEBGPq} where x is the shared subject, whereas BGP, =
{(si, pi,0i) | pi € O}, is the triple patterns of SSQ.

Definition 4 (Connection SSQ) The joins of data coming from different data sources
are represented actually by the connections between star-shaped queries i.e., two SSQs
sty, Sty (subject, predicate, object) are connected if the object of st, is the subject of sty.
connected(sty, sty) — ;i = (si, pi,b) € stg.

Definition 5 (Relevant Entities to SSQ) [24] An entity e is relevant to a SSQ st if it con-
tains attributes a; mapping to every triple property p; of the SSQ i.e., relevant(e,st) —
Vpi € prop(st)3aj € e | (pi,a;j) € M™, where prop is a relation returning the set of prop-
erties of a given SSQ.

Definition 6 (Entity Wrapping) if is a function wrap that takes one or more relevant
entities to SSQ and returns a Virtual Model [24]. It loads entity elements and organizes
them according to Virtual model schema wrap : E" — PS.

Definition 7 (Virtual Data Model) Virtual Data Model is the data structure of the com-
putation unit of the query engine to load, transform and join only the relevant data. It is
built and populated on-the-fly and not materialized, i.e., used only during query process-
ing then cleared. Virtual Data Model has a schema that organizes data according to its
structure. We consider two types of schema, GRAPH or TABULAR.

o Structure of a GRAPH [25] (in-memory) is similar as Property Graph. A GRAPH
G = (V,E) is a set of vertices V. = {1 ...n} and a set of m directed edges E. The
directed edge (i, j) € E connects the source vertex i € V with the target vertex i € V.
GRAPH stores relationships at the individual record level.

e Structure of a TABULAR (in-memory) [26] is the same structure as the Tabular model
defined above. TABULAR has predefined structures.

Definition 8 (Graph and Data Parallel) During the querying execution, the Virtual
Model, GRAPH or TABULAR is partitioned, distributed, and queried in parallel.

* GRAPH Farallel is executed after loading relevant entities into the DEE. Graph-
Parallel Systems consist of a property graph G = (V, E, P) and a vertex-program Q
that is instantiated simultaneously on all the vertices.

* Data Parallel [27] concerns the TABULAR model, which is executed after loading rele-
vant entities into the DEE. Data-Parallel computation derives parallelism by processing
independent data on separate resources.

4Basic Graph Pattern (BGP) is a set of Triple Patterns, where BGPs is set of BGP.
Shttps://gist.github.com/shagunsodhani/c72bc 1928aeef40280c9

d-ajoEAUIP/NPS )W 0B.IP//:dY WOl papeojumoq

©7)UIP/620.212/91200 € IUIP/Z9L L 0L/1OP/P

€20z Jequieydes 20 uo ysenb Aq ypd'91200



Data Intelligence Just Accepted MS.
https://doi.org/10.1162/dint a 00216

PREDICTING AN OPTIMAL VIRTUAL DATA MODEL FOR UNIFORM ACCESS TO LARGE HETEROGENEOUS DATAS

'
Star Shaped Queries 1 Relevant Source and Entity
Query
4 Detection
Query D

Data Wrapper

'
'
'
'
'
1 Extracting Relevant Data
'
T
Loading Datal 4
'
'

Machine Learning
Querying

Distributed Query

Prediction Processor

Embbeding

.
. .

. .

. .

. .

. ,

. .

. .

. .

[ ' 1
! Ercoting b
' ' 1
. .

. .

.

. .

Chosen Data Model

Results

Fig. 1: Predicting Optimal Virtual Model on top of OBDA

3. Predicting Optimal Virtual Model for Querying Large
Heterogeneous Data

To solve the problem of selecting the optimal virtual data model and thus efficiently
query large heterogeneous data, we propose an approach that leverages OBDA method-
ology and deep learning. Our Solution follows OBDA and supports two types of virtual
data models, GRAPH and TABULAR, to load and join data from sources with various
models, i.e., property graph, document-based, wide-columnar, relational, and tabular. We
used a deep learning algorithm that predicts the optimal virtual model based on query
behavior. More precisely, the algorithm extracts and encodes significant features from
input SPARQL query into representations that are then embedded into a tree-structured
model to classify the virtual model, GRAPH or TABULAR, that has the lowest cost i.e.,
query execution time. Below we describe each part of our proposed approach illustrated
in Figure 1.

3.1 Virtual Data Model Prediction

Our distinctive deep learning model, built on top of OBDA layers, aims to select the
optimal virtual data model based on query behavior. Our algorithm analyzes and extracts
features from the input SPARQL query and uses One-Hot Vector encoding® to transform
different features into hidden representations. Next, these representations are embedded
into a tree-structured model, which can effectively learn the representations of query plan
features and predicts the cost against each virtual data model. As an output, the proposed
algorithm returns the optimal virtual model, GRAPH or TABULAR, that has the lowest
query execution time. Our deep learning algorithm is detailed in section 4. Once the
optimal model is predicted, the rest of the OBDA layers (e.g., query decomposition, entity
detection, and operations, e.g., join, limit) follow the optimal virtual data model, GRAPH
or TABULAR.

©One-hot vectoris a I x N matrix (vector) used to distinguish each word in a vocabulary from every other word in the vocabulary.
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3.2 Query Decomposition & Relevant Entity Detection

Once the optimal virtual model is selected, our approach decomposes the input
SPARQL query into star-shaped queries to identify conjunctive queries [28]. More pre-
cisely, in SPARQL, the conjunction is expressed using shared variables across sets of
triple patterns, also called basic graph patterns (BGP). Based on this characterization, we
divide the query’s BGP into a set of sub-BGPs, where each sub-BGP contains all the
triple patterns sharing the same subject variable - called star-shaped query - SSQ (Defini-
tion 3). Most approaches for query decomposition in OBDA systems follow subject-based
method because triples sharing the same subject correspond to the same entity, e.g., table
or object in the data source, thus avoiding traversing data to find specific entities to be
joined and extra joins that can be very expensive.

Next, our approach analyzes each star-shaped query and retrieves semantic map-
pings that are already predefined i.e., correspondences between SSQ elements/variables
(i.e., ontology class or property) and data sources’ entities (e.g., table) or attributes (e.g.,
column name) in addition to data source type (e.g., relational) [see Definition 2]. A cor-
respondence that maps every triple property of a star-shaped query is called a relevant
entity (Definition 5). Finally, loading those entities defined by data sources’ models into
the optimal virtual data model, GRAPH or TABULAR, requires data mapping and trans-
formation, for instance, mapping and transforming a table from a relational model into a
GRAPH or TABULAR. Furthermore, star-shaped SPARQL operations (e.g., Projection,
filtering, grouping, etc.) are also translated into GRAPH or TABULAR operations.

3.3 Data Mapping and Transformation

Once the relevant entities and sources are identified using semantic mappings as
shown above, our approach maps and transforms relevant entities (e.g., a table) from their
original models (e.g., relational) [Definition 1] to data that comply with optimal virtual
data model predicted, GRAPH or TABULAR (Definition 7). This conversion occurs at
query-time, which allows for the parallel execution of expensive operations, e.g., join
(Definition 6).

— { ‘ Person
,/"’ "Person" :
‘ Person i el hame: James g 1 {
n ie: Lina . . . .
id name |country |publisher |.. | ' country: AL :3‘;::&?? "name": "Lina", id name ’country ’publlsher -
blisher: 1 " YN
1 Lina AL 1 ——r\pubiener " country": "AL", M1 Lina AL 1
2| | James UK 1 ,:,}' \ 4 "publisher": 1
s T Person . 2 James‘UK ‘1 ‘
"/ } |~ 1

(a) Transforming Relational to GRAPH

(b) Transforming Document-based to TABULAR

Fig. 2: Transformation Process

Each star-shaped query corresponds to one relevant entity, and thus one single virtual
data model is created. This is the case when the relevant entity, according to the mapping,
could be retrieved only from one data source, e.g., one relational table. Otherwise, if the
relevant entity according to the mapping could be retrieved from multiple sources, then
the virtual model for the entity is the union of temporary virtual models created for each
source (Figure 4).
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Below we describe data source models transformation by wrappers into GRAPH and
TABULAR.

* For the virtual data model of type GRAPH, the structure returned of relevant data on
different data sources using existing data access methods [24] is schema-less data, e.g.,
RDD (Resilient Distributed Dataset). Then necessary structural adaptations are em-
ployed, which consist of converting schema-less to GRAPH following the mapping
process. The data is represented as a table with specific columns for the Tabular and
Relational models defined by CSV and MySQL. Then the mapping process is defined
as follows (see Figure 2a): for each table row, a vertex is created with the same label
as the table’s name (e.g., table "Person’ corresponds to all vertices with the label "Per-
son’) in addition to the root vertex. Edges are created between vertices and the root
vertex, whereas the properties of each vertex are the columns of the table (e.g., column
‘name’ corresponds to property ‘name’), and the values of the properties are the table’s
cell information. The same process is applied to property graphs defined by neo4j,
document-based, and Wide-Column models (e.g., an XML file) defined by MongoDB
and Cassandra.

* As for the virtual data model of type TABULAR, the structure returned of relevant
data on different data sources using existing data access methods is organized into
named columns, e.g., DataFrame. Adaptations are needed, which consist of convert-
ing DataFrame to TABULAR following a mapping process. For instance, the selected
object as a relevant entity of documented-based and wide-columnar stored in MongoDB
and Cassandra is parsed to create a virtual TABULAR (see Figure 2a), which consists
of a table with a name similar to the root object’s name (e.g., a table "Person’ from
object name "Person’). A new row is inserted by iterating through object elements into
the corresponding table. The corresponding key-values are saved under the column
representing the cell information. The same process is applied to other models.

Partition A Partition B Partition C Partition D

-

(a) GRAPH Parallel [25]
(b) TABULAR Parallel

Fig. 3: Parallel Mechanism for GRAPH and TABULAR

We highlighted below how SPARQL and star-shaped queries operations are translated
into Virtual Data model operations in case of GRAPH and TABULAR.
3.4 Distributed Query Processing

Distributed Query Processing is where the virtual model is actually joined and ex-
ecuted. Our approach uses Big Data engines (e.g., SPARK) that offer users the ability

d-ajoEAUIP/NPS )W 0B.IP//:dY WOl papeojumoq

©7)UIP/620.212/91200 € IUIP/Z9L L 0L/1OP/P

€20z Jequieydes 20 uo ysenb Aq ypd'91200



Data Intelligence Just Accepted MS.
https://doi.org/10.1162/dint a 00216

8 CHAHRAZED B.BACHIR BELMEHDI, ABDERRAHMANE KHIAT AND NABIL KESKES
Product
id |label :
label: BarMix'
gy 1 |vinegar |4 . Product
P O o) 2 |CoKeclass)6 id llabel __|publisher
Product - + 1 |Vinegar |4
id=2"label: CheB jnion id=20 id=
puslishard S ‘U;T> {072 [lbatones | Product U" 2 [Coke class|6
publisher:15, label: Chb N "
fabel: BarMix| X publisher:15 id |label p 120 |Lemon Tart|10
publisher:s
=21 product | 2 120 |Lemon Tart| 10 — 121 | Coffee col |3

(a) Union of TEMPORARY GRAPHs

121

Coffee col |3

(b) Union of TEMPORARY TABULARSs

Fig. 4: Union Operation of TEMPORARY Virtual Model
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(a) Join of GRAPHs
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Fig. 5: Join Operation of Virtual Model

to manipulate the data model of its computation unit (i.e., virtual data model). This al-
lows the implementation of different data models that can be more suitable for various
queries. We consider two types of data models, GRAPH and TABULAR, which allow
for graph-parallel (see Figure 3a) and data-parallel (see Figure 3b) computation, thus af-
fecting the query performance. Our approach uses several different data models (property
graph, document-based, wide-columnar, relational, and tabular) to demonstrate its capa-
bility to cover and access various heterogeneous data sources. We should point out that
we did not employ any query optimization function to choose the most efficient query
execution plan; instead, we focused on the join operation. For instance, if our predictive
model predicts based on the input SPARQL query that the optimal virtual model is of type
GRAPH, then for each relevant entity, one virtual GRAPH model is generated, following
our proposed transformation process (see Subsection 3.3). Once generated, our approach
joins those GRAPHs or TABULARS (i.e., a virtual model for each relevant entity) into
a FINAL Virtual, GRAPH, or TABULAR (see Figure 5). Below we describe the join
process and operations using GRAPH or TABULAR virtual models.

Joining Virtual Data Model: The data join coming from different data sources are
represented actually by the connections between star-shaped queries i.e., two SSQs
sty, stp (subject, predicate, object) are connected if the object of s, is the subject
of st,. These connections are translated into an array of join pairs (see green SSQ
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(b) Incremental Join Algorithm of TABULARs [12]

Fig. 6: Join Algorithms for GRAPH and TABULAR

in Figure 4a).As for GRAPH, the FINAL Virtual GRAPH (Figure 5a) is created by
iterating through the GRAPHs join pairs following a multi-way join algorithm (Fig-
ure 6a) which has been proven beneficial in terms of performance based on research
literature [29]. The multi-way join algorithm can join two or more relations simul-
taneously, which is suitable for graph-parallel computation. In practice, new edges
are created for each joined pair to link GRAPHSs, such as an edge source point to
one of the GRAPH vertices and its destination points to the second GRAPH. The
FINAL Virtual GRAPH is the result of the newly created edges and the union of the
joined pair vertices. Finally, we filter out vertices’ identifiers that have no destina-
tion. Furthermore, to make the joining of GRAPHs faster, we selected only projec-
tion columns’ IDs before joining GRAPHS since it is heavy to scan over columns.
Similarly, the FINAL Virtual TABULAR i.e., joined TABULARSs (Figure 5b) is cre-
ated by applying join between the respective tables following incrementally joined
(Figure 6b), which is revealed to be very efficient [30]. This is done by using a prede-
fined method ’ join’ that takes the joined pairs’ names and the name of the foreign
key column as an argument. Furthermore, we adopted the same strategy proposed
in [24], which employs a filter before data transformation, thus reducing the number
of the values of the attributes to be transformed and then joined which revealed high
efficiency.

= Star-Shaped/SPARQL Operations to GRAPH/TaABULAR Operations GRAPH
and TABULAR have different structures; therefore, the interaction with GRAPH is
possible through Graph Pattern Matching operations (e.g., Cypher-like), while the in-
teraction with TABULAR is possible through SQL-like functions. We highlighted be-
low how SPARQL and star-shaped operations are translated into Virtual Data model
operations, GRAPH, and TABULAR.

— Projection: this operation requires accessing FINAL Virtual GRAPH and TABU-
LAR. For GRAPH, we used the hash map method to get the properties’ indexes by
iterating over the projected vertices and collecting the linked vertices into one vertex.
This helps reduce the operations (e.g., limit) execution time by executing operations
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on a single vertex instead of multiple vertices. Contrary to the FINAL TABULAR,
which is projected using a predefined method ' project’ that takes as an argument
the projection variables and returns a projected FINAL TABULAR.

— Filtering: Performing filtering on a given property of Virtual GRAPHS needs access-
ing data through an index rather than the property name. Therefore, we used a hash
map that stores the property name and index. We get the right property index by
matching the property name from the filter with the one from the hash map. As for
the Virtual TABULAR model, filters are executed over the TABULAR columns. We
use a predefined method ’ filter’ that takes as an argument the filter statement
and returns a filtered virtual TABULAR model.

— Ordering and Limit: to be able to sort or show a limited number of data of the
GRAPH, we extracted triples from the FINAL GRAPH. Next, we used a prede-
fined ordering method, e.g.,” sortBy’ and limited method ’ take’, that takes the
vertex property value as input and outputs sorted or limited FINAL GRAPH. As
for the TABULAR model, it can be sorted and limited using predefined methods
"orderBy’ and ' 1imit’ respectively. These methods take the ordering column
or number of needed rows in case of Limit as an argument and return an ordered or
limited FINAL TABULAR.

3.4.1 Query Execution

Optimizing query execution time is a very crucial step when it comes to loading and
joining data. However, time optimization depends not only on the virtual data model, i.e.,
GRAPH or TABULAR, but also on the execution plan of operations, e.g., applying a filter
before joining data. We disabled any query optimization by engine Apache SPARK and
Graphx to emphasize the join operation when querying multiple data sources.

Optimization Strategy for GRAPH. To join GRAPHs, we applied a multi-way join
algorithm (Figure 6a) which has been proven beneficial in terms of performance based on
research literature [29]. The multi-way join algorithm can join two or more relations at
the same time, which is suitable for graph-parallel computation. Furthermore, to make the
join of GRAPHs faster, we selected only projection columns and their ID before joining
GRAPHESs since it is heavy to scan over columns (unlike the TABULAR strategy given
next).

Optimization Strategies for TABULAR. To join TABULARS, research has proven
that incremental data processing approaches [30] for data-parallel achieve better perfor-
mance since they rely on updating the results of a query when updates are streamed rather
than re-computing these queries and may require less memory than batch processing.
Therefore, we followed the incremental join; if TABULAR is selected as an optimal vir-
tual data model based on query behavior, the FINAL Virtual TABULAR is created by
iterating through the TABULARSs that are created from the relevant entities and incre-
mentally joined (see Figure 6b). Furthermore, we adopted the same strategy as described
by [24] where we applied a filter before data transformation, thus reducing the number
of the values of the attributes to be transformed and then joined, which revealed very
efficient.
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4. Deep Learning Model

This section describes our deep learning model to predict the virtual data model of
type GRAPH or TABULAR.

4.1 SPARQL Features Analysis

Our model breaks down the SPARQL query plan into nodes (Figure 7a). Each node
includes a set of query features that significantly affect the query cost (e.g., filter). The
different features are then encoded using different encoding models. Below, we list those
features and their encoding:

* MetaData: is the set of attributes and entities used in the SPARQL query (e.g., entity
names producer’). We encode both attributes and entities using a one-hot vector. Then
we concatenate each attribute vector with its entities vectors to have a final MetaData
vector.

* Operation: is the set of physical operations used in the SPARQL query, such as Join,
BGP, Projection, OrderBy, and Limit. Each operation is composed of an operator
(e.g., ”>=") and a list of operands (entities or attributes e.g., [operator="project’, at-
tributes="price, delivery-days’]). Both the operator and its operands are encoded using
a one-hot vector. Finally, each operation vector in the SPARQL query is the concatena-
tion of an operator vector and its operands vectors.

* Filter: is the set of query filters. A filter is considered a special operation since it

could be either atomic or compound. Each atomic filter is composed of an attribute, an
operator, and an operand. The filter operand could be either a float or a string value.
Both the attribute and the operator are encoded using a one-hot vector. To encode the
operand, we use a normalized float if its value is numeric; otherwise, we use a String
representation. The String representation makes use of a Char Embedding model and a
CNN (Convolutional Neural Network [31]) to have a fixed-length dense String vector.
The three resulting vectors are concatenated to form one single filter vector.
The compound filter is a combination of multiple atomic filters using either AND or
OR operator. For example, ’price > 4000 (atomic) AND price < 20 000 (atomic)’, in
this case, the filter is considered as a compound. To obtain the vector of the compound
filter, we encode each logical operator and atomic filter using one-hot encoding. Next,
a tree filter is created where the root is the one-hot vector of a logical operator (e.g.,
AND), and the nodes are the one-hot vectors of atomic filters (e.g., left node 000111
representing price > 400). Finally, each node (one-hot vector) is transformed into a
sequence using the Depth First Search algorithm (DFS). At the end of each sequence,
we add an empty node. The sequences are then concatenated following the visited
order.

4.2 Proposed Tree-structured Model

Tree-structured models have been proven more powerful than neural networks at pre-
dictive tasks using tabular data [32]. Inspired by the work presented in [33], we propose
our deep learning model (Figure 7b) that takes as input the encoded features of SPARQL
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[ Features Embedding

(b) Tree-Structured

Fig. 7: Deep Learning: Feature Extraction and Tree-Structured Model

query and outputs the optimal virtual data model, GRAPH or TABULAR that has the
lowest cost. Our model consists of an embedding layer to condense the features’ vec-
tors and an estimation layer to estimate the optimal virtual data model. In addition, the
model includes an intermediate representation layer to capture the correlation between the
joined star-shaped queries. In the following, we give a detailed explanation of the model
architecture.

4.2.1 SPARQL Embedding Layer

The SPARQL Query Embedding Layer (Figure 8a) embeds a sparse vector into a

dense vector. It takes as inputs three types of feature vectors: MetaData, Operation, and
Filter. First, the MetaData vector along with the Operation vector are embedded using a
fully connected neural network layer’ with ReLU (Rectified Linear Unit) activator, which
is a piecewise linear function that outputs the input directly if it is positive. The structure
of the Filter vector is more complicated in the case of compound filters. Therefore, we
adapted a Min-Max-Pooling operation to embed the Filter vector.
The Min-Max-Pooling model is a tree-structured model that takes the structure of the
Filter tree. For leaf nodes, we use a fully connected neural network. For conjunction
nodes, we use the max pooling layer for ‘OR’ operator and the min pooling layer for
‘AND’ operator. The max pooling layer is the maximum number of estimated results
satisfying the atomic predicates, while the min pooling layer is the minimum number of
estimated results satisfying the atomic predicates. Thus representing the SPARQL query
filters explicitly.

4.2.2 SPARQL Representation Layer

Learning complex structure representations such as tree structure using classic neu-
ral networks has many challenges. First, the neural networks can learn much information
from the leaf nodes but fails at capturing the correlation among upper nodes. This is
known as the vanishing gradient problem. Second, capturing correlations between mul-
tiple tree nodes requires storing a lot of intermediate results, which leads the space to
grow exponentially. This is known as the gradient explosion problem. To handle those

7Fully connected network: a linear regression a0x +..+ anx, 2 linear regressions connected means the output of the first one is
the input of the second one.
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two problems, we designed an intermediate layer (detailed in Figure 8b) that captures
the global cost information from leaf nodes to the root by training representations for
nodes recursively. We use fully connected networks that have the same structure and
share common parameters. Each layer has three inputs: an embedding vector, a repre-
sentation vector of the right child, and a representation vector of the left child. We used
Long Short-Term Memory (LSTM) [34] as a recurrent model. The LSTM model uses the
concept of 'memory’ to store information of previous nodes, which makes them capable
of learning order dependence in the tree structure. This helps prevent the information loss
problem. On the other hand, the forget gate of Sigmoid helps LSTM to address the space
explosion problem.

Representation
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Fig. 8: Deep Learning: Tree and Representation Model

4.2.3 Virtual Model Classification Layer

It is a binary classification model that takes the representation vector of query tree
nodes as input and outputs the optimal virtual data model, GRAPH or TABULAR, with
the lower cost (i.e., we set GRAPH with value 1 for SPARQL queries that are faster than
TABULAR and label TABULAR with value 0 for SPARQL queries that are faster than
GRAPH). The classification layer includes two fully connected neural networks with a
ReLU activator. The output layer is a Sigmoid function that returns a number from 0.0
to 1.0, representing the probability that the input belongs to. If the output is closer to 1.0
then the predicted virtual data model is of type GRAPH; otherwise, if the output is closer
to 0.0, then the predicted virtual data model is of type TABULAR.

Product Offer | Review | Person | Producer
database type | Cassandra | MongoDB CSv Neodj MySQL
# of tuples 50000 50000 50000 | 50000 50000
data size “O0MB “4AMB 70MB “3MB 14MB

Table 1: table 1a: Data & Queries Characteristics
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Ql Q2 | Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 | QIT | QI2 | QI3 | Ql4 | QI5 Ql6 Q17 | QI8 | Q19 | Q20

Product v v v v v v v v v v v v v v v v v
Offer v v v v v v v v v v v v v v v v
Review v v v v v v v v v v v v v v
Person v v v v v v v v v
Producer v v v v v v v v v v v
PROJECT V16 V5| V29| V45 | v24 | V45 | V38 | V38 | V24 | V34 | V4 V6 V32| V34| V4 V5 v9 Va5 | V45 | V5
FILTER V16 V12 | V1 V5 V1 V1 V1 V1 V4 V2 V3
ORDERBY V1 V1 V1 V1 V1 V1 V1 V1 V1
LIMIT v300 | V2 V20 | v4 v20 | v20 | v80 v'10 V13 | V19 | V1000 | v'1000
DISTINCT | v v v v v v v v v v v v v v v v v v v v

Table 2: Tables and Operations involved in Queries.

5. Implementation and Experimental Setup

OPTIMA - an implementation of our approach, is an OBDA system that calls
Graphx and Apache-Spark® to implement two virtual data model, GRAPH and TABU-
LAR. The virtual data model is the model defined by the computation unit of these two
query engines®. Graphx and Apache-Spark already implement wrappers called connec-
tors, of which we used five types to load data that is stored in Neo4;j (property graph),
MongoDB (document-based), Cassandra (wide-column), MySQL (relational), and CSV
(tabular). As for transformation, we used Graphx and Apache-Spark functions' e.g.,
flaMap (x=>y). OPTIMA calls a deep learning model to get the predicted optimal
virtual data; it uses NumPy for encoding data and PyTorch for the prediction model. OP-
TIMA is available on GitHub at https://github.com/chahrazedbb/OPTIMA.

We conducted an empirical study to evaluate OPTIMA performance with respect to
the following sub-research questions of our problem: RQ1: What is the query perfor-
mance using OPTIMA? RQ2: Is the time of prediction plus the time of query execution
using an optimal virtual model equal to the fixed one? RQ3: What is the query perfor-
mance when using TABULAR versus GRAPH? RQ4: What is the accuracy of OPTIMA
and machine learning? RQ5: What is the query performance of OPTIMA compared to
the state-of-the-art, e.g., Squerall [12]? RQ6: What is the impact of involving more data
sources in a join query? RQ7: What is the resource consumption (CPU, memory) of
OPTIMA while running various queries? RQS8: What is the time taken by each transfor-
mation process?

5.1 Benchmark, Queries, and Environment

There is no benchmark dedicated to assessing ontology-based big data access sys-
tems. We end up using BSBM* [12] to evaluate the performance of OPTIMA. BSBM* is
an adapted version of BSBM benchmark [35] where five tables, Product, Offer, Review,
Person, and Producer, are distributed among different data storage. To test OPTIMA,
we use the five tables to enable up to 4-chain joins. These tables are loaded in five dif-
ferent data sources Neo4j, MongoDB, Cassandra, MySQL, and CSV. Table 1 shows the
described information about data. We generated 5150 queries with 0-4 joins, 0-45 se-
lection, and 0-16 for the filter, limit, and orderBy. The characteristics of these queries

8for Apache-Spark, a small part of OPTIMA is based on Squerall’s code (https://github.com/EIS-Bonn/Squerall)
9RDD is an immutable distributed collection of elements, while DataFrame is an immutable distributed collection of data
organized into named columns. RDD is distinct from DataFrame in that the former is considered schema-less.

10https://spark.apache.org/docs/latest/graphx-programming-guide.html, https:/spark.apache.org/docs/2.2.0/rdd-
programming-guide.html
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System Time (ms)
] L e ) T Y TN T
(a) Query Result Returned by OPTIMA & Squer- Squerall 4200
all (b) Avg Time
Metrics OPTIMA Squerall
CPU average (%) 0.21 0.20
Max memory (GB) | 1.0 0.97

(c) Resource Consumption

Table 3: OPTIMA Performance

are presented in Table 2. We take 4120 queries for training the model and 1030 queries
for validation. We run the evaluation on Ubuntu Version 20.04 64-bit with an Intel(R)
Core(TM) 17-8550U CPU @ 1.80GHz, allocating 8GB of RAM.

Training paradigm

In this section, we provide a detailed description of the training paradigm of our deep
learning model. The training data typically involves the following steps:

* Data collection and preprocessing: To the best of our knowledge, no large datasets of
SPARQL queries exist. Therefore, we generated more than 5000 SPARQL queries that
combine all possible elements of a SPARQL query, as described in Table 1. These
queries are then preprocessed (see an example of SPARQL query in Appendix A.1)
to extract features (see Appendix A.2) and then convert them into a tree-structured
representation (see Appendix A.3) suitable for input into our deep-learning model. We
run each query on both GRAPH and TABULAR. We set GRAPH with a value of 1 for
SPARQL queries that are faster than TABULAR and label TABULAR with a value of
0 for SPARQL queries that are faster than GRAPH.

* Tree construction: The tree structure is constructed based on the query plan, in other
words, into query result clause and query pattern and query. For example, the tree’s
root node represents the query plan, while the child nodes represent the query result
clause and query pattern and query, and the leaf nodes of the query result clause would
represent clause type such as the "SELECT” operation (see Appendix A.3).

 Supervised learning: To enable the model to learn the relationships between the
SPARQL query elements (e.g., plan, operators, etc.) and the execution time of each
data model GRAPH or TABULAR. We trained our deep learning model using feed-
forward neural network with multiple hidden layers and non-linear activation functions
ReLU and Sigmod, including two fully connected neural networks, each with 16 neu-
rons. We trained the model on 80% of queries using the mean squared error as the loss
function and the Adam optimization algorithm. The model is trained for 100 epochs,
and the validation loss is monitored to prevent overfitting.

* Model evaluation: We evaluated our trained model’s accuracy, and we obtained good
results after iterations.
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System QL [Q2 [ |4 [Q5 Q6 [Q7 [Q8 [ Q9 [QI0 [QIl [QI2 [QI3 [QI4 [QI5 [QI6 [ QI7 [ QI8 [QI9 | Q20
OPTIMA 1291 | 1254 | 730 | 10299 | 10199 | 1553 | 7104 | 8442 | 10094 | 4694 | 2575 | 233 | 4673 | 4487 | 2397 | 2881 | 1698 | 4607 | 2804 | 5648
Squerall 4098 | 2519 | 3091 | 10283 | 10191 | 7984 | 7089 | 8427 | 10088 | 4684 | 2561 | 1400 | 4644 | 4469 | 3885 | 2875 | 3314 | 8742 | 9059 | 7407
Time Difference | 2807 | 1265 | 2361 | 16 3 631 |15 [15 |6 10 |14 116729 |18 [14886 1616 | 4135 | 6255 | 1759

Table 4: Time in ms per Query of OPTIMA & Squerall

5.2 Maetrics
To evaluate OPTIMA, we use the following metrics:

* OPTIMA Accuracy. We compare the results returned by OPTIMA against the results
returned by Squerall.

* Classification. We use two metrics to evaluate the OPTIMA classification model:
Cross-entropy loss and Accuracy function. Assuming the real result is denoted as r = r;,
the predicted result is denoted as p = p;, and the correctly predicted results as tp =t p;,
where 1 <=i <= N, we compute these metrics as follows: CE(r,p) = Y rixlog(pi),

Acc(tp,p) = Ltpi/ Lpi

* Memory and CPU consumption as described in [36]. Specifically, we measure how
much the memory and CPU are active during the computation.

* Execution Time. We measure the time OPTIMA takes from query submission to the
delivery of the answer. The time is measured using the absolute wall-clock system time
reported by the Scala time() function.

5.3 Method

We consider two studies:

¢ In the first study, we compare OPTIMA’s results with SPARK-based Squerall’s results.
Our comprehensive literature review did not reveal any single work except Squerall that
is available and that supports most data sources. Squerall uses two big data engines,
Presto and SPARK: Presto-based, where the virtual model of presto engine (which can-
not be controlled by users) is used for query processing, and SPARK-based, where
DataFrames are created as a virtual data model. To make the results comparable, we
choose SPARK-based Squerall and extend it to support Neo4j. We assess the accuracy
of OPTIMA in terms of (1) results (accuracy), (2) time, and (3) CPU and memory usage
compared to SPARK-based Squerall. We should note that comparing the overall exe-
cution time of OPTIMA against an original system, e.g., relational for a given query, is
impossible because we are querying various heterogeneous formats and models.

* In the second study, we inspect OPTIMA’s main components: machine learning, data
wrappers, and query execution. We observed the behavior of query execution for
GRAPH and TABULAR in terms of time. For the data wrapper, we investigate the
time taken for the transformation process from data sources to GRAPH or TABULAR.
As for the machine learning component, we compare our model with the LSTM model
in terms of accuracy and time. The LSTM model takes as input the encoded features
vectors without any correlation and outputs the data model.
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5.4 Experiment 1: OPTIMA vs SPARK-based Squerall

In this experiment, we load BSBM* as described above to obtain the results from
OPTIMA and SPARK-based Squerall. Then, we run 5150 SPARQL queries and compare
the results.

* Validation of Results and Overall Execution Time: this comparison allows us to
confirm the correctness of the results returned by OPTIMA. Table 3a shows the results
of OPTIMA and SPARK-based Squerall of a complex SPARQL query Q21. The results
are the same for both systems, which confirms that OPTIMA is able to support and join
large data coming from different datasets.

Table 4 illustrates the execution time returned by both systems. As can be observed,
OPTIMA excels Squerall for queries that involve multiple joins. The time difference
ranges from 0 to 80000 milliseconds (ms). This difference is due to the predicted virtual
data model e.g., Q19, Q20, in which deep learning predicted that the Virtual model of
type GRAPH is optimal. We also observe a small difference in the execution time
(ranging from O to 30 ms) in favor of Squerall compared to OPTIMA for queries that
involve multiple projections e.g., Q7, Q10. This is explained by the fact that the optimal
virtual model is identical to Squerall’s, and both Squerall and OPTIMA used the same
APIs to call data (wrapper); however, the data model prediction time added to OPTIMA
makes it slightly slower than Squerall. Furthermore, the average execution time of
Squerall is greater than 4000 ms compared to the average execution time of OPTIMA
2400 ms as shown in table 3b. These results illustrate the benefits of OPTIMA over
existing systems; thus, RQ1 and RQ5 are answered.

* Data Model Execution Time. As shown in Table 5, the analysis of experimental results
indicates that GRAPH is faster than TABULAR in most cases, except for queries like
Q8 and Q10. It has comparable to slightly lower performance in Q16. This confirms
that the optimal model is very important in reducing the execution time of queries. The
total execution time ranges from 50 to 90000 ms, with 90% of all cases being about or
below 3000 ms. OPTIMA virtual data model of type GRAPH is faster in queries that
involve joins (ranging from 50 to 40000 ms), while the TABULAR model outperforms
the GRAPH model in queries involving more projections (ranging from 200 to 90000
ms).

This is explained by the fact that the GRAPH is designed to store connections between
data. Therefore, queries do not scan the entire graph to find the nodes that meet the
search criteria. It looks only at nodes that are directly connected to other nodes, while
SQL-like methods used by the TABULAR model require expensive join operations be-
cause they traverse all data to find the data that meets the search criteria. On the other
hand, the TABULAR model is faster when handling projections because the data struc-
ture is already known, and data can be easily accessed by column names. Conversely,
the GRAPH model does not have a predefined structure for the data, and each node
attribute has to be examined individually during the projection query.

The number of joins has a decisive impact on query performance; it should be taken
into consideration with other factors, e.g., size of involved data, presence of filters, and
selected variables. For example, Q2 joins only two data sources, Product and Review
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Ql [Q | [QF [Q5 [Q Q7 [Q8 [Q [QI0 _[QIT [QIZ [QI3 [QI4 [QI5 [QI6 [QI7 [ QI8 [ QY | Q20
Prediction Time | 3 3 4 6 4 5 5|6 2 4 5 1 5 5 4 3 2 4 4 4

GRAPH 1143 | 1161 | 1239 | 1243 | 306 | 3181 | 7168 | 12237 | 4977 | 16681 | 1211 | 3567 | 482 | 1285 | 766 | 2883 | 6639 | 1366 | 3370 | 1723
TABULAR 4098 | 2519 | 3091 | 10283 | 10191 | 7984 | 7089 | 8427 | 10088 | 4684 | 2561 | 1400 | 4644 | 4469 | 3885 | 2875 | 3314 | 8742 | 9059 | 7407

Table 5: Time in ms per Query of Prediction, GRAPH & TABULAR

(1254 ms) but has comparable performance with Q1 (1291 ms), which joins four entities
(Product, Offer, Review, and Producer). This may be due to filtering in Q1 (16 filters),
significantly reducing intermediate results to join. Q3 involves four data sources, yet
it is among the fastest queries. This is because it involves the small entities Person
and Producer, which is another reason to reduce intermediate results to join. With five
data sources to join, Q4 is among the most expensive queries (10299 ms). This can be
attributed to the fact that the filter on Product is selective (?language = “en”), which
results in large intermediate results to join, in contrast to Q6 (?price < 8000). Although
the four-source join Q7 and Q8 involve the small entity Producer, they are the most
expensive queries that execute over the GRAPH model; this can be attributed to a large
number of projections (38 attributes). Thus, we answer RQ3 and RQ6 and suggest that
operations can affect query execution time.

* Resource Consumption: finally, we record the Resource Consumption (i.e., Memory
and CPU) taken by OPTIMA and SPARK-based Squerall. The results reported in Ta-
ble 3¢ show that the CPU is not fully used by OPTIMA and SPARK-based Squerall
(around 0.21% was used). This means that the complexity of queries does not impact
CPU consumption. As for the total memory reserved, OPTIMA consumed around 1GB
over 8GB per node, while SPARK-based Squerall used at most 1GB. Having the same
CPU and memory could be explained by the fact that both are using the same query
engine - SPARK, and the distribution of CPU between the nodes for loading and trans-
formation. This answers RQ7.

5.5 Experiment 2: Performance of OPTIMA’s Predictive Model

In this study, we evaluate the main components of OPTIMA.

* Deep Learning Accuracy. We evaluated our model with LSTM and Regression
models to assess our encoding techniques and prediction model. We used 5150
queries; 80% for training and 20% for validation. We trained all models on the
same dataset and computed the accuracy and Cross-entropy loss function. Results
in Table 6a show that our tree-structure-based method outperforms the LSTM and
Regression models with an average accuracy of 0.831 for our model against 0.708
and 0.717 for LSTM and Regression, respectively. The cross-entropy loss is equal
to 0.00018 for our model compared to 1.92027 and 6.51098 for LSTM and Re-
gression, respectively. This is explained by the fact that both models, LSTM and
Regression, rely on the independent assumption among different operations and
attributes, while our model achieves the best performance as it captures more cor-
relations. Thus answering RQ4.

* Deep learning reduces the overall execution time.
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Cost Loss Accuracy Condition Avg. time (ms)
Regression model | 1.92027 | 0.708 Machine Learning 12
LSTM 6.51098 | 0.717 Only GRAPH 1320

Our Model 0.00018 | 0.831 Only TABULAR 2862

(a) Loss & Accuracy of Deep Learning Models (b) Time of Deep Learning, GRAPH & TABULAR

Table 6: Deep Learning Performance

To check if deep learning is reducing the overall execution time of OPTIMA by
selecting the optimal virtual data model. We illustrate first the time taken by OP-
TIMA’s components: machine learning algorithm, query execution over GRAPH
model, and query execution over TABULAR against SPARK-based Squerall. We
run OPTIMA and Squerall over 1030 queries. Results are shown in table 6b. The
average execution time of the machine learning component is a very short 12 ms,
while the average time for GRAPH is 1320 ms and TABULAR is 2862 ms. Results
show that for most queries, GRAPH is faster than TABULAR, even with prediction
time. In summary, only 14% of the queries were initially faster for OPTIMA (using
GRAPH as a virtual model) compared to Squerall and become in the later favor.
This is explained by the fact that for those queries, there is a slight difference in
execution time using GRAPH compared to Squerall. This answers RQ2.

Model Neod4j | JDBC | CSV | Cassandra | MongoDB | Loading
GRAPH 138 954 196 7695 188 4.327
TABULAR | 3275 199 255 5319 330 7.141

Table 7: Time (ms) of Data transformation to GRAPH & TABULAR

5.5.1 Data wrapper Time

To answers RQ8, we evaluate, in this study, the time needed to load the data from
data sources to the virtual data model of type GRAPH or TABULAR (see Table 7). Since
the transformation process is different, we expect different behavior from the wrappers. In
the table, we illustrate the time needed by each wrapper with the following observations:

* Neo4j connector loads 50000 nodes from Neo4j within 138 ms into GRAPH, compared
to 3275 ms in TABULAR. This is explained by the fact that the graph property used by
Neo4;j has the same exact structure as the GRAPH model.

¢ CSV connector loads 50000 rows within 196 ms from CSV files into GRAPH, com-
pared to 255 ms in TABULAR, even though CSV files save data into tables. This can
be explained by the fact that GRAPH virtual model is a schema-less model that loads
data directly without the need to preserve data structure, while TABULAR takes time
to build the data schema.

» JDBC connector loads 50000 rows from MySQL database within 954 ms into GRAPH,
compared to 199 ms in TABULAR. This can be explained by the fact that MySQL uses
a relational model, which has the same data structure as the Virtual TABULAR model.
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* MongoDB connector loads 50000 rows from MongoDB within 188 ms into GRAPH,
compared to 330 ms in TABULAR. This can be explained by the fact that MongoDB is
document-based i.e., it is schema-less, the same as the GRAPH Virtual model, unlike
the TABULAR model, which needs to build a data schema.

* Cassandra connector loads 50000 rows within 7695 ms into GRAPH, compared to 5319
ms in TABULAR. This can be explained by the fact that Cassandra uses a columnar
data model, which is more close to the TABULAR model even though it is a NoSQL
database.

6. Related Work

Our literature review reveals two categories addressing data virtualization. These
two categories are namely “ontology-based data access” and “non-ontology-based data
access” [12]. Non-ontology-based data access approaches mostly use SQL-like as query
language and implement a virtual relational model [37,38], defining views of relevant data
from sources having a relational model. Those views are generated based on mapping as-
sertions that associate the general relational schema with the data source schemata. The
shortcomings of these approaches are that the schema modifications and extensions are
very rigid due to mappings and may depend on complex constraints. Furthermore, these
approaches use Self-Contained Query [24] where users cannot control the structure of the
virtual data model. OBDA [39] approaches use SPARQL as a unified access language and
detect relevant data from sources to be joined through ontologies and standardized map-
pings. This provides flexibility in modifying and extending the ontology and mappings
with semantic differences found across the data schemata.

Exiting Systems implemented OBDA over relational databases, e.g., Ontop [40],
Stardog (http://www.stardog.com), which are using virtual knowledge graphs. These so-
lutions are not designed to query large-scale data sources, e.g., NoSQL stores or HDFS.
Our study’s scope focuses on works that query large-scale data sources using OBDA.
Optique [10] is an OBDA platform that accesses both static and streaming data. It im-
plements a relational model (implicitly a TABULAR) as a virtual model while querying
data sources such as SQL databases and other sources e.g., CSV, and XML. There was
no clear description of how Optique accesses NoSQL stores and distributed file systems
(e.g., HDFS). Ontario [11] focuses on query rewriting, planning, and federation, with a
strong stress on RDF data as input. Query plans are built and optimized based on a set of
heuristics. The virtual model used by Ontario is the GRAPH model (explicitly an RDF).
Squerall [12], recent and close work to OPTIMA leverages Big Data engines SPARK
and Presto to query on-the-fly heterogeneous large data sources. The virtual data model
imposed by Presto is TABULAR and does not offer users to control it, while SPARK
can offer control over the virtual data model, Squerall uses DataFrame as a virtual model
which is TABULAR. However, the decision behind the virtual data model implemented
by all these systems is rather based on use and flexibility and not on solid evidence to
improve query processing. There is no work that (1) implements the different optimal
virtual models, and (2) selects the optimal one based on query behavior. For machine
learning, some works [14,15,16] addressed the cost estimation of SPARQL queries to op-
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timize query execution plan e.g., performance prediction, however, all these approaches
are designed for a single query on one single data source.

7. Conclusion

We presented a new approach that reduces the time execution of querying large het-
erogeneous data by predicting the optimal virtual data model based on query behavior.
OPTIMA - a realization of our approach, implements two virtual models, GRAPH and
TABULAR within the query engine SPARK (Graphx and Apache-Spark). The effective
deep learning model built on top of OPTIMA’s architecture estimates the cost of the query
against both virtual models to select the optimal one for the given query. It extracts signif-
icant features such as the query plan and query operation and returns the optimal virtual
data model. Once selected, OPTIMA gets a unified view of the data from multiple data
sources on-the-fly by decomposing the input SPARQL query into star-shaped queries.
Next, it uses ontology-based mappings to detect relevant entities from original sources.
Those relevant entities are then loaded by the wrappers into the predicted virtual model,
GRAPH or TABULAR to be joined. In the case of GRAPH, a set of vertex and edges are
joined while for TABULAR, a set of tables is combined. Finally, the results are returned
by applying the operation on the FINAL joined GRAPH or TABULAR. Extensive experi-
ments showed a reduction in query execution time of over 40% for the TABULAR model
and over 30% for the GRAPH model.

A. Appendix: Training Data

In this appendix, we present an example of the data collection and preprocessing of
the training model.

SELECT DISTINCT ?vendor ?country ?producerPublisher
WHERE{

?7producer edm:country ?country.

?producer bsbm:publisher ?roducerPublisher.

7offer bsbm:producer ?producer.

?offer bsbm:vendor ?vendor.

7offer rdf:type schema:Offer.

FILTER (?country = "DE” ).

FILTER (?producerPublisher = 71”7 ).

FILTER (?vendor >= 50 ).

Listing A.1: SPARQL query

.[DISTINCT,B,H,1,J ,K]

.[PROJECT,?vendor ,? country , producerPublisher]
.[BGP,D,E]

.[TRIPLE,? producer ,? country ]

.[TRIPLE,? producer ,? producerPublisher ]

moQw >
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F.[BGP,G]
G.[TRIPLE,? offer ,? vendor]
H.[JOIN,C,F]
I.[FILTER, = ,?country ,”DE”]
J .[FILTER, = ,?producerPublisher ,”17]
K.[FILTER, >= ,?vendor ,50]
Listing A.2: Feature extraction from SPARQL queryA.1
{
”Plan”:
{
”DISTINCT”:””
,”PROJECT ”:
[
”?vendor”
,”?country”
,”?producerPublisher”
]
,”JOIN”:
{
"TYPE” : "left”
"BGP”
{
"TABLE” : [”producer”]
,’TRIPLE” : [”?producer”,”?country ”]
,”TRIPLE” : [”?producer”,”?producerPublisher”]
}
_»"BGP”
{
"TABLE” : [”offer”]
,”TRIPLE” : [”?offer”,”?vendor”]
}
}
,”FILTER ”:
{
“op-type”: “Compare”
" operator”: "="
,V1eft_value”: ”?country”
,Jright_value ”: "DE”
}
,”FILTER”:
{
“op-type”: "Compare”
,”operator”: ="
,left_value”: ”?producerPublisher”
,right_value”: 717
I
,”FILTER ”:
{
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“op-type”: “Compare”
,Joperator”: ">="
JVleft_value”: ”?vendor”
,Jright_value ”: 7507

Listing A.3: Tree Represenation of SPARQI QueryA.1
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