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ABSTRACT

Relational extraction plays an important role in the field of natural language processing to predict semantic 
relationships between entities in a sentence. Currently, most models have typically utilized the natural 
language processing tools to capture high-level features with an attention mechanism to mitigate the adverse 
effects of noise in sentences for the prediction results. However, in the task of relational classification, these 
attention mechanisms do not take full advantage of the semantic information of some keywords which have 
information on relational expressions in the sentences. Therefore, we propose a novel relation extraction model 
based on the attention mechanism with keywords, named Relation Extraction Based on Keywords Attention (REKA). 
In particular, the proposed model makes use of bi-directional GRU (Bi-GRU) to reduce computation, obtain the 
representation of sentences , and extracts prior knowledge of entity pair without any NLP tools. Besides the calculation 
of the entity-pair similarity, Keywords attention in the REKA model also utilizes a linear-chain conditional random 
field (CRF) combining entity-pair features, similarity features between entity-pair features, and its hidden 
vectors, to obtain the attention weight resulting from the marginal distribution of each word. Experiments 
demonstrate that the proposed approach can utilize keywords incorporating relational expression semantics 
in sentences without the assistance of any high-level features and achieve better performance than traditional 
methods.

© 2022 Chinese Academy of Sciences. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license.
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1. INTRODUCTION

Abundant data on the Web are generated and shared every day, thus the relational facts of subjects 
(entities) in the text are often utilized to represent the text information to capture associations among those 
data. Generally, triples are utilized to represent entities and their relations which often indicate unambiguous 
facts about entities. For example, a triple (e1, r, e2) denotes that entity e1 has a relation r with another entity 
e2. Knowledge graphs (KG) such as FreeBase [1] and DBpedia [2] are real examples of such representations 
in the triple form. 

Relation extraction is a sub-task of natural language processing (NLP) that can discover relations between 
entity pairs and given unstructured text data. Previous work in the area of relation extraction from text 
heavily depends on kernel and feature methods [3]. Recent research studies utilize data-driven Deep Neural 
Networks (DNNs) methods to eliminate RE of the conventional NLP approaches since these DNN-based 
methods [4–6] can automatically learn features instead of manually designed features based on the various 
NLP tool-kits. Most of them surpassed the traditional methods and achieved excellent results for the RE 
tasks. Among them, both DNNs-based supervised and distant supervision methods are the most popular 
and reliable solutions for RE but have their own characteristics. Supervised methods have better performance 
for the specific domain, while distant supervision methods have better performance for generic domains. 
Therefore, it is difficult to specify which kind of the above two methods are the best. Hence, the following 
part introduces the DNN-based supervised methods in detail according to the research of the paper.

According to the structure of DNNs, DNN-based Supervised RE usually is classified into various types 
such as CNN [6–10], RNN [5, 11, 12], or Mix structure. In addition, some variant RNN networks have 
been developed in RE systems such as the Long Short Term Memory network ( LSTM ) [13–15], and Gated 
Recurrent Unit ( GRU ) [16]. Each kind of DNN has its own characteristics and advantages in dealing with 
various language tasks. For example, due to the parallel processing ability, the CNNs are good at addressing 
local and structural information, but rarely capture global features and time sequence information. Instead, 
RNNs, LSMTs, and GRUs, which are suitable for modeling sequence and problem transformation, can 
alleviate these problems that CNNs cannot overcome. 

However, these structural RNNs-based methods have a common drawback which is that many external 
artificial features are introduced without an effective feature filter mechanism [17]. Therefore, the semantic-
oriented approaches are utilized to improve the ability of semantic representation via capturing the internal 
association of text and the attention mechanisms. To alleviate the influence of word-level noise within 
sentences, many efforts have been devoted to getting rid of irrelevant words [18–21], especially, the recent 
state-of-the-art attention-based methods such as [19, 22, 23].

Although the inner-sentence noise can be alleviated by the attention mechanisms with the caculation of 
weights for the each word independently, there are some information for better extraction through some 
continuous words such as phrases. Yu et al.[24] proposes an attention mechanism based on the conditional 
random fields (CRF), which incorporates such keywords information into the neural relation extractor. 
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Compared with other strong feature-based classifiers and all baseline neural models, the CRF mechanism 
is important for this model to construct a better attention weight. 

Based on the above analysis, we propose a novel relation extraction model based on the attention 
mechanism with keywords, named Relation Extraction Based on Keywords Attention (REKA) , which 
incorporates an attention mechanism based on the keywords-identifiable of relation that is similar to the 
segments in the [24]. Different from the model in [24], our model makes use of bi-directional GRU (Bi-
GRU) to reduce computation without any NLP tools. In particular, the CRF attention mechanism includes 
two components: entity pair attention and segment attention.

The proposed entity pair attention means adding additional weight to the entity part of the dataset so 
that it plays a more decisive role when entering the code. The proposed segment attention is assumed that 
each sentence has a binary sequence of states corresponding to it and that each state variable in the 
sequence corresponds to a word in the sentence. This binary state variable indicates whether the 
corresponding word is related to the relation extraction task with 0 and 1, respectively. Inspired by the [24], 
we utilized a linear-chain CRF incorporating segment attention to obtain the marginal distribution of each 
state variable as an attention weight. 

To summarize, the contributions of the proposed REKA model are shown as follows:

•  Propose a novel Bi-GRU model based on an attention mechanism with keywords to handle the 
relation extraction. 

•  Both entity pair similarity features and segment features are incorporated in the proposed attention 
mechanism with keywords.

• Achieves state-of-the-art performance without any other NLP tools assistance. 
• Be more interpretable than the original Bi-GRU model.

2. RELATED WORK

2.1 RNN-Based Relation Extraction Models

Recently, relation extraction research focuses on extracting relational features with neural networks[25–27]. 
Zhang et al. [28] claimed that RNN-based relation extraction models have better performance than that 
the CNN-based models since CNN’s can only obtain the local features, but RNNs are good at learning 
long-distance dependency between entities. Afterward, LSTM [15] is proposed by using the gate mechanism 
to solve the problem of gradient explosion in RNN models. Based on this, Xu et al. [5] propose a model 
with LSTM via the shortest dependency path (SDP) between entities, named the SDP-LSTM model, in which 
there are four types of information, including Word vectors, POS tags, Grammatical relations, and WordNet 
hypernyms, to support external information. To address the problem of shallow architecture difficultly 
represented by the potential space in different network levels, Xu et al. [29] can obtain the abstract features 
along the two sub-paths of SDP. 
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Since dependency trees are directed graphs, it is necessary to identify whether the relation implies the 
reverse direction or the first entity is related to the second entity. Therefore, the SPD is divided into two 
sub-paths, each directed from the entity towards the ancestor node. However, one-directional LSTM models 
lack representation of the complete sequential information. Thus, the bidirectional LSTM model (BiLSTM) 
is utilized by Zhang et al. [30] to obtain the sentence level representation with several lexical features. The 
experimental results demonstrate word embedding as an input feature alone is enough to achieve excellent 
results. However, the SDP can filter the input text but has no extracted features. To address this issue, the 
attention mechanism is introduced for BiLSTM-based RE[31].

2.2 Attention Mechanisms for Relation Extraction

Since useful information can be presented anywhere in the sentence, some researchers recently have 
presented attention-based models which can obtain the important semantic information in a sentence. 

Zhou et al. [31] propose the attention mechanism in BiLSTM, which automatically got the important 
features only with the raw text. Similar to the work of Zhou et al. [31], Xiao et al. [32] propose a two-level 
BiLSTM architecture based on a two-level attention mechanism to extract a high-level representation of the 
raw sentence. 

Although the attention mechanism is used to capture the important features extracted by the model, [31] 
just presents a random weight without the consideration of prior knowledge. Therefore, EAtt-BiGRU 
proposed by Qin et al. [33] leverages the entity pair as prior knowledge to form attention weight. Different 
from Zhou et al.’s [31] work, EAtt-BiGRU applies bi-directional GRU (Bi-GRU) to reduce computation, 
capture the representation of sentences and adopt a GRU to extract prior knowledge of entity pairs. Zhang 
et al. [34] propose a Bi-GRU model based on another attention mechanism with the SDP for the prior 
knowledge, extracting sentence-level features and attention weights. Nguyen et al. [35] have proposed to 
use a special attention mechanism and introduced dependency analysis that takes into account the 
interconnections between potential features. 

With the proposed BERT model, which has achieved excellent performance on various NLP tasks, more 
and more studies have started to try to use the BERT model in search matching tasks and achieved very 
good results. In the latest study on pre-trained models, Wei et al. [36] achieved high metric scores using 
BERT. Although the BERT model has excellent encoding ability and can fully capture the semantic information 
of the context in the sentence, it still has problems such as high training costs and long prediction time. 

Our model is inspired by Lee et al. [22], but different from the previous works that can only get word-
level or sentence-level attention and rarely obtain the degree of correlation between entities and other 
related words, our model utilizes Bi-GRU instead of BiLSTM to reduce computation. Meaning while, 
inspired by the attention model designed by Yu et al. [24] for the relation extraction, which is capable of 
learning phrase-like features and capturing reasonably related segments as relational expressions based on 
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the CRF, we propose a novel attention mechanism combining the entity pair attention with the segment 
attention via CRF together.

Although the above methods provide a solid foundation for the research of supervised RE, there are still 
limitations among them. For example, the insufficient training corpus puzzles the further development of 
the supervised RE. Therefore, Mintz et al. [37] propose a distant supervision approach strongly based on 
an assumption in the selection of training examples. Distant supervision methods also achieved excellent 
results for the RE [38–40]. However, it also has some drawbacks, for example, the noise in the data sets is 
obvious. Thus, it is difficult to demonstrate which two kinds of above methods are currently the best. Hence, 
we just research the supervised methods in this paper.

3. METHODOLOGY

The proposed REKA model consists of four components, the structure of which is shown in Figure 1, and 
the role of each layer is as follows:

• The input layer that contains word vector information and location information.
• The self-attention layer that processes the word vectors to obtain word representations.
• To obtain contextual information about each word in a sentence The Bi-GRU layer is used.
•  The keyword-attention layer extracts the key information in the sentence and passes it to the final 

classification layer.

Figure 1. The systematic architecture of the REKA model.
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3.1 Input Layer

The REKA model’s input layer is designed to transform the original input of the sentence into an embedding 
vector containing various feature information, where the input sentences are denoted by {w1, w2, …, wn} 

and { }1 2, , ,j j je e e
np p p…  is a vector of the relative position features information of every word to the entity pair 

ej{1,2}.

To further enhance the model’s ability to better capture the semantic information in sentences, a pre-
training model of embedded language models (ELMo) [43] word embedding is utilized in this paper, which 
proposes a better solution for multiple meanings of words, unlike the previous work of word2vec by 
Mikolov et al. [41] and GloVe by Pennington et al. [42], in which one word corresponds to a vector that 
is stationary. 

ELMo is a real trained model, in which a sentence or a paragraph is fed into and inferred the word vector 
corresponding to each word based on the context. One of the obvious benefits of ELMo is that the multiple-
meaning words can be understood in the context of the preceding and following words. 

After the word embedding process, {x1, x2, …, xn} is the dw dimensional vector and input into the next 
layer as the position feature vector.

3.2 Multi-Head Attention Layer

Although this paper makes use of non-fixed word vectors in the input layer, we use the Multi-Headed 
Attention (MHA) mechanism to process the output vectors in the input layer to help the model further 
understand the deep semantic information in the sentences and to address the problem of long-term 
dependencies. MHA is a special kind of self-attention mechanism [17, 19], in which the symmetric similarity 
matrix of the sequences can be constructed from a sequence of word vectors resulting from the input layer.

As shown in Figure 2, given a key K, a queries Q, and a value V, the multi-head attention module will 
execute the attention h times, the calculation process uses the following equation (1–3):

Figure 2. A sample of Multi-Head Attention [17]
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  1Concat[ ]head ; ;headMultiHead ( , , ) MQ K V W r…=  (1)

 ( )where  head  Attention , ,Q K V
i i i iW Q W K W V=  (2)

 Attention ( , , ) softmax
w

QK
Q K V V

d

⎛ ⎞
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=
�

 (3)

here / / /, , ,w w w w w w w wd d d r d d r d d r dM Q K V
i i iW W W W× × × ×∈ ∈ ∈ ∈R R R R  is the trainable parameter, WM is the 

   sc  aled dot-product attention calculation when calculated and connected in series, Wi
Q, Wi

K, Wi
V is query, 

key and value of ith head, respectively [17].

The inputs Q, K, V are all equal to the word embedding vector {x1, x2, ..., xn} in the multi -head attention[17]. 
The output of the MHA self-attention is a sequence of features with information about the context of the 
input sentences.

3.3 Bi-GRU Network

The Bi-GRU network layer was used to obtain semantic information in sentences about the output 
sequence of the MHA self-attentive layer. As shown in Figure 3, GRU optimizes the LSTM by retaining only 
two gate operations including a new gate and a reset gate, thus its units, therefore, have fewer parameters 
and converge faster than LSTM units.

Figure 3. The GRU unit

The GRU unit’s processing of mi is represented in this paper for simplicity as GRU(mi). Therefore, the  
equation (4–6) for calculating the contextualized word representation is obtained as follows:

 ( )t th GRU m=
��� �������

 (4)

 ( )t th GRU m=
��� �������

 (5)

 ; ][t t th h h=
��� ���

 (6)
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The input M resulting from the MHA self-attention layer is fed into the Bi-GRU network step by step. To 
simultaneous use of past and future feature information at a given time step, we connect the hidden state 

of the forward GRU network d
t hh ∈
���
R  with the hidden sta te of the backward GRU network d

t hh ∈
���
R  at 

each step.

Where dh is used to denote the  hidden state of the GRU network unit dimension, {h1, h2, ..., hn} is denoted 
the hidden  state vector of each word, The arrow represents the direction of the GRU unit.

3.4 Keywords Attention based on CRF

Although attention mechanisms have achieved state-of-the-art results in a variety of NLP tasks, most of 
them do not fully exploit the keywords information in the sentences. This is because keywords usually refer 
to important words for solving relational extraction tasks, and the performance of the models would be 
improved if information about these keywords could be exploited.

The goal of the attention mechanism with keywords proposed in this paper is to assign more reasonable 
weights to the hidden layer vectors, where attention weights are also a set of linear combinations of scalars. 
A more reasonable weight assignment indicates that the model pays more attention to the more important 
words in the sentence compared to other words, and all the weights in this attention mechanism with 
keywords take values between 0 and 1. 

However, there is a different approach to the calculation of the weights between the traditional attention 
mechanisms and the proposed model. In particular, the proposed model defines a state variable z for each 
word in the sentence, it means that the word corresponding to z is irrelevant to the relational classification 
of this sentence when z equals 0, and vice versa if z equals 1. Thus, each sentence of the input model has 
a corresponding sequence of z. From the above description, the expected value of a hidden state N, the 
probability of its corresponding word, will be selected and calculated as the following equation (7):

 ( )1 ii
p zi =∑= HN h  (7)

In order to calculate the p(zi = 1|H), the CRF is introduced here to calculate the sequence of weights 
for the hidden sequence vectors H = {h1, h2, ..., hn}, where H represents the input sequence and hi represents 
the hidden output of the GRU layer for the i th word in the sentence. CRF provides a calculation of transfer 
probabilities for the computation of conditional probabilities in between sequences.

The linear-chain CRF defines a range of conditional probability p(zi = 1|H) given H with the following 
definition (8–9):

 ( )1
( ) ,

( ) c C

p
Z

ψ
∈

= ∏ cz H z H
H

 (8)

 ( )( ) ,
c C

Z ψ
′ ∈∈

′= ∑ ∏ c
z

H z H
Z

 (9)
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Where  is the set of state sequences, Z(H) denotes the normalization constant and ZC is the subset of 
z given by individual clique c, y(ZC, H) is the potential function of this clique. It is defined by the following 
equation (10):

 ( ) ( ) ( )
1

1 2 1
1 1

, , ,
n n

i i i i
c C i i

z z zψ ψ ψ
−

+
∈ = =

=∏ ∏ ∏cz H h  (10)

For feature extraction, the feature extractor makes use of two types of feature functions, the vertex feature 
function y1(zi, H), the edge feature function y2(zi, zi+1). y1 represents the mapping of the output h of GRU 
to the state variable z, and y2 simulates the transition of two state variables at adjacent time steps. The 
equations for their definitions are shown as the following equation (11–13) respectively:

 ( ) ( )1 1 2, exp H E
iz F F bψ = + +H W W  (11)

 1

2 1 21 2 2 1 2[ ; ; ; ;  [ ; ;] ];e
i e e eiF h h t F h t h tp= =  (12)

 ( ) ( )12 1 ,, exp
i i

t
i i z zz zψ

++ = W  (13)

Where WH and WE are trainable parameters, b is a trainable bias term. They calculate the contextual 
information as a feature score for each state variable, which takes advantage of the entity location features 

1 2e e
i ip p  as well as keyword features embedded vectors (entity pair hidden similarity features t1, t2, and entity 

pair features 
1 2
,e eh h ).

For the hidden vector output by the words after the Bi-GRU layer, the CRF keyword attention mechanism 
performs soft selection by assigning higher weights to the words in the sentence that are more relevant to 
the classification. The processing of the sentence by the CRF keywords attention mechanism is shown in 
Figure 4, The CRF keyword attention in the figure assigns different weights to each word with an example 
sentence “The boy ran into the school cafeteria”. In addition to the two entity words “boy” and “cafeteria”, 
“into” in the sentence was also assigned a higher weight relative to the other words, due to the fact that a 
is the word associated with the relational classification.

Figure 4. CRF keywords attention mechanism architecture shown with an example sentence “The boy ran into the school 
cafeteria”.
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Entity position feature: The proposed attention mechanism with keywords in this paper not only obtains 
word embedding features but also incorporates position embedding features.

In order to represent contextual information as well as the relative location features of entities 1 2,e e
i ip p , 

this paper connects them with the output of their corresponding hidden layers hi, as shown by F1 in Equation 

12. There is a definition such as , ,
i nctxt cand ctxt candy y y y⋅ ⋅… .

Positional vectors ar  e similar to word embedding in that it transforms a relative positional scalar into a 
feature embedding vector by traversing through the embedding matrix (2 1)pd L

posW × −∈R , where L is the 
maximum sentence length, dp is the dimension of the position vector.

Entity hidden similarity features: Extracting entity hidden similarity features as entity features are used to 
replace the traditional entity feature extraction method in this paper, thus avoiding the use of traditional 
NLP tools, and its calculation process is defined as shown in Equation (14–15).

 
( )

( )
1

exp

exp

j

j

e i
j
i K

e k
k

h c
a

h c
=

⎛ ⎞
⎝ ⎠

=
⎛ ⎞
⎝ ⎠∑

�

�
 (14)

 {1,2}
1

K
j

j i i
i

t a c∈
=

= ∑  (15)

In this paper, entities are categorized according to their similarity to their hidden vectors. 2 hd Kc ×∈R  
denotes a potential vector constructed to represent the classes of similar entities, where K is a hyperparameter 
representing the number of classes in which entities are classified by their hidden similarity.

The j th entity hidden similarity feature t j is calculated by weighting the similarity of c with the hidden 
layer output 

jeh  based on the j th entity.

Entity features are structured by cascading the hidden states corresponding to the entity locations and 
the potential type representation of the entity pair, shown as F2 in Equation (12).

3.5 Classification Layer

To compute the probability p of the output distribution of the state variable, A softmax layer has been 
added after the keyword attention layer, which is shown in Equation 16.

 ( )( ) y yp y b= +N W Nsoftmax  (16)

Of which |R| is the number of relationship categories, byR|R| is a biased term, Wy that maps the expected 
value of the hidden state N to the feature score of the relational label.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/4/3/552/2038412/dint_a_00147.pdf by guest on 07 Septem
ber 2023



562 Data Intelligence

Bi-GRU Relation Extraction Model Based on Keywords Attention

3.6 Training

The proposed keywords attention is calculated concerning the cross-entropy loss of the relation extraction. 
This loss function is defined as shown in Equation 17.

 ( )
| |

( ) ( )

1

log ,
D

i i

i

p y S θ
=

= −′ ∑L  (17)

Where |D| is the size of the training data dataset and (S(i), y(i)) is the i th sample in the dataset. The AdaDelta 
optimizer is utilized to minimize the loss calculation parameter h in this paper. 

To prevent overfitting, L2 regularisation is added to the loss function, where l1, l2 are the hyperparameters 
of the regularisation. The second regularizer attempts to compel the model to process a small number of 
significant words and returns a sparse weight distribution. The resulting objective function L is shown in 
Equation 18.

 ( )2
1 22

1
n

i
i

p zλ θ λ= + + =′ ∑ HL L  (18)

4. EXPERIMENTS

4.1 Dataset and Metric

To evaluate the experiment, we used the SemEval-2010 Task 8 dataset for our experiment, SemEval-2010 
Task 8 dataset is a benchmark dataset that is widely used in the field of relationship extraction. The dataset 
has 19 relationship types, including nine directional relationships and others. As shown in Table 1. 

Table 1. Types of relationships in the dataset and their percentages.

Type
Number Rate

Training Testing Training Testing

Other 454 1410 17.63 16.71
Cause-Effect 328 1003 12.54 12.07
Component-Whole 312  941 11.76 11.48
Entity-Destination 292  845 10.56 10.75
Product-Producer 261  717  8.96  9.61

Entity-Origin 258  716  8.95  9.50

Member-Collection 233  690  8.63  8.58
Message-Topic 231  634  7.92  8.50
Content-Container 192  540  6.75  7.07
Instrument-Agency 156  504  6.30  5.74

The dataset includes 10717 sentences, of which 8000 samples were used for training and other 2717 
samples for testing. The evaluation metrics used here are the macro averaged F1 score based, which is the 
official evaluation metric of the dataset.
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4.2 Implementation Details

In this paper, a publicly available pre-trained EMLo model is used to initialize the word embeddings in 
the REKA model, and the other weights in the model are initialized randomly using the zero-mean Gaussian 
distribution, the relevant hyperparameters are shown in Table 2, The grid search was used for the selection 
of regularised coefficient values for l1 and l2 from 0 to 0.2.

Table 2. Hyperparameters of our model.

Hyper-parameter Description Value

dropout rate

Keyword attention layer 0.5
Bi-GRU layer 0.6

Word embedding layer 0.8
Multi-head attention layer 0.8

l1 Regularization coeffi cient [0, 0.2]
l2

r Number of Heads 4
batch size Size of mini-batch 50
r1 Initial learning rate 4
dr The decay rate of leaming 0.5
da Size of attention layer 50
dh Size of hidden layer 512
K Number of the similar entities’ classes 4
dp Size of position embeddings 50

4.3 Comparison Models

The proposed REKA model is to be compared with the below benchmark model.

(1)  SVM: The SVM [44] is a Non-Neural Model, which achieves top results in the SemEval-2010 task, 
but it uses a lot of handcrafted and computationally intensive features such as WordNet, ProBank, 
FrameNet, etc.

(2)  MV-RNN. The MV-RNN [45] is an SDP-based model, SDP is a semantic structural feature in 
sentences. Models with SDP can be iterated along the shortest dependency path between entities.

(3)  CNN. The CNN [4] is an end-to-end model on the SemEval-2010 task, which means that the data 
from the input end is directly obtained from the output end. This model builds a convolutional 
neural network to learn the feature vector of sentence level.

(4)  BiLSTM. The BiLSTM [30] is proposed to obtain sentence-level representations on the SemEval-2010 
task with bidirectional long short-term memory networks. It is the classic RNN-based relation 
extraction model.

(5)  DepNN. The DepNN [46] employs an RNN to model subtrees and a CNN to capture features on 
the shortest path in sentences.
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(6)  FCM. The FCM [45] decomposes each sentence into sub-structures, then extracts their features 
separately and finally merges them into the classification layer.

(7)  SDP-LSTM. The SDP-LSTM [5] employs the long short term memory (LSTM) to capture features along 
the shortest dependency path (SDP). The model is a convolutional neural network for classification 
by ranking and uses a loss function with pairwise rank.

(8)  Purely self-attention [47]. Only a self-attentive coding layer was utilized and combined with a 
position-aware encoder for relational classification.

(9)  CASREL BERT [36]. CASREL BERT presents a cascade binary tagging framework (CASREL) and 
implements a new tagging framework that achieves some performance improvements.

(10)  Entity-Aware BERT [48]. The method builds on BERT with structured predictions and an entity-aware 
self-attentive layer, achieving excellent performance on the SemEval 2010 Task 8 dataset.

4.4 Experimental Results

To evaluate the proposed models further, we chose the RNN-based model from the above models 
for comparison. The Precision-Recall (PR) curves and complexity analysis of the models are shown in 
Figure 5.

Figure 5. Precision-Recall curves of different used numbers of datasets (1%, 20%, 100%, respectively) and 
compared with RNN methods.

The comparison results between the REKA model and other models are shown in Table 3, the average 
precisions (AP) of REKA compared with RNN methods are shown in Table 4.
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Table 3. Comparison of the results of the Semeval-2010 Task 8 test dataset.

Model Additional Featuresa F1

SVM[42] POS, WN, etc. 82.3
MV-RNN[43] POS, NER, WN 82.4
CNN[4] PE, WN 82.7

BiLSTM[20]
None, 82.7
+ PF, POS, etc. 84.3

DepNN[44] DEP 83.6
FCM[45] SDP, NER 83.0
SDP-LSTM[5] SDP 83.7
Purely Self-Attention[47] PE 83.8
CASREL BERT PE 87.5
Entity-Aware BERT[48] PE 88.8
REKA Model PE 84.8

Notes: a. (Where WN, DEP, SDP, PE are WordNet, dependency features, shortest dependency path, position embeddings, respectively).

Table 4. Average precision score for our model and compared methods (micro-averaged over all classes).

  a BiLSTM SDP-LSTM REKA

1% 0.26 0.47 0.55
20% 0.60 0.68 0.76

100% 0.73 0.70 0.81

Notes: a. (The fi rst columns show how much of testing data has been used. Performance is on the SemEval-2010 task dataset).

The experimental results show that the proposed REKA model is superior to the conventional model with 
fewer features but is lower than the Entity-Aware BERT and CASREL BERT. However, the pre-trained model 
file of the BERT is so large that it takes longer to be trained with higher hardware performance requirements. 

As shown in Table 5, we conducted ablation experiments on the development dataset in order to explore 
the contribution of the various components of the keywords-aware attention mechanism to the experimental 
results. We gradually stripped the individual components from the original model, the experimental results 
showed that the F1-score decreased by 0.2 when the position embedding component was stripped from 
the model. MHA, pre-trained EMLo word embeddings, and entity is hidden similarity features provide F1 
scores of 0.5, 1.2, and 0.8 respectively for the model. In particular, a 2.3% improvement of F1 is a result 
of the keywords-aware attention. Therefore, experimental results demonstrate that these components 
contribute to the model in a complementary way rather than working individually and achieve an F1 score 
of 84.6 via the combination of all components.
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Table 5. The effect of components on the F1-score of the model.

Model Dev F1

Our model 84.6
 - Position embedding 84.4
 - Multi-head attention 83.9
 - Pre-trained EMLo word embeddings 82.7
 - Entity hidden similarity features 81.9
 - Keyword-aware attention 79.6

5. CONCLUSION

In this paper, we propose a novel Bi-GRU network model based on an attention mechanism with 
keywords for the task of RE on the SemEval-2010 task dataset. This model adequately extracts features that 
are available in the dataset through the keyword attention mechanism and achieved F1 score of 84.8 
without the use of other NLP tools. To calculate the marginal distribution for each word, we used the 
similarity between the output of the hidden vectors by the entity words in the hidden layer and the relative 
position feature vectors between the entity words in the CRF keyword attention mechanism, which is 
chosen as the attention weight. Our further research will be carried out on attention mechanisms that can 
better extract key information from sentences, and we are planning to use this for the identification of 
relationships between several entities.
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