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ABSTRACT

Artificial intelligence and machine learning applications are of significant importance almost in every field 
of human life to solve problems or support human experts. However, the determination of the machine 
learning model to achieve a superior result for a particular problem within the wide real-life application areas 
is still a challenging task for researchers. The success of a model could be affected by several factors such as 
dataset characteristics, training strategy and model responses. Therefore, a comprehensive analysis is required 
to determine model ability and the efficiency of the considered strategies. This study implemented ten 
benchmark machine learning models on seventeen varied datasets. Experiments are performed using four 
different training strategies 60:40, 70:30, and 80:20 hold-out and five-fold cross-validation techniques. 
We used three evaluation metrics to evaluate the experimental results: mean squared error, mean absolute 
error, and coefficient of determination (R2 score). The considered models are analyzed, and each model's 
advantages, disadvantages, and data dependencies are indicated. As a result of performed excess number of 
experiments, the deep Long-Short Term Memory (LSTM) neural network outperformed other considered 
models, namely, decision tree, linear regression, support vector regression with a linear and radial basis 
function kernels, random forest, gradient boosting, extreme gradient boosting, shallow neural network, and 
deep neural network. It has also been shown that cross-validation has a tremendous impact on the results of 
the experiments and should be considered for the model evaluation in regression studies where data mining 
or selection is not performed.
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1. INTRODUCTION

Artificial intelligence (AI) and machine learning (ML) models have overachievement in the ability to 
create relations between the variables (attributes) and the observations (instances) for different kinds of tasks 
such as classification and regression. Unlike classification applications, in which samples are assigned to 
certain labels, regression applications aim to draw a regression line or plane on all samples with the least 
error. In several studies, researchers considered the real-valued outputs as bucketed outputs and converted 
regression problems into the classification domain if possible [1]. This led more implementations of ML 
models on classification than regression tasks that aimed to predict real-valued infinite outputs. However, 
the deployments of regression studies also affected multidisciplin ary fields such as the healthcare sector [2, 3], 
education [4], price predictions [5], sports [6], and finance [7].

The primary concern of the ML applications is determining the model suitable for the dataset used for 
the particular application. This has vital importance since determining the optimal ML model for all kinds 
of applications in both problem domains is almost impossible because of the different characteristics of 
datasets and the ability of the models [1]. In addition, the characteristics of the considered datasets can 
increase the complexity of the studies in both domains. Based on the attribute properties, datasets can be 
structured-unstructured datasets, numeric-categorical, and combined datasets. However, they can most 
importantly be defined as linear/nonlinear or high/low correlated when the relations between attributes and 
outputs are considered—these cause ML models to produce different results in applications on datasets 
with different characteristics. Therefore, the analysis of the success of an ML model should be performed 
on datasets containing different and varied conditions.

Besides the characteristics of the datasets, training of the ML models (validation techniques) and evaluation 
techniques differ in most of the studies. The hold-out method, which splits the train and test data using 
different ratios (60:40, 70:30, 75:25, 80:20, etc.), is common in AI and ML implementations [2, 4, 6]. The 
other commonly used training and validation method for ML models is k-fold cross-validation, which is 
used for hyperparameter tuning and evaluating final results [6]. The main drawback of the hold-out method 
is that the samples are only used in training or testing, and the actual prediction abilities of the models 
differ according to the training and testing samples. Instead, k-fold cross-validation, which finds the average 
result by dividing the data into k equal parts and training models k times, produces more accurate results [8] 
because of the consideration of all data both in testing and training. However, obtaining results using all 
data samples could affect the obtained results, negatively or positively, slightly or significantly. The number 
of training data and the validation of methods significantly affect the model trained with random data 
selection and do not determined by data mining. The recent regression studies differ in how they were 
implemented in terms of model selection, evaluation, and training. However, the implementation of multiple 
models and the consideration of several evaluation metrics are common in these studies, even though the 
training strategies are different [2, 6, 9, 10, 11].

The use of hold-out ratios or cross-validation method does not have a standard implementation even in 
recent research. The reasons for this are the number of instances in the dataset, the researchers’ preferences, 
and the responses of the models. However, in ML, it is known that even a small change in the trained data 
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can significantly affect the results in a positive or negative direction, especially in datasets with different 
characteristics or in big data. Therefore, it is crucial to investigate the effect of cross-validation as well as 
the hold-out ratios on models and results using varied datasets [8]. 

Although most machine learning studies included the comparative analysis in determining the optimal 
model, a few direct comparison studies were also performed. Huang et al. [12] compared the three ML 
models (backpropagation neural network, support vector regression, and extreme learning machine) for the 
regression problems using a total of four datasets. The evaluation was performed using mean squared error 
(MSE), mean absolute percentage error (MAPE), and coefficient of determination (R2 score). In addition, 
20-fold cross-validation was considered to estimate the prediction errors and the authors concluded that 
the use of integrated models produced superior scores than single models. Bratsas et al. [13] compared 
four models, namely multilayer perceptron, linear regression, random forest, and support vector regression, 
to predict the traffic status of Thessaloniki, Greece. The comparison was performed using three scenarios 
created from a single dataset. The evaluation of the models was performed using Root Mean Square Error 
(RMSE). It was concluded that the performances of Neural Networks (NN) and Supoort Vector Regression 
(SVR) models outperformed both Random Forest (RF) and Linear Regression (LR). Recent comparative 
research showed that considering multiple and varied datasets, models, and validation techniques were of 
crucial importance to analyzing the models’ abilities and the effect of training strategies. 

Automated Machine Learning (AutoML) has been started to be implemented recently, and besides finding 
the model that produces superior results among different ML models, it aims to achieve the best result with 
the ensemble method. However, although AutoML provides great advantages to users in terms of ease of 
implementation, its’ computational costs and computer crashes, even in relatively small datasets, are the 
major disadvantages of the AutoML. 

This study aims to compare ML models for regression tasks with different scenarios that have not been 
studied together in recent studies. An excessive number of multi-character datasets such as time-series, 
multivariate, high instance, and high attribute, are considered with varied validation strategies to analyze 
the response of the models to the different numbers of training data, datasets, and the effect of hold-out 
and cross-validation on the regression tasks. Finally, it aims to achieve the primary goal of the study, which 
is to determine starting points for future regression studies to minimize model and validation strategy 
selection procedure. 

For this purpose, in this paper, ten benchmark ML models were selected to be included in the comparisons 
due to their frequency of use and the formation of the basis for other models. 

Linear Regression is still one of the most frequently used statistical models in regression tasks, particularly 
for the data with a linear relationship. Decision Tree (DT) is another common ML model for regression 
problems and also forms the basis for other tree-ensemble models such as Random Forest (RF), Gradient 
Boosting (GradBoost), and Extreme Gradient Boosting (XGBoost). RF, GradBoost, and XGBoost minimize 
the error obtained by the DT either with bagging or boosting strategies and have increasing popularity in 
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regression tasks. Even though the XGBoost and GradBoost do not have higher popularity as much as RF, 
their implementation in regression tasks is becoming common. The superior results of the support vector 
machine in classification problems lead the implementation of Support Vector Regression (SVR) for the 
regression problems, and the use of SVR also spreads. However, the different kernel functions make it 
difficult to implement all of them, and in this study, Support Vector Regression with Radial Basis Function 
(RBF) kernel (SVRBF), Support Vector Regression with the linear kernel (SVRL) are considered. The neural 
networks, which are the primary tools for obtaining reasonable results, particularly in nonlinear data, are of 
significant importance to regression studies. For this reason, two artificial neural networks with shallow and 
deep versions (NN and DNN) and a special type of recurrent neural network which is significant importance 
to regression tasks, deep Long-Short Term Memory Neural Network (deep LSTM), are implemented.

A total of 680 experiments were performed on 17 considered datasets to perform a comprehensive 
evaluation and comparison. The obtained results were analyzed using three common evaluation metrics 
for regression problems: MSE, MAE, and R2 Scores. The analysis of considering the hold-out method with 
different ratios was performed. The effect of increment or decrement in training data was analyzed for each 
model. The data dependency of the models was determined. The obtained hold-out results were compared 
to the five-fold cross-validation method, and the effect of cross-validation was demonstrated. In addition, 
the fold analysis in cross-validation was performed to present the changes for each model in each fold with 
statistical descriptions. The model-based evaluation was performed, and the advantages and disadvantages 
of the models were presented. Finally, the recommendations for models and validation strategies are presented.

2. MATERIALS AND METHODS

2.1 Datasets

A total of 17 regression datasets from different real-life application areas such as environmental sciences, 
social sciences, civil engineering, finance and sales sector, and energy consumption were selected in our 
study to compare machine learning models for different application fields and obtain more generalizable 
results. The datasets consisted of a varied number of attributes and instances to analyze the ability of the 
models on different data. In addition, the datasets are selected to analyze the performances of the models 
with different data, such as time-series and multivariate.

Air Quality [14], Wine Quality [15], Combined Cycle Power Plant (CCPP) [16], Behavior of the urban 
traffic of the city of Sao Paulo in Brazil Dataset (SPB) [17], Real Estate (RE) Valuation [18], Concrete 
Compressive Strength (CON) Data Set [19], Daily Demand Forecasting Orders Data (DDFO) Set [20], two 
Student Performance (SP) datasets [21] and three Power consumption of Tetouan city (TCPC) datasets [22] 
each of which is for a single zone, were used to analyze and evaluate the considered machine learning 
models. Table 1 shows the number of instances and attributes included in the datasets used in this study.
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Table 1. The number of instances and attributes included in the datasets for this study.

No. Dataset No. of instances No. of attributes Type

1 RE 414 7 Multivariate
2 AQ 9358 14 Multivariate, Time Series
3 SPB 135 18 Multivariate, Time Series
4 WQW 4898 11 Multivariate
5 WQR 1599 11 Multivariate
6 CCPP-1 9568 4 Multivariate
7 CCPP-2 9568 4 Multivariate
8 CCPP-3 9568 4 Multivariate
9 CCPP-4 9568 4 Multivariate
10 CCPP-5 9568 4 Multivariate
11 STM 395 32 Multivariate
12 STP 649 30 Multivariate
13 DDFO 60 12 Time Series
14 CON 1030 8 Multivariate
15 TCPC Z1 52,417 7 Multivariate, Time Series
16 TCPC Z2 52,417 7 Multivariate, Time Series
17 TCPC Z3 52,417 7 Multivariate, Time Series

Numerical representation of the attributes makes it difficult for humans to observe the relationships of 
data and the characteristics of the dataset. Figure 1 shows the correlation analysis of the datasets. The 
highest correlation between the attributes was observed in AQ and DDFO datasets (Figure 1 (d) and (h)), 
and the lowest can be listed in WQR, WQW, RE, and STP datasets (Figure 1 (a-c) and (j)). The correlation 
provided by the last three attributes of the STM dataset has been eliminated by removing the two attributes 
from the STM dataset, and a more challenging dataset has been obtained in STP, as mentioned above.

2.2 Brief Review of Machine Learning Algorithms

The following section summarizes the basic principles of the mentioned ML models.

2.2.1 Artificial Neural Networks

Backpropagation is the most frequently considered neural network for optimization, regression, and 
classification problems. Interconnections of neurons which are the weights, are updated by considering the 
actual response of the neural network and expected or observed data. Gradient-descent is the algorithm to 
calculate the weight change and update each interconnection. It is still one of the most implemented 
algorithms for comparative studies of neural networks and machine learning models [23]. In this study, the 
shallow version was used with a single hidden layer, and the deep version was implemented using four 
hidden layers.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/4/3/620/2039767/dint_a_00155.pdf by guest on 08 Septem
ber 2023



Data Intelligence 625

Comparative Evaluation and Comprehensive Analysis of Machine Learning Models for Regression 
Problems

2.2.2 Linear Regression

Linear Regression is a statistical method that draws the best-fitting regression through the real points. 
It is frequently and successfully used in regression problems, especially on datasets whose attributes have 
a linear correlation [24].

2.2.3 Support Vector Regression

Support Vector Regression (SVR) was improved to get real-valued outputs instead of binary numbers for 
regression problems [25]. Error is minimized while the hyperplane margin is maximized, which provides 
an efficient distinguishment of data from each other [26, 27]. Different kernel functions can be used to 
project data into higher dimensions, and in this study, Linear and Radial-Basis Function kernels were 
considered in the comparisons.

2.2.4 Long-Short Term Memory Neural Network

LSTM is an effective special version of recurrent networks and can be used for both classification and 
regression problems [28]. Cell, input gate, output gate, and forget gate are the four major components of 
its architecture. It uses gradients to update weights; however, it remembers previous errors, which improves 
the netw’rk’s error minimization in minimized iterations [29]. 

Figure 1. Correlation heatmaps of dataset attributes (a) WQ – Red, (a) WQ – White, (c) RE, (d) AQ, I CC–P – for 
all sub-datasets, (f) SPB, (g) CON, (h) DDFO, (i) STM, (j) STP, (k) TCPC Z1, (l) TCPC Z2, and (m) TCPC Z3.
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2.2.5 Decision Tree

Decision Trees are tree-structured algorithms with an initial root node, decision nodes, and leaf nodes. 
They are using the divide-and-conquer strategy, which brings several advantages and disadvantages for 
them [8]. The simplicity and speed are the main advantages of decision trees; however, the determination 
of the initial root or the sequence of nodes is the main drawback.

2.2.6 Random Forests

Random forests are a kind of tree-based ensemble learning and can be used for both classification and 
regression [30, 31]. It constructs several decision trees during the training and optimizes the mean regression 
of the individual trees.

2.2.7 Gradient Boosting Algorithm

Gradient Boosting is another tree-based ensemble machine learning algorithm [32]. It aims to optimize 
the outputs by minimizing the loss obtained by the constructed weak learners, which are decision trees. 
The loss is calculated, and then a new or modified tree is added to reduce the total loss using a gradient 
descent algorithm. The mo’el’s output is modified after adding each tree to the model, and different stopping 
criteria such as no decrement in loss, adding a fixed number of trees, etc., can be applied to obtain the 
final output of the model.

2.2.8 Extreme Gradient Boosting

Similar to Gradient Boosting, Extreme Gradient Boosting [33] is also an ensemble tree method and 
applies the principle of boosting weak learners using the gradient descent algorithm. However, XGBoost 
includes some enhancements to minimize the used resources and to improve the obtained results. Different 
regularization models (i.e., LASSO) are used to overcome overfitting problems during the learning. 
The built-in cross-validation is applied in each iteration to determine the exact number of iterations on a 
single run. 

2.3 Evaluation and Comparison Criteria

Three commonly used evaluation metrics were considered to compare the obtained results: Mean 
Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2 score). 

MSE takes the square of error before averaging them, and this provides a relatively higher weight to 
significant errors (outliers). This supports researchers in observing the errors of the datasets with larger 
values. However, the frequency of the errors has a significant effect on MSE results, and the repetition of 
the error causes the increment of MSE. 
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However, reaching minimum error does not always show that the predictions will be more accurate than 
other models. Particularly, some significant errors within the dataset may increase the error. Therefore, it 
causes overestimating mod’ls’ errors due to the higher value of MSE. This is because the nature of MSE that 
considers outliers more than other evaluation metrics. On the other hand, small errors between predicted 
and actual data may cause underestimating the error. Thus, it is required to consider other evaluation criteria 
and consider all of these during the evaluation of the models. 

The other metric that is used to evaluate the ability of regression models is the MAE, which is the mean 
of absolute errors. MAE focuses on the magnitude of the errors between predicted and actual outputs and 
does not consider the direction of the error. It is assumed that more stable results could be obtained using 
the MAE. 

The R2 score, which is strongly related to MSE, is used to measure the correlation level of predicted and 
observed values within the considered dataset. This provides scaled evaluation results for the models and 
allows researchers to perform a more robust evaluation between them. 

2.4 The Design of Relevant Experiments

The design of experiments was based on four varied training of the considered ML models to obtain 
results with different training ratios and k-fold cross-validation. 

Models were trained by three hold-out ratios, 60:40, 70:30, and 80:20 of the considered datasets, and 
scores were obtained from the untrained (test) data separately. Furthermore, the ML models were trained 
using five-fold cross-validation to provide a more accurate and robust evaluation and analysis of the ML 
models. The results of five-fold cross-validation experiments were obtained by taking the mean of the fold 
results.

The results obtained by the five-fold cross-validation also provided the analysis of how the hold-out 
and k-fold cross-validation strategies positively or negatively affect the obtained scores. This analysis was 
performed using the results obtained by all hold-out ratios and five-fold cross-validation and individual fold 
results obtained in five-fold cross-validation. During the training, the architectures of neural network models, 
NN, DNN, and deep LSTM, were fixed; however, parameters were tuned depending on the dataset 
performances of the related model.

The experiments used fixed training and testing data for each hold-out ratio. Therefore, the effect of 
change in the training data in the results has been eliminated. In cross-validation experiments, each fold 
was fixed, and it was ensured that each model performed training with the same data in each fold.

Deep Neural Network (DNN) was implemented with four hidden layers, 500 neurons within each hidden 
layer, and the Sigmoid function was used as an activation function for each layer. ‘Adam’ and MSE were 
used as optimizers and loss functions, respectively. A shallow Neural Network (NN) was used with a single 
hidden layer and 500 neurons. The other parameters were set as the same as DNN. 
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Deep Long-Short Term Memory Neural Network was used as four-layered, and the maximum iteration 
number was determined based on the highest scores obtained. The experiments were repeated in DNN, 
NN, and LSTM experiments with different iterations for each dataset to obtain superior results.

The grid search was applied to obtain optimized scores in Support Vector Regression, Random Forest, 
GradBoost, and XGBoost. The best parameters are used to train each fold in five-fold cross-validation 
experiments and all ratios of hold-out experiments. Mean Squared Error was used to build a decision tree 
regressor structure. 

3. RESULTS AND COMPARISONS

This section summarizes the results obtained in the experiments and compares the models at different 
training ratios by presenting quantitative results. All models produced fluctuating results at different learning 
rates and datasets. The results are compared and discussed in the following sections in detail. S1 Table, S2 
Table, and S3 Table present the obtained MSE, MAE, and R2 score results for all datasets in all experiments. 
Figure 2 demonstrates the visualization of the obtained R2 scores of the datasets for each hold-out ratio and 
five-fold cross-validation experiments. Bold values within the tables indicate superior results.

3.1 Comparisons for Hold-Out Ratios and Cross-Validation

The analysis of the effect of hold-out ratios on the prediction performance of the models should be 
performed in two stages.

The first stage analyseszes the increment or decrement in the number of training data for the models. 
The second stage is to determine the impact of different training ratios and cross-validation on the 
performance of a particular model. This would yield to determine the data dependency and the sensitivity 
of the models for the change in the number of training data. 

In this stage, the R2 scores were used to analyze the obtained results since the R2 score is scaled results 
and provides a more effective evaluation. Therefore, the analysis was performed using the number of highest 
R2 scores obtained in the experiments and the statistical descriptions obtained using the R2 scores for each 
dataset and model individually.

NN, DT, and RF produced fluctuated and similar results when the hold-out results were considered. Their 
lowest and highest R2 scores were obtained in the 70:30 and 80:20 hold-out ratios. 

On the other hand, GradBoost and XGBoost produced fluctuated results. Although their lowest R2 scores 
were obtained in the 70:30 hold-out ratio, they achieved their highest scores in 60:40 experiments. 

Models in which the increment of training data linearly affected the performances negatively were LSTM, 
SVRL, SVRBF, and LR. While the highest R2 scores of these models were obtained at 60:40 ratios, the 
produced results decreased as the training data increased, and the lowest results were obtained in 80:20 
experiments.
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The most positively affected model by the increase in the number of training data was DNN. DNN, 
which could not produce the highest R2 scores for any dataset with the lowest training ratio (60:40), 
achieved higher results at 70:30 and 80:20 ratios. The experiments in which DNN was most successful 
were the 80:20 hold-out experiments.

However, considering the five-fold cross-validation experiments, the obtained results significantly changed 
for NN, DNN, LR, DT, GradBoost, and XGBoost. Performing experiments using five-fold cross-validation 

Figure 2. Visualization of R2 scores for all experiments.
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provided these models to improve their performances and achieve the highest number of superior results 
in experiments. Nevertheless, it should be noticed that the training of SVRL, SVRBF, and RF using five-fold 
cross-validation did not positively impact these models.

Determining the highest scores obtained in different hold-out ratios is valuable for analyzing models. 
However, the statistical descriptions, such as mean, median, minimum, and maximum R2 scores, standard 
deviation between the obtained results, 25%, and 75% quartiles, are also effectively used in analyzing the 
order and the change in results. Furthermore, they provide information to determine the models’ sensitivity 
for the number of training data and adaptation of training data. Therefore, we provided the maximum and 
minimum standard deviation of the results obtained for each model using a dataset with different training 
ratios. 

The obtained mean, median, quartile, and standard deviation results demonstrated that different models 
could achieve superior, fluctuated, or decreased prediction levels based on the number of training data. 
However, the deep LSTM achieved superior results in all descriptions for all experiment scenarios. The 
SVRL and LR produced the highest standard deviation and lowest mean and median results for different 
hold-out and cross-validation experiments which are the worst results in this study. Table 2 presents the 
statistical descriptions for the hold-out and cross-validation experiments, Figure 3 shows the model-based 
distribution of the results for all experiments, and Figure 4 presents the hold-out and cross-validation results 
per model independently.

Additionally, we provided the maximum and minimum standard deviation of the results obtained for 
each model using a dataset with different training ratios. The close minimum and maximum standard 
deviations were calculated in the obtained R2 scores of NN and DNN. While’NN’s minimum and maximum 
standard deviations were 0.0006 and 0.0612, it was calculated as 0.0003 and 0.0641 for DNN. These 
obtained maximum standard deviation results were the lowest maximum standard deviations among all 
experiments. 

The model that followed the NN and DNN models was LR with a 0.0797 maximum standard deviation. 
LR produced more stable R2 scores for all datasets, and the lowest average standard deviation was calculated 
(0.0215), even though it could not produce superior results in most of the experiments.

There were no significant differences in the maximum standard deviations of the R2 scores of SVRBF, 
SVRLR, and DT. Therefore, the average standard deviations of these models were calculated as 0.0154, 
0.0173, and 0.0275. Results showed that the SVR models had the lowest average standard deviation.

Tree ensemble models achieved more fluctuated results than other models except for deep LSTM. 
The maximum standard deviations calculated for RF, GradBoost, and XGBoost were 0.1384, 0.1569, and 
0.1461. The average standard deviations of these models were 0.0305, 0.0322, and 0.0331, respectively.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/4/3/620/2039767/dint_a_00155.pdf by guest on 08 Septem
ber 2023



Data Intelligence 631

Comparative Evaluation and Comprehensive Analysis of Machine Learning Models for Regression 
Problems

Table 2. Statistical descriptions of experimental results.

60:40 Statistical Descriptions

NN DNN LR SVRBF SVRL Deep LSTM DT RF GradBoost XGBoost

Mean 0.665 0.700 0.630 0.644 0.622 0.935 0.729 0.789 0.693 0.746
Std 0.299 0.273 0.309 0.315 0.328 0.132 0.265 0.243 0.264 0.261
Min 0.165 0.213 0.216 0.155 0.148 0.547 0.042 0.221 0.199 0.173
25% 0.352 0.454 0.333 0.292 0.276 0.966 0.633 0.703 0.486 0.580
Median 0.708 0.764 0.617 0.680 0.624 0.994 0.804 0.898 0.713 0.835
75% 0.937 0.936 0.930 0.937 0.930 0.997 0.925 0.958 0.945 0.963

70:30 Statistical Descriptions

NN DNN LR SVRBF SVRL Deep LSTM DT RF GradBoost XGBoost

Mean 0.668 0.713 0.632 0.645 0.624 0.915 0.778 0.790 0.676 0.730
Std 0.291 0.264 0.309 0.310 0.321 0.200 0.206 0.244 0.289 0.297
Min 0.194 0.285 0.218 0.199 0.172 0.238 0.327 0.224 0.164 0.106
25% 0.366 0.495 0.316 0.318 0.314 0.983 0.737 0.651 0.422 0.544
Median 0.720 0.805 0.635 0.700 0.630 0.992 0.838 0.896 0.714 0.847
75% 0.938 0.940 0.930 0.938 0.930 0.997 0.930 0.961 0.945 0.965
Mean 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 1.000 1.000

80:20 Statistical Descriptions

NN DNN LR SVRBF SVRL Deep LSTM DT RF GradBoost XGBoost

Mean 0.672 0.719 0.631 0.644 0.620 0.950 0.760 0.794 0.673 0.730
Std 0.303 0.267 0.308 0.317 0.331 0.111 0.257 0.262 0.284 0.292
Min 0.074 0.289 0.219 0.125 0.102 0.645 0.164 0.148 0.217 0.106
25% 0.368 0.448 0.331 0.306 0.301 0.985 0.673 0.735 0.414 0.535
Median 0.766 0.825 0.633 0.680 0.647 0.995 0.850 0.922 0.711 0.851
75% 0.937 0.940 0.930 0.937 0.929 0.998 0.935 0.964 0.946 0.967

Five-fold cross-validation Statistical Descriptions

NN DNN LR SVRBF SVRL Deep LSTM DT RF GradBoost XGBoost

Mean 0.679 0.693 0.570 0.580 0.562 0.867 0.725 0.637 0.727 0.780
Std 0.280 0.282 0.381 0.368 0.381 0.233 0.304 0.350 0.254 0.253
Min 0.242 0.148 0.003 0.076 0.038 0.199 0.008 0.004 0.227 0.110
25% 0.353 0.409 0.246 0.245 0.234 0.895 0.708 0.317 0.481 0.676
Median 0.757 0.810 0.585 0.606 0.570 0.992 0.838 0.762 0.874 0.883
75% 0.936 0.939 0.929 0.936 0.928 0.996 0.930 0.962 0.948 0.966

The largest and most significant changes in standard deviations of R2 scores obtained in different hold-
out and five-fold cross-validation experiments were calculated in deep LSTM. The maximum and average 
standard deviations for deep LSTM were calculated as 0.3467 and 0.0629. These results were the highest 
standard deviation values calculated within the considered models. Table 3 shows the minimum, maximum, 
and average standard deviations for all models calculated using the R2 scores obtained in the hold-out and 
five-fold cross-validation experiments.
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3.2 Fold Comparisons of Five-Fold Cross-Validation Experiments

Five-fold cross-validation experiments were performed to analyze the effect of changing training data on 
the learning and performance rates of the models. Therefore, it was tried to show how much the changing 
data will affect the results produced by the models in the experiments performed with hold-out ratios. We 
used the Average θ value, where θ is the difference between the highest and the lowest R2 scores obtained 
in the folds, to indicate the general change value produced by the models. 

While presenting the results in this section, AQ and CCPP were not considered because the R2 scores 
produced in each fold by each model were at the highest level. Furthermore, the changes between folds 
were tolerable since the obtained values were less than 0.001 on average.

NN obtained the highest change (θ) between folds in the SPB dataset with 0.48. In this dataset, the 
highest R2 score reached in a fold was 0.81, while the lowest was 0.32. NN produced a minor change 
between fold results in WQW, CON, DDFO, and STM datasets, giving more stable results. For these three 
experiments, θ was calculated between 0.07 and 0.10. More fluctuations occurred between folds in WQR, 
RE, and STP datasets, and θ values were calculated as 0.17, 0.21, and 0.20.

Figure 3. Distribution of obtained R2 scores of the models for each experiment (model comparison).
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Figure 4. Model-based distribution of obtained R2 scores of the models for validation strategies—validation 
strategy comparison: (a) NN, (b) DNN, (c) LR, (d) SVRBF, (e) SVRL, (f) deep LSTM, (g) DT, (h) RF, (i) GradBoost, and 
(j) XGBoost.

Table 3. Minimum, maximum, and average standard deviations between hold-out ratios for all models.

NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

Average STD 0.019 0.020 0.021 0.015 0.017 0.062 0.027 0.030 0.032 0.031
Min STD 0.000 0.0003 0.000 0.0004 0.0003 0.001 0.000 0.00 0.00 0.00
Max STD 0.061 0.064 0.079 0.106 0.112 0.346 0.118 0.138 0.156 0.141
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In the DNN model, close results were obtained with NN. The differences observed between these two 
models were that DNN produced more stable results in WQR, CON, STM, and STP datasets. The most 
remarkable change among the fold results occurred in the SPB dataset (θ = 0.47) as in NN. The average θ 
value of the DNN model was calculated as 0.16.

Since the LR model achieved total success with each fold in the DDFO dataset, no change was calculated 
between the folds. However, LR could not establish any correlation between attributes and instances in a 
fold in the SPB dataset and could not produce results. This caused the θ value to be 0.74. The most stable 
results obtained by the LR model, except for DDFO data, was the WQW dataset (θ = 0.15). The average θ 
value of LR, which produces fluctuating results in other experiments, was 0.26.

SVRL and SVRBF models produced close θ values for WQR, WQW, RE, SPB, DDFO, and STM datasets. 
The highest θ between the two models occurred in the CON (SVRL = 0.51 and SVRBF = 0.44) and STP 
(SVRL = 0.26 and SVRBF = 0.30) datasets. However, both SVRL and SVRBF produced rather variable and 
different results in SPB data in terms of θ as observed in other models (SVRL = 0.73 and SVRBF = 0.73). 
The average θ value for both models was calculated as 0.29.

Although deep LSTM produced superior results in most experiments, the model produced the most 
fluctuated and data-dependent results in five-fold cross-validation experiments considering DDFO, STM, 
and STP data. While deep LSTM showed the most negligible variation between folds in other datasets, it 
produced more stable results in the SPB dataset than in other models. However, in STM and STP datasets, 
it caused the θ to increase to 0.99 by making inaccurate and most successful predictions in different folds. 
A more significant fluctuation was observed in the DDFO dataset compared to other models. While the 
average θ value of deep LSTM was calculated as 0.36, it was marked as the most sensitive model in this study. 

Since DT could not produce any results in any fold of the five-fold cross-validation experiments of the 
STP dataset, the θ for STP was 0. Therefore, the average θ value was calculated by ignoring the STP data. 
Similarly, WQR and WQW data failed to produce results in a fold. This caused an increase in θ values in 
these experiments (0.13 and 0.21, respectively). In the SPB dataset, where other models (NN, DNN, SVRL, 
SVRBF) produced fluctuating results, DT could produce a more stable result, although it could not produce 
a superior result (θ = 0.23). However, in the RE dataset, the highest and lowest R2 scores produced at 
different folds were calculated as 0.69 and 0.32, resulting in the highest θ value for DT (0.37). The average 
θ value is calculated as 0.22.

Although RF produced more reasonable and stable results than DT, it could not produce results in one 
fold of CON and SPB datasets experiments. High R2 scores obtained in other folds caused the θ value to 
increase significantly. As a result, θ values for both CON and SPB datasets were calculated as 0.83. This, 
in turn, affected the overall stability of the model, and the average θ was calculated as 0.33.

Although the general results of the GradBoost model were similar to RF, GradBoost produced more stable 
results in CON and SPB datasets resulting in the average θ value being calculated as 0.17 and observed as 
one of the most stable models.
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XGBoost produced the lowest θ value for the WQW and STP experiments (0.01 and 0.11, respectively). 
The experiments in which XGBoost produced the highest θ value were RE and SPB datasets (0.30 and 0.29, 
respectively). Although it could not produce superior results in other datasets, it generally produced the 
most stable results. This produced the lowest average θ value (0.15). The dataset-based plot of change 
in R2 scores that show the minimum, maximum, and average R2 scores obtained in the folds is shown in 
Figure 5. Table 4 presents the θ values obtained by each model for each dataset and the average θ obtained 
for a particular model.

Table 4. h values obtained for each model and dataset in fold analysis.

MODEL WQR WQW RE SPB CON DDFO STM STP TCPC Z1 TCPC Z2 TCPC Z3 AVE. θ

NN 0.17 0.09 0.21 0.48 0.07 0.11 0.07 0.21 0.03 0.02 0.02 0.134
DNN 0.09 0.08 0.22 0.48 0.03 0.10 0.18 0.16 0.02 0.02 0.01 0.126
LR 0.24 0.15 0.27 0.74 0.28 0.00 0.18 0.28 0.11 0.15 0.13 0.230
SVRBF 0.19 0.15 0.25 0.74 0.45 0.06 0.23 0.30 0.18 0.19 0.30 0.276
SVRL 0.21 0.15 0.23 0.73 0.51 0.03 0.25 0.26 0.10 0.09 0.21 0.251
DT 0.14 0.22 0.38 0.22 0.08 0.31 0.23 NA 0.03 0.02 0.02 0.150
LSTM 0.09 0.02 0.03 0.27 0.06 0.42 1.00 1.00 0.004 0.009 0.0009 0.263
RF 0.11 0.10 0.23 0.83 0.84 0.23 0.07 0.23 0.02 NA 0.49 0.286
GradBoost 0.15 0.06 0.33 0.24 0.05 0.18 0.13 0.20 0.01 0.01 0.004 0.127
XGBoost 0.12 0.02 0.31 0.30 0.06 0.12 0.17 0.12 0.01 0.01 0.01 0.113

4. DISCUSSIONS

Several points should be discussed by considering the obtained results. We separately analyzed the 
performances of the models in terms of R2 scores and error minimization for different kinds of datasets, the 
effects of training ratios of the hold-out strategy, and the impact of cross-validation on the models learning 
to deduce general opinions. In addition, the data dependency of the models was analyzed by combining 
all the obtained results and performing a fold analysis. This also provided us to analyze the consistency 
and the stability of the models.

4.1 Effect of Training Ratios on the Model Performances

When the results of varied hold-out ratios are compared without considering five-fold cross-validation 
results, it is challenging to make a consistent analysis due to the responses to the new data added at 
increasing training ratios, even if the same samples were considered. When we analyzed the results for all 
experiments, fluctuations were observed regardless of the training ratios. However, it is debatable whether 
there were very significant changes in the results produced by the models on a ratio basis.

The SVRBF and SVRL were the least affected models by the number of training data, indicating that the 
projection of the data to another plane reduces the effect of the number of training data. SVRBF was the 
most successful model at the point, as the model with the lowest average standard deviation value, followed 
by the SVRL. However, the increase in the number of training data in both models affected the success 
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Figure 5. Dataset-based change in R2 scores of the folds for each model (1: Average of CCPP results, 2: AQ, 
3: WQR, 4: WQW, 5: RE, 6: Bra, 7: Concrete, 8: DDFO, 9: STM, 10: STP, 11: TCPC Z1, 12: TCPC Z2, and 13: 
TCPC Z3).
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rates negatively. It has been once shown by the obtained results that SVR models could produce better 
results with less training data. 

NN and DNN showed that the neural-based models also minimized the changes due to the number of 
data. Although SVRBF, SVRL, NN, and DNN are less interpretable than other models, which complicates 
the analysis of results, neural-based models could achieve more stable results since they are capable of 
effective convergence because of hidden layers and neurons in these layers. However, fewer hidden layers 
and neurons might result in more inconsistent results, making it difficult to determine the proper training 
data ratio. 

On the other hand, in DNN with more hidden layers and neurons, the success rate increased as the 
number of training data increased. Although the changes were not at significant levels, it was observed that 
the number of data needed increases as the neural network architecture gets deeper. The results showed 
the disadvantages of using a large number of processing elements with a minimized number of training 
data.

Determining the node sequences and decision leaf by DT is the most crucial factor in this’model’s 
success. The results showed that DT produced fluctuating results depending on the training ratios. However, 
the need for DT to achieve better results using more training data has been reduced in the RF model and 
eliminated in the GradBoost and XGBoost models. 

The standard deviations of the RF, GradBoost and XGBoost models were higher than the other models. 
It has been observed that these models produced more sensitive responses to the changing number of 
training data. Still, the applied processes provided better results by minimizing the errors obtained in DT 
and reducing their dependence on the training data number. Accordingly, GradBoost and XGBoost achieved 
higher results with fewer training data.

Deep LSTM was the model with the highest sensitivity to the number of training data. In terms of 
produced R2 scores and the standard deviation between these scores, the most fluctuated results of this 
study were provided by the deep LSTM. Although the fixed number of LSTM layers might lead to these 
results, the states of input sequences as forgotten and remembered in the LSTM layers could be considered 
one of the most significant factors both in the success and fluctuated results of this model. On the other 
hand, the deep LSTM model produced the highest results with the lowest training ratio, even though it was 
used with a large amount of LSTM layers. The increment in training ratios did not positively affect the 
models’ performance.

When we consider all the results obtained for all models, the ratio of 70:30 was found as a training ratio 
that causes the minimum success of the models. On the other hand, although higher results were obtained 
in the 80:20 experiments, the 60:40 ratio was observed as the training ratio with the highest results.

If cross-validation was not considered in regression studies, the consideration of 60:40 and 80:20 for 
specific models based on the above-mentioned information would help researchers decrease experimental 
costs and achieve superior results.
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4.2 Effect of Cross-Validation and Data Dependency of the Models

Cross-validation was considered in many studies for hyper-parameter tuning or final performance 
evaluation of the models. The results obtained in our study showed that cross-validation is vital to determining 
the general abilities of the models. In this study, the consideration of the five-fold cross-validation provided 
the training of the models with an 80:20 ratio using five different datasets in five folds. Therefore, the 
analyses of he models could be performed using all data. 

The obtained average fold results showed that NN, DNN, LR, DT, GradBoost, and XGBoost achieved 
their highest R2 scores in experiments using five-fold cross-validation (S3 Table). These results showed that 
the use of cross-validation in studies where these models will be considered would be more consistent, 
more reliable, and more successful. However, SVRBF, SVRL, and LSTM did not make a remarkable difference 
in experiments with five-fold cross-validation compared to training with other ratios. 

On the other hand, when the R2 score differences (θ) obtained between the folds were considered, a 
more complex relationship was observed (Table 4). The obtained θ values showed the response of the 
models to the training data in the learning process and the data dependency of the models, and the achieved 
results demonstrated that the most successful model in this regard was XGBoost (min θ=0.01, max θ=0.31, 
average θ=0.113).

XGBoost successfully minimized the error while adding new trees to the created ones and reduced the 
dependency on new and different data. This caused the model to produce more stable results between 
folds.

The models that followed XGBoost based on the θ values were GradBoost, DNN, and NN. Although 
GradBoost and DNN are completely different classifiers in structure, their average θ was calculated as equal 
(0.17).

GradBoost, which has similar features to XGBoost, creates an ensemble model by adding new trees by 
minimizing the error between the gradient descent algorithm and weak trees. This caused the model to 
produce similar results with XGBoost and low data dependency. 

On the other hand, the DNN used in this study showed that higher numbers of hidden layers and neurons 
could produce more stable results, although not superior. This property increased the impact of DNN on 
learning the changing data in cross-validation.

However, although NN with a single hidden layer produced more fluctuating results than DNN when 
cross-validation was used, the change in R2 scores between the folds was minimal. This showed that 
increasing the number of hidden layers could produce more stable results and reduce the number of 
experiments to be performed but would not significantly change the overall results.

DT and LR produced close results considering θ values. These two models are successful on datasets 
with more linear relationships than other models, and that increased the importance of the data they fed 
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in the training process and the test data. However, LR produced more stable results in highly correlated 
data, but DT produced more significant differences in terms of the R2 scores it produced between the folds 
in these datasets. The creation of a single tree and the node sequences were the most significant factors at 
this point.

The SVRBF and SVRL produced reasonably similar results in this analysis. θ was calculated as 0.276 and 
0.251, respectively. High variation between the folds was caused by the data projection, which reduces 
the dependence on the number of data and is unpredictable when applied to the data containing different 
information. While the data in one fold can be projected to draw the regression line with a minimum error, 
the data in the other fold might not be appropriately projected to provide a best-fitted regression line. This 
created highly variable results for the two models.

The most unexpected results in this analysis of the study were produced by the RF and LSTM models. 
As an ensemble model, RF was expected to produce more stable results between the folds, but it was 
observed that the effect of the created trees and the number of trees used in the experiments on the model 
was very high. Although it produced successful results, RF has become one of the most data-dependent 
models.

In the deep LSTM model, although generally stable results were produced, the extreme results obtained 
in the STP and STM dataset experiments determined the average θ as the highest. The data dependency of 
the LSTM appeared to be in the upper level; however, it is also analyzed along with the analysis of the 
characteristic features of the dataset in the next section.

4.3 Effect of Datasets on Model Performances

The dataset-based analysis was performed to evaluate the general responses of the models under different 
conditions. It is common knowledge that providing a large number of instances to a model with a high 
number of attributes facilitates learning (i.e., the AQ Dataset). However, the relevancy of these instances 
and the information they feed the model have a vital role in the learning process of the models (i.e., the 
WQW Dataset).

Neural network models, which were expected to be more accurate in solving nonlinear problems with 
fewer relationships between their attributes, outperform or lag behind other models with a slight difference 
in these datasets. 

If the results for NN and DNN have been interpreted on the STM and STP dataset, removing two highly 
correlated attributes from the training data severely reduced the success of NN and DNN, similar to other 
models. In addition, although these two models produced high results for highly correlated datasets (i.e., 
DDFO), they did not achieve the prediction rate of LR. At this point, the achievement of better results than 
LR in the highly correlated AQ dataset by these two models showed that the minimized number of instances 
used during the training process had a significant and negative effect on the performances of NN and DNN. 
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Although SVRBF and SVRL models achieved results close to NN and DNN, it was observed that they 
could achieve superior results in the highly correlated datasets with a minimal number of attributes and 
instances (i.e., DDFO). However, SVR models produced lower results than the NN and DNN models in 
other datasets with higher numbers of attributes and instances, even though the correlation between 
attributes was high. This showed once again that the use of a more informative and limited number of 
attributes and instances for data projection would increase the success of SVR models.

The DT model produced fluctuating results depending on the dataset characters, and it could not achieve 
successful results in general. Even it was unable to make any predictions in the high attribute, low instance, 
and low correlation STP dataset, DT succeeded in outperforming the RF, XGBoost, and GradBoost models 
in the highly correlated DDFO dataset. It was observed that the success rate of DT decreased significantly 
at low-instance high-attribute datasets. As with all other analyses, the success of DT in identifying the 
starting nodes and the sequences of subsequent nodes proved to be vital to the model.

The obtained results showed that the tree-based ensemble models achieved more successful results in 
datasets with a high number of instances. In AQ, CCPP, and WQW datasets, RF, GradBoost, and XGBoost 
models generally achieved superior results than other models except for LSTM. The use of a high number 
of instances provided successful results in these models since the creation or addition of different trees 
allows them to perform more meaningful information connections systematically.

LSTM achieved results that outperformed all other models regardless of the correlation between attributes 
when trained with many instances. LSTM, which produces highly fluctuating and variable results in STM, 
STP, and DDFO datasets, was the model most affected by the dataset’s number of instances and attributes. 
Training the deep LSTM with a low number of data makes it challenging to achieve high prediction rates. 

4.4 Discussions on the General Results

In 57 out of a total of 68 experiments, deep LSTM produced the highest R2 scores and superior error 
minimization results, achieving a very high success rate compared to other models. The model that followed 
the deep LSTM was GradBoost, which produced two times the superior and three times the second-highest 
results. XGBoost, which achieved the superior result once and the second-highest result ten times, was 
another model that produced stable results. Besides, LR produced superior results in an experiment and 
the DT and RF models. On the other hand, NN, DNN, and SVR models could not achieve optimal results 
in any of the experiments.

Although the increase in the number of hidden layers and neurons produced more stable results than 
NN, DNN could not have the superior or even the second-superior score in any experiment. This caused 
neural-based models not to outperform other models (i.e., deep LSTM, GradBoost, XGBoost) in this study. 
The obtained results limit the success rate of the neural-based models in general; however, considering the 
fixed architecture and parameters in this study could be one of the reasons for this. In NN, although the 
use of a lower number of hidden layers and neurons did not significantly reduce the success rate to DNN, 
it had a negative effect on the stability of the model. This instability also reduced the reliability of the model.
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SVR models also produced similar results to neural-based models but slightly lower overall. As mentioned 
above, although higher and more stable results were obtained compared to NN and DNN in datasets with 
low instances and attributes, they lagged behind LSTM and tree-ensemble models in general.

DT could not achieve high results as tree-based ensemble models. It was seen as an inevitable improvement 
that optimizing many trees to be created could yield superior results than a single tree, which was the main 
aim of proposing tree-based ensemble models. Although the DT can be easily implemented and more 
responsive model, the development of models such as RF, GradBoost, and XGBoost has overshadowed the 
success of DT. The main limitation of DT, which is the sequence of the attributes, proved once again that 
ensembling multiple trees achieve superior results.

LR, the most basic regression model, proved its success in linear problems once again and showed that 
it could correlate between correctly selected data and nonlinear test data. However, since the ability to 
establish nonlinear correlations between all datasets is very limited, further experiments are required to 
conclude this. LR attracted attention again as a model that must be considered among datasets containing 
linearly related attributes. 

RF lagged slightly behind the other two models (GradBoost and XGBoost) among tree-based models. By 
optimizing the regression results of the constructed trees, RF produced slightly more fluctuating and 
inconsistent results than the performance of GradBoost and XGBoost, which considers the losses of weak 
models. This is caused by randomly sampling (bagging) the instances while creating individual trees in RF; 
since GradBoost and XGBoost consider weak samples in the re-creation of trees (boosting). While bagging 
made RF more sensitive to overfitting, the boosting models are more advantageous in tree-based ensemble 
methods.

GradBoost and XGBoost models have proven to be models that should be considered in terms of stability, 
data dependency, and their results in regression problems. Considering that the optimization of the fixed 
parameters could further increase the performance of these models, they stand out as the models that should 
be preferred in the first place.

However, the deep LSTM model, which achieved the highest results in almost all experiments and 
produced high results even in datasets where other models failed to make predictions, showed that it is 
one of the top ML models that should be considered for regression problems. However, the most significant 
disadvantage of deep LSTM is the data dependency, unstable response to changing training data, and 
inconsistent results in some conditions. Even between folds, it was observed that while it could predict all 
the data with high scores in one fold, it could not properly predict any data in the other fold. In LSTM cells, 
the dependence of forgetting states on previous data and the effect on data from later sequences significantly 
affected the consistency of the LSTM. However, the fixed structure of LSTM might cause fluctuations and 
require further experiments for this model to generalize its’ characteristics.

Considering that the data in all experiments in this study were randomly selected and then fixed, it can 
be considered that the fluctuations and instability in many models were acceptable. The most significant 
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limitation of the LSTM model was not completing the learning process in datasets with a low number of 
instances and the high number of attributes (STM and STP datasets). Therefore, it could be concluded that 
the deep LSTM would continue to achieve high-level results among regression models with appropriate 
and sufficient data selection.

4.5 Outcomes and Recommendations for Further Studies

The outcomes and recommendations of the study are listed below:

•  Long-Short Term Memory Neural Network, Extreme Gradient Boosting, and Gradient Boosting were 
the superior models in the overall experiments. It is recommended that these models be used more 
widely in regression problems.

•  Random Forest, Support Vector Regression Models, and LSTM were the most data-dependent models. 
Therefore, cross-validation in studies involving these models is required to evaluate the prediction 
abilities of the models.

•  Since which superior hold-out ratio in ML training varies depending on the data and the model, the 
characteristics of the models should be considered in the experiments where hold-out will be used. 
However, the 60:40 hold-out was the ratio with the highest results.

•  The XGBoost was the model with the least dependence on the number of training and changing data. 
GradBoost followed this model. Therefore, any hold-out or cross-validation would not significantly 
change the results of these models.

•  DNN and NN were not affected much by data changes, but cross-validation should be continued to 
be implemented for these models’ parameter and structure determination.

•  Once again, it has been shown that as the number of data (instances and/or attributes) increases, the 
deeper neural network produces higher results than the shallow neural network.

•  LSTM achieved superior results than other models in datasets of different types and sizes. However, 
the determination of its’ structure could lead to inconsistent results.

•  Even though the XGBoost and GradBoost could not achieve results as high as LSTM, they produced 
more stable and data-independent results with low computational cost.

•  It has been determined that cross-validation could affect the results of all models on average 0.01-
0.20 R2 score, even though the XGBoost and GradBoost are data-independent. Therefore, cross-
validation is essential for the models to obtain more consistent and comparable results.

•  It was observed that the data feed without selection to SVR models caused not produce higher results 
than other considered models. Data minimization might increase the ability of SVR.

•  LR is still one of the superior methods for data with a linear relationship. However, the success of the 
model decreases drastically in complicated datasets.

AutoML approaches, which would become more widespread in parallel with the use of ML in every field 
of life, would be able to offer more effective uses considering the characteristics of the models in parallel 
with the results obtained in this study and to reduce the computational cost.
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4.6 Limitations of the Study

This study has limitations. Using two kernels for the Support Vector Regression, implementing fixed 
structures for deep LSTM, NN, and DNN, and optimizing the mentioned points could increase the obtained 
results by the models. Furthermore, considering the various k numbers in k-fold cross-validation technique 
might provide additional information for the analysis of the models’ behaviours. 

5. CONCLUSION

Comparing machine learning models is a challenging and complicated task due to a large number of 
models, excessively varied datasets, and different kinds of training strategies. 

In this study, we performed a total of 680 experiments using 15 different datasets. Ten benchmark 
machine learning models were trained with varied training strategies using three different train/test ratios 
of the hold-out method and five-fold cross-validation. 

The results obtained in this study have shown that each model has its unique weaknesses and strengths 
that could be considered in the regression implementations in order to determine the optimal model for a 
particular application.

Although it has a significant data dependency to produce consistent and optimal results, the recurrent 
neural network, deep LSTM, significantly outperformed other considered models almost in all experiments 
even though it is high-sensitive to the change of training data. 

Linear Regression is still an essential model for regression implementations, especially with highly 
correlated data. Tree-based ensemble models, particularly Gradient Boosting and Extreme Gradient Boosting, 
are the models that could achieve reliable and consistent results which are low-sensitive to the change of 
training data. On the other hand, neural-based models produced stable results but were not superior, and 
more training data is required for the deeper architectures. The support vector regression models achieved 
their superior results in the minimized number of attributes and instances; however, the data-dependency 
of the models complicated the implementation of the models.

It was observed that the different hold-out ratios do not significantly affect the model performances, and 
using a 60:40 hold-out is more beneficial to the models. However, training of the models with cross-
validation has a considerable impact on the prediction abilities, and the analysis should be performed not 
by considering fixed and randomized training ratios.
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SUPPORTING INFORMATION

S1 Table - All MSE results obtained in this study.

Results of 60%-40% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 2x10-6 3.1x10-6 1.7x10-5 2.5x10-5 2.4x10-5 2.4x10-4 1.8x10-5 0.2x10-7 1.1x10-7 5x10-8

WQR 0.0187 0.0187 0.0165 0.0170 0.0173 0.0030 0.0240 0.0151 0.0151 0.0162
WQW 0.0174 0.0153 0.0153 0.0160 0.0169 0.0002 0.0201 0.0120 0.0136 0.0122
RE 0.0046 0.0042 0.0060 0.0050 0.0055 0.0003 0.0091 0.0041 0.0067 0.0075
SPB 0.0253 0.0250 0.0373 0.0270 0.0277 0.0088 0.0230 0.0235 0.0220 0.0217
CCPP1 0.0033 0.0033 0.0035 0.0032 0.0037 0.0003 0.0040 0.0021 0.0026 0.0018
CCPP2 0.0031 0.0030 0.0035 0.0031 0.0036 0.0002 0.0038 0.0020 0.0026 0.0018
CCPP3 0.0032 0.0031 0.0035 0.0031 0.0036 0.0003 0.0039 0.0020 0.0024 0.0017
CCPP4 0.0032 0.0031 0.0038 0.0032 0.0036 0.0003 0.0037 0.0021 0.0028 0.0020
CCPP5 0.0035 0.0033 0.0035 0.0034 0.0004 0.0004 0.0038 0.0023 0.0028 0.0019
CON 0.0117 0.0079 0.0161 0.0128 0.0150 0.0006 0.0081 0.0041 0.0043 0.0032
DDFO 0.0011 0.0029 0 0.0001 4.4x10-5 0.0354 0.0134 0.0048 0.0185 0.0197
STM 0.0117 0.0171 0.0112 0.0134 0.0125 4.3x10-5 0.0135 0.0076 0.0072 0.0097
STP 0.0264 0.0329 0.0198 0.0266 0.0269 0.0825 0.0417 0.0246 0.0251 0.0259
TCPC Z1 0.0242 0.0240 0.0266 0.0268 0.0282 1.0x10-6 0.0095 0.0045 0.0201 0.0070
TCPC Z2 0.0208 0.0194 0.0253 0.0237 0.0260 6.0x10-6 0.0074 0.0031 0.0166 0.0053
TCPC Z3 0.0095 0.0085 0.0137 0.0115 0.0141 0.0001 0.0038 0.0017 0.0072 0.0024

Results of 70%-30% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 2.7x10-6 2.2x10-6 1.7x10-5 2.3x10-5 2.3x10-5 0.0007 1.7x10-7 1.0x10-8 1.2x10-7 5x10-8

WQR 0.0162 0.0169 0.0160 0.0160 0.0162 0.0003 0.0258 0.014 0.0163 0.0165
WQW 0.0160 0.0150 0.0150 0.0160 0.0169 0.0001 0.0218 0.0119 0.0135 0.0123
RE 0.0050 0.0050 0.0064 0.0053 0.0059 0.0008 0.0086 0.0049 0.0073 0.0083
SPB 0.0221 0.0191 0.044 0.0230 0.0238 0.0139 0.0230 0.0210 0.0192 0.0206
CCPP1 0.0033 0.0032 0.0034 0.0031 0.0036 0.0001 0.0036 0.0020 0.0026 0.0017
CCPP2 0.0031 0.0030 0.0037 0.0031 0.0036 0.0007 0.0038 0.0019 0.0025 0.0016
CCPP3 0.0032 0.0031 0.0035 0.0031 0.0035 0.0001 0.0038 0.0019 0.0024 0.0016
CCPP4 0.0032 0.0031 0.0036 0.0034 0.0036 0.0001 0.0033 0.0020 0.0028 0.0019
CCPP5 0.0034 0.0034 0.0036 0.0032 0.0039 0.0003 0.0034 0.0022 0.0027 0.0018
CON 0.0112 0.0084 0.0154 0.0123 0.0147 0.0028 0.0091 0.0041 0.0043 0.0034
DDFO 0.0009 0.0014 0 0.0001 4.1x10-5 0.033 0.0211 0.0026 0.0260 0.0233
STM 0.0138 0.0126 0.0116 0.0169 0.0164 9x10-6 0.0104 0.0093 0.0041 0.0070
STP 0.0219 0.0279 0.0201 0.0218 0.0214 0.2384 0.0496 0.0211 0.0268 0.0287
TCPC Z1 0.0243 0.0244 0.0267 0.0270 0.0286 7.0x10-6 0.0090 0.0040 0.0198 0.0062
TCPC Z2 0.0204 0.0191 0.0254 0.0239 0.0263 0.0001 0.0064 0.0020 0.0166 0.0049
TCPC Z3 0.0092 0.0081 0.0137 0.0115 0.0143 0.0001 0.0032 0.0015 0.0072 0.0023

Results of 80%-20% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.2x10-5 0.2x10-5 1.7x10-5 0.2x10-5 0.2x10-5 0.0001 0.1x10-6 0.2x10-7 0.1x10-6 0.4x10-7

WQR 0.0151 0.0163 0.0163 0.0159 0.016 0.0017 NA 0.0127 0.0159 0.015
WQW 0.0174 0.0165 0.0159 0.018 0.0183 0.0001 0.0177 0.0131 0.0134 0.0119
RE 0.0041 0.0039 0.0064 0.0046 0.0051 0.0006 0.0052 0.0038 0.0079 0.0085
SPB 0.0228 0.0225 0.0441 0.0247 0.0247 0.0276 0.023 0.0256 0.0159 0.0196
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Results of 80%-20% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

CCPP1 0.0032 0.0032 0.0035 0.0032 0.0036 0.0005 0.0032 0.0018 0.0025 0.0017
CCPP2 0.003 0.0028 0.0038 0.0031 0.0035 0.0002 0.0034 0.0018 0.0025 0.0017
CCPP3 0.0031 0.0029 0.0035 0.003 0.0034 0.0002 0.0035 0.0018 0.0024 0.0015
CCPP4 0.0034 0.0031 0.0036 0.0033 0.0036 0.0001 0.0037 0.002 0.0027 0.0016
CCPP5 0.0033 0.0032 0.0036 0.0034 0.0037 0.0001 0.003 0.002 0.0027 0.0016
CON 0.0096 0.0074 0.0144 0.0132 0.0169 0.0008 0.0061 0.0032 0.0052 0.0041
DDFO 0.0010 0.0019 0 0.0001 4.5x10-5 0.0332 0.0132 0.0028 0.0322 0.0322
STM 0.0131 0.0116 0.0135 0.0162 0.0149 4.7x10-5 0.0089 0.0086 0.0051 0.0079
STP 0.0182 0.0226 0.0209 0.0172 0.0177 0.2352 0.0482 0.0168 0.0251 0.0298
TCPC Z1 0.0241 0.0240 0.0266 0.0270 0.0286 0.0001 0.0069 0.0034 0.0202 0.0062
TCPC Z2 0.0204 0.0191 0.0254 0.0237 0.0262 5.3x10-6 0.0054 0.0023 0.0167 0.0048
TCPC Z3 0.0093 0.0079 0.0138 0.0115 0.0143 0.0032 0.0025 0.0013 0.0073 0.0023

Results of fi ve-fold cross-validation

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 2.04x10-6 3.3x10-6 3.2x10-5 4.4x10-5 4.1x10-5 2x10-4 8.9x10-8 5.3x10-7 1.09x10-7 4.6x10-9

WQR 0.0172 0.0174 0.0177 0.0176 0.0177 0.0024 0.0262 0.0171 0.0154 0.0150
WQW 0.0149 0.0139 0.0164 0.0164 0.0166 0.0001 0.0193 0.0148 0.0134 0.0111
RE 0.0060 0.0057 0.0066 0.0063 0.0068 0.0024 0.0075 0.0048 0.0047 0.0052
SPB 0.0187 0.0183 0.0276 0.0270 0.0279 0.0316 0.0285 0.0254 0.0197 0.0231
CCPP1 0.0033 0.0031 0.0036 0.0033 0.0037 0.0003 0.0035 0.0019 0.0027 0.0017
CCPP2 0.0033 0.0033 0.0036 0.0033 0.0037 0.0002 0.0034 0.0019 0.0026 0.0017
CCPP3 0.0033 0.0032 0.0036 0.0033 0.0037 0.0004 0.0036 0.0020 0.0027 0.0017
CCPP4 0.0032 0.0031 0.0036 0.0033 0.0037 0.0003 0.0036 0.0020 0.0026 0.0017
CCPP5 0.0033 0.0031 0.0036 0.0033 0.0037 0.0003 0.0035 0.0019 0.0026 0.0017
CON 0.0106 0.0067 0.0201 0.0215 0.0263 0.0021 0.0064 0.0195 0.0040 0.0029
DDFO 0.0015 0.0018 0 0.0002 0.0002 0.0436 0.0064 0.0047 0.0041 0.0038
STM 0.0101 0.0100 0.0105 0.0112 0.0104 0.2429 0.0100 0.0081 0.0064 0.0085
STP 0.0218 0.0247 0.0235 0.0226 0.0233 0.1017 0.0401 0.0229 0.0223 0.0247
TCPC Z1 0.0260 0.0237 0.1662 0.0289 0.0305 7.9x10-5 0.0079 0.0364 0.0201 0.0063
TCPC Z2 0.0201 0.0156 0.2067 0.0398 0.0449 9.0x10-5 0.0057 0.0392 0.0168 0.0049
TCPC Z3 0.0122 0.0069 0.1353 0.0202 0.0212 1.0x10-6 0.0029 0.0908 0.0071 0.0023

S2 Table - All MAE results obtained in this study.

Results of 60%-40% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.0011 0.0015 0.0031 0.0042 0.0039 0.0149 0.0002 0.0001 0.0002 0.0002
WQR 0.1064 0.1067 0.0999 0.0983 0.0988 0.0449 0.0979 0.0884 0.0978 0.0905
WQW 0.1032 0.0967 0.0966 0.1005 0.1008 0.0121 0.0902 0.0801 0.0911 0.0800
RE 0.0467 0.0443 0.0557 0.0501 0.0536 0.0003 0.0568 0.0424 0.0444 0.0504
SPB 0.1253 0.1200 0.1345 0.1315 0.1319 0.0784 0.1145 0.1181 0.1221 0.1205
CCPP1 0.0442 0.0442 0.0477 0.0451 0.0478 0.0141 0.0421 0.0329 0.0388 0.0299
CCPP2 0.0438 0.0436 0.0485 0.0447 0.0474 0.0126 0.0419 0.0330 0.0396 0.0308
CCPP3 0.0442 0.0447 0.0482 0.0448 0.0474 0.0150 0.0435 0.0325 0.0385 0.0306
CCPP4 0.0432 0.0433 0.0473 0.0446 0.0472 0.0137 0.0426 0.0327 0.0402 0.0315
CCPP5 0.0450 0.0438 0.0479 0.0456 0.0482 0.0176 0.0434 0.0331 0.0399 0.0308
CON 0.0844 0.0683 0.1000 0.0880 0.0954 0.0196 0.0606 0.0459 0.0475 0.0373
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Results of 60%-40% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

DDFO 0.0204 0.0403 0 0.0074 0.0051 0.1540 0.0852 0.0418 0.0789 0.0791
STM 0.0756 0.0734 0.0727 0.0657 0.0592 0.0050 0.0618 0.0554 0.0501 0.0540
STP 0.1127 0.1272 0.1028 0.1148 0.1153 0.1635 0.1479 0.1103 0.1132 0.1163
TCPC Z1 0.1220 0.1231 0.1340 0.1254 0.1316 0.0025 0.0483 0.0428 0.1111 0.0599
TCPC Z2 0.1152 0.1111 0.1304 0.1203 0.1287 0.0068 0.0417 0.0364 0.1019 0.0540
TCPC Z3 0.0756 0.0690 0.0931 0.0822 0.0926 0.0115 0.0300 0.0257 0.0639 0.0342

Results of 70%-30% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.0014 0.0012 0.0031 0.0041 0.0039 0.0215 0.0002 0.0001 0.0003 0.0002
WQR 0.0983 0.1024 0.0986 0.0962 0.0965 0.0132 0.0930 0.0869 0.1011 0.0908
WQW 0.0995 0.0960 0.0979 0.1008 0.1010 0.0080 0.0875 0.0790 0.0915 0.0796
RE 0.0468 0.0458 0.0566 0.0496 0.0531 0.0230 0.0541 0.0442 0.0471 0.0516
SPB 0.1170 0.1034 0.1369 0.1217 0.1219 0.0959 0.1281 0.1111 0.1140 0.1180
CCPP1 0.0446 0.0448 0.0474 0.0451 0.0478 0.0093 0.0406 0.0320 0.0388 0.0293
CCPP2 0.0438 0.0438 0.0480 0.0447 0.0475 0.0220 0.0410 0.0323 0.0390 0.0300
CCPP3 0.0440 0.0437 0.0483 0.0448 0.0472 0.0083 0.0424 0.0316 0.0380 0.0293
CCPP4 0.0444 0.0439 0.0475 0.0445 0.0473 0.0084 0.0432 0.0319 0.0406 0.0306
CCPP5 0.0447 0.0447 0.0480 0.0454 0.0482 0.0143 0.0398 0.0320 0.0394 0.0300
CON 0.0820 0.0693 0.0961 0.0856 0.0946 0.0480 0.0635 0.0446 0.0477 0.0362
DDFO 0.0197 0.0261 0 0.0085 0.0054 0.1502 0.0925 0.0366 0.0965 0.0987
STM 0.0751 0.0641 0.0737 0.0731 0.0667 0.0030 0.0580 0.0577 0.0439 0.0518
STP 0.1069 0.1177 0.1005 0.1084 0.1062 0.2384 0.1576 0.1057 0.1153 0.1232
TCPC Z1 0.1210 0.1217 0.1340 0.1256 0.1321 0.0077 0.0455 0.0398 0.1101 0.0569
TCPC Z2 0.1139 0.1087 0.1308 0.1205 0.1292 0.0094 0.0380 0.0330 0.1016 0.0517
TCPC Z3 0.0737 0.0674 0.0934 0.0820 0.0927 0.0095 0.0260 0.0235 0.0635 0.0338

Results of 80%-20% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.0012 0.0014 0.0031 0.0040 0.0039 0.0070 0.0002 0.0001 0.0003 0.0002
WQR 0.0929 0.0986 0.0984 0.0941 0.0946 0.0326 0.0939 0.0809 0.0997 0.0841
WQW 0.1030 0.1014 0.0988 0.1043 0.1045 0.0079 0.0768 0.0816 0.0914 0.0784
RE 0.0453 0.0442 0.0553 0.0482 0.0512 0.0195 0.0487 0.0423 0.0429 0.0439
SPB 0.1186 0.1076 0.1409 0.1218 0.1221 0.1077 0.1223 0.1219 0.1014 0.1015
CCPP1 0.0452 0.0444 0.0469 0.0453 0.0480 0.0175 0.0390 0.0309 0.0381 0.0289
CCPP2 0.0431 0.0418 0.0477 0.0442 0.0471 0.0102 0.0415 0.0309 0.0391 0.0304
CCPP3 0.0436 0.0425 0.0486 0.0444 0.0469 0.0123 0.0409 0.0306 0.0382 0.0279
CCPP4 0.0449 0.0426 0.0476 0.0447 0.0475 0.0081 0.0422 0.0313 0.0407 0.0294
CCPP5 0.0447 0.0433 0.0480 0.0452 0.0478 0.0055 0.0385 0.0311 0.0394 0.0285
CON 0.0748 0.0657 0.0929 0.0870 0.0984 0.0226 0.0498 0.0397 0.0504 0.0393
DDFO 0.0264 0.0300 0 0.0090 0.0058 0.1601 0.0839 0.0352 0.1225 0.1145
STM 0.0751 0.0620 0.0785 0.0722 0.0656 0.0064 0.0576 0.0549 0.0490 0.0513
STP 0.0981 0.1104 0.1031 0.0969 0.0949 0.2354 0.1593 0.0954 0.1124 0.1184
TCPC Z1 0.1217 0.1193 0.1340 0.1254 0.1321 0.0085 0.0391 0.0363 0.1112 0.0569
TCPC Z2 0.1129 0.1090 0.1308 0.1204 0.1291 0.0050 0.0340 0.0303 0.1025 0.0512
TCPC Z3 0.0731 0.0664 0.0938 0.0816 0.0927 0.0032 0.0233 0.0218 0.0640 0.0335
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Results of fi ve-fold cross-validation

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.0012 0.0015 0.0042 0.0055 0.0051 0.0105 0.0002 0.0004 0.0002 0.0002
WQR 0.1018 0.1015 0.1022 0.1007 0.1009 0.0367 0.0929 0.1013 0.0947 0.0834
WQW 0.0946 0.0921 0.0990 0.0989 0.0996 0.0082 0.0791 0.0952 0.0903 0.0749
RE 0.0513 0.0491 0.0562 0.0525 0.0563 0.0396 0.0530 0.0436 0.0441 0.0460
SPB 0.1036 0.1052 0.1298 0.1301 0.1328 0.1421 0.1292 0.1244 0.1082 0.1157
CCPP1 0.0449 0.0435 0.0481 0.0450 0.0479 0.0131 0.0406 0.0311 0.0392 0.0295
CCPP2 0.0444 0.0445 0.0480 0.0450 0.0479 0.0101 0.0411 0.0309 0.0389 0.0295
CCPP3 0.0443 0.0437 0.0480 0.0450 0.0479 0.0158 0.0401 0.0313 0.0392 0.0292
CCPP4 0.0441 0.0433 0.0481 0.0450 0.0479 0.0137 0.0411 0.0313 0.0391 0.0297
CCPP5 0.0444 0.0430 0.0480 0.0450 0.0479 0.0132 0.0404 0.0308 0.0389 0.0294
CON 0.0797 0.0617 0.1113 0.1094 0.1178 0.0352 0.0514 0.1024 0.0461 0.0350
DDFO 0.0254 0.0233 0 0.0082 0.0077 0.1609 0.0607 0.0449 0.0035 0.0424
STM 0.0701 0.0573 0.0662 0.0618 0.0544 0.3953 0.0535 0.0549 0.0523 0.0537
STP 0.1076 0.1121 0.1100 0.1079 0.1095 0.2033 0.1461 0.1099 0.1116 0.1135
TCPC Z1 0.1250 0.1212 0.1364 0.1320 0.1364 0.0077 0.0416 0.0149 0.1109 0.0571
TCPC Z2 0.1124 0.1001 0.1621 0.1530 0.1643 0.0079 0.0349 0.1522 0.1025 0.0516
TCPC Z3 0.0850 0.0614 0.1070 0.11209 0.1133 0.0032 0.0252 0.1406 0.0636 0.0340

S3 Table - All R2 scores obtained in this study

Results of 60%-40% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.9999 0.9999 0.9995 0.9993 0.9994 0.997 0.9999 1 1 1
WQR 0.2164 0.2133 0.3423 0.2923 0.2759 0.8791 0.042 0.367 0.3551 0.3074
WQW 0.34 0.3265 0.2806 0.2742 0.2666 0.9661 NA 0.4731 0.3753 0.4392
RE 0.6755 0.6943 0.5705 0.6401 0.6019 0.9971 0.513 0.7026 0.623 0.5796
SPB 0.4654 0.4735 0.3333 0.4195 0.416 0.9038 0.3398 0.505 0.4859 0.491
CCPP1 0.936 0.9347 0.9316 0.936 0.9283 0.9937 0.9219 0.9592 0.9486 0.965
CCPP2 0.9405 0.9414 0.9248 0.9395 0.9317 0.9947 0.9256 0.9616 0.9485 0.9652
CCPP3 0.9374 0.9392 0.932 0.9383 0.9305 0.9934 0.9246 0.9608 0.9529 0.9667
CCPP4 0.9371 0.9394 0.9298 0.9371 0.9298 0.9941 0.9288 0.958 0.9449 0.9608
CCPP5 0.93 0.9341 0.9224 0.9304 0.9225 0.9905 0.9252 0.9546 0.9447 0.963
CON 0.7081 0.8018 0.6166 0.6799 0.6239 0.9895 0.8037 0.8983 0.8975 0.9237
DDFO 0.9728 0.9258 1 0.9976 0.9989 0.547 0.5724 0.8783 0.648 0.6261
STM 0.8135 0.7259 0.7658 0.7855 0.7997 0.9998 0.6935 0.879 0.8452 0.791
STP 0.1648 NA 0.2656 0.1547 0.1483 0.6560 NA 0.2207 0.1991 0.1733
TCPC Z1 0.2924 0.2980 0.2293 0.2179 0.1770 0.9994 0.7244 0.8668 0.4167 0.7967
TCPC Z2 0.3519 0.3958 0.2163 0.2611 0.1896 0.9977 0.7718 0.9010 0.4868 0.8352
TCPC Z3 0.6210 0.6616 0.4553 0.5385 0.4373 0.9941 0.8465 0.9285 0.7129 0.9053

Results of 70%-30% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.9999 0.9999 0.9995 0.9993 0.9994 0.9916 0.9999 1 1 1
WQR 0.3149 0.2854 0.2743 0.3184 0.3141 0.9867 NA 0.4052 0.3436 0.3376
WQW 0.2868 0.332 0.3393 0.2594 0.2482 0.9829 NA 0.469 0.3742 0.4309
RE 0.644 0.6431 0.5534 0.618 0.5827 0.9914 0.548 0.6511 0.598 0.5442
SPB 0.4499 0.5251 0.2986 0.4224 0.4121 0.8401 0.3265 0.4778 0.2602 0.2055
CCPP1 0.9355 0.9366 0.9329 0.9382 0.9283 0.9967 0.93 0.9611 0.9484 0.9657
CCPP2 0.9393 0.9416 0.926 0.939 0.9299 0.9888 0.928 0.9626 0.9509 0.9676
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Results of 70%-30% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

CCPP3 0.9386 0.9406 0.9315 0.9384 0.9313 0.9975 0.9254 0.9634 0.954 0.9688
CCPP4 0.9377 0.9392 0.9282 0.9302 0.9309 0.9974 0.934 0.9614 0.9442 0.9629
CCPP5 0.9311 0.9323 0.9299 0.9367 0.922 0.9935 0.9334 0.9562 0.9447 0.9645
CON 0.7201 0.7895 0.6352 0.7001 0.63 0.9491 0.7763 0.8959 0.8969 0.9173
DDFO 0.9654 0.9447 1 0.9953 0.9983 0.612 0.4377 0.895 0.5782 0.6214
STM 0.802 0.8201 0.7816 0.7575 0.7655 1 0.7395 0.8668 0.9095 0.847
STP 0.1938 NA 0.316 0.199 0.2147 0.2384 NA 0.2243 0.1637 0.106
TCPC Z1 0.2942 0.2919 0.2305 0.2160 0.1715 0.9973 0.7364 0.8820 0.4224 0.8177
TCPC Z2 0.3656 0.4060 0.2179 0.2594 0.1848 0.9959 0.8027 0.9136 0.4881 0.8462
TCPC Z3 0.6373 0.6781 0.4540 0.5442 0.4376 0.9962 0.8740 0.9398 0.7141 0.9081

Results of 80%-20% Hold-Out

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.9999 0.9999 0.9995 0.9994 0.9994 0.9991 1 1 1 1
WQR 0.3386 0.2887 0.3394 0.3063 0.3007 0.9307 NA 0.4447 0.3422 0.3799
WQW 0.2889 0.3262 0.2743 0.2634 0.2525 0.9821 0.1642 0.4651 0.3774 0.45
RE 0.7173 0.7269 0.5535 0.6802 0.647 0.994 0.59 0.7353 0.5705 0.5346
SPB 0.4536 0.4613 0.2986 0.4068 0.4079 0.6452 0.2425 0.3864 0.2168 0.2155
CCPP1 0.9367 0.9371 0.933 0.9374 0.9292 0.9885 0.9383 0.9644 0.9508 0.9674
CCPP2 0.9423 0.9445 0.926 0.9402 0.932 0.9965 0.9346 0.9654 0.9513 0.9672
CCPP3 0.9401 0.9426 0.9315 0.9407 0.9329 0.995 0.9351 0.9659 0.954 0.9729
CCPP4 0.9334 0.939 0.9282 0.9353 0.9281 0.9977 0.9287 0.9697 0.9464 0.9682
CCPP5 0.9329 0.9362 0.93 0.9319 0.9244 0.9985 0.9405 0.9598 0.946 0.9684
CON 0.7658 0.8194 0.6331 0.6778 0.5866 0.9866 0.8502 0.9217 0.8631 0.8939
DDFO 0.9693 0.9448 1 0.9967 0.9987 0.6944 0.6058 0.9185 0.5742 0.575
STM 0.8104 0.8305 0.7543 0.7654 0.7837 0.9998 0.7398 0.8759 0.8936 0.8343
STP 0.0743 NA 0.3314 0.1249 0.1019 NA NA 0.1484 0.2456 0.1062
TCPC Z1 0.3091 0.3107 0.2297 0.2234 0.1785 0.9954 0.7974 0.9012 0.4140 0.8181
TCPC Z2 0.3677 0.4085 0.2187 0.2659 0.1911 0.9981 0.8330 0.9286 0.4855 0.8512
TCPC Z3 0.6375 0.6908 0.4493 0.5525 0.4433 0.9992 0.8978 0.9471 0.7113 0.9076

Results of fi ve-fold cross-validation

Dataset NN DNN LR SVRBF SVRL deep LSTM DT RF GradBoost XGBoost

AQ 0.9999 0.9999 0.999 0.9985 0.9987 0.9975 1 1 1 1
WQR 0.3441 0.3359 0.29 0.2937 0.2876 0.8951 0.0078 0.3166 0.4137 0.4265
WQW 0.3211 0.3656 0.2458 0.245 0.2343 0.9798 0.1284 0.3175 0.3897 0.4936
RE 0.6181 0.6387 0.5851 0.6063 0.5704 0.9744 0.521 0.6993 0.7202 0.6757
SPB 0.5623 0.5818 0.416 0.4039 0.3852 0.6413 0.3716 0.4869 0.5881 0.5059
CCPP1 0.935 0.9385 0.9285 0.936 0.9279 0.9938 0.9307 0.962 0.9479 0.9658
CCPP2 0.936 0.9359 0.9285 0.9361 0.928 0.9963 0.9329 0.9624 0.9485 0.966
CCPP3 0.9362 0.938 0.9285 0.9361 0.9279 0.9917 0.9299 0.9617 0.948 0.9665
CCPP4 0.9367 0.9387 0.9286 0.9361 0.928 0.9934 0.9289 0.9615 0.9482 0.9659
CCPP5 0.9359 0.9393 0.9285 0.9361 0.9279 0.9943 0.9308 0.9629 0.9484 0.9665
CON 0.7566 0.8463 0.461 0.4371 0.3556 0.9644 0.8536 0.5864 0.907 0.9303
DDFO 0.9522 0.9499 1 0.9859 0.9909 0.5413 0.7707 0.8251 0.8744 0.8826
STM 0.8032 0.8099 0.7928 0.7853 0.8035 0.1992 0.8116 0.8398 0.8758 0.8332
STP 0.2424 0.1480 0.1291 0.1731 0.1525 0.5778 NA 0.1459 0.2266 0.1097
TCPC Z1 0.2725 0.3146 0.1197 0.0903 0.0492 0.9972 0.7718 0.0041 0.4173 0.8169
TCPC Z2 0.3529 0.4092 0.0040 0.0841 0.0380 0.9966 0.8229 NA 0.4812 0.8479
TCPC Z3 0.6307 0.6963 0.0034 0.0764 0.0510 0.9992 0.8823 0.1584 0.7161 0.9071
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