
RESEARCH PAPER

Learning to Complete Knowledge Graphs 
with Deep Sequential Models

Lingbing Guo, Qingheng Zhang, Wei Hu†, Zequn Sun & Yuzhong Qu

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China

Keywords: Knowledge graph; entity prediction; triple prediction; recurrent neural network

Citation: L. Guo, Q. Zhang, W. Hu, Z. Sun, & Y. Qu. Learning to complete knowledge graphs with deep sequential models. Data 

Intelligence 1(2019), 224-243. doi: 10.1162/dint_a_00016

Received: December 19, 2018; Revised: April 22, 2019; Accepted: May 5, 2019

ABSTRACT

Knowledge graph (KG) completion aims at filling the missing facts in a KG, where a fact is typically 
represented as a triple in the form of (head, relation, tail). Traditional KG completion methods compel two-
thirds of a triple provided (e.g., head and relation) to predict the remaining one. In this paper, we propose a 
new method that extends multi-layer recurrent neural networks (RNNs) to model triples in a KG as sequences. 
It obtains state-of-the-art performance on the common entity prediction task, i.e., giving head (or tail) and 
relation to predict the tail (or the head), using two benchmark data sets. Furthermore, the deep sequential 
characteristic of our method enables it to predict the relations given head (or tail) only, and even predict the 
whole triples. Our experiments on these two new KG completion tasks demonstrate that our method achieves 
superior performance compared with several alternative methods.

1.  INTRODUCTION

Knowledge graphs (KGs), such as DBpedia [1] and Freebase [2], often use triples, in the form of (h, r, t),
to record billions of real-world facts, where h, t denote entities and r denotes a relation between h and t. 
Despite the enormous effort put into KG creation and maintenance, current KGs are still far from complete. 
KG completion is proposed to deal with this problem. Previous methods focus on a general task called 
entity prediction (also known as link prediction) [3, 4], which requires one to complete a triple in a KG by 
predicting t given (h, r, ?) or predicting h given (?, r, t). The left-most part of Figure 1 shows a commonly-
used model for tail entity prediction. Input h, r is firstly projected by some vectors or matrices, where the 

† Corresponding author: Wei Hu (Email: whu@nju.edu.cn; ORCID: 0000-0003-3635-6335).

© 2019 Chinese Academy of Sciences Published under a Creative Commons Attribution 4.0 International (CC BY 4.0)

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023

http://crossmark.crossref.org/dialog/?doi=10.1162/dint_a_00016&domain=pdf&date_stamp=2019-06-21


Data Intelligence 290

Learning to Complete Knowledge Graphs with Deep Sequential Models

bold letters denote the corresponding embeddings of h and r, and then combined to a continuous 
representation ot for predicting t.

Although existing methods have shown good performance on entity prediction, in real world they may 
still be inadequate to complete a KG. Let us assume that there is a method which can effectively complete 
an entity h given a relation r explicitly. But if we do not provide any relations, this method would be 
incompetent to enrich h, since it is incapable of knowing which relation should be used to complete this 
entity. An alternative way is to iterate over all relations in the KG, but such process is time-consuming and 
error-prone. We argue that this may prevent the existing methods from being useful in the real world.

The recurrent neural network (RNN) is a neural sequence model, which has achieved state-of-the-art 
performance on many natural language processing (NLP) tasks, such as language modeling, speech 
recognition and machine translation [5, 6]. A triple in a KG can be considered to be a sequence of length 
3, which inspires us to use RNNs to model KGs. However, we are still challenged by the following two 
obstacles: (i) triples are not natural language. They model complex structures of KGs with a fixed expression 
(h, r, t). Such short sequences may be insufficient to provide adequate context for prediction, while it is 
time-consuming and difficult to construct valuable long sequences from a huge number of paths in KGs; 
and (ii) relations and entities are elements of two different types, and they appear in triples in a fixed order. 
It is over-simplified to treat them as the same type.

In this paper, we propose a new method, which employs RNNs to model triples in a KG as sequences. 
We first design BSKG, a basic sequential model for KGs, as an initial version to illustrate our method 
(Figure 1). We denote an RNN cell by c, which receives its previous hidden state and the current element 
as input to predict the next. The cell in the entity layer processes entity embeddings like h, while the cell 
in the relation layer processes relation embeddings like r. In BSKG, we use one cell to sequentially process 
all input elements, and thus h, r are fed to the same cell c to obtain their respective output. Then, we use 
or to predict relations of h and ot to predict tails of h → r.

However, BSKG lacks effectiveness to model complex structures, because it only uses a single RNN cell 
to process all input sequences. To improve the performance on complex KGs, a few existing methods like 
TransH [7] and TransR [8] suggest projecting entities by some vectors or matrices before combination. 
Different from them, we do not choose to extend BSKG by adding such a layer, since it requires creation 
of variables for each relation, which consumes considerable resources and may also make the models hard 
to converge. Instead, we propose DSKG in this paper, a deep sequential model that extends multi-layer 
RNNs to model KGs. DSKG can smoothly model complex structures, since each cell in DSKG does not 
need to output an explicit prediction result, but gives its own comprehension by adding or removing 
information from the hidden state and conveys this processed hidden state to its next cell. Therefore, the 
original input is continually refined by each cell, and the complex features can be fluently processed.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



291 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

Figure 1. Different models for tail entity prediction. Note: White and black circles denote input and output, 
respectively. For BSKG and DSKG, light gray circles denote cells in the entity layer and dark gray circles denote 
cells in the relation layer.

Specifically, we design three different strategies to integrate the RNN cells in DSKG. The right-most part 
of Figure 1 shows their two-layer examples. 

•  The Joint strategy is the most prevalent way used in the NLP area. RNN cells are reused in different
layers like BSKG, but the output hidden state of each cell is not only recurrently fed to itself next
time, but also sequentially conveyed to its next cell.

•  The Respective strategy uses independent RNN cells for the entity layer and the relation layer, that
is to say, c1, c2, c3 and c4 are all different. We want this strategy to achieve better performance when
relations are diverse and complex.

•  The Cascade strategy also uses different RNN cells for the entity layer and the relation layer. Instead
of parallel connecting the two layers, we decide to link the end cell of the entity layer to the first cell
of the relation layer. As a result, each cell in this strategy can concentrate more on its current work.

The main contributions of this paper are listed as follows:

•  We introduce a new method for KG completion, which extends multi-layer RNNs to model triples in
a KG as sequences of length 3. Three distinct strategies are proposed to integrate RNN cells and show
their different characteristics in our experiments.

•  We design two new KG completion tasks, namely relation prediction and triple prediction, as
complements to the entity prediction task. The relation prediction task aims to predict relations only
given a head (or tail) entity as input. The triple prediction task is to predict the whole triples only
given a head entity.

  Note that the relation prediction task is different from the task to predict relations given a head entity and a tail entity. The
latter one is sometimes called relationship prediction.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 292

Learning to Complete Knowledge Graphs with Deep Sequential Models

•  Our experimental results show that our method achieves state-of-the-art performance for entity
prediction on the benchmark data sets based on Freebase and WordNet. It also achieves promising
results on the new relation prediction and triple prediction data sets.

The rest of this paper is organized as follows. Section 2 summarizes the related work. Section 3 describes 
the details of our method. Section 4 presents the experimental results. Finally, we conclude this paper in 
Section 5.

2. RELATED WORK

We divide existing models into two sub-areas:  translational models and non-translational models. We
summarize several representative models in Table 1. Our models are also added for comparison. 

Table 1. Comparison of existing models and ours.

Models
Preprepared 

data
Energy functions Notation explanations

TransE + − *|| ||Lh r t

TransH − + − − *|| ( ) ( ) ||T T
r r r r Lh w hw r t w tw wr: relation-specifi c normalization vector

TransR TransE 
embeddings

+ − *|| ||r r LW h r W t Wr: relation-specifi c matrix

STransE TransE 
embeddings

+ −,1 ,2 *|| ||r r LW h r W t Wr,1, Wr,2: relation-specifi c matrices

PTransE TransE 
embeddings; 

paths
∈

+ − + −∑
( , )

1
( )

| ( , ) | P h tP h t p

h r t p r P(h, t): path set of (h, ..., t)

NTN Word 
embeddings

+ + +,1 ,2tanh( )T T
r r r r ru h M t W h W t b ur, Mr, Wr,1, Wr,2, br: relation-specifi c 

variables
DISTMULT hTWrt Wr: relation-specifi c diagonal matrix
NLFeat Node and link 

features
WT

i, j, kH WT
i, j, k: feature vector; H: weight vector

ConvE ( )( )( )( )Ω ⋅vec concat , *  g g h  r W t g: activation function; V convolutional 
layer

ConvKB [ ]( )( )Ω ⋅concat , , *g h r t w g: activation function; V convolutional 
layer

BSKG ( ) ( )+ ,r h t h rL L →1 1{ }h rc c
DSKG (joint) → → →1 2 1 2 2 1 2{ , }, { }, { }h h r h r r rc c c c c c c
DSKG (respective) → → →1 2 3 2 4 3 4{ , }, { }, { }h h r h r r rc c c c c c c
DSKG (cascade) → → →1 2 2 3 3 4{ }, { }, { }h h h r r rc c c c c c

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



293 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

2.1 Translational Models

Perhaps, TransE [4] is the most well-known embedding model for KG completion. It represents entities 
and relations as k-dimensional vectors in a unified space, and models a triple (h, r, t) as h + r ≈ t. TransE 
works well for one-to-one relationship, but it fails to model more complex (e.g., one-to-many) relationships. 
TransH [7] resolves this problem by regarding each relation r as a vector on a hyperplane whose normalization 
vector is wr. It projects entity embeddings h, t to this hyperplane by wr, and uses the same energy function 
as TransE for training. TransR [8] uses relation-specific matrices to project entities. It creates a project matrix 
Wr for each relation r and projects h, t by Wr. TransR also employs the same energy function for training.

To extend the above models, STransE [9] learns two project matrices Wr,1, Wr,2 for each relation r, where 
Wr,1 is used for projecting h and Wr,2 is for projecting t. TranSparse [10] is similar to STransE, but it uses a 
more complex method to project h, t. PTransE [11] is also a TransE-like model. It uses additional path 
information for training. For example, if there exist two triples (e1, r1, e2), (e2, r2, e3), which can be regarded as 
a path in a KG, and another triple (e1, rx, e3) holds simultaneously, then the path e1 → r1 → e2 → r2 → e3 
is a valuable path recorded as (e1, r1, r2, e3). However, preparing desirable paths needs to iterate over all 
possible paths, and thus this process may consume quadratic resources. We argue that PTransE and many 
path-based models may be inefficient to model large KGs.

All the aforementioned models choose to minimize an energy function that is used in or similar to TransE. 
Moreover, except TransE and TransH, the remaining models require pre-trained entity and relation 
embeddings from TransE as initial input, which increases the training expense and also blurs their actual 
performance.

2.2 Non-translational Models

There also exist a  number of models that are very different from the translational models. A neural tensor 
network (NTN) [12] defines a different loss function and creates many variables for each relation. This 
makes NTN unsuitable for KGs having plenty of relations. Furthermore, NTN requires word embeddings 
as initial input, which severely increases the training expense. DISTMULT [13] is as simple as TransE, but 
it employs a completely different energy function. More specifically, it is based on the Bilinear model [14] 
and represents each relation as a diagonal matrix. Node+LinkFeat (abbr. NLFeat) [15] can also be regarded 
as a path-based model like PTransE, but it only needs to extract paths of length 1 for constructing node 
and link features. For example, if there exists a triple (ei, rk, ej) in a KG, and (ei, r’, ej) holds at the same 
time, then a binary feature is constructed as 1(r & rk). Although using paths of length 1 to construct features 
is much easier than using longer paths, it still consumes considerable resources for large KGs.

Recently, the deep neural networks have received much attention in KG completion. Instead of using 
simple algebraic operations, the deep neural models stack a group of different neural layers to model 
complex patterns in KGs. R-GCN [16] leverages the conventional graph convolutional networks [17] and 
extends it to multi-relational data like KGs. ConvE [18] applies convolutional neural networks (CNNs) [19] 
for KG completion. ConvKB [20] is also based on CNNs but implemented with a novel fashion.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 294

Learning to Complete Knowledge Graphs with Deep Sequential Models

Other methods like [21, 22] use extra data that cannot be extracted from the original training data, such 
as text corpora or entity descriptions. Due to the focus of this paper, we do not consider them currently.

3. BASIC AND DEEP SEQUENTIAL MODELS

In this section, w e first describe our basic sequential model BSKG. Then, we present our deep sequential
model DSKG with three different integrating strategies. Finally, two optimization methods useful for 
accelerating convergence and preventing over-fitting are introduced.

3.1 Basic Sequential Model

We start with the basic seque ntial model, which has only one single RNN cell. Let T, E, R be the sets 
of triples, entities and relations in a KG, respectively. Given a triple (h, r, t) ∈ T, we represent h, t ∈ E and 
r ∈ R all as k-dimensional vectors h, t, r, and use the tail entity prediction task for example to write the 
basic RNN layer as follows:

=
=

0( , )

( , ),
h

r h

c

c

s h s

s r s
(1)

where c denotes an RNN cell, which receives its previous hidden state and the current element as input, 
and outputs the processed hidden state. sh, sr denote the processed hidden states of input h, r, respectively. 
s0 denotes the zero hidden state for initialization.

There are a variety of candidate RNN cells that can be used to implement our model, e.g., the gated 
recurrent unit (GRU) cell [23] or the long short-term memory (LSTM) cell [24]. For simplicity, we do not 
discuss the details here, but use

=
=

( , )

( , ),
h h

r r

f c

f c

o s

o s
(2)

to abstractly represent the operations for calculating the output of RNN cells.

Then, we can respectively use oh, or to predict the relations of h and the tail entities of h → r as follows:

= +
= +

1 1

2 2,
r h

t r

p W o b

p W o b
(3)

where W1 denotes the weight matrix of relation prediction, which has a shape of |R| × k. b1 denotes the 
bias vector. W2, b2 are defined similarly. Therefore, pr, pt can be directly regarded as the unscaled probabilities 
for relation prediction and tail entity prediction, respectively.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



295 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

We respectively calculate the sampled softmax cross-entropy relation loss Lr and entity loss Lt [25] for 
the unscaled probabilities pr, pt as follows:

( )

( )
{ } ( )

( )
{ } ( )

( )
{ } ( )

∈

∈

∈

= −

⎛ ⎞
⎜ ⎟= −
⎜ ⎟⎝ ⎠

⎛ ⎞
= − ⎜ ⎟

⎜ ⎟⎝ ⎠

⎛ ⎞
= − ⎜ ⎟

⎜ ⎟⎝ ⎠

∑

∑ ∑

∑

∑

��

�

��

�

| |

| |

log ,

exp
 log

exp

exp
 log ,

exp

exp
 log ,

exp

r

r

r

r

t

r i i
i

i
i

i rr r N

r

rr r N

t

t
t

t t N

L y n

p
y

p

p

p

p
L

p

p

p

∪

∪

∪

(4)

where ni denotes the normalized probability of the i-th relation with softmax function. yi is the label for ni. 
Due to the fact that the r-th relation (the t-th entity) is the only correct one in this case, we can remove the 
zero components in the sum. Nr, Nt denote the sets of sampled negative labels for relation prediction and 
entity prediction, respectively.

There may exist multiple correct labels for both relation prediction and entity prediction, so in this paper 
we only use the current input triple to provide the correct labels for both relation prediction and entity 
prediction. For example, let (h0, r0, t0) be the current training triple and t1, ..., tm be other correct labels for 
(h0, r0, ?), as these triples (h0, r0, ti), i = 1, ..., m also exist in the training data. But we only consider t0 as 
the exclusively right label and avoid adding it during sampling negative labels. We propose this method 
since it makes training much faster and does not need to prepare the label information for multi-label 
classification. This is also because the number of possible negative labels is much larger than that of 
correct ones.

Finally, we can jointly minimize both two losses Lr, Lt, or just minimize Lt, as the final loss for training:

= +
= ,

j r t

e t

L L L

L L
(5)

where Lj denotes the joint loss, and Le denotes the entity-only loss. Our experimental results show that 
minimizing Lj performs better on the entity prediction task, and also makes our models capable of predicting 
relations and triples.

3.2 Deep Sequential Model

RNN can be considered to be a deep neural network with indefinite layers, since it can recurrently 
process input  in arbitrary times. However, only using a single RNN cell to process all information may be 
inefficient for KGs. Multi-layer RNNs have shown promising performance on modeling complex hierarchical 

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 296

Learning to Complete Knowledge Graphs with Deep Sequential Models

architectures in the NLP area [26], and KGs happen to have such architectures. Therefore, we propose 
DSKG, which uses multi-layer RNNs to model complex KGs. Three different integrating strategies, namely 
Joint, Respective and Cascade, are designed to integrate the RNN cells in DSKG. Figure 1 illustrates a 
two-layer version of our DSKG model with the three strategies. We describe them in detail below:

3.3 Joint

This strategy uses two distinct RNN cells c1, c2 to process both entities and relations. The output hidden 
state of each cell needs to  be fed to itself next time. Note that c1’s output hidden state is also conveyed to 
c2. By doing this, we do not need c1 to give an explicit result for each input, but enable it to convey its 
own comprehension to c2. c2 performs prediction based on its previous hidden state and c1’s processed 
hidden state, which include both sequential and hierarchical information. We formalize this process as 
follows:

( )
=

=

1
1 0

2 1
2 0

( , )

, ,
h

h h

c

c

s h s

s s s
(6)

=

=

1 1
1

2 1 2
2

( , )

( , ).
r h

r r h

s c r s

s c s s
(7)

We still use Equation (2) to calculate the output of RNN cells, and get two output pairs ( )1 2,h ho o and

( )1 2,r ro o . For each pair, we can either combine its two output by weights or just use its last output to predict
relations or tail entities. The former one has an advantage of modeling long hierarchical sequences, such 
as multiple brace-matching; while the latter one usually performs better when the sequences are short [26]. 
In this paper, we only use the output of the last cells for prediction, since triples in KGs are short.

3.4 Respective

Because entities and relations have very different characteristics, we believe that building multi-layer 
RNNs for them respectively may help our  model capture very complex structures. Based on this intuition, 
we provide the relation layer with independent RNN cells. As shown in Figure 1, we still use c1, c2 to 
process input h, but assign independent RNN cells c3, c4 to process r:

=

=

1 1
3

2 1 2
4

( , )

( , ).
r h

r r h

c

c

s r s

s s s
(8)

This is the only difference compared with Equation (7). Our experiments show that this strategy improves 
the performance on completing KGs with more complex structures. For example, FB15K [4] is considered 
to be a complex data set since it has more than 1,000 different relations, while WN18 [4] only has 18 
types of relations.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



297 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

3.5 Cascade

We propose this strategy because we believe that longer sequential RNN cells may model knowledge 
structures better, and the cells in the entity layer or the  relation layer can concentrate more on its own 
current work. For comparison, c1, c2 in Respective pass their output hidden states to c3, c4, respectively. 
Differently, Cascade only feeds c2’s output hidden state to c3. So, Cascade cuts down the conflicts between 
the entity layer and the relation layer. We believe that this can help improve performance on triple prediction. 
We formalize this strategy as follows:

=

=

1 2
3

2 1
4 0

( , )

( , ).
r h

r r

c

c

s r s

s s s
(9)

However, h needs to be sequentially conveyed four times to obtain the final output. Such long sequence 
may help our model process h’s features, but may also lose some information of h during conveying.

In addition to the above three integrating strategies, we also design a simple variant, called Entity-only, 
for comparing with Joint. The only difference between them is that Entity-only only optimizes the entity-
only loss, which is more like previous entity prediction models.

3.6 Batch Normalization and Dropout

To accelerate convergence and prevent over-fitting, we also employ two optimization methods in our 
models.

3.7 Batch Normalization

Batch normalization i s widely used to alleviate the impact of improperly-initialized neural networks [27]. 
It enforces the input of next layers to a uniform Gau ssian distribution. In our models, the batch normalization 
layers are placed before and after both the entity layer and the relation layer.

3.8 Dropout

Dropout is a simple but effective method to prevent over-fitting [28]. It is implemented by keeping a 
neuron active with probability pD during training. In our models, we a dd the dropout layers before and 
after each RNN cell.

4. EXPERIMENTS

We implemented our method with TensorFlow, and conducted three different experiments, namely entity
prediction, relation prediction and triple prediction, to evaluate it. In this sec tion, we first introduce the 
data sets and experiment settings. Then, we describe the procedure of each experiment and report the 
corresponding results.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 298

Learning to Complete Knowledge Graphs with Deep Sequential Models

By carrying out these experiments, we want to answer the following three questions:

1) Can our method achieve state-of-the-art performance on some benchmark data sets?
2)  How does our method perform on the new KG completion tasks such as relation prediction and

triple prediction?
3) What are the strengths and weaknesses of each integrating strategy in our deep sequential model?

4.1 Data Sets and Experiment Settings

In all our experiments, we chose FB15K and WN18 as our data sets, which were proposed in [4] and 
used by a large number of previous methods. FB15K has 1,345 different relations, while WN18 contains 
18 distinct relations. The detailed statistical data of these two data sets are listed in Table 2.

Table 2. Statistics of the experimental data sets.

FB15K WN18

# Entities 14,951 40,943
# Relations 1,345 18
# Training triples 483,142 141,442
# Validation triples 50,000 5,000
# Testing triples 59,071 5,000

For each data set, we used the Adam [29] optimizer to train one model for all the evaluation tasks and 
stopped training when the entity prediction result on the validation data is optimized. Thus, the relation 
prediction and triple prediction results may not be optimal. For both FB15K and WN18, we set the 
parameters as follows: learning rate l = 0.001, embedding dimension k = 512, negative sample number 
ns = 512, batch size nB = 2,048, and the keep-probability for dropout layers pD = 0.5. We employed the 
LSTM cells  in all our models and used two such cells in DSKG (joint), four in DSKG (respective) and DSKG 
(cascade), just as shown in Figure 1. Adding more cells for DSKG may improve the performance, but would 
cause slower training speed. Also, our experiments would demonstrate the effectiveness of the two-layer 
DSKG model.

Additionally, we added the reversed relations in the training data. This strategy is helpful to model relation 
pairs reversed to each other. There are many methods using reversed relations, such as PTransE [11] and 
ConvE [15]. We directly used the results reported in their papers. Specifically, for each triple (h, r, t) in the 
training data, we constructed a reversed triple (t, r–, h) and added it into the training data. Adding the 
reversed relations also enabled our models to predict head and tail entities in an integrated fashion, which 
means that our models can predict tail entities with input (h, r, ?), and predict head entities with (t, r–, ?) 
simultaneously. The reversed rela tions provide a convenient way to evaluate the head prediction. Also, they 
enhance the connectivity of KGs. Adding them can slightly improve the performance, while significantly 
boost the convergence speed.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



299 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

4.2 Entity Prediction

Entity prediction aims to predict h (or t) given an incomplete triple (?, r, t) (or (h, r, ?)). We evaluated our 
models with the same method used in [4]. For each triple (h, r, t) in the testing data, we constructed two 
incomplete triples (h, r, ?), (t, r –, ?) for tail prediction and head prediction, respectively.

Following [4] and many others, two evaluation metrics were used: the mean rank of correct entities 
(MR) and the percentage of correct entities in ranked top-10 (Hits@10). Besides, an incomplete triple like 
(h, r, ?) may have multiple correct tails. Entity t in the current testing triple (h, r, t) is only one of the correct. 
Thus, we also employed the filtered mean rank (FMR) and filtered Hits@10 (FHits@10) [4], which removed 
all the correct entities except t during ranking.

The experimental results on FB15K and WN18 are shown in Table 3. We can observe that: 

1)  DSKG outperformed the other models on FB15K and also achieved superior performance on WN18
for Hits@10 and FHits@10.

2)  Compared with BSKG, DSKG significantly improved the performance of FHits@10 on FB15K, which
has a more complex structure than WN18.

3)  DSKG (joint) outperformed DSKG (entity-only) on both FB15K and WN18, which proved that jointly
optimizing relation prediction and entity prediction is helpful for predicting entities.

4)  The three strategies in DSKG performed similarly on FB15K, but diverged for MR and FMR on WN18.
For example, DSKG (cascade) achieved a better FHits10 than DSKG (joint) on WN18, but it performed
worse on MR and FMR. We argue that WN18 only has 5,000 triples for testing, but it has about
40,000 different entities. So, if a model fails on one triple in the testing data, its MR and FMR would
drop 8.0. However, for FB15K, its MR and FMR would only drop 0.25 at most.

5)  DSKG (respective) outperformed DSKG (joint) on FB15K, which may show that using distinct RNN
cells for the entity layer and the relation layer is helpful for modeling complex KGs.

Table 4 shows the detailed entity prediction results on FB15K. We separated results by relationship 
categories, e.g., 1:1 denotes the one-to-one relationship and 1:M denotes one-to-many. We can observe 
that BSKG and DSKG outperformed the others on the complex relationship categories (i.e., 1:M, M:1 and 
M:N). The reasons are: (1) Our models are probability-based rather than margin-based, so they would not 
suffer from the problem of modeling the complex relationships in the margin-based models; (2) RNN cells 
can properly model triples that have complex relationships, since they can transfer and model entities or 
relations alternately.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 300

Learning to Complete Knowledge Graphs with Deep Sequential Models

Table 3. Entity prediction results.

Models
FB15K WN18

Hits@10 FHits@10 MR FMR Hits@10 FHits@10 MR FMR

SE 28.8 39.8 273 162 68.5 80.5 1,011 985
NTN - 41.4 - - - 66.1 - -
TransE 34.9 47.1 243 125 75.4 89.2 263 251
TransH 45.7 64.4 211  84 75.4 86.7 318 303
TransD 49.4 77.3 194  67 79.6 92.5 224 212
TransR 43.8 65.5 198  77 79.8 92.0 232 219
CTransR 48.4 70.2 198  75 78.9 92.3 231 218
PTransE 51.8 84.6 200  54 - - - -
DISTMULT - 57.7 - - - 94.2 - -
NLFeat - 87.0 - - - 94.3 - -
STransE 51.6 79.7 219  69 80.9 93.4 217 206
ConvE - 83.1 - 51 - 93.5 - 374
BSKG 53.1 86.5 189 37 81.7 95.0 252 236
DSKG (entity-only) 53.7 89.5 192 40 82.5 95.1 248 233
DSKG (joint) 53.8 89.8 188 38 82.5 95.2 217 203
DSKG (respective) 53.9 89.9 188 36 81.4 95.2 354 338
DSKG (cascade) 54.1 89.3 183 36 81.5 95.3 370 353

Note: “-” indicates the result unreported in literature. Models are ordered according to their publishing years.

Table 4. Detailed entity prediction results on FB15K by relationship categories.

Models
Head prediction (FHits@10) Tail prediction (FHits@10)

1:1 1:M M:1 M:N Overall 1:1 1:M M:1 M:N Overall

SE 35.6 62.6 17.2 37.5 36.7 34.9 14.6 68.3 41.3 42.8
TransE 43.7 65.7 18.2 47.2 44.6 43.7 19.7 66.7 50.0 49.7
TransH 66.8 87.6 28.7 64.5 61.4 65.5 39.8 83.3 67.2 67.1
TransD 86.1 95.5 39.8 78.5 74.5 85.4 50.6 94.4 81.2 80.5
TransR 78.8 89.2 34.1 69.2 66.0 79.2 37.4 90.4 72.1 71.8
CTransR 81.5 89.0 34.7 71.2 67.6 80.8 38.6 90.1 73.8 73.1
PTransE 91.0 92.8 60.9 83.8 81.4 91.2 74.0 88.9 86.4 85.7
STransE 82.8 94.2 50.4 80.1 77.1 82.4 56.9 93.4 83.1 82.3
BSKG 87.8 96.7 64.1 86.4 84.1 87.8 72.3 95.9 89.6 89.0
DSKG (entity-only) 89.2 97.0 67.7 89.6 87.1 89.7 80.5 96.0 92.7 92.0
DSKG (joint) 88.3 97.0 69.5 89.2 87.3 88.7 82.2 96.1 92.7 92.2
DSKG (respective) 89.7 97.1 69.6 89.9 87.5 88.8 82.2 96.2 92.9 92.3
DSKG (cascade) 89.4 97.2 68.3 89.2 86.9 89.7 80.9 96.1 92.3 91.8

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



301 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

4.3 Relation Prediction

Relation prediction aims to predict relations given a head (or tail) entity only. For each triple (h, r, t) in 
the same testing data as used in the entity prediction experiment, we took h as input for predicting r, and 
t for r –. Note that the testing data used here can be redundant. For example, (h1, r1, t1) and (h1, r1, t2) are 
two different triples for entity prediction, while relation prediction only considers h1, r1. We did not remove 
the redundant testing triple (h1, r1, t2) in the relation prediction and triple prediction experiments, since the 
occurrence of (h1, r1) can be regarded as its weight, reflecting its prevalence and importance in a KG.

Since there are no previous models designed for this task, we proposed a specific relation prediction 
model for comparison, which has two fully-connected layers. Each layer in this model has a weight matrix 
and a bias vector, and uses ReLU as the activating function. Note that DSKG (entity-only) may not suit this 
experiment task, because it does not minimize the relation prediction loss during training. We used the 
same evaluation metrics in this experiment.

The relation prediction results are shown in Table 5. For FB15K, we can observe the following: 

1)  Predicting forward relations was more accurate than predicting backward relations for FHits@10 and
FMR, due to the facts that KGs are usually constructed by humans, and (h, r, t) is a more natural
representation than (t, r –, h).

2)  DSKG outperformed the fully-connected two-layer model, which verified that jointly optimizing
relation prediction and entity prediction can also help predict relations.

3)  Both BSKG and DSKG achieved an FMR of 1.5 on predicting forward relations, which indicated that
our models predicted the correct forward relations of an entity with a very high probability on
average. We also evaluated our models on WN18. Because this data set has only 18 distinct relations,
it is not surprising that all the models achieved similar performance. Still, DSKG showed a slight
advantage for Hits@10 and FHits@10. It is worth noting that our models can also predict r given
both h and t using the same method as in [11] (i.e., the aforementioned relationship prediction task).

Table 5. Relation prediction results.

Data sets Models
Forward (h → ) Backward (t → )

Hits@10 FHits@10 MR FMR Hits@10 FHits@10 MR FMR

FB15K Fully-connected 79.8 98.7 6.4 1.8 88.7 90.6 5.0 4.6
BSKG 80.2 99.1 6.0 1.5 89.4 91.3 4.6 4.1
DSKG (joint) 82.6 99.1 5.7 1.5 90.3 92.2 4.4 4.0
DSKG (respective) 83.5 99.0 5.8 1.7 90.5 92.2 4.6 4.2
DSKG (cascade) 83.2 99.2 5.6 1.5 90.8 92.4 4.4 4.0

WN18 Fully-connected 99.7 99.7 2.0 1.1 99.5 99.6 2.1 1.5
BSKG 99.6 99.7 2.0 1.2 99.6 99.8 1.9 1.4
DSKG (joint) 99.8 99.9 2.0 1.2 99.8 99.9 1.9 1.4
DSKG (respective) 99.8 99.9 2.7 1.5 99.8 99.9 2.8 1.8
DSKG (cascade) 99.8 99.9 2.1 1.1 99.8 99.9 2.1 1.4

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 302

Learning to Complete Knowledge Graphs with Deep Sequential Models

4.4  Triple Prediction

DSKG is capable of not only predicting entities and relations, but also predicting the whole triples given 
an entity. So, triple prediction can be considered to be a more integrated task for KG completion. For each 
triple (h, r, t) in the same testing data as used in the entity prediction experiment, we only used h as input 
to predict the triples about h. Each model was first asked to predict the relation rp of h with the highest 
probability, and then used this relation to predict the most probable tail tp. As a result, we got one output 
triple (h, rp, tp) for each input h. Note that the models in this experiment only predicted triples in the forward 
direction, because: (i) we have shown that the backward relation prediction results on FMR were worse 
than the forward relation prediction results; and (ii) predicting forward triples of an entity is more natural 
to KG modeling.

We evaluated the output triples with the following method. Let SR denote the set of all triples in a KG, 
SO denote the set of output triples, Sp denote the union of testing and validation triples. SR and Sp are referred 
to as the representation and prediction triple sets, respectively. We calculate the correct representation 
number as nR = |SR ∩ SO|, and the correct prediction number as np = |Sp ∩ SO|.

So, the representation precision and the prediction precision are calculated as follows:

=

=
− +

Representation precision
| |

Prediction precision .
(| | )

R

O

P

O R P

n
S

n
S n n

(10)

We slightly modified the evaluation procedures of TransE, TransR and ConvE for comparison, since they 
are unable to predict relations. We provided relations for them using four different providers, i.e., DSKG 
(joint), DSKG (respective), DSKG (cascade) and correct relations.

The experimental results are shown in Table 6. We can observe the following: 

1)  DSKG outperformed TransE and TransR, especially on WN18, even though providing the correct
relations for them. This may be caused by the fact that both TransE and TransR are margin-based,
and thus comparing distances for prediction may mislead them.

2)  ConvE achieved similar performance compared with BSKG, but performed slightly weaker than
DSKG.

3)  Even we did not provide the correct relations, and DSKG still achieved good results, especially DSKG
(cascade), which outperformed all the others on both FB15K and WN18.

4)  For all the integrating strategies in DSKG, using their own providers to provide relations performed
even better for Representation precision, which is probably because correct relations are actually
extracted from testing data, while their own providers preferred to give more relations that have
already been trained.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



303 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

Table 6. Triple prediction results.

Relation providers Models

FB15K WN18

Representation
precision

Prediction
precision

Representation
precision

Prediction
precision

DSKG TransE (joint) 80.9 30.6 45.9 5.0
TransE (respective) 81.6 32.9 10.6 0.7
TransE (cascade) 80.8 31.2 30.6 1.8
TransR (joint) 85.4 23.4 71.2 15.1
TransR (respective) 87.4 29.3 55.8 15.6
TransR (cascade) 85.7 24.4 71.8 15.5
ConvE (joint)
ConvE (respective)
ConvE (cascade)

95.7
95.8
95.8

71.8
72.6
69.3

91.1
82.8
92.7

56.2
49.7
65.0

BSKG (joint) 97.2 69.1 95.7 69.9
BSKG (respective) 97.0 70.0 81.0 35.6
BSKG (cascade) 97.2 69.6 93.6 56.7
DSKG (joint) 98.5 70.7 96.1 72.5
DSKG (respective) 98.3 73.4 92.4 58.5
DSKG (cascade) 98.5 73.4 99.1 89.8

Correct relations TransE 75.3 49.3 38.7 20.5
TransR
ConvE

79.4
94.8

48.3
80.4

64.7
87.3

49.0
85.0

BSKG 92.1 75.2 89.5 82.1
DSKG (joint) 95.2 82.8 90.2 83.1
DSKG (respective) 95.2 82.9 96.7 94.1
DSKG (cascade) 95.0 82.2 96.8 94.3

5.  CONCLUSION AND FUTURE WORK

In this paper, we proposed a new KG completion method that extends multi-layer RNNs to model triples
in KGs as sequences. Our experimental results on FB15K and WN18 showed that our method achieved 
superior performance not only on the benchmark entity prediction task, but also on two new KG completion 
tasks to predict relations and triples given one single entity. For future work, we plan to explore the following 
three directions:

•  Integrating the attention mechanism [30] in our method. While the attention mechanism has shown
its power in the NLP area, applying it to KG completion has not been well studied. In future, we
would like to extend our method with this mechanism to improve its inference ability.

•  Using a provided KG to complete another KG. Recently, several methods start to leverage extra textual
data for improving KG completion. However, textual data like entity descriptions and text corpora
are written in natural language. Due to the ambiguity and heterogeneity of textual data, they may
bring mistakes in prediction. Therefore, we think that taking existing KGs as another kind of extra
data may improve performance.

•  Embedding KGs for entity alignment. We also want to consider the problem of learning KG embeddings 
for entity alignment. Particularly, we look forward to learning embeddings of different KGs in a unified
space and employing RNNs to explore neighboring context for entity alignment.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 304

Learning to Complete Knowledge Graphs with Deep Sequential Models

AUTHOR CONTRIBUTIONS 

L. Guo (lbguo.nju@gmail.com) designed the model. Q. Zhang (qhzhang.nju@gmail.com) conducted
main experiments. W. Hu (whu@nju.edu.cn, corresponding author) assembled the manuscript. Z. Sun 
(zqsun.nju@gmail.com) and Y. Qu (yzqu@nju.edu.cn) revised the whole paper. 

ACKNOWLEDGEMENTS 

This work was supported by the National Natural Science Foundation of China under Grant No. 
61872172.

REFERENCES

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, & Z.G. Ives. DBpedia: A nucleus for a web of open
data. In: KAberer et al. (eds) The Semantic Web. Berlin: Springer, 2007, pp. 722–735. doi: 10.1007/978-3-
540-76298-0_52.

[2] K.D. Bollacker, C. Evans, P. Paritosh, T. Sturge, & J. Taylor. Freebase: A collaboratively created graph database
for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, ACM, 2008, pp. 1247–1250. doi: 10.1145/1376616.1376746.

[3] A. Bordes, J. Weston, R. Collobert, & Y. Bengio. Learning structured embeddings of knowledge bases. In:
Proceedings of the 25th AAAI Conference on Artificial Intelligence, AAAI, 2011, pp. 301–306. Available at:
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3659/3898.

[4] A. Bordes, N. Usunier, A. Garcia-Durán, J. Weston, & O. Yakhnenko. Translating embeddings for modeling
multi-relational data. In Proceedings of the 26th International Conference on Neural Information Processing
Systems (NIPS), NIPS Foundation, 2013, pp. 2787–2795. Available at: http://papers.nips.cc/paper/5071-
translating-embeddings-for-modeling-multi-relational-data.pdf.

[5] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, & G.E. Hinton. Grammar as a foreign language. In:
Proceedings of the 28th International Conference on Neural Information Processing Systems, MIT Press,
2015, pp. 2773–2781. Available at: http://papers.nips.cc/paper/5635-grammar-as-a-foreign-language.pdf.

[6] R. Józefowicz, O. Vinyals, M. Schuster, N. Shazeer, & Y. Wu. Exploring the limits of language modeling. In:
Proceedings of the 4th International Conference on Learning Representations, ICLR, 2016.

[7] Z. Wang, J. Zhang, J. Feng, & Z. Chen. Knowledge graph embedding by translating on hyperplanes. In:
Proceedings of the 28th AAAI Conference on Artificial Intelligence, AAAI, 2014, pp. 1112–1119. Available
at: https://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531/8546.

[8] Y. Lin, Z. Liu, M. Sun, Y. Liu, & X. Zhu. Learning entity and relation embeddings for knowledge graph comple-
tion. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI, 2015, pp. 2181–2187.
doi: 10.1016/j.procs.2017.05.045.

[9] D.Q. Nguyen, K. Sirts, L. Qu, & M. Johnson. STransE: A novel embedding model of entities and relationships
in knowledge bases. In: Proceedings of the 15th Annual Conference of the North American Chapter of the
Association for Computational Linguistics, ACM, 2016, pp. 460–466. doi: 10.18653/v1/N16-1054.

[10] G. Ji, K. Liu, S. He, & J. Zhao. Knowledge graph completion with adaptive sparse transfer matrix. In: Proceed-
ings of the 30th AAAI Conference on Artificial Intelligence, AAAI, 2016, pp. 985–991. Available at: https://
aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11982/11693.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



305 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

[11] Y. Lin, Z. Liu, H.-B. Luan, M. Sun, S. Rao, & S. Liu. Modeling relation paths for representation learning
of knowledge bases. In: Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics, ACL, 2015, pp. 705–714. doi: 10.18653/v1/D15-1082.

[12] R. Socher, D. Chen, C. Manning, D. Chen, & A. Ng. Reasoning with neural tensor networks for knowledge
base completion. In: Proceedings of the 26th International Conference on Neural Information Processing
Systems, MIT Press, 2013, pp. 926–934. doi: 10.1109/ICICIP.2013.6568119.

[13] B. Yang, S.W. Yih, X. He, J. Gao, & L. Deng. Embedding entities and relations for learning and inference in
knowledge bases. In: Proceedings of the 3rd International Conference on Learning Representations, ICLR,
2015. Available at: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ICLR2015_
updated.pdf.

[14] M. Nickel, V. Tresp, & H.-P. Kriegel. A three-way model for collective learning on multi-relational data. In:
L. Getoor, & T. Scheffer (eds.) Proceedings of the 28th International Conference on Machine Learning
(ICML-11). Bellevue, Washington: ACM, pp. 809--816.

[15] K. Toutanova, & D. Chen. Observed versus latent features for knowledge base and text inference. In: Proceed-
ings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, 2015, pp. 57–66.
doi: 10.18653/v1/w15-4007.

[16] M.S. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov, & M. Welling. Modeling relational data with
graph convolutional networks. In: A. Gangemi et al. (eds.) The Semantic Web. ISWC 2018. Cham, Switzerland: 
Springer, 2018, pp. 593–607. doi: 10.1007/978-3-319-93417-4_38.

[17] D.K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R.G_omez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, &
R.P. Adams. Convolutional networks on graphs for learning molecular fingerprints. In: Proceedings of the
28th International Conference on Neural Information Processing Systems, MIT Press, 2015, pp. 2224–2232.
Available at: http://dl.acm.org/citation.cfm?id=2969488.

[18] T. Dettmers, P. Minervini, P. Stenetorp, & S. Riedel. Convolutional 2d knowledge graph embeddings. In:
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI, 2018, pp. 1811–1818. Available
at: https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17366.

[19] Y. LeCun, L. Bottou, Y. Bengio, & P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11)(1998), 2278–2324. doi: 10.1109/5.726791.

[20] D.Q. Nguyen, T.D. Nguyen, D.Q. Nguyen, & D.Q. Phung. A novel embedding model for knowledge base
completion based on convolutional neural network. In: Proceedings of the 17th Annual Conference of
the North American Chapter of the Association for Computational Linguistics, ACL, 2018, pp. 327–333.
doi: 10.18653/v1/N18-2053.

[21] R. Xie, Z. Liu, J. Jia, H. Luan, & M. Sun. Representation learning of knowledge graphs with entity descriptions. 
In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, AAAI, 2016, pp. 2659–2665.
Available at: tps://aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12216/12004.

[22] H. Xiao, M. Huang, L. Meng, & X. Zhu. SSP: Semantic space projection for knowledge graph embedding
with text descriptions. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI, 2017,
pp. 3104–3110.

[23] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, & Y. Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing, 2014, pp. 1724–1734. doi:
10.3115/v1/D14-1179.

[24] S. Hochreiter, & J. Schmidhuber. Long short-term memory. Neural Computation, 1997, pp. 1735–1780. doi:
10.1162/neco.1997.9.8.1735.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 306

Learning to Complete Knowledge Graphs with Deep Sequential Models

[25] S. Jean, K. Cho, R. Memisevic, & Y. Bengio. On using very large target vocabulary for neural machine
translation. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics,
ACL, 2015, pp. 1–10.

[26] M. Hermans, & B. Schrauwen. Training and analyzing deep recurrent neural networks. In: Proceedings of the
26th International Conference on Neural Information Processing Systems, MIT Press, 2013, pp. 190–198.
Available at: http://papers.nips.cc/paper/5166-training-and-analysing-deep-recurrent-neural-networks.pdf.

[27] S. Ioffe, & C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, JMLR, 2015,
pp. 448–456. Available at: https://dl.acm.org/citation.cfm?id=3045167%22.

[28] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, & R. Salakhutdinov. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine Learning Research, 2014, pp. 1929–1958. Available at:
http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf.

[29] D.P. Kingma, & J. Ba. Adam: A method for stochastic optimization. In: Proceedings of the 3rd International
Conference on Learning Representations, ICLR, 2015.

[30] D. Bahdanau, K. Cho, & Y. Bengio. Neural machine translation by jointly learning to align and translate. In:
Proceedings of the 3rd International Conference on Learning Representations, ICLR, 2015.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



307 Data Intelligence

Learning to Complete Knowledge Graphs with Deep Sequential Models

AUTHOR BIOGRAPHY

Lingbing Guo is currently a M.S. student in Department of Computer Science 
and Technology, Nanjing University, China. He received his B.S. degree in 
computer science and technology in 2016 from Henan University, China. His 
research interest is knowledge graph completion.

Qingheng Zhang is currently a M.S. student in Department of Computer 
Science and Technology, Nanjing University, China. He received his B.S. 
degree in computer science and technology in 2017 from Hohai University, 
China. His research interest is knowledge graph embedding.

Wei Hu is currently an associate professor in State Key Laboratory for Novel 
Software Technology, Department of Computer Science and Technology, 
Nanjing University, China. He received his PhD degree in computer software 
and theory in 2009, and his B.S. degree in computer science and technology 
in 2005, both from Southeast University, China. His main research interests 
include knowledge graph, data integration and intelligent software.

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023



Data Intelligence 308

Learning to Complete Knowledge Graphs with Deep Sequential Models

Zequn Sun is currently a PhD student in Department of Computer Science 
and Technology, Nanjing University, China. He received his B.S. degree in 
computer science and technology in 2016 from Hohai University, China. His 
research interest is entity alignment.

Yuzhong Qu received his B.S. and M.S. degrees in mathematics from Fudan 
University, China, in 1985 and 1988, respectively, and got his Ph.D. degree 
in computer software from Nanjing University, China, in 1995. He is currently 
a full professor in State Key Laboratory for Novel Software Technology, 
Department of Computer Science and Technology, Nanjing University, China. 
His research interests include Semantic Web, question answering and novel 
software technology for the Web. 

D
ow

nloaded from
 http://direct.m

it.edu/dint/article-pdf/1/3/289/683766/dint_a_00016.pdf by guest on 07 Septem
ber 2023




