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Abstract 

 Radiotherapy is one of the main treatment methods for cancer, and the delineation 

of the radiotherapy target area is the basis and premise of precise treatment. Artificial 

intelligence technology represented by machine learning has done a lot of research in 

this area, improving the accuracy and efficiency of target delineation. This article will 
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review the applications and research of machine learning in medical image matching, 

normal organ delineation and treatment target delineation according to the procudures 

of doctors to delineate the target volume, and give an outlook on the development 

prospects. 

Introduction 
 To estimate the global burden of Cancer-based on the cancer and mortality 

information provided by the International Agency for Research on Cancer in 

GLOBOCAN 2020 [1], by 2020, Globally, there are an estimated 19.3 million new 

cancer cases (18.1 million excluding non-melanoma skin cancer) and nearly 10 million 

cancer deaths (9.9 million excluding non-melanoma skin cancer). The global cancer 

patients will be expected to reach 28.4 million cases by 2040, a 47% increase from 2020. 

Malignant tumors will surpass all other chronic diseases and become the "number one 

killer" that threatens human life and health. Radiotherapy is one of the main treatments 

for malignant tumors. Its principle is to use the high-energy ionizing radiation to kill 

cells of tumors. About 60%-70% of tumor patients need to receive radiotherapy. 

According to statistics, the current average progression-free survival rate of malignant 

tumors is about 55%, of which radiotherapy contributes 40% of the tumor cure [2], and 

the therapeutic effect has been widely recognized in clinical practice. The rapid 

development of artificial intelligence represented by machine learning can be applied 

to all aspects of clinical practice of radiotherapy [3-6], making radiotherapy decision-

making more simplified, individualized and precise, and improving the automation of 

the entire process of radiotherapy. The precise determination of radiotherapy target 

volume is the basis and premise of precision radiotherapy. The automatic delineation 

of radiotherapy target volume based on machine learning is essential in the research of 

artificial intelligence in the field of radiotherapy application, which greatly improves 

the efficiency and accuracy of target volume delineation [7]. This article will review 

medical image matching, normal organ delineation and treatment target delineation. 

1. Application of machine learning in radiotherapy

 Recently, with the development and progress of medical and computer technology, 

radiotherapy has entered a new era of precision radiotherapy, and more and more 

precision radiotherapy technologies have entered the practice of clinical tumor 
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treatment. Precision radiotherapy is playing an increasingly important role in improving 

curative effect, delaying disease progression, improving prognosis and improving 

patients' quality of life [8-9].  

 In the 1930s, radiation technology has been used to treat tumor patients [10], and in 

the 1960s with the widespread applications of medical linear accelerators [11]. However, 

X-ray simulation localization is used for tumor localization during radiotherapy in this

period. The doctor obtains the location of the tumor from the patient's fluoroscopic

image, and marks the irradiation range on the patient's body surface according to the

localization image, and performs treatment through the body surface projection field.

Due to the failure to clearly define the tumor and normal tissue, and the poor uniformity

of radiation dose distribution, it is easy to miss the tumor or normal tissue is irradiated

with a higher dose, resulting in a lower cure rate and higher complications. In 1959,

Takahashi et al [12] proposed the concept of three-dimensional conformal radiation

therapy (3D-CRT). The prototype is based on the three-dimensional morphological

structure of the tumor, using lead blocks to irradiate in multiple radiation directions

through the blocking part field, so that the shape of the irradiated area is the same as

that of the tumor target, while reducing the radiation dose received by the blocked area.

In the 1970s, the widespread application of computer systems and the emergence of

computed tomography (CT), magnetic resonance imaging (MRI) and other equipment

promoted radiotherapy to three-dimensional space, enabling 3D-CRT to be realized.

 In recent years, three-dimensional digital precise radiotherapy technology has 

gradually replaced traditional two-dimensional radiotherapy technology, and has 

become an important development direction of tumor radiotherapy in the 21st century. 

The three-dimensional digital precise radiotherapy technology focuses on precise 

positioning and precise treatment, and performs conformal or intensity-modulated 

radiotherapy at the three-dimensional level through dose segmentation, so that the 

internal irradiation dose of the lesion in the target area is the largest, and the surrounding 

normal tissue is the smallest, the irradiation dose is evenly distributed, and has the 

advantages of high precision, high efficacy and low damage [13]. In addition to 3D-CRT, 

the currently recognized precision radiotherapy techniques also include stereotactic 

body radiotherapy (SBRT), intensity modulated radiotherapy (IMRT), and image 

guided radiation therapy (IGRT), etc. The technique system of precise radiotherapy for 

tumor is gradually perfection, and the treatment accuracy is increasingly improved. 

At present, the steps of precise radiotherapy are to first obtain the anatomical 

Data Intelligence Just Accepted MS. 
https://doi.org/10.1162/dint_a_00204 

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/doi/10.1162/dint_a_00204/2129442/dint_a_00204.pdf by guest on 07 Septem
ber 2023



images of the patient on the treatment couch by simulated positioning, then manually 

delineate the target area and organs at risk by the doctor, and then configure the 

radiation dose, number of fields, field angle and other parameters can be used to 

generate a radiotherapy plan suitable for the shape and dose of the tumor target. Finally, 

after the radiotherapy plan is verified and correct, the treatment can be carried out. 

Among them, target delineation is the core work of radiotherapy physicians. Accurate 

target delineation is the premise and crucial step of precise tumor radiotherapy. The 

quality of delineation has a great impact on the treatment effect of patients and the 

occurrence of complications [14]. If the treatment target volume is too large, it will 

increase the radiation dose received by the surrounding organs, thereby increasing the 

probability of complications [15]. Conversely, if the tumor area is not completely 

covered, it will lead to insufficient doses to kill all cancer cells, greatly increasing the 

possibility of recurrence after treatment [16]. 

Currently, the therapeutic target volume that needs to be manually delineated by 

radiologists mainly includes the gross tumor volume (GTV) visible on the image; the 

clinical target volume (CTV) is delineated based on the knowledge of tumor pathology, 

tumor invasion range, and lymph node metastasis pathway. In addition, the target area 

of the organ at risk (OAR) within the irradiation range also needs to be accurately 

delineated to avoid over-irradiation of the OARs, causing serious side effects and 

complications of radiotherapy [17]. The above-mentioned delineation quality of the 

therapeutic target volume and OARs completely depends on the professional 

knowledge and experience of the doctor, and certain errors will occur. Moreover, these 

large-scale structures are delineated manually layer by layer for the radiologists, and 

the time cost is also very high. With the development of artificial intelligence 

technology, deep learning methods based on the big data of radiotherapy patient images 

can automatically delineate the therapeutic target area and OARs of patients. The speed 

and accuracy are greatly improved, which helps to reduce the workload of doctors and 

reduce manual delineation. uncertainty, further improving the precision of radiotherapy 
[18-19]. 

As the main method in the field of artificial intelligence, machine learning can be 

divided into supervised learning, unsupervised learning, and semi-supervised learning 

which combines the two [20-22]. Specifically in the field of radiotherapy, supervised 

learning-assisted radiotherapy is mainly used [23]. Combining multiple simple machine 

learning models to obtain an ensemble learning model with better performance can 
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design a combination scheme for specific machine learning problems to get a better 

solution [24]. Neural networks are a form of machine learning inspired by the way the 

brain works, referencing the connection structure of neurons [25-27]. When the neural 

network has many hidden layers, it is defined as a deep neural network. Deep learning 

methods use deep neural networks to solve various classification and prediction 

problems. Compared with traditional machine learning methods, deep learning methods 

have the advantage of being able to automatically learn features in data and avoid 

manual feature selection. A large amount of data accumulation and the improvement of 

hardware computing power have made deep learning methods more and more applied 

in the medical field, and they have shown better performance than traditional machine 

learning methods [28-31]. 

2. Medical image registration based on machine learning

The electron density of CT images is linearly related to the density of the human 

body, which can be directly used to calculate the radiation dose, and has become the 

most commonly used radiotherapy positioning equipment. It has a good effect on bone 

and lung tissue observation, while soft tissue MRI images have better observation 

effects, and PET images can indicate areas with strong metabolism. Therefore, multi-

modal imaging registration is often used in clinical assessment of disease. Medical 

image registration is to find the optimal spatial transformation between the source 

image and the target image to match all the feature points or at least all the 

corresponding points with diagnostic significance on the two images, and provide 

doctors with more abundant clinical information. Common registration methods 

include rigid registration and non-rigid registration. 

2.1 Rigid registration 

Rigid deformation can be described by a few transformation parameters. In the 

field of radiotherapy, rigid registration is very common and highly accepted, and 

clinicians will fuse images of different modalities through this transformation to obtain 

more information about areas of interest. The registration method is to align the two 

images by finding the rotation-translation transformation matrix between the fixed 

image and the moving image [32]. The methods used include linear transformations such 

as translation and rotation, which can ensure that the overall structure or line parallelism 

of the image remains unchanged after spatial transformation. At the same time, it has 

the advantages of simple calculation and low time complexity, and is suitable for 
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images with little deformation. 

Rigid registration not only provides a prerequisite for further non-rigid registration 

and saves the calculation time of image optimization iterations, but also can intuitively 

display the anatomical structure differences between images between different 

modalities, assisting doctors in accurate delineation. Traditional registration methods 

include surface-based methods, point-based methods (usually based on anatomical 

markers), and voxel-based methods [33]. Among them, voxel-based methods have been 

widely used by virtue of the rapid development of computer technology. The goal of 

this method is to obtain geometric transformation parameters by computing the 

similarity between two input images without pre-extracting features [34]. However, these 

traditional registration methods often require iterative calculation of similarity 

measures such as mean square error, mutual information and normalized mutual 

information, etc. Due to the non-convexity of similarity measures in parameter space, 

the registration process is relatively expensive. sometimes with poor robustness [35]. 

Besides, other methods such as intensity-based feature selection algorithms perform 

image registration by extracting image features corresponding to the intensity, however, 

the extracted features are difficult to correspond well in anatomy [36]. 

2.2 Non-rigid registration 

Since medical images are affected by factors such as imaging time, imaging 

equipment, and patient posture, it is difficult to spatially register multimodal images. In 

addition, the internal tissue structure of the human body is complicated and has time-

varying characteristics. For example, the tissues and organs in the lung scan images will 

move with the patient's breathing. For the deformation of the images with large 

differences in each direction, the rigid registration method cannot meet the requirements. 

In this case, a non-rigid registration technology needs to be used, and the same parts of 

different images are corresponding to each other by means of the spatial registration 

deformation field. The entire registration process will also introduce different degrees 

of registration errors due to the chosen optimization method. 

Non-rigid transformation includes translation, rotation, scaling, and affine 

transformation based on an affine matrix and other linear and nonlinear transformation 

forms. Compared with rigid transformation, it has better deformation accuracy, but the 

calculation speed is slower. Gu et al. [37] proposed a B-spline affine transformation 

registration method, using affine transformation to replace the traditional displacement 

of each B-spline control point, and using a two-way distance cost function to replace 
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the traditional one-way distance cost function to achieve bidirectional registration of 

two images. Pradhan et al. [38] used a P-spline function with a penalty added to the B-

spline for brain image registration. The method based on the physical model regards 

the deformation of the floating image as the physical change caused by the external 

force, takes the original image as the input, and calculates the result of the image that 

is changed by the external force under the physical rules through the physical model. 

The physical models used are mainly viscous fluid models and optical flow field models. 

Wodzinski et al. [39] applied the algorithm of the optical flow field model to breast 

cancer tumor localization, compared it with the B-spline method, and obtained a better 

registration effect. 

With the development of deep learning technology, significant progress has been 

made in the field of image processing, mainly including the use of unsupervised or self-

supervised deep learning to calculate deformation parameters and similarity measures. 

For example, Hessam et al. [40] used a large number of artificially generated 

displacement vector fields for training to integrate image content from multiple scales, 

thereby directly estimating the displacement vector field from the input image. 

Hongming et al. [41] proposed a new non-rigid image registration algorithm based on a 

fully convolutional network, and optimized and learned the spatial transformation 

process between images through a self-supervised learning framework. However, until 

now, the non-rigid registration algorithm is still not mature enough compared with the 

rigid registration algorithm, and the algorithm acceptance is not enough [42]. 

3. Automatic delineation of normal tissue based on machine learning

3.1 Atlas based automatic contouring 

After multimodal image registration, clinicians will delineate contour information 

on the planned CT. The delineated targets mainly included therapeutic targets and 

OARs. The shape of OARs is relatively definite, and the location generally does not 

change much. In terms of automatically delineating OARs, the most widely used 

clinically is the automatic segmentation technology based on the atlas library [43]. Atlas 

refers to medical images and their corresponding binary delineation results, since even 

among different groups of people, the relative spatial positions and spatial shapes of 

normal organs in the body are similar, and the image textures have the same 

characteristics. The delineation principle is to pre-establish one or several sets of OARs 

templates, and machine learning methods automatically match the appropriate 
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templates [44]. 

The delineation methods based on atlas libraries can be basically divided into two 

categories: delineation methods based on single atlases and delineation methods based 

on multiple atlases [45]. The delineation method based on a single map can be regarded 

as a deformation registration problem. First, the atlas is registered to the image to be 

delineated, and the transformation matrix and deformation field are obtained. All the 

delineated organs in the atlas will be deformed and mapped according to the same 

transformation parameters, and the result of the mapping is the delineation result. 

However, the single-atlas library delineation method may have a large difference 

between the input patient images and the average atlas, resulting in unsatisfactory 

delineation results. 

The accuracy of the method based on a single atlas library depends heavily on the 

accuracy of image registration. When the atlas used is very different from the image to 

be delineated, it is difficult for the registration algorithm to achieve good results, 

resulting in a significant reduction in delineation accuracy. In order to improve this 

phenomenon, Aljabar et al. [46] proposed a multi-atlas method, which registered and 

fused multiple sets of reference atlases with the images to be delineated, obtained 

multiple sets of alternative delineation schemes, and used an algorithm to synthesize 

the alternative plans to form the final delineation. The performance of the multi-atlas 

library is often more stable than that of the single-atlas library, because the poor 

mapping results of some atlases in the multi-atlas will be corrected by other better-

performing atlases, so that each part can be relatively reasonable. While multi-map-

based methods improve the robustness of delineation compared to single-map-based 

methods, they are prone to topological errors because voxel voting does not necessarily 

result in closed surfaces. Such topological errors have a great impact on the formulation 

of radiation therapy plans, and are also difficult to detect, requiring time-consuming 

review and manual editing by clinicians [47]. 

3.2 Deep learning based automatic contouring 

The atlas library is essentially the operation of registering the target image and the 

template image through morphological features, that is, the process of searching for the 

most approximate shape in the atlas library. But if the shape difference of the template 

image OARs is too large, the volume is too small or automatically delineated 

inappropriate choice of deformation algorithm will affect the registration accuracy [48]. 

The multi-atlas library can improve the accuracy of delineation, but the amount of 
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calculation increases and the time-consuming increases, so a balance between accuracy 

and speed must be balanced. 

Automatic delineation based on deep learning does not require the above trade-offs. 

Since the key advantage of deep learning is to automatically extract labelled features 

through the learning of generalized features in training samples to identify new scenes, 

the more input templates, the more accurate the learned features [49]. Dolz et al. [50] used 

the support vector machine (SVM) algorithm to successfully achieve automatic 

segmentation of the brainstem on the MRI image of brain tumors, and then used another 

deep learning algorithm to segment the optic nerve, optic chiasm, pituitary and small 

organs such as pituitary stalk are automatically segmented, and the similarity 

coefficient reaches 76-83% [51]. They also used hand-extracted features, combined with 

unsupervised stacked denoising autoencoders for brainstem segmentation, and the 

classification speed was about 70 times faster than that based on SVM methods, 

reducing segmentation time [52]. Liang et al. [53] performed automatic segmentation on 

CT images based on deep learning, with a sensitivity of 0.997~1 for automatic 

segmentation of most organs, which can effectively improve nasopharyngeal cancer 

radiotherapy planning. 

Currently, deep learning networks, especially convolutional neural networks 

(CNN), have become a common method for medical image analysis [54]. CNN is capable 

of processing multi-dimensional and multi-channel data, capturing complex nonlinear 

mappings between input and output, with advantages for image processing and 

classification. A Stanford University study used a CNN model to automatically segment 

head and neck OARs for the first time. In the automatic segmentation of organs such as 

bone, pharynx, larynx, eyeball and optic nerve, it is better than or equivalent to the 

current best technology. But for organs such as parotid gland, submandibular gland and 

optic chiasm whose boundaries are not easy to identify on CT images, the delineated 

results are not satisfactory [55]. Lu et al. [56] used a 3D CNN to automatically segment 

the liver, combined with a graph cut algorithm to refine the segmentation. The 

advantage is that no manual initialization is required, and the segmentation process can 

be performed by non-professionals. Also using 3D CNN for liver segmentation, Hu et 

al. [57] combined deep learning with global and local shape prior information, and 

evaluated on the same dataset, and all error indicators were significantly reduced. In a 

follow-up study, the target was extended to abdominal multi-organ segmentation, using 

3D CNN to perform pixel-to-pixel dense prediction with higher accuracy and shorter 
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segmentation time [58]. 

Therefore, the outline processing of OARs is a complex project, and it is often 

difficult to use a set of models to achieve the expected accuracy for different parts of 

the body or different modalities. In actual situations, it is necessary to combine specific 

factors to make certain improvements to deep neural networks. 

4. Therapeutic target segmentation based on deep learning

4.1 GTV automatic delineation 

As with normal tissue delineation, deep learning-assisted tumor target delineation 

helps improve execution efficiency. However, since it is often difficult to distinguish 

the boundary between the tumor and the surrounding tissue, the clinical information, 

pathological sections, and images of the patient will become the reference data for GTV 

delineation. Various techniques are used to aid in identification. In the Multimodal 

Brain Tumor Image Segmentation Challenge (BraTS) in 2013, Pereira et al. [59] used 

CNN to automatically segment brain tumor MRI images, which improved the network 

accuracy and ranked first. Since then, Kamnitsas et al. [60] proposed a dual-channel 3D 

CNN network for brain injury (including traumatic brain injury, brain tumor, ischemic 

stroke) segmentation, the first time to use fully connected conditional randomization on 

medical data. Both of the above studies used neural networks with small convolution 

kernels to make the network structure deeper without increasing the computational cost. 

Men et al. [61] used big data to train deep dilated residual network (DD-ResNet) for 

breast tumor segmentation, and the results were better than deep dilated convolutional 

neural networks (DDCNN) and distributed deep neural networks (DDNN), similar to 

Dice The dice similarity coefficient (DSC) was 91%, which was higher than the result 

hand-drawn by experts [62]. 

In addition, for the above-mentioned basic network types, studies have also shown 

that the improved network in [63] can improve the accuracy of network segmentation 

and has stronger robustness. Lin et al. [64] trained a 3D CNN to delineate the GTV of 

nasopharyngeal carcinoma on MRI images, and the similarity with the GTV delineated 

by experts was high, with the DSC reaching 79%. With the help of machine learning, 

doctors reduced their time by 39.4% and improved their accuracy. 3D CNN not only 

utilizes the CT image information of each layer extracted by traditional CNN, but also 

utilizes the information between layers, the information utilization rate is high, and the 

accuracy is improved to a certain extent. Qi et al. [65] used convolutional neural networks 
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to delineate the target volume of nasopharyngeal carcinoma based on multimodal 

imaging (CT and MRI). The results show that the target area is delineated with high 

precision. Li et al. [66] used the U-Net to automatically delineate the target volume of 

nasopharyngeal carcinoma based on CT images. The results showed that the 

segmentation accuracy of the automatically delineated target volume was high. Li et al. 
[67] based on the four-dimensional computed tomography data of patients with non-

small cell lung cancer, used transfer learning to automatically delineate the tumor area, 

which improved the accuracy and shortened the retraining time of the network. When 

the breathing range was 5-10 mm, the matching index improved by 36.1% on average 

compared with the comprehensive elastic deformation registration technique. In a 

recent study [68], the authors used fuzzy c-means clustering (FCM), artificial neural 

network（ANN）, and SVM algorithms to automatically segment GTV of solid, ground-

glass, and mixed lung cancer lesions, respectively. It is considered that the results of 

the FCM model are more accurate and efficient, and can be reliably applied to SBRT. 

Delineating GTV based on deep learning can improve the work efficiency of 

clinicians, but this method cannot completely replace manual delineation. On the basis 

of automatic delineation, manual correction is still required to achieve accurate 

delineation effects [69]. 

4.2 CTV automatic delineation 

 CTV should be given a certain dose of radiation to the subclinical foci formed by 

infiltration around the primary tumor and the path of regional lymph node metastasis 

according to the requirements of radiobiology and the factors of tumor occurrence and 

metastasis. It is the basis for tumor regional radiotherapy to control recurrence and 

metastasis. The delineation needs to be judged in combination with the specific 

pathological conditions and the possible invasion or metastasis range of the diseased 

tissue, and the delineation results of different types of tumors and different stages are 

completely different.  

Specifically, Men et al. [70] used a DDCNN model to attempt automatic 

segmentation of CTV and OARs in 218 rectal cancer patients, and the results were 

accurate and efficient. Among them, the DSC of CTV reaches 87.7%, the DSC of 

bladder and bilateral femoral head is more than 90%, and the delineation of small 
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intestine and colon is not accurate enough, and the DSC is 65.3% and 61.8%, 

respectively. It is possibly related with that they are both air-containing hollow organs. 

Based on deep learning with Area-aware reweight strategy and Recursive refinement 

strategy, called RA-CTVNet, Shi et al. [71]  segment the CTV from cervical cancer CT 

images. Their experimental results show that RA-CTVNet improves DSC compared 

with different network architectures. Compared with three clinical experts, RA-

CTVNet performed better than the two experts while comparably to the third expert. 

Shen et al. [72] modified the U-net model by incorporating the contours of gross tumor 

volume of lymph node (GTVnd) and designed the DiUnet model for the automatic 

delineation of lung cancer CTV. The results showed that the DSC of most lymph node 

regions was up to 70%, which was not significantly different from manual delineation. 

In addition, our team [73] collected CT images of 53 cervical cancer patients. By

modifying the U-net model and the training process according to the task, the automatic 

segmentation of images of cervical cancer CTV region and normal tissue is realized. 

By testing the prediction accuracy of the model and the number of required dialogue 

rounds, the recall rate, accuracy rate, DSC, Intersection over Union (IoU), etc. of the 

results were evaluated. The results show that the proposed model has good performance 

in all the indicators outlined in the target area. And compared with commonly used deep 

learning neural network models such as mask region-based convolution neural network 

(Mask R-CNN), speech enhancement generative adversarial network (SegAN), and U-

net, the segmentation boundary of the proposed model is clearer and smoother, and the 

recall rate is obviously better than that of other models. Moreover, because of its very 

light weight, it can be adapted to the dataset size-limited case. 
Due to the involvement of subclinical lesions and lymph node drainage areas, CTV 

automatic delineation is relatively more difficult, and the performance of deep learning 

delineation is still far from that of experts [74-76]. In the future, relying on the disease-

specific big data platform to integrate multimodal radiotherapy data, imaging, genetic 

and other multi-omics data, as well as the experience data of senior radiotherapy 

physicians, physicists, and technicians, it is expected to be useful in the prediction of 

efficacy and complication risk. Guided by the results, individualized CTV range 

decisions are provided. 
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5. Conclusion

The research of machine learning methods in the field of radiotherapy has been 

fully rolled out and achieved phased results, among which the automatic delineation of 

normal tissues and tumor target areas has always been a research hotspot [77-79]. Most 

of the existing deep learning models are based on natural images, and there is a lack of 

deep learning models dedicated to medical, especially radiation oncology-related 

images. The difference between medical images and natural images is that medical 

images are grayscale images and generally have continuity [80-81]. In image 

segmentation, not only the regional structure of an image, but also the spatial structure 

of 3D data must be considered [82]. In addition, local and global prior information needs 

to be considered before it can further contribute to the segmentation of OARs and 

therapeutic target volume [83]. Moreover, multimodal image registration is often 

required to further identify the extent of tumor invasion [84-85]. 

Besides, radiotherapy is one of the links in tumor treatment. How to determine the 

appropriate radiotherapy target range and irradiation dose is a complex issue that 

requires system integration, such as disease characteristics and overall treatment mode, 

even the cross-scale issues from molecular cells to tissues and organs, and the spatio-

temporal relationship of biomolecules and other factors need to be comprehensively 

analyzed. So that the radiotherapy plan obtained in this way is more in line with the 

principle of precise individualized treatment. The integration of automatic radiotherapy 

target delineation with artificial intelligence knowledge maps and causal analysis may 

play an important role in the formulation of clinical radiotherapy targets[86]. 

At present, most of the current applications are in the preclinical research stage, but 

there are still some problems in clinical application. First, high-quality clinical data is 

the basis for artificial intelligence to learn and judge, but the current standardization of 

relevant medical data for automatic target area delineation is not high. The quality of 

labeling is uneven, and the data of major medical centers lack a joint construction and 

sharing mechanism. There are data barriers, which seriously hinder the effective use of 

data and product development. Secondly, it is still difficult to accurately define the 

treatment target area. Based on the current CT, MRI, PET-CT and other means, it is 

generally not difficult to determine the GTV, but some lesions are still difficult to 

identify, such as soft tissue invasion, bone destruction degree and scope, etc. The doses 

of CTV are different according to the risk of recurrence and metastasis. There is no 
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relevant research on how to determine high-, medium-, and low-risk CTV. In addition, 

the clinical application of artificial intelligence is directly related to life and health, and 

faces many ethical and legal challenges. However, the automatic delineation of 

radiotherapy target volume based on machine learning will be an important 

development direction of artificial intelligence in the medical field in the future. 
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