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ABSTRACT

Knowlege is important for text-related applications. In this paper, we introduce Microsoft Concept Graph,
a knowledge graph engine that provides concept tagging APIs to facilitate the understanding of human
languages. Microsoft Concept Graph is built upon Probase, a universal probabilistic taxonomy consisting of
instances and concepts mined from the Web. We start by introducing the construction of the knowledge
graph through iterative semantic extraction and taxonomy construction procedures, which extract 2.7 million
concepts from 1.68 billion Web pages. We then use conceptualization models to represent text in the
concept space to empower text-related applications, such as topic search, query recommendation, Web
table understanding and Ads relevance. Since the release in 2016, Microsoft Concept Graph has received
more than 100,000 pageviews, 2 million API calls and 3,000 registered downloads from 50,000 visitors over
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Microsoft Concept Graph: Mining Semantic Concepts for Short Text Understanding

1. INTRODUCTION

Concepts are indispensable for humans and machines to understand the semantic meanings underlined
in the raw text. Humans understand an instance, especially an unfamiliar instance, by its basic concept in
an appropriate level, which is defined as Basic-level Categorization (BLC) by psychologists and linguists.
For example, people may not understand “Gor Mahia”, but with the concept “football club” described in
Wikipedia, people can capture the semantic meaning easily. Psychologist Gregory Murphy began his highly
acclaimed book [1] with the statement “Concepts are the glue that holds our mental world together”. Nature
magazine book review [2] calls it an understatement, because “Without concepts, there would be no
mental world in the first place”. To enable machines to understand the concept of an instance like human
beings, one needs a knowledge graph consisted of instances, concepts, as well as their relations. However,
we observe two major limitations in existing knowledge graphs, which motivate us to build a brand-new
knowledge taxonomy, Probase [3], to tackle general purpose understanding of human language.

1). Previous taxonomies have limited concept space. Many existing taxonomies are constructed by
human experts and are difficult to be scaled up. For example, Cyc project [4] contains about 120,000
concepts after 25 years of evolution. Some other projects, like Freebase [5], resort to crowd sourcing
efforts to increase the concept space, which still lacks general coverage of many other domains and
thus holds a barrier for general purpose text understanding. There are also automatically constructed
knowledge graphs, such as YAGO [6] and NELL [7]. Nevertheless, the coverages of these concept
spaces are still limited. The number of concepts of Probase and some other popular open-domain
taxonomies are shown in Table 1, which demonstrates that Probase has a much larger concept space.

Table 1. Concept space comparison of existing taxonomies.

Existing taxonomies Number of concepts
Freebase [5] 1,450
WordNet [8] 25,229
WikiTaxonomy [9] 111,654
YAGO [6] 352,297
DBPedia [10] 259
Cyc [4] ~120,000
NELL [7] 123
Probase [3] ~5,400,000

2). Previous taxonomies treat knowledge as black and white. Traditional knowledge base aims at
providing standard, well-defined and consistent reusable knowledge, and treats knowledge as black
and white. However, treating knowledge as black and white obviously has restrictions, especially
when the concept space is extremely large, because different knowledge has different confidence
intervals or probabilities, and the best threshold of probabilities depends on the specific application.
Different from previous taxonomies, our philosophy is to annotate knowledge facts with probabilities
and let the application itself decide the best way of using it. We believe this design is more flexible
and can be utilized to benefit a broader range of text-based applications.
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Based on the Probase knowledge taxonomy, we propose a novel conceptualization model to learn text
representation in the Probase concept space. The conceptualization model (also known as the Concept
Tagging Model) aims to map text into semantic concept categories with some probabilities. It provides
computers the commonsense computing capability and makes machines “aware” of the mental world of
human beings, through which machines can better understand human communication in text. Based on
the conceptualization model, the Probase taxonomy can be applied to facilitating various text-based
applications, including topic search, query recommendation, Ads relevance, Web table understanding, etc.

An overview of the entire framework is illustrated in Figure 1, which mainly consists of three layers:
(1) knowledge construction layer, (2) conceptualization layer, and (3) application layer.

Application layer

i Text/tabl
Probase Browser Topic Query . ext/ta ? Ads Relevance
Search Recommendatio Understanding
Conceptualization layer -‘ ' ’
Single Instance Context-Aware Single <:> Short Text
Conceptualization Instance Conceptualization Conceptualization
Knowledge construction layer
Semantic Iteration Taxonomy
Extraction Construction
Data layer I
I
Web Corpus

Figure 1. The framework overviews.

1). Knowledge construction layer. In the knowledge construction layer, we address the construction
of Probase knowledge network. First, the isA facts are mined automatically from the Web via a
semantic iteration extraction procedure. Second, the taxonomy is constructed following a rule-based
taxonomy construction algorithm. Finally, we calculate the probability score for each related
instance/concept in the taxonomy.
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2).

3).

Conceptualization layer. Based on the constructed sematic knowledge network, we design a
conceptualization model to represent raw text in the Probase concept space. The model can be
divided into three major components, namely (1) single instance conceptualization, (2) context-
aware single instance conceptualization, and (3) short text conceptualization.

Application layer. The conceptualization model enables us to generate “Bag-of-Concepts”
representation of raw text, which can be utilized to enhance various categories of applications,
including but not limited to topic search, query recommendation, Ads relevance calculation and
Web table understanding. We also build a Probase browser and a tagging model demo in the
application layer, which provide users a quick insight into a specific query.

The rest of this paper is organized as follows. Section 2 discusses related works, and Section 3 presents
the construction of the Probase semantic network. Section 4 introduces the conceptualization model built

upon the sematic network, and Section 5 shows some example applications. In addition, Section 6 lists the

data sets and statistics. Finally, we make a conclusion in Section 7.

2. RELATED WORKS

Knowledge graph has attracted great interests in many research fields. There are many existing knowledge

graphs built either manually or automatically.

1).

2).

3).

WordNet [8] Different from traditional thesauruses, WordNet groups words together based on their
meanings instead of morphology. Terms are grouped into synsets, where each term represents a
distinct concept. Synsets are interlinked by conceptual semantics and lexical relations. WordNet
has more than 117,000 synsets for 146,000 terms. WordNet is widely used for term disambiguation
as it defines various senses for a term.

DBpedia [10] is a project of extracting Wikipedia Infobox into knowledge facts which can be
semantically queried using SPARQL. The knowledge in DBpedia is extracted from Wikipedia and
collaboratively edited by the community. DBpedia has released 670 million triples in RDF format.
DBpedia provides an ontology including 280 classes, 3.5 million entities and 9,000 attributes.
YAGO [6], abbreviation for Yet Another Great Ontology, is an open sourced huge semantic knowledge
base, which has fused knowledge extracted from WordNet, GeoNames® and Wikipedia®. YAGO
combines the taxonomy of WordNet with the Wikipedia category to assign entities to more than
200,000 classes. YAGO is comprised by more than 120 million facts about 3 million entities. Based
on manual evaluation, the accuracy of YAGO is about 95%. YAGO also attaches temporal and
special information to the entities and relations by some declarative extraction rules.

@ http://www.geonames.org/
@ https:// www.wikipedia.org/
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4). Freebase [5] is a large knowledge base containing a lot of human labeled data contributed by
community members. Freebase extracts data from many sources including Wikipedia, NNDB®,
Fashion Model Directory® and MusicBrainz®. Freebase has more than 125 million facts, 4,000 types
and 7,000 properties. After 2016, all data in Freebase have been transferred to Wikidata®.

5). ConceptNet [11] is a semantic network aiming to build a large commonsense knowledge base in
a crowd sourcing manner, which focuses on the commonsense relations including isA, partOf,
usedFor and capableOf. ConceptNet contains over 21 million edges and over 8 million nodes.

6). NELL [7] is a continuously running system which extracts facts from text in hundreds of millions of
Web pages in an iterative way, while patterns are boosted during the process. NELL has accumulated
more than 50 million candidate beliefs and has extracted 2,810,379 asserted instances of 1,186
different categories and relations.

7). WikiTaxonomy [9] presents a taxonomy automatically generated from the categories in Wikipedia,
which generates 105,418 isA links from a network of 127,325 categories and 267,707 links. The
system achieves 87.9 balanced F-measure according to a manual evaluation on the taxonomy.

8). KnowltAll [12] aims to automate the process of extracting large collections of facts from the
Web in an unsupervised, domain-independent and scalable manner. The system has three major
components: Pattern Learning (PL), Subclass Extraction (SE) and List Extraction (LE), achieving great
improvements on the recall while maintaining precision and enhancing the extraction rate.

The existing knowledge graphs suffer from low coverage and lack of well-organized taxonomies.
Moreover, none of them focuses on extracting the super-concepts and sub-concepts of an instance. To
automatically generate the taxonomy, we propose Probase which automatically constructs the semantic
network of isA facts.

3. SEMANTIC NETWORK CONSTRUCTION

The entire data construction procedure of the Probase semantic network will be introduced in detail in
the following subsections. First, in Section 3.1, we describe the iterative data extraction process; then, the
taxonomy construction step is introduced in Section 3.2; Section 3.3 introduces the algorithm of probability
calculation.

3.1 Iterative Extraction

The Probase semantic network [3] is built upon isA facts extracted from the Web. The isA facts can be
formulated as pairs consisting of a super-concept and a sub-concept. For example, “cat isA animal” forms
a pair, where “cat” is the sub-concept and “animal” is the super-concept. In this work, we propose a method
based on semantic iteration to mine the isA pairs from Web.

® http://www.nndb.com/

@ https://www.fashionmodeldirectory.com/
® https://musicbrainz.org

@ https://www.wikidata.org
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3.1.1 Syntactic vs. Semantic lteration

Before our work, the state-of-the-art information extraction methods [7, 8, 12] rely on a syntactic
integrative (bootstrapping) approach. It starts with a set of seed patterns to discover example pairs with high
confidence. Then, we can derive new patterns from the extracted pairs and use the new patterns to extract
more pairs. The iterative process is continued until a certain stop criterion is reached. However, we observe
in practice that the syntactic iteration methods have indispensable barriers in deep knowledge acquisition
because high quality syntactic patterns are rare. Therefore, we propose a semantic interactive approach by
which the new pairs can be extracted with high confidence based on knowledge accumulated from existing
pairs.

3.1.2 The Semantic Iteration Algorithm

First, we extract a set of candidate pairs by Hearst patterns [13] (Table 2). For instance, if we have
sentence “... animals such as cat ...”, we can extract a pair <animal, cat> which means cat isA animal.
Sometimes, there is ambiguity in the pattern matching process. For instance, in the sentence “... animals
other than dogs such as cats ...”, we can extract two candidate pairs <animals, cats>, and <dogs, cats>.
The algorithm must have the ability to decide which one is the correct super-concept among “animals” and
“dogs”. Another example is “... companies such as IBM, Nokia, Proctor and Gamble ...”. In this case, we
have multiple choices in the sub-concept, namely, <companies, Proctor> and < companies, Proctor and
Gamble>. Again, the algorithm should automatically determine their correctness.

Table 2. Hearst patterns examples.

ID Pattern
1 NP such as {NP,}*{(or | and)} NP

2 Such NP as {NP}*{(or | and)} NP

3 NP{,} including {NP}* {(or | and)} NP

4 NP{,NP}*{,} and other NP

5 NP{,NP}*{,} or other NP

6 NP{,} especially {NP}*{(or | and)} NP

We denote the candidate set of super-concepts for sentence s as X, and the candidate set of sub-concepts
for sentence s as Y. T is the set of isA pairs that have already been extracted as ground truth. The remaining
task for the algorithm is to detect the correct super-concepts and sub-concepts from X; and Y, respectively,
based on the knowledge accumulated in T. For each sentence s, if we have multiple choices for the super-
concepts, we must choose one as the correct super-concept. It is based on the observation that when
ambiguity exists in super-concept matching, there is only one correct answer. After determining the correct
super-concept, the goal is to filter out the correct sub-concepts from candidates in Y,. Unlike the super-
concept case, we may expect more than one valid sub-concept, and the result sub-concepts should be a
subset of Y..
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3.1.3 Super-Concept Detection

Let X, = {x,,x,,...,x,}, we compute likelihood p(x,|Y,) for each candidate x,. We assume y,,y,,...,y, €Y.
are independent with each other given any super-concept x,, and then we have

px|Yo) o< plx)p(Y; | x,) = plx, )H;P(Yi | %), Q)

where p(x,) is the percentage of pairs in T" that contain x, as the super-concept, and p(y;|x,) is the percentage
of pairs in T that have y; as the sub-concept when the super-concept is x,. There are pairs that do not exist
in T, and therefore, we let p(y;|x,) = € if no existence can be found for that pair; where € is set to be a small
positive number. Without losing generality, we assume x; and x, are the top two candidates with the highest
probability scores, and p(x,|Y;) > p(x,|Y,). Then, we can compute the ratio of two probabilities as follows:

pOIL T ply: %)
[E) | A RS
x; will be chosen as the correct super-concept if r(x;,x,) is larger than a pre-defined threshold. If not, this

sentence is skipped in the current iteration and may be recovered in a later round when I is more informative.
Intuitively, the likelihood p (animals|cats) should be much larger than p (dogs|cats); so, we can correctly

(2)

r(x,, x,) =

select “animals” as the result super-concept.

3.1.4 Sub-Concept Detection

In our implementation, sub-concept detection is based on the features extracted from the original
sentences, which is motivated by two basic observations.

Observation 1: The closer a candidate sub-concept is to the pattern keyword, the more likely it is a
valid sub-concept.

Observation 2: If we are certain that a candidate sub-concept at the k-th position (calculated by the
distance from the pattern keyword) is valid, the candidate sub-concepts from position 1 to position k-1 are
also likely to be correct.

For example, consider the following sentence: “... representatives in North America, Europe, the Middle
East, Australia, Mexico, Brazil, Japan, China, and other countries ...”. Here “and other” is the pattern
keyword; China is the candidate sub-concept closest to the pattern keyword. Obviously, China is a correct
sub-concept. In addition, if we know that Australia is a legal sub-concept of “countries”, we can be more
confident that Mexico, Brazil and Japan are all correct sub-concepts of the same category; while North
America, Europe and the Middle East are less likely to be the instances of the same category.

Specifically, we find the largest k such that the likelihood p(y,|x) is above a pre-defined threshold. Then,
Vi, Yar--- yi are all treated as valid sub-concepts of the super-concept x. Note that there are sometimes
ambiguity in the sub-concept y.. For instance, in the sentence “... companies such as IBM, Nokia, Proctor
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and Gamble...” at position 3, the noun phrase can be “Proctor” or “Proctor and Gamble”. Suppose the
candidate at the position k to be ¢;, c,,..., we calculate the conditional probability of each candidate given
the super-concept x as well as all sub-concepts before position k:

k=1

Plye = Clx, 1Yoy = p(alX) TRy, 1€ x), (3)

i=

As before, v, v,..., yiy are assumed to be independent given the super-concept x; p(c;|x) is the percentage
of existing pairs in " where ¢; is a sub-concept when x is the super-concept; p(y;|c; x) is the likelihood that
y; is a valid sub-concept given x is the super-concept and c; is another valid sub-concept in the same
sentence. Suppose ¢, and ¢, are the top 2 ranked concepts, and we pick ¢, as the final concept if r(c;, c,)
exceeds a certain ratio. The value of r(c,, ¢,) can be calculated as:

ple, T, ply, e
¢, ¢,) = k=1 ’
ple; 10T ply; €200

4)

Intuitively, the probability p(Proctor and Gamble|companies) should be much larger than p(Proctor|
companies) after I' accumulates enough knowledge, and thus the algorithm is able to select the correct
candidate automatically.

3.2 Taxonomy Construction

The taxonomy construction procedure mainly consists of three steps, (1) local taxonomy construction,
(2) horizontal merge and (3) vertical merge. First, we build the local taxonomy for each sentence. Then,
we perform horizontal merge and vertical merge in sequence on the local taxonomy collection to construct
a global taxonomy.

1). Local Taxonomy Construction. Figure 2 illustrates the process to build a local taxonomy from
each sentence. For example, in the sentence “A such as B, C, D”, we can get three pairs <A, B>,
<A, C>, and <A, D> where A is the super-concept and B, C, D are the sub-concepts. We can build
a local taxonomy with A as the root node and B, C, D as child nodes.

sentence s local taxonomy T,/

(%)
=
®©@

Figure 2. Local taxonomy construction.

AsuchasB, C,D
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2). Horizontal Merge. After the local taxonomy for each sentence is built, the next step is horizontal
merge. Suppose we have two local taxonomies T} and T3 whose root is A" and A?, respectively, where
A" and A? correspond to the same surface form. If we are sure that A" and A? express the same sense,
we can merge the two trees horizontally, as shown in Figure 3. We design a similarity function to
calculate the probability that A" and A? are semantically equal. Intuitively, if the children of A" and
A? are more overlapped, we can be more confident that they are of the same sense. Therefore, we
adopt absolute overlap for the similarity calculation function, i.e., f(A‘,AZ)=|A‘mA2; and a

constant threshold ¢ is used to determine whether two local taxonomies can be horizontally merged.

o w i
—_

Figure 3. Horizontal merge.

7’

3). Vertical Merge. Given two local taxonomies rooted by A" and B', where B is a child of A’ If we
are confident that B is of the same sense as B!, we can merge the two taxonomies vertically. As
shown in Figure 4, after merging, A’ is the root; the original subtree B is merged with the taxonomy
rooted by B'; and the other subtrees C and D remain at the same position. To determine if B and B’
are of the same sense, we calculate the absolute overlap of R's children and B’s siblings (emphasized
by colored nodes in Figure 4).

K

Figure 4. Vertical merge: single sense alignment.

There is another case which is more complicated (Figure 5). Both T} and T3 can be vertically merged
with T}, as the child nodes of R' and R* have considerable overlap with B’s siblings in T;. However, the
child nodes of R' and R? do not have enough overlap, indicating that R' and R? may express different senses.
In this case, we split two senses in the merged taxonomy, i.e., T} and T2 are merged as two distinct sub-
trees in taxonomy 7.
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Figure 5. Vertical merge: multiple sense alignment.

3.3 Probability Calculation

Probability is an important feature of our taxonomy design. Different from previous approaches which
treat knowledge as black and white, our solution is to live with noisy data with probability scores and let
the application make the best use of it. We provide two kinds of probability scores, namely plausibility and

typicality.

Plausibility is the joint probability of an isA pair. For each isA claim E, we use p(E) to denote its
probability to be true. Here we adopt a simple noisy-or model to calculate the probability. Assume E is
derived from a set of sentences {s;, s,, ..., s,}, a claim is false if every piece of evidence from {s, s, ..., s,}
is false. Assuming every piece of evidence is independent, we have:

p(E)=1-p(E)=1-T]_,(0-ps), (5)

where p(s) is the probability of evidence s; to be true. We characterize each s; by a set of features F;
including: (1) the PageRank score of the Web page from which sentence s; is extracted; (2) the Hearst pattern
used to extract evidence pair <x, y> from s; (3) the number of sentences with x as the super-concept; (4)
the number of sentences with y as the sub-concept; (5) the number of sub-concepts extracted from sentence
s; (6) position of y in the sub-concepts list from sentence s;. Supposing the features are independent, we
apply Naive Bayes [14] to derive p(s,) based on the corresponding feature set F. We exploit WordNet to
build a training set used for learning the Naive Bayes Model. Given a pair <x, y> that appears in the
WordNet, if there is a path between x and y in the WordNet taxonomy, (i.e., x is an ancestor of y), we
regard the pair as a positive example; otherwise, we treat the pair as negative.

Typicality is the conditional probability between a super-concept and its instance (sub-concept).
Intuitively, robin is more typical of the concept bird than is ostrich, while Microsoft is more typical of the
concept company than is Xyz inc. Therefore, we need a probability score to stand for the typicality of an
instance (sub-concept) to its corresponding super-concept. The typicality measure of an instance i to a
super-concept x is formulated as:

aoy__ nx,0)-p(x,i)
)= e p )’ ©
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where x is a super-concept, i is an instance of x, n(x, i) is the number of appearance that supports i as an
instance of x; p(x, i) is the plausibility of pair <x, i>, and /, is a set consisting of all instances of super-concept
x. For example, suppose x = Company, i = Microsoft, j = Xyz inc. It can be imagined that n(x, i) should
be much larger than n(x, j), so Microsoft should obtain a much bigger typicality score than Xyz Inc with
respect to Company. Similarly, we can also define the typicality score denoting the probability of a concept
X to instance i.

N nx, D) plx, i)
v(xli) = > X, Npxi)

(7)

4. CONCEPTUALIZATION

In this section, we introduce the conceptualization model which leverages the Probase semantic
knowledge network to facilitate text understanding. Conceptualization model (also known as the Concept
Tagging model) aims to map text into semantic concept categories with some probabilities. It provides
computers the common sense of semantics and makes machines “aware” of the mental world of human
beings, through which the machines can better understand human communication in text.

We consider three sub-tasks for building a conceptualization model. (1) Single Instance Conceptualization,
which returns Basic-Level Categorization (BLC) for a single instance. As an example, “Microsoft” could be
automatically mapped to Software Company and Fortune 500 company, etc., with some prior probabilities.
(2) Context-Aware Single Instance Conceptualization, which produces the most appropriate concepts based
on different contexts. As an example, “Apple” could be mapped to Fruit or Company without context, but
with context word “pie”, “Apple” should be mapped to Fruit with higher probability. (3) Short Text
Conceptualization, which returns the types and concepts related to a short sequence of text. For example,
in the sentence “He is playing game on Apple iPhone and eating an apple”, the first “Apple” is Company
while the second “Apple” is Fruit.

4.1 Single Instance Conceptualization

Assume e is an instance, and c is a super-concept; we can obtain the Basic-Level Categorization (BLC)
results based on typicality scores P(e|c) and P(c|e), where P(e|c) denotes the typicality of an instance e to
concept ¢, and P(c|e) denotes the typicality of a concept c to instance e. We propose several metrics as
representative measures used for BLC [15].

MI is the mutual information between e and ¢, defined as:
P(e,c)
P(e)P(c)’

PMI denotes the pointwise mutual information, which is a widely used measure of the association
between two discrete variables.

Mi(e,c)=P(e,c)log 8)

Ple,c) o Ple|c)P(c)
(e)P(C)_ & P(e)P(c)

PMI(e,c) = log 5 = log P(e|c) - logP(e). 9)
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NPMI is a normalized version of PMI, which is proposed to make PMI less sensitive to occurrence
frequency and is more interpretable.

NPMi(e,c) = PMi(e,c) _ log P(e|c) - logP(e) . a0
—logP(e,c) —logP(e,c)

Both PMI and NPMI suffer from the trade-off between general and specific concepts. On the one hand,
general concepts may be the correct answer, but they do not have the capability to distinguish instances
of different sub-categories; on the other hand, specific concepts may be more representative, but the
coverage is low. Therefore, we further propose PMI* and Graph Traversal measures to tackle this problem.

PMI* makes a compromise to avoid producing either too general or too specific concepts.
Rep(e,c)=P(cle)P(e|c). (1)

If we take the logarithm of scoring function Rep(e,c), we get:

2
logRep(e,c) = /og%

This in fact corresponds to PM/I?, which is a normalized form in the PM/* Family [16].

= PMIl(e,c)+logP(e,c). (12)

Graph Traversal is a common way to calculate the relatedness of two nodes in a large network. The
scores calculated by general graph transversal can be formulated as:

. o T o T
Time(e,c)= zkﬂ(zk) *P (e,c)= zk:1(2k) *P.(e,c)+ zk:m(2k) *P.(e,c)z Zk:1(2k) *P.(e,c) 13)
T
+2(T+1)* (1 -3 R (e,c)),
where P(e,c) is the probability of staring from e to ¢ and back to e in 2k steps. When k = 2 which represents
a 4-step random walk, we have:

Time'(e,c) = 2* P(cle)P(e|c)+ 4 * (1- P(c | e)P(e | c)) = 4 = 2 * P(cle)P(e|c) = 4 — 2 * Reple, c). (14)

Thus, it is verified that the simple, easy-to-compute scoring method of Rep(e,c) is equivalent to a graph
traversal approach under the constraint of 4-step random walk.

4.2 Context-Aware Single Instance Conceptualization

One instance may be mapped to distinct concepts according to different contexts. For example, for
“apple ipad”, we want to annotate “apple” with company or brand, and “ipad” with device or product.
The major challenge is how to distinguish and detect the correct concepts in different contexts. We propose
a framework of context-aware single instance conceptualization [17] which consists of two parts: (1) offline
knowledge graph construction and (2) online concept inference.
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4.2.1 Offline Knowledge Graph Construction

There are millions of concepts in the Probase semantic network. We first perform clustering on all the
concepts to construct the concept clusters. Concretely, we adopt a K-Medoids clustering algorithm [18] to
group the concepts into 5,000 clusters. We adopt concept clusters instead of concepts themselves in the
graph for noise reduction and computation efficiency. In the rest of this section, we use concept to denote
concept cluster. We build a large knowledge graph offline, which is comprised of three kinds of sub-graphs,
including (1) instance to concept graph, (2) concept to concept graph and (3) non-instance term to concept
graph. Figure 6 shows a piece of the graph around the term watch.

I
I
Concept |
: company |
|

related

IsA

brand

product

—> Instance to concept) related

|
» Non-instance term | IsA

T to concept ! verb verb
: channel |¢--— ——» movie book
=2 Concept to concept,

| ISA sA

ISA| luxury device
good

Figure 6. A subgraph of heterogeneous semantic network around watch.

Instance to concept graph. We directly use the Probase semantic network as the instance to concept
graph. P(cle) is served as the typicality probability of concept (cluster) c¢ to instance e, which can be
computed by

P(cle)= ZP(

c'ec

e), (15)

where c* represents a concept belonging to cluster ¢, P*(c*|e) is the typicality of the concept c* to instance e.

Concept to concept graph. We assign a transition probability P(c,|c;) to the edge between two concepts
¢, and ¢,. The probability is derived by aggregating the co-occurrences between all (unambiguous) instances
of the two concepts.

i ec[’(eneﬂ

2 e)’
ceC eerweec &€

where ¢ denotes a set containing all concepts (clusters), and the denominator is applied for normalization.

P(c,|c,)= (16)
In practice, we only take the top 25 related concepts for each concept for edge construction.

Non-instance term to concept graph. There are terms that cannot be matched to any instances or
concepts, i.e., verbs or adjectives. For better understanding of the short text, we also mine lexical relationships
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between non-instance terms and concepts. Specifically, we use the Stanford Parser [19] to obtain POS
tagging and dependency relationships between tokens in the text, and the POS tagging results reveal the
type (e.g., adjective, verb, etc.) of each token. Our goal is to obtain the following two distributions.

P(z|t) stands for the prior probability that a term t is of a particular type z. For instance, the&/vo)rd watch
is a verb with probability P(verb|watch) = 0.8374. We compute the probability as P(z|t)= n /tZ
n(t, z) is the frequency term t annotated as type z in the corpus, and n(t) is the total frequenc? of term t.

, where

P(c|t, z) denotes the probability of a concept ¢, given the term t of a specific type z. For example,
P(movie|watch, verb) depicts how likely the verb watch is associated with the concept movie lexically.
Specifically, we detect co-occurrence relationships between instances, verbs and adjectives in Web
documents parsed by the Stanford Parser. To obtain meaningful co-occurrence relationships, we require
that the co-occurrence be embodied by dependency, rather than merely appearing in the same sentence.
We first obtain P(e|t, z), which denotes how likely a term t of type z co-occurs with instance e:

P(e|t,z):M (17)

ze‘nz(e*, t)’

where n,(e, t) is the frequency of term t and instance e having a dependency relationship when t is of type
z. Then, taking instances as the bridge, we calculate the relatedness between non-instance terms (adjectives/
verbs) and concepts.

P(c|t,z)=YP(c,elt,z)=YPc|e)xPle|t,z). (18)
In Equation (18), e € ¢ means that e is an instance of concept ¢, and we make an assumption that a
concept c is conditionally independent with term t and type z when the instance e is given.

4.2.2 Online Concept Inference

We adopt the heterogeneous semantic graph built offline to annotate the concepts for a query. First, we
segment the query into a set of candidate terms which use Probase as lexicon and identify all occurrences
of terms in the query. Second, we retrieve the subgraph out of the heterogeneous semantic graph by
concentrating on the query terms. Finally, we perform multiple random walks on the sub-graph to find the
concepts with the highest weights after convergence.

4.3 Short Text Conceptualization

Short text is hard to understand in three aspects: (1) Compared with long sentences, short sentences lack
syntactic features and cannot directly apply POS tagging; (2) Short texts do not have sufficient statistical
signals; (3) Short text is usually ambiguous due to the lack of context terms. Many research works focus on
statistical approaches like topic models [20], which extract latent topics as implicit semantics. However,
we argue that semantic knowledge is needed to get a better understanding of short texts. Thus, we aim to
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utilize the semantic knowledge network to enhance short text understanding [21]. Different from the
knowledge graph built for context-aware single instance conceptualization (Section 4.2), we add a novel
sub-graph, typed-term co-occurrence graph, which is an undirected graph where nodes are typed-terms
and edge weights represent the lexical co-occurrence between two typed-terms. Nevertheless, the number
of typed-terms is extremely large, which will increase storage cost and affect the efficiency of calculation
on the network. Therefore, we compress the original typed-term co-occurrence network by retrieving
Probase concepts for each instance. Then, the typed-terms can be replaced by the related concept clusters
and the edge weights are aggregated accordingly. Figure 7 shows an example of the compression procedure.

WatCh[v] app|e[e] ag?[att]
/

company < ~77 ~ googlep,

brand watchy, ABCpany

hatry potter, movie

april in paris;g) ready, song character brand
) — hotel california

S~/ book company
Ivri SONgq lyrics
YFiCS{aty read, product

/ omega,
ipady product PriCe(ayy buyy,
; \

. - watchyy
price

buyM

Figure 7. The compression procedure of typed-term co-occurrence network.

Given a piece of short text, each term is associated with the type and corresponding concepts. We define
the types as instance, verb, adjective and concept. For each term with type instance, we also learn the
corresponding concepts for the term. Given a piece of short text, the online inference procedure contains
three steps, including text segmentation, type detection and concept labeling. An example is illustrated in
Figure 8. Given the query “book disneyland hotel california”, the algorithm first segments it as “book
disneyland hotel california”; then, it detects the type for each segment; at last, the concepts are labeled for
each instance. As shown in the figure, the output is “book, disneyland . hotel, california e, which
means that book is a verb, disneyland is an instance of the concept park, hotel is a concept, and california
is an instance of the concept state.

‘ book disneyland hotel california | ‘book[v] disneylandyejpark) hotely california[e](state)‘

‘ book disneyland hotel california H book,; disneylandye) hotel california ‘

Figure 8. An example of short text understanding.
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4.3.1 Text Segmentation

The goal of text segmentation is to divide a short text into a sequence of meaningful components. To
determine a valid segmentation, we define two heuristic rules: (1) except for stop words, each word belongs
to one and only one term; (2) terms are coherent (i.e., terms mutually reinforce each other). Intuitively,
{april in paris lyrics} is a better segmentation of “april in paris lyrics” than {april in paris lyrics}, since “lyrics”
is more semantically related to songs than months or cities. Similarly, {vacation april in paris} is a better
segmentation of “vacation april in paris” than {vacation april in paris}, because “vacation”, “april” and
“paris” are highly coherent with each other, while “vacation” and “april in paris” are less coherent.

The text segmentation algorithm can be conducted in the following steps. First, we construct a term graph
(TG) which consists of candidate terms and their relationships. Next, we add an edge between two candidate
terms when they are not mutually exclusive and set the edge weight to reflect the strength of mutual
reinforcement. Finally, the problem of finding the best segmentation is transformed into the task of finding
a clique in the original TG, with 100% word coverage while maximizing the average edge weights.

4.3.2 Type Detection

The type detection procedure annotates the type for each term as verb, adjective, instance or concept.
For example, term “watch” appears in the instance-list, concept-list, as well as verb-list of our vocabulary,
and thus the possible typed-terms of “watch” are watch,,, watch,, and watch,,. For each term, the type
detection algorithm determines the best typed-term from the set of possible candidates. In the case of
“watch free movie”, the best typed-terms for “watch”, “free”, and “movie” are watchy,, free,,q; and movie,
respectively.

Traditional approaches resort to POS tagging algorithms which consider lexical features only, e.g., Markov
Model [22]. However, such surface features are insufficient to determine types of terms especially in the
case of short text. In our solution, we calculate the probability by considering both traditional lexical
features and semantic coherence features. We formulate the problem of type detection into a graph model
and propose two models, namely Chain model and Pairwise model.

Chain model borrows the idea of first order bilexical grammar and considers topical coherence between
adjacent typed-terms. In particular, we build a chain-like graph where nodes are typed-terms retrieved from
the original short text. Edges are added between each pair of typed-terms mapped from adjacent terms in
the original text sequence, and the edge weights between typed-terms are calculated by affinity scores (see
the example in Figure 9(a)). Chain model only considers semantic relations between consecutive terms
which will lead to mistakes.

Pairwise model adds edges between typed-terms mapped from each pair of terms rather than adjacent
terms only. As an example, in Figure 9 (b), there are edges between non-adjacent terms
“movie”. The goal of the Pairwise Model is to find the best sequence of typed-terms which guarantees that

"

watch” and

the maximum spanning tree (MST) constructed by the selected sequence has the largest total weight. As
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shown in Figure 9 (b), as long as the total weight of edges between (watch,,, movie) and (free,,;, movie,])
is the largest, {watch,,, free,y;, moviey} can be successfully recognized as the best sequence of type
detection for the query “watch free movie”. We employ the Pairwise model in our system as it achieves
higher accuracy experimentally compared with the Chain model.

ey <X
!

watch T movie
free
(a) Type detection result of “watch free movie (b) Type detection result of “watch free movie
using the Chain model is {watchy,, freey, ;, using the Pairwise model is {watch,,, freey, .
moviey}”. movie}”.

Figure 9. Example of Chain model and Pairwise model.

4.3.3 Concept Labeling

The goal of concept labeling is to re-rank the candidate concepts according to the context for each
instance. The most challenging task in concept labeling is to deal with ambiguous instances. Our intuition
is that a concept is appropriate for an instance only if it is a common semantic concept of that instance
and is supported by the surrounding context at the same time. Take “hotel California eagles” as an example,
where both animal and music band are popular semantic concepts to describe “eagles”. If we find a concept
song in the context, we can be more confident that music band should be the correct concept for “eagles”.

After type detection, we have obtained a set of instances for concept labeling. For each instance, we
collect a set of concept candidates and perform instance disambiguation based on a Weighted-Vote
approach, which is a combination of Self-Vote and Context-Vote. Self-Vote denotes the original affinity
weight (calculated by normalized co-occurrence) of a concept cluster ¢ associated to the target instance;
while Context-Vote leverages the affinity weights between the target instance and other concepts found in
the context. In the case of “hotel california eagles”, the original concept vector of the instance eagles is
(<animal, 0.2379>, <band, 0.1277>, <bird, 0.1101>, <celebrity, 0.0463>, ...) and the concept vector for
context “hotel california” is (<singer, 0.0237>, <band, 0.0181>, <celebrity, 0.0137>, <album, 0.0132>,
...). After disambiguation by Weighted-Vote, the final conceptualization result of eagles is (<band, 0.4562>,
<celebrity, 0.1583>, <animal, 0.1317>, ...).
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5. APPLICATION

Probase Browser shows the backbone of the Probase taxonomy and provides an interface to search for
super-concepts, sub-concepts, as well as similar concepts corresponding to the given query. Figure 10 is a

snapshot of the Probase browser.

Matched Results: || Super Concept Sub Concept | | Similar Concept Attributes:

company foundation al
large company

leading company homepage

big company

international company industry

multinational company @ E :'

insurance company

company name

well-known company

e General Elec... Samsung . K
oil company ] ! location
local company
global company Hewlett Packard ' 1

: company logo
private company Motoro a
technology company

indian company w . product
U.S. company
american company com pa ny o . revenue

software company

pharmaceutical company orgamzatlon

top company
japanese company net income
media company
internet company founder
cable company
successful company type
logo
parent
asset
owner 3

Figure 10. A snapshot of the Probase browser.

Tagging Service provides the capability of tagging a piece of text with a concept vector, based on which
the semantic similarity can be calculated, and various text processing applications can be affiliated. Figure
11 shows a snapshot of the instance conceptualization demo when querying a single instance “python”.
Figure 12 shows the snapshot given “apple” in the context “pie” and “ipad”, respectively. As shown in the
figure, our tagging service can map the term “apple” into correct concepts under different contexts. An
example of short text conceptualization is illustrated in Figure 13 by querying the tagging service with
“apple engineer is eating the apple”. The result shows the capability of our tagging algorithm to distinguish
different senses of “apple” in the short text scenario.
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Score by P(c|e) Score by MlI ScorebyP(e|]c) | Score by NPMI Score by PMINK Score by BLC
language 0.505 language 0452 living snake 0.1 dynamic language 0.107 dynamic language 0.143 dynamic language 0.245
scripting language on scripting language 0.135 noticed danger 0.1 large snake 0.105 large snake 0.132 scripting language 0.192
programming programming exotic leather
3 X | . ! . ) ! .
lsogusge 0.101 lsoguage 0.108 actual snake 0.1 w-phn? anguage  0.102 product on arge snake 0.151
dynamic language 0073 dynamic language 0.1 non-native snake 0.1 exo;::;:a‘!‘her 01 living snake 0.097 language 0.121
snake 0071 snake 0077 cecent 01 living snake 0098  noticeddanger 0097 PrOIRMMNG 440,
programming language
animal 0.036 large snake 0,046 interprated language 01 noticed danger 0.098 actual snake 0.097 snake 0.054
fully-fledged exotic leather
reptile 0.035 reptile 0.028 programming 0.1 actual snake 0098  scripting language  0.092 product 0.047
large snake 0033 exotic skin o024  Modemhighdevel -, - dynamicscripting g ogq  GyMAMICSCIPUNG 6500 inerpreted language  0.044
scripting language language language
exotic skin 002 interpreted language 0019 high-order 0.1 primitive snake 0.096 nocturnal snake 0071 primitive snake 0.04
programming
ical
technology 0016 primitive snake 0012 biggest snake 01 dynamically typed 0.096 primitive snake 0071 dynamically typed 0034
language language
Figure 11. Snapshot of single instance conceptualization.
pie apple ipad apple
[3/product] [9405/food] [15/device] [1/company]
3/produ 0. 1 9405/food 0.4323602 15/device 0.4352382 1/company 0.926092
baked good 0.01293272 food 0.2664687 device 001287828 company 001018514
product 0.0105567 sweet food 0.03745969 mobile device 0.01198808 corporation 0.00609147
bakery product 0.008165566 sugary food 002410059 portable device 0.009427363 firm 0.005942625
meat product 0.006891184 snack food 0.02355857 apple device 0.008862641 large company 0.005684517
baked product 0.005766741 rich food 0.01787281 tablet device 0.00882206 client 0.005453772
processed meat product 0.004463319 raw food 001127649 ios device 0.008738589 player 0.005367511
homemade baked good 0.004463319 staple food 0.01009054 gadget 0.00836913 stock 0.005275559
commercially baked good 0004463319 comfort food 0.006366423 electronic device 0.007205624 technology company 0.005275559
home-baked good 0.004463319 carbohydrate food 0.006366423 handheld device 0.005836552 big company 0.004995803
bake good 0004463319 starchy food 0.006366422 digital device 0.005672655 giant 0.0048316
9405/food 0.252832 196/dessert 0.1742629 3/product 0.09435893 1053/top brand name/brand  0.0393841
food 001338996 dessert 009348933 product 0.009799219 brand 0.001478651
fatty food 0.007688988 goodie 003226487 apple product 0.009299118 popular brand 0.000855937
snack food 0007113159 treat 0.02879891 electronic product 0.003065936 name brand 0.000782961
processed food 0005766741 fruit dessert 0009326639 apple’s product 0.003065936 big brand 0.000720103
sugary food 0.005766741 homemade dessert 0006366422 popular product 0.002429697 great brand 0.000701757
sweet food 0.00539643 fruit-based dessert 0.004016765 digital product 0.002429697 global brand 0.000701757
rich food 0.00539643 revolutionary product 0.002429697 top brand 0.000660766
hot food 0.004968937 iconic product 0.002429697 well-known brand 0.000637629
prepared food 0.004463319 popular apple product 0.002429697 iconic brand 0.000637629
dessert food 0004463319 apple's ';?:d::'mlw 0,002429697 laptop brand 0,000612285
Figure 12. Snapshot of context-aware single instance conceptualization.
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ShortText: ’apple engineer is eating the apple

apple
[1/company]

1/company 0.9481527
company 0.0104278
corporation 0.006236602
firm 0.00608421
large company 0.005819953
client 0.00558371
player 0.005495394
stock 0.005401252
technology company 0.005401252
big company 0.00511483
giant 0.004946716
9405/food 0.02624887
food 0.000542585
ingredient 0.00032938
high fiber food 0.000294545
hard food 0.000282255
crunchy food 0.000270899
fiber-rich food 0.000267797
healthy food 0.000264574
fresh food 0.000254066
fiber rich food 0.000222587
wholesome 0.000216916

J
engineer eat
[805/professional] [verb]
805/professional 0.3667608
professional 0.01444558
expert 0.008747877
occupation 0.008747877
design professional 0.007727818
licensed professional 0.006690023
technical 0.006299564
professional group 0.00599617
skilled professional 0.00599617
construction 0.005645925
industry professional 0.004724673
355/staff/job 0.3131405
job 0.009024879
skilled worker 0.008241975
knowledge worker 0.007390991
technical staff 0.00728621
worker 0.006940636
professional worker 0.005652321
staff 0.0051793
white-collar worker 0.0051793
professional 0.004901662
nonproduction 0.004586902

apple
[9405/food]

9405/food 0.9647822
food 0.01994285
ingredient 0.01210647

high fiber food 0.0108261
hard food 0.01037435
crunchy food 0.009956987
fiber-rich food 0.009842971
healthy food 0.009724479
fresh food 0.009338287
fiber rich food 0.008181235
wholesome 0.007972804
3/product 0.02158811
product 0.001138903
farm product 0.000464368
private good 0.000464368
local product 0.000417116
company’s product 0.000417116
branded product 0.000359284
seasonal product 0.000359284
bulk product 0.000359284
well-known product 0.000359284
horticultural product 0.000359284

Topic Search [23] aims at understanding the topic underlined in each query for better search relevance.
Figure 14 shows a snapshot when a user queries “database conference in Asian cities”. As shown in the
figure, the search results correctly rank VLDB 2002, 2006, and 2010 at the top, which are held in Hong
Kong, Seoul and Singapore, respectively. Traditional Web search takes queries as sequences of keywords
instead of understanding the semantic meanings, so it is hard to generate the correct answers for the
example query. To achieve this goal, we present a framework that improves Web search experiences using
Probase knowledge and the conceptualization models. First, it classifies Web queries into different patterns
according to the concepts and entities in addition to keywords contained in the queries. Then, it produces
answers by interpreting the queries with the help of Probase semantic concepts. Our preliminary results
showed that the framework was able to understand various types of topic-like queries and achieved much

Figure 13. An example of short text conceptualization.

higher user satisfaction.

257

Data Intelligence

d-ajoIuEAUIP/NPS W IOBIP//:dRY WOl papeojumoq

©7)UIP/Z08€89/8ET/E/L/IP

€20z Joquisydes /0 uo 3senb Aq ypd¢ 1000



Microsoft Concept Graph: Mining Semantic Concepts for Short Text Understanding

‘database conferences in asian cities | ‘ GO ‘

VLDB 2002

28th International Conference on Very Large Data Bases. Hong Kong, China; August 20-23,
2002.

www.cse.ust.hk/vidb2002

VLDB2010 Spore : Conference Overview

VLDB 2010 , 36th International Conference on Very Large Data Bases Singapore : 13 to 17
Sept 2010, Grand Copthorne Waterfront Hotel

vidb2010.0rg

32. VLDB 2006: Seoul, Korea

32. VLDB 2006: Seoul, Korea Umeshwar Dayal, Kyu-Young Whang, David B. Lomet, Gustavo
Alonso, Guy M. Lohman, Martin L. Kersten, Sang Kyun Cha, Young-Kuk Kim (Eds.): Proceedings
of ...

www.vldb.org/dblp/db/conf/widb/vlidb2006.html

Figure 14. The framework of topic search.

Understanding Web Tables [24]. We use Probase to help interpret and understand Web tables, which
unlocks the wealth of information hidden in the Web pages. To tackle this problem, we build a pipeline
for detecting Web tables, understanding their contents, and applying the derived knowledge to support
semantic search. From 300 million Web documents, we extract 1.95 billion raw HTML tables. Many of
them do not contain useful or relational information (e.g., used for page layout purpose); others have
structures that are too complicated for machines to understand. We use a rule-based filtering method to
acquire 65.5 million tables (3.4% of all the raw tables) that contain potentially useful information. We adopt
Probase taxonomy to facilitate the understanding of table content, by associating the table content with
one or more semantic concepts in Probase. Based on the knowledge mined from Web tables, we build a
semantic search engine over tables to demonstrate how structured data can empower information retrieval
on the Web. A snapshot of our semantic search engine is shown in Figure 15. As illustrated in the figure,
when a user queries “American politicians birthday”, the search engine returns with aggregated Web tables
consisting of birthday and other related knowledge of various American politicians.
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*

American politicians birthday

Web Table Morev
= Shrink
= Shrink table
Birth U.S. Vice Order of :
) Birthdate Century Birthplace
order President office
5 . Yorba Linda
39 Richard Nixon January 9, 1913 20th 36
California
New York City , New
28 Theodore Roosevelt October 27,1858 19th 25 o
or
46 Dan Quayle February 4, 1947  20th 44 Indianapolis , Indiana
Wallace , South
38 Hubert Humphrey May 27, 1911 20th 38
Dakota
40 Gerald Ford July 14, 1913 20th 40 Omaha, Nebraska
42 George H. W. Bush June 12, 1924 20th 43 Milton , Massachusetts
44 Dick Cheney January 30, 1941  20th 46 Lincoln , Nebraska
November 20, Scranton ,
45 Joseph Biden 20th 47
1942 Pennsylvania
9 Martin Van Buren December 5, 1782 18th 8 Kinderhook , New York
= Shrink table
State Senator Party Date of birth Term Age (Years/Days)
lllinois Barack Obama Democratic August4, 1961 2005-2008 196184
New York Hillary Clinton Democratic October 26, 1947 2001-2009 1947 10 26
Tennessee Al Gore Democratic March 31, 1948 1985- 1993 1948 3 31
North Carolina John Edwards Democratic June 10, 1953 1999 - 2005 19536 10
Kansas Bob Dole Republican July 22, 1923 1969 - 1996 19237 22
Indiana Dan Quayle Republican February 4, 1947 1981-1989 194724

Figure 15. Snapshot of the Web tables.

Channel-based Query Recommendation [25] aims to anticipate user search needs when browsing
different channels, by recommending the hottest and highly related queries for a given channel. As shown
in Figure 16, there are three channels, News, Sports and Entertainment, and several queries are recommended
under each channel to enable the users to explore the hottest topics related to the target channel. One of
the main challenges is how to represent queries and channels which are short pieces of text. Traditional
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representation methodology treats text as bag of words, which suffers from mismatch of surface forms
of words, especially when text is short. Therefore, we leverage the Probase taxonomy to obtain a “Bag of
Concepts” representation for each query and channel, in order to avoid surface mismatching and handle
the problem of synonym and polysemy. By leveraging the large taxonomy knowledge base of Probase, we
learn a concept model for each category, and conceptualize a short text to a set of relevant concepts.
Moreover, a concept-based similarity mechanism is presented to classify the given short text to the most
similar category. Experiments showed that our framework could map queries to channels with a high degree
of precision (average precision = 90.3%).

NEWS SPORTS ENTERTAINMENT

e

Who gains politically Can these NFL teams Kerry Washington's loss

from federal shutdown? get back on track? irks 'Scandal' cast

« $4.7B deal for BlackBerry = Live: Broncos take on Raiders = 'NCIS' spinoff pilot set

= Better cancer odds if married = These teams can topple 'Bama = Hudson teams with Pharrell

s Superdads! Couple adopt 14 = Ex-Redskin calls RG3 a 'brat’ = Pompeo: Emmys felt dated

(® Army dad in mascot surprise = Yankees ace done for season = Aguilera finds balance

= The high cost of having a baby = Report: Stripper slugs NFL star (® Spacey talks Netflix's model
(® 911 call while caught in fire = Vin Scully rejects street honor = Composer's son sentenced

Figure 16. Query recommendation snapshot.

Ads Relevance [3]. In sponsored search, the search engine maps each query to the related ad bidding
keywords. Since both the query and bidding keywords are short, the traditional bag-of-words approaches
do not work well in this scenario. Therefore, we can leverage Probase concept taxonomy to enhance Ads
relevance calculation. For each short text, we first identify instances from it, and map it to basic-level
concepts with score Rep(e, c); then, we merge the concepts to generate a concept vector representing the
semantics of the target text. Finally, the relevance score can be calculated through the cosine similarity
measure between the concept vectors of the query and bidding keywords. We conduct our experiments
on real Ads click logs collected from Microsoft Bing search engine. We calculate the relevance score of
each candidate pair of query and bidding keywords, divide the pairs into 10 buckets based on the relevance
score, and report the average clickthrough rate (CTR) within each bucket. The result is demonstrated in
Figure 17, which shows that the CTR numbers have a strong linear correlation with the relevance scores
calculated by our model.
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Figure 17. The correlation of CTR with Ads relevance score.

5. DATA AND ANALYSIS

5.1 Data

The Microsoft Concept Graph can be downloaded at https://concept.research.microsoft.com/, which is
a sub-graph of the semantic network we introduce in this paper. The core taxonomy of Microsoft Concept
Graph contains above 5.4 million concepts, whose distribution is shown in Figure 18, where Y axis is the

number of instances each concept contains (logarithmic scale), and on the X axis are the 5.4 million
concepts ordered by their size. Our concept space is much larger than other existing knowledge bases
(Freebase contains no more than 2,000 concepts, and Cyc has about 120,000 concepts).
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sustainable design principles
hydrocarbon liquids

modern scientific theories
microeconomic concepts

Figure 18. The distribution of concepts in Microsoft Concept Graph.

5.2 Concept Coverage

Based on the query logs of Microsoft Bing search engine, we estimate the coverage of concepts mined

by our methodology. If at least one concept can be found in a query, the query is considered to be covered.
We thus calculate the percentage of queries that can be covered by Probase and compare the metrics
against the other four taxonomies. We utilize the top 50 million queries in Bing’s query log to compute the

coverage metrics, and the results are shown in Figure 19. We can see clearly from the figure that Probase

has the largest coverage, YAGO ranks the second, and Freebase has a rather low coverage although its
instance space is large. It demonstrates that Freebase’s instance distribution is very skew (most instances
are distributed in several top categories and lack the general coverage of other concepts).
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Figure 19. Concept coverage of different taxonomies.

5.3 Precision of isA pairs

To estimate the correctness of extracted isA pairs in Probase, we create a benchmark data set of 40
concepts in various domains. For each concept, we randomly pick up 50 instances (sub-concepts) and ask
human reviewers to evaluate their correctness. Figure 20 depicts the precision of isA pairs for all the 40
concepts we manually evaluate. The overall precision is 92.8% by averaging over all the concepts.

Precision

£ e N s WX I SIS > & > PP NI S & S & & & &S S e
& F €SS E F S &S S S S @S b@% & &8 ,&@@o 0& & & & @\\;\(‘ Q‘,{‘ & Q(é, & & (,AA &€ 8 S S
TN R 9 S o L e N CHFFFFSFSTSIST LTI NN COELLE S
? & K AR & K N P PO SN &R W ©
(g\' & © c@ € & ¥ & e? e}‘Q & < & ® \\‘.‘\“ < Q}b ’<}\° & B o& § &
o & & S R STHS &S & o
? <\\\" & & 6‘&
& & o &
&°
<

Figure 20. Precision of extracted isA pairs on 40 concepts.

We further draw the curve of average precision after each iteration (shown in Figure 21). Moreover, the
number of concepts and isA pairs discovered after each iteration are drawn in Figure 22. It is obvious that
the precision degrades after each round while the number of discovered concepts and isA pairs increases.
So, the best iteration number must be chosen as a trade-off between precision and facts number (set as 11
in our implementation).
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Figure 21. Precision of isA pairs after each iteration.
—o—1# of isA pairs —l=# of concepts
25000000
20000000 — =0 0———¢———¢u
15000000
10000000 /
R e

1 2 3 4 5 6 7 8 9 10 11
Iteration #

Figure 22. The number of discovered concepts and isA pairs after each iteration.

5.4 Conceptualization Experiment

In this section, we mainly present the experimental results of conceptualization for both single instance
and short text.

1). Single Instance Conceptualization

Data set preparation. We asked human labelers to manually annotate the correctness of the concepts.
The label is defined in four categories as shown in Table 3. Each (instance, concept) is assigned to three
labelers to annotate. The final label is defined by the majority label. We will ask the fourth annotator to
make the final vote for records without majority label. In all, there are 5,049 labeled records.

Table 3. Labeling guideline for conceptualization.

Label Meaning Examples
Excellent Well matched concepts at the basic level (bluetooth, wireless communication protocol)
Good A little general or specific (bluetooth, accessory)
Fair Too general or specific (bluetooth, feature)
Bad Non-sense concepts (bluetooth, issue)

Data Intelligence
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Measurement. We employ Precision@k and nDCG to evaluate the effectiveness. For Precision@k, we
treat Good/Excellent as score 1, and Bad/Fair as 0. We calculate the precision of top-k concepts as follows:

2; rel,
k ’

where rel, is the score we define above. For nDCG, we treat Bad as 0, Fair as 1, Good as 2, and Excellent

Precision@k = (19)

as 3. Then we calculate nDCG as follows:

« rel.
|+ !
el 2":Zlogi
nDCG =

ideal _rel,’ (20)

ideal_re/,+z_kf2 o
= ogi

where rel, is the relevance score of the result at rank /, and ideal rel, is the relevance score at rank i of an
ideal list, obtained by sorting all relevant concepts in decreasing order of the relevance score.

Experimental result. Figure 23 shows the evaluation of the top 20 results using both Precision and
nDCG with and without smoothing. We compare our proposed scoring functions with various baselines:
MI, NPMI, and PMI>. Where PMP® is defined as:

ple,c)’
p(e)plc)’

From the result, we can see that our proposed scoring function outperforms baseline on both precision
and nDCC.

PMP (e,c) = log 21

2). Short Text Conceptualization

Data set preparation. To validate our generalizability, we build two data sets to evaluate our algorithm
including user search query and tweets. To build a query data set, we first manually picked 11 ambiguous
terms including “apple”, “fox” with instance ambiguity, “watch”, “book”, “pink”, “blue”, “population”,
“birthday” with type ambiguity, and “April in Paris”, “hotel California” with segmentation ambiguity. Then
we randomly selected 1,100 queries containing 11 ambiguous terms. Moreover, we randomly sampled
another 400 queries without any restriction. In all, there are 1,500 queries. To build tweets data set, we
also randomly sampled 1,500 tweets using Twitter’s APIl. To clean the tweets, we removed some tweet-
specific features, such as @username, hashtags, urls, etc. We asked human labelers to manually annotate
the correctness. For each record, we assign at lease three labelers and pick up the majority vote as final
label.

Experimental result. To evaluate the effectiveness of the algorithm, we compared our methods with
several baseline methods. [27] conducts instance disambiguation in queries based on similar instances,
[28] conducts instance disambiguation in queries based on related instances, and [26] conducts instance
disambiguation in tweets based on both similar and related instances. Table 4 presents the results which
show that our conceptualization is not only effective but also robust.
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(b) Precision with smoothing (¢ = Ze-4)

i |

10 11 12 13
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Figure 23. Precision and nDCG comparison.
Table 4. Precision of short text understanding.
[27] [28] [26] Ours
Query 0.694 0.701 - 0.943
Tweet - - 0.841 0.922
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6. CONCLUSION

In this paper, we present the end-to-end framework of building and utilizing the Microsoft Concept
Graph, which consists of three major layers, namely semantic network construction, concept conceptualization
and applications. In the semantic network construction layer, we focus on the knowledge extraction and
taxonomy construction procedures to build an open-domain and probabilistic taxonomy known as Probase.
Like human mental process, we then represent text by concept space using conceptualization models, and
empower many applications including topic search, query recommendation, Ads relevance calculation as
well as Web table understanding. The system has received wide public attention ever since released in
2016 (more than 100,000 pageviews, 2 million API calls and 3,000 registered downloads from 50,000
visitors over 64 countries).
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