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Abstract: The vast majority of research on automatic chord transcription has been developed and tested on databases
mainly focused on genres like pop and rock. Jazz is strongly based on improvisation, however, and the way harmony
is interpreted is different from many other genres, causing state-of-the-art chord transcription systems to achieve poor
performance.

This article presents a computational system that transcribes chords from jazz recordings, addressing the specific
challenges they present and considering their inherent musical aspects. Taking the raw audio and minor manually
obtained inputs from the user, the system can jointly transcribe chords and detect the beat of a recording, allowing a
lead sheet-like rendering as output.

The analysis is implemented in two parts. First, all segments with a repeating chord progression (the chorus) are
aligned based on their musical content using dynamic time warping. Second, the aligned segments are mixed and a
convolutional recurrent neural network is used to simultaneously detect beats and transcribe chords.

This automatic chord transcription system is trained and tested on jazz recordings only, and achieves better
performance than other systems trained on larger databases that are not jazz specific. Additionally, it combines the
beat-detection and chord transcription tasks, allowing the creation of a lead sheet-like representation that is easy to

interpret by both researchers and musicians.

Introduction

Pitch-related tasks are not trivial, because pitch is
closely related to perception and psychoacoustics.
Moreover, studies on musical harmony, which can
be understood as a subset of pitch-related tasks,
are complex, as there is some amount of ambiguity
involved. One example is automatic chord transcrip-
tion (ACT), in which ground-truth transcriptions
performed by different trained musicians might
not be consistent (Ni et al. 2013; Humphrey and
Bello 2015), because there is a process of subjective
interpretation involved. Nevertheless, this challeng-
ing task has been widely addressed in the music
information retrieval community and many ACT
systems have been proposed in the last two decades
(Pauwels et al. 2019).

Variations of chord-sequence prediction systems
can be found in the literature with different names:
recognition, identification, detection, transcription,
or estimation. Nevertheless, the term transcription
refers to a more-complex task closely related to
musical high-level concepts and to functional
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analysis, as stated by Humphrey and Bello (2015).
From that perspective, ACT systems should not
analyze isolated time segments as independent,
because the transcription of a particular chord
depends strongly not only on its own musical
content, but also on the observation of previous and
subsequent chords.

Most research up to now has been developed
on datasets like Isophonics and Billboard, which
are highly biased towards genres like pop and
rock. Jazz presents elements inherent in its nature
that are mostly based on improvisation, causing
some common assumptions to cease being valid
regarding the way chords are manifested and how
harmony is expressed. For example, chords are
not played necessarily as they are written nor
change exactly when they are expected to. The
effects and limitations of ACT on jazz music has
only been addressed, to our knowledge, by Ere-
menko et al. (2018), who presented and analyzed a
large jazz database. In that work, they tested two
state-of-the-art ACT systems that are not specif-
ically trained for jazz music, showing drastically
lower performance than on pop-rock databases—
around half of the accuracy—demonstrating that
those approaches are not well suited for this
genre.
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The article is structured as follows: First we
introduce the musical context of this research,
provide an in-depth description of our proposed
method to ACT, and then present a literature
review. Second, the segment-alignment task is
presented and tackled. Third, the chord transcription
implementation is described. Finally, experiments
and results are presented.

Musical Context

Unlike many other genres, jazz is strongly based
on improvisation. Spontaneity is common on the
extensive instrumental solos, and each repetition of
a segment is somehow different from the others. The
way musicians play is highly related to what others
are playing, generating a spontaneous performance
that cannot be repeated identically.

Traditionally, the structure of jazz performances
consists of a chord progression that acts as the
“backbone” of the recording and has a fixed number
of bars: Known as a chorus, it is used as the base
on which musicians improvise during solos. It is
not a formally established term, but is colloquially
used by jazz musicians and it is worth noting that in
other musical contexts the term chorus has different
meanings and should not be confused. In jazz, the
way chords are played is mostly improvised and the
chorus is repeated multiple times, but each iteration
is different: The chords played in one repetition of
the chorus are unlikely to be exactly the same as the
chords in another repetition, but all of them express
some elements of the global harmonic progression.
Normally, the theme, or main melody of the song,
is presented in the first instance of the chorus,
followed by instrumental solos improvised on the
chorus’s chord progression, and the last repetition
consists of a restatement of the theme.

The chorus does not define the chords strictly,
because they are rarely played as written (Pachet,
Suzda, and Martinez 2013), instead it defines the
chords as a basic form. Thus, the written chord
progression is used as a reference and each musician
will ornament the chords at each repetition—for
example, adding or subtracting notes to a chord,
or by anticipating or delaying it in time. There are

some well-known techniques for substituting a
chord in place of another functionally equivalent
chord, or using a different chord that maintains
some of the characteristic notes from the original
(for example, tritone substitution, which maintains
the third and the seventh of a dominant chord while
transposing the root by a tritone). In jazz the chorus
is usually represented in a lead sheet that contains
the “essence” of a tune (Pachet, Suzda, and Martinez
2013), namely, the melody in music notation, along
with chord names above the musical staff.

In jazz, the line of the double bass or bass guitar is
often found as a walking bass, a technique in which
notes of equal duration are steadily played, usually
quarter notes (sometimes half or eighth notes are
used as well). The pitches played are mostly part of
the chord (root, third, fifth, seventh, etc.), but other
pitches can be added, such as diatonic scale tones or
chromatic alterations. Some jazz subgenres do not
use the walking bass technique, but it can be found
in the majority of “straight-ahead” (or mainstream)
jazz recordings, on which this research is focused.

Proposed Method

We start from the idea that chorus repetitions should
not be considered as independent musical segments,
instead they all need to be taken into consideration
to retrieve the most important harmonic elements
presented in each one. This approach can be un-
derstood as a noncausal global analysis (so not real
time), ignoring the details in the harmonic and
melodic content not shared between choruses.

This method needs all the time frames in which
each chorus begins and ends. This can be automated
by implementing a complex musical structure-
analysis task that is far from trivial. To focus on
chord transcription, the structural analysis is set
aside and the chorus boundaries are considered to be
an input to this system.

The first step is to align all choruses in a recording
based on their musical content. Choruses in jazz
performances usually have slightly different lengths,
because the tempo does not stay exactly constant,
but all of them have the same number of bars. Thus,
they need to be aligned prior to chord transcription,
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matching their temporal frames and later warped in
time so they have equal length.

The second step consists in chord transcription,
in which the musical content of all choruses is an-
alyzed at once by a deep-learning model, producing
a single chord sequence. A beat detector is included
in the same model as a subtask, making it possible
to match chord transitions with beats and bars.
This allows the predicted chord progression to be
rendered as a lead sheet-like representation, making
it easier to visualize and more familiar to musicians.

Literature Review

Automatic chord transcription is a highly active
research topic that has been addressed since the first
system was proposed by Takuya Fujishima (1999).
The topic is nontrivial and, although state-of-the-art
systems have achieved better results since deep-
learning approaches were introduced (Pauwels et al.
2019; McFee and Bello 2017), there are many issues
that are not yet resolved, such as handling subjec-
tive interpretation of chords, dealing with highly
imbalanced databases, and ensuring consistency be-
tween chords in long harmonic progressions. Most
traditional approaches comprised two stages: First,
musically meaningful features are extracted from the
audio, and second, a sequence analysis is performed
and each temporal frame is assigned to a single
chord-class from a predefined chord dictionary. The
Chromagram, and its variations, are the most used
features for the first stage (Bello and Pickens 2005;
Sumi et al. 2008; Mauch 2010; Ni et al. 2012), as they
describe the harmonic content on a low-dimensional
vector. Hidden Markov models were first used for
harmonic sequence analysis by Sheh and Ellis (2003)
and became popular for ACT (Ni et al. 2012; McVicar
et al. 2014), combined with Viterbi decoding.
Deep-learning methods have been used for the
feature-extraction step, for sequence analysis, and
more recently for both at the same time. In the
work presented by Humphrey and Bello (2012), con-
volutional neural networks (CNNs) were used to
learn features directly from a constant-Q transform
(CQT) representation (Brown 1991), showing that
simple network architectures achieve state-of-the-
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art results without performing posterior sequential
analysis. Later, Boulanger-Lewandowski, Bengio,
and Vincent (2013) introduced recurrent neural net-
works (RNNs) for sequence analysis, modeling tem-
poral continuity, harmonic relations, and temporal
dynamics. Recent work has successfully integrated
both stages into a single system that is capable

of learning musically meaningful features from

a spectrogram-like representation and modeling
temporal relations between frames. Generally, they
combine CNN and RNN (McFee and Bello 2017;
Jiang et al. 2019; Wu, Carsault, and Yoshii 2019),
although the work presented by Korzeniowski and
Widmer (2016) implemented conditional random
fields for sequence decoding.

Past research on music synchronization fre-
quently focused on the features used to retrieve
meaningful information from the audio (Bello
and Pickens 2005; Ewert, Miiller, and Grosche
2009; Miiller, Ewert, and Kreuzer 2009; Izmirli and
Dannenberg 2010). This work is all based on the
Chromagram as a feature (which represents the
pitch content of a temporal segment in terms of the
intensity of each of the twelve pitch classes of the
chromatic scale), but presents some variations. For
example, Miller and colleagues make pitch classes
more invariant to changes in timbre by computing
the mel-frequency cepstral coefficients (MFCCs)
and removing their lower components prior to
obtaining the Chromagram. Ewert and coworkers
enhanced the Chromagram with note onsets, ob-
taining a Chroma-onset representation that led to
better synchronization for music with clear note
attacks. Wang et al. (2014) presented a novel method
to align multiple sequences, simultaneously leading
to more-robust results using Chroma-onset features.
All these approaches rely on a version of the dy-
namic time-warping algorithm (DTW) to perform
the alignment, but Maezawa et al. (2014) presented
a probabilistic generative framework to align mul-
tiple performances of a recording. Nevertheless,
these previous approaches implicitly assume that
the audio recordings that will be aligned contain
the same melody and chords but differ in their
instrumentation, tempo, and recording conditions.

Focusing on semi-improvised music, Duan and
Pardo (2011) presented a system to align audio with
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its lead sheet. Because these recordings include im-
provisations that are not transcribed, the recordings
are not fully annotated as MIDI scores. The authors
propose an algorithm that aligns different audio ver-
sions to their lead sheet, based on beat-synchronous
Chromagrams.

Contribution

This work introduces a novel approach to chord tran-
scription in jazz music, taking into consideration
some of its distinctive musical attributes, like im-
provised solos and a repeating harmonic progression.
First, we perform a study on the musical features
used for chorus alignment, to find those most suit-
able for this particular task. Second, a convolutional
recurrent neural network (CRNN) architecture is
used to jointly perform chord transcription and beat
detection, while exploring three approaches to pool
all the aligned choruses to a single one.

From a practical point of view, the proposed
system is an aid to amateur musicians and jazz
enthusiasts to retrieve the chord progression from
a jazz performance as a lead sheet-like representa-
tion, which is easy to interpret. Even experienced
musicians may benefit from this system, allowing
them to automatize the chord transcription process
and spend less time manually transcribing chords.

Chorus Alignment

The main goal of music alignment systems (the term
music synchronization is often used interchange-
ably) is to find the optimal temporal alignment
between two musical segments. This process com-
pares each frame in one segment to each frame in
the other, calculating their similarities, and relies
strongly on the resemblance between frames in a
given feature space. It is not usual to perform mu-
sical alignment over the raw waveform, this would
be impractical owing to the high number of samples
and lack of robustness against changes in timbre, in-
tensity, etc. In general, the raw audio is transformed
to a feature space containing higher-level content
that unveils similarities between the audio signals.

A popular algorithm used for audio alignment is
the DTW (Ewert, Muller, and Grosche 2009), which
finds the optimal path efficiently using dynamic
programming.

Choruses in a jazz performance have the same
harmony but do not share melody or bass line,
and thus the similarities take place on a higher
musical level, making alignment a more difficult
task. The Chromagram, or its variations, are not
necessarily the most suitable musical feature and
new alternatives for alignment of jazz choruses
should be investigated.

In this section, we present a study of musical
features used for jazz chorus alignment, including
melodic and harmonic features as well as timbre
descriptors. The key idea is that a single feature
type does not extract enough high-level information
to describe such sophisticated musical data, and
a feature set of descriptors that unveil different
aspects of the music should be used. We also present
a concise review of distance metrics used to compare
the similarity between data.

Proposed Musical Features

The DTW algorithm will work properly only if two
sequences are somehow similar in their feature
space, so the choice of adequate features is crucial.
The Chromagram (in the following referred to sim-
ply as “Chroma”) captures melodic and harmonic
information and is usually used for music align-
ment by virtue of its simplicity, low dimensionality,
and ease of interpretation as musical pitches are
represented explicitly.

One of the main disadvantages of Chroma features
is that musical relations between notes are not
considered, meaning that the similarity between
one note and all others is equal. The tonal centroid
features proposed by Harte, Sandler, and Gasser
(2006), sometimes called Tonnetz features, are a
nonlinear transformation of the Chromagram that
reduces it to a 6-D feature space modeling relations
between notes. For example, the Euclidean distance
between notes that are a fifth or a third apart is
small, and that between notes a tritone apart is
larger, as shown in Figure 1.
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Figure 1. Euclidean
distance of each note
compared to C in the
Tonnetz feature space.
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Table 1. Frequency Ranges Used for Feature
Extraction

Limits
Frequency Range Hz Pitch
Low [32..261] Cl1-C4
Mid [130 .. 1046] C3-Cé6
Treble [523 .. 4186] C5-C8

Both Chroma and Tonnetz features discard the
frequency range from which each pitch came,
making all octaves equally relevant. This is not
consistent with the way chords and melodies are
usually played—for example, it is unusual to play
chords on a high pitch range. As different octaves
contain different musical content, we propose
splitting the frequency range into three overlapping
bands and computing a Chroma and Tonnetz for
each band. The frequency limits of each range are
shown in Table 1 and they span almost the whole
piano range (from C1 to C8). The bass frequency
range is similar to the one used by Ryyninen and
Klapuri (2007) and mostly matches the pitch range of
a double bass or bass guitar. The other two frequency
ranges were selected to have three octaves as well,
and adjacent ranges overlap one octave, adding some
redundancy.

Timbre is a complex musical quality related to
human perception, and is independent of harmony
and melody. Nevertheless, similarities between
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Table 2. Summary of Proposed Features

Timbral
Chroma Features Tonnetz Features Features
Chroma (full range) Tonnetz (full range) MFCCs

Chromallow]
Chroma[mid]
Chromatreble]

Tonnetz[low]
Tonnetz[mid]
Tonnetz[treble]

“Full-range” Chroma and Tonnetz calculate those features over
the entire audio signal, whereas the low, mid, and treble versions
only process the signal in the ranges defined in Table 1. MFCCs
are the mel-frequency cepstral coefficients, discussed in the text.

some specific musical events having similar timbre
can be revealed through timbral features. The
common descriptors used to model timbre are the
lower coefficients of the MFCCs (Miiller, Ewert, and
Kreuzer 2009), so the first 20 will be considered as
features for segment alignment.

The complete set of proposed features is sum-
marized in Table 2. To test their effect on chorus
alignment, we used 39 feature sets composed of
different combinations of the descriptors Chroma,
Tonnetz, and MFCCs. These descriptors are in-
cluded both individually and with all seven possible
combinations, the frequency features split on ranges
are also considered individually and combined with
both other ranges and other feature types (16 for
Chroma and 16 for Tonnetz). Each feature set is
formed by the concatenation of its components, and
the comparison of how each set performs is tested
later in this article.

Distance Metrics

The resemblance between two sequences is mea-
sured with a distance metric and the DTW algorithm
searches for the optimal path based on these simi-
larities. Thus, the choice of an appropriate distance
function is crucial, because depending on the data
type and the spread of each feature, some distance
functions may reveal similarities more accurately
than others. Especially when different kind of fea-
tures are being concatenated or mixed in various
ways, it is important to find a distance metric that
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adjusts correctly, because features with wider ranges
and higher variance can dominate over the rest.
The Euclidean distance metric

deuclidean(xv Y) = ”X - Y|| (1)

is commonly used for alignment. Nevertheless, it
does not consider correlations between data, it is
highly sensitive to scaling, and in some cases it
will not be the most suitable choice for segment
alignment, especially when different features are
combined.

We propose that the Mahalanobis distance,

dmahalanobis(xa Y) = \/(X - Y)Tcil(X - Y)v (2)

is more appropriate for ensembles of features,
because it takes correlations between the data
into consideration. The only difference from the
Euclidean distance is the inverse covariance matrix
(C~1), which acts as a factor decorrelating the
data, thereby making the distance computation
more robust and reliable. It represents the distance
between a point and a distribution, so the covariance
matrix should be computed in advance.

Chord Transcription

Modern approaches to ACT tend to be based on
deep learning, which can effectively combine the
extraction of musically relevant features and a
sequence analysis that provides temporal coherence
to the chord predictions (McFee and Bello 2017;
Jiang et al. 2019; Wu et al. 2019). In comparison with
systems that are not integrated, performing each step
as an independent process, this kind of architecture
allows us to input data with little preprocessing and
to directly output class probability for each chord
(or each chord component). One of the advantages
of these integrated systems is that context, in both
time and frequency, can be learned in a data-driven
manner.

Network Architecture

Our deep-learning architecture is strongly based
on the work presented by McFee and Bello (2017),
which implements a CRNN network following an
encoder-decoder architecture, using a CQT audio
representation as input and producing chord class
probabilities as output. The publicly available
implementation of the algorithm is known as
CREMA (convolutional and recurrent estimators
for music analysis). Our approach introduces two
variations: First, the number of convolutional layers
and their number of filters is increased; second, the
structured training targets are different.

In many popular music styles, the bass instru-
ment focuses on the root of the chord, also playing
other chord tones such as the fifth. For those styles,
it could therefore be effective for a chord detection
task to use the bass’s pitches as an intermediate
target. In the walking bass technique used in jazz,
however, the bass does not remain on the root as
much and typically plays many nonchordal tones
as well, often moving stepwise through the scale.
Thus, the bass’s pitches cannot be used effectively
as an intermediate target.

Instead, we added a beat detector to the inter-
mediate supervision, acting as a binary classifier.
It is common that chord transitions are aligned
to beats, thus beat onsets should be considered as
they encourage the system to transition from one
chord to another on beat times. Since the bass is
usually present, it facilitates the beat detection task
given the fact that in the walking bass technique,
notes often occur on all the beats in a bar and not
often between beats. Similarly to McFee and Bello
(2017), the intermediate outputs are concatenated
with the latent features and fed to a bidirectional
gated recurrent unit network that acts as a decoder
and generates class predictions on a one-to-one
manner.

The total loss (objective function for the pa-
rameters estimation) is the sum of four different
predictions: the root, the chord pitches, the beat
onset, and the chord. All of them are considered
as classification problems with mutually exclu-
sive classes, except for the chord pitches, which is
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Figure 2. Architecture of
the network used for the
automatic chord
transcriptions of jazz
recording. It consists of a
convolutional recurrent

addressed as a multilabel task. The cross-entropy
loss function is used:

C
H= Z —t. log(pe), (3)

where t. is the true label for class c and p. represents
the prediction score for that class. The total loss is

L = a(Hyoors) + IS(Hpitch) + ¥ (Hpeats) + 8(Hehords),  (4)

where each H component is the cross-entropy loss
for each subtask and L is the total loss. Each individ-
ual component is scaled by one of the factors o, 8, y,
or §. These coefficients are a design choice, because
they allow us to increase or decrease the impact
of each subtask in the total loss. Thus, they were
hand-tuned according to the error ranges of each
component, aiming to ensure the predominance of
the chord loss over the intermediate outputs.

The full architecture, depicted in Figure 2, has
around one million parameters. The training was

cells are bidirectional
recurrent gated units
(BGRU). See text for
further details.

neural network (CRNN).
The input to the CRNN is
a representation of the
audio using the
constant-Q transform
(CQT), and the recurrent

1 x Conv 5x5
Batch Norm

( ( ) Chord
4 x Conv3x3 |, 4 x Conv 3x3 or
Batch Norm | Batch Norm Classes
\ J \ J
e ¢ N e ¢ N
1 x Conv 3x3 1 x Conv 1x1 128 BGRU
Batch Norm Batch Norm Batch Norm
N J N J
e T S
MaxPool 1x2 84 x Conv 1x84 128 BGRU
Batch Norm

Batch Norm
|\

v v

J

1

performed using segments of 5.52 seconds each,
chosen randomly for every epoch |(i.e., each iteration
over the training set) from a pool of all training
segments. The batch size is 64, using the Adam op-
timizer (Kingma and Ba 2015), which uses adaptive
moment estimation to update the learning rates and
is widely used to train deep-learning models.

After each training epoch, validation is performed
to track the network’s performance, which can be
used to prevent overfitting. Our validation was
performed on whole performances that were put
aside at the beginning of the training, instead of
randomly selected segments from the training set.
We found out that validating on segments from the
same recordings used for training does not reveal
overfit, because these segments are too similar.

Chorus Averaging

Every chorus repetition expresses elements of the
recording’s harmony and the musical content of
each should be taken into consideration to achieve
a correct chord transcription. Therefore we explore
methods to combine all choruses that have been
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Batch Norm Batch Norm
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Pitch
Beats Classes,

previously aligned. Besides the work presented

by Mauch, Noland, and Dixon (2009) there is no
precedent, to our knowledge, on how structural
segmentation can be integrated to ACT, so we
propose the following three alternatives, depicted in
Figures 3, 4, and 5.

1. CQT averaging: Originally presented by
Mauch, Noland, and Dixon (2009), who
mixed the audio content prior to analysis.
The resulting averaged chorus can be messy,
especially if the recording contains many
choruses, as all notes played in a measure
across choruses will be considered.
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Figure 3. The first proposed
method to combine all
choruses on the automatic
chord transcription: The
constant-Q transform

First
Chorus

Figure 3.

Latent
Features +

Encoder

First
Chorus

Figure 4.

2. Latent Feature averaging: The latent features,

inputs are averaged frame
by frame, and the results
are analyzed by the
network.

Last
Chorus

Figure 4. The second
proposed method to
combine all choruses on
the automatic chord
transcription: After

encoding each chorus
independently, their latent
features are averaged and
later decoded to predict
the chord classes.
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Decoder
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Encoder

Last
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from which the intermediate outputs are
obtained, carry most of the melodic and
harmonic musical content extracted by the
encoder. This content is already refined from
the CQT form. As the decoder part of the

system inputs the concatenation of the latent
features and the intermediate outputs, the
latter are also averaged, and only the resulting
mixed “latent chorus” is decoded.

3. Prediction averaging: The chord class proba-
bilities are the final output of the network.

Durdn and de la Cuadra

33

€20z Joquisydas /0 uo 3senb Aq ypd'6.500 € [WOO/4985002/92/ ¥/ /Hpd-8loie/fod/npa-iw joaip//:dpy woly papeojumoq



Figure 5. The third
proposed method to
combine all choruses on
the automatic chord
transcription: Each chorus
is encoded and decoded

independently, but the
output chord-class
probabilities are averaged
before predicting the most
likely chord per frame.

Chord Class Chord Class Averaged Final Chord
o L - Chord Class L
Probabilities Probabilities - Prediction
Probabilities
A A
Decoder Decoder
Latent Latent
Features Features
Encoder Encoder
Ideally, the correct chord will have the highest Database

probability, but in other cases it is expected
to have relatively high probability. Averaging
these probabilities between all choruses repe-
titions will reduce the impact of chord classes
that do not have high probability across all
choruses.

Experiments

There was one experiment performed for music syn-
chronization and another for chord transcription.
Both were performed on the same database, using
audio recordings having a sample rate of 44,100 Hz.
For both experiments, the CQT is computed with
one bin per semitone spanning a range from 32.7 to
3,951.1 Hz (from C1 to B7), resulting in 84 frequency
bins and using a hop length of 46 msec. As prepro-
cessing, all recordings in which the pitch diverged
slightly from the A440 reference were corrected,
without changing the original key. Applying this
tuning correction ensured that every bin in the
CQT represented the same frequency content for all
recordings.
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The Jazz Audio-Aligned Harmony (JAAH) dataset,
presented by Eremenko et al. (2018), consists of 113
different jazz recordings with transcribed annota-
tions. The annotations comprise the complete set
of beats, indicating temporal location in seconds,
the beat-aligned chord sequence, and labels for each
structural segment (“intro,” “sax solo,” etc).

The JAAH includes a wide range of jazz subgen-
res, ranging from its origins up to the beginning of
modal and free jazz. Nevertheless, Eremenko et al.
(2018) selected the tracks for the database homoge-
neously, and there is no bias on period or subgenre.
Most of the tracks follow the standard structure
in which the chorus is repeated multiple times.
Some recordings did not exhibit this structure,
however, because they were special arrangements
of a composition in which measures may have been
added to the chorus or omitted. Those recordings
were discarded, nevertheless the database remains
homogeneous. Only the chorus sections were used
for experimentation and other segments (introduc-
tion, bridge, “outro,” etc.) were not considered.
Also, some recordings are different renditions of
the same song but are sufficiently different to be
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considered independent samples, and so were kept.
For the alignment experiment 86 files were consid-
ered. For chord transcription, 78 of the files were
used for training, 2 for validation, and 6 for testing;
equivalent to 4 hours, 11 minutes, and 15 minutes,
respectively.

The annotated chords were not identical between
choruses, because the manual transcriptions in-
cluded variations that might have been played. For
example, when the main melody is performed, the
chords can be slightly different to those used in the
solos, so the annotated harmonic sequences may
differ. These details were not desired in our general
harmonic analysis, even if they can be useful for
other tasks in harmonic analysis. To address this
problem, we compared the chords for each beat
across all choruses, and chose the most frequently
occurring chord. This process aimed to mimic what
a musician would do if asked to transcribe the chord
sequence of a jazz performance to a single chorus
lead sheet.

Chord distributions are highly biased to the
most frequent keys in jazz recording; the ones
easier to play in instruments like saxophone or
trumpet (F, E-flat, B-flat, C, etc.). To avoid bias
towards those keys in the ACT experiment, we
included data augmentation consisting of shifting
each recordings’s pitch by an integral number of
semitones, ranging from —5 to +6, thereby including
all twelve possible transpositions. This resulted in
86 x 12 = 1,032 tracks.

Chord Vocabulary

For the ACT experiment, the chord vocabulary
needed to be chosen carefully, because plain triads
are almost never used in jazz, and extension notes
can be added without changing the chord’s func-
tion. We used the chord vocabulary developed by
Eremenko et al. (2018), who provide insights regard-
ing how chords should be classified in jazz music,
resulting in five chord classes that play a different
harmonic function. These classes are major (maj),
minor (min), dominant seventh (7, written here as
a superscript), half-diminished seventh (hdim’), and
diminished seventh (dim). Additionally, a no-chord

symbol is considered (N), resulting in 61 classes (five
chord classes for each of the twelve pitches, plus the
no-chord symbol).

Evaluation Metrics

As two different experiments were conducted, each
needs its own evaluation metrics, which will be
described in the following.

Evaluation of Chorus Alignment

The true alignment lives on a continuous time
domain and can be approximated on a discrete time
domain (in our case one sample every 46 msec),
resulting in the best possible alignment (ground
truth) given by matching beat onsets. On the other
hand, the optimal path found by the DTW algorithm
is discrete.

The evaluation of music synchronization systems
can be understood as a gecometric problem, compar-
ing the distance of the optimal path to the ground
truth path on a 2-D plane. To measure this error,
the mean absolute error (MAE) was used, which is
defined as

Zf; ly: — xil
N

MAE = , (5)

where

y; is a point on the estimated path,

x; is its closest point from the ground truth path,
and

N is the length of the optimal path.

This expression was chosen mainly because it is
measured in temporal units, making the interpreta-
tion simple and intuitive.

Because error is measured on continuous time,
there will be a small error induced by discretization,
meaning that a perfect alignment will not have
zero error. With a sampling rate of 44,100 Hz, there
is a lower threshold on time resolution equal to
22.7 usec; everything below that does not have real
meaning and is rounded to zero.
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Evaluation of Chord Transcription

Measuring the performance of ACT systems is com-
plex, because there are many musically meaningful
elements that must be considered. Chord classes
cannot be considered as independent, because some
of them share some pitch content—for example C
and C’, or Dmin and F. To overcome this issue, five
evaluation metrics commonly used in ACT research
are computed, each of which describes a particular
harmonic relation between chords.

Chords are evaluated element-wise, because both
ground truth and predicted sequences have the same
length. Some standard evaluation metrics are imple-
mented by Raffel et al. (2014) on the Python library
MIR_EVAL, but not all of them are appropriate to
the chord classes used in this work. Although some
of those metrics are not particularly well suited for
jazz chord transcription, they are commonly used in
ACT systems, so they are included to give compa-
rable results to other research. In particular, we use
the accuracy (percentage of correct classifications)
and the following subset of evaluation metrics:

1. Root: Chords match if they have the same
root.

2. Major/minor: Chords match if they share root
and chord type, providing it is major or minor.
Other chord classes are not considered.

3. Third: Chords match if they share the root
and third. For example, chords Emin and Edim
match.

4. Triad: Chords match if they have the same
basic triad. For example, chords E” and E
match, but Emin and Edim do not.

5. MIREX: Chords match if they share at least
three pitch classes. For example, F” and Adim
match. This evaluation metric is used on
the Music Information Retrieval Exchange
(MIREX) competitions on chord transcription.

The beat detection problem uses standard de-
tection evaluation metrics: Precision, recall, and
F-measure. As the hop length is 46 msec, a tolerance
of +25 msec forces the frames to match exactly,
which considerably reduces the performance on
those three metrics. On the other hand, 450 msec
correspond to a tolerance of £1 frame, allowing
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more flexibility. Both results will be considered,
to show the sensibility of the detection evaluation
metrics in this problem.

Results and Discussion

In this section, the results of the alignment and ACT
experiments are presented separately. Nevertheless,
the best alignment method obtained was used to
synchronize the choruses for the ACT experiment.

Chorus Alignment Results

The inverse covariance matrix required to calculate
the Mahalanobis distance is computed from the
two aligned sequences, meaning that a new matrix
is obtained for every possible combination of two
choruses. This process takes about 1 msec for each
pair running on an 3.70 GHz Intel i7-8700K CPU.

For the sake of clarity, only the top three results,
and the average of all feature sets, are displayed for
each distance function in Table 3. Both Chroma
and Tonnetz features that are obtained on different
frequency ranges are indicated by square brackets,
whereas the versions on the whole frequency range
are displayed without brackets. All results are in
seconds.

It is possible to compare the average performance
of two mutually exclusive subsets: one with all
the combinations including a specific feature and
another not containing that feature. For example,
the ones using MFCCs and those without, showing
the impact of the addition of the MFCCs to a feature
set. These comparative results are presented in
Table 4, which shows the improvement of the first
subset (before the slash mark “/”) over the second
subset (after the slash).

The Mahalanobis distance achieved considerably
better results than Euclidean distance, showing that
the inverse covariance matrix plays a major role
when comparing sequences of similarity features.

The Tonnetz features were proposed as an al-
ternative to the Chromagram, as the former allow
modeling musical relations between notes. Despite
this characteristic, Chroma yielded better results on
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Table 3. Chorus Alignment Results

Distance Function Features MAE

Euclidean Average of all feature sets 331
Chromalbass+mid-+treble] + Tonnetz + MFCCs 129
Chroma|bass+mid+treble| + Tonnetz 132
Chromalbass+mid-+treble] + MFCCs 134

Mahalanobis Average of all feature sets 183
Chromalbass+mid-+treble] + MFCCs 51
Chromalbass+mid| + MFCCs 54

Chroma 4+ MFCCs

63

MAE is the mean absolute error and given in milliseconds.

Table 4. Percentage of Improvement for Mutually Exclusive

Feature Subsets

% of Improvement

Subset Comparation Euclidean Mahalanobis
MFCCs: With/Without 17.3 67.1
Chromalbass+mid-+treble] / full range 46.9 38.0
Chromalbass+mid+treble| / [bass] 49.2 45.3
Chromalbass+mid-+treble] / [mid] 53.5 46.3
Chromalbass+mid-+treble] / [bass+mid] 20.7 15.3
Tonnetz[bass+mid+treble] / full range 14.4 15.4
Tonnetz[bass+mid+treble] / [bass| 31.3 39.0
Tonnetz[bass+mid+treble] / [mid] 32.3 39.1
Tonnetz[bass+mid+treble] / [bass+mid] 13.0 12.9
Chroma/Tonnetz 17.9 37.3

average, and the difference was higher when using
the Mahalanobis metrics, as can be seen in the last
row of Table 4.

Not all frequency ranges carry the same amount
of musically relevant information for this task, as
has been shown by the “[bass+mid-+treble]” version
achieving 46.9% lower error than the “Normal”
version when using the Euclidean metric and 38.0%
using Mahalanobis. Comparing the three-range
features against only bass and only mid-range led to
similar improvement, and the treble frequency range
is the one that showed the smallest improvement
when added to the other two, as can be seen in
the comparison between “[bass+mid+treble]” and

“[bass+mid].” In the case of the Tonnetz features the
improvements achieved with Euclidean metric are
similar or lower than for the Mahalanobis metric.
Both bass and middle ranges contribute similarly,
and treble had a smaller contribution.

Features including MFCCs are present among
the feature sets with highest scores, especially when
using Mahalanobis distance function. As can be seen
in Table 4, the results including MFCCs are 67.1%
better than those without. This improvement is
considerably smaller using Euclidean distance (only
17.3%), suggesting that MFCC features contribute
the most when their relations with melodic and
harmonic features can be considered.
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Table 5. Chord Evaluation Metrics

Accuracy Root Major/Minor Third Triad MIREX
Not averaged 0.52 0.59 0.59 0.58 0.58 0.60
CREMA 0.36 0.49 0.47 046 046 0.48
CQT averaging 0.60 0.66 0.67 0.64 0.64 0.67
Latent feature averaging 0.62 0.69 0.68 0.67 0.66 0.68
Chord prediction averaging 0.64 0.70 0.71 0.68 0.68 0.71

The highest values in each column are in boldface.

Table 6. Beat Detection Metrics

Tolerance Averaging Precision Recall F-measure

50 msec  Not averaged 0.89 0.87 0.88
CQT 0.96 0.94 0.95
Latent Features 0.95 0.94 0.95

25 msec  Not averaged 0.51 0.50 0.50
CQT 0.58 0.57 0.58

Latent Features 0.63 0.62 0.63

The highest values in each column are in boldface.

Chord Transcription Results

The network was trained on a single Nvidia GeForce
GTX 1080 GPU for about 15 epochs before it started
overfitting. Each epoch takes around 30 minutes,
which is quite low compared to many deep-learning
models.

We compare our method to the publicly avail-
able implementation of CREMA, which we ran
only on our test database. These results, shown in
Table 5, are split into two parts: The upper two rows
show performance for all choruses without aver-
aging, as ACT systems usually do. The final three
rows show the methods that combine segments,
thus transcribing a chord sequence for only one
calculated “chorus,” which is the average across
choruses.

The beat detection results are shown in Table 6. It
is important to notice that, except for the tests that
didn’t use averaging, these beats correspond to the
beat sequence of all choruses reduced to one chorus
and not of the whole performance.
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Lead sheet-like representations were obtained
from the chord predictions, as can be seen in
Figures 6 and 7. The network’s outputs are beat
predictions an a chord list, which is reshaped to
match the recording’s bars, and chord transitions
that do not fall on a beat are discarded. The num-
ber of bars and the metric are inputs and are not
automatically calculated by the system.

As can be seen on Table 5, our system obtains
considerably higher performance than CREMA
(more than 10% for each metric), when choruses
are not averaged. The performance improvement
can be explained by the fact that our model is
trained and tested on a genre-specific database and
probably will not perform properly on other genres,
and CREMA might be able to better generalize
to more genres. These results show that a system
that has been trained on a large dataset, but not
focused on jazz, does not generalize correctly to this
genre.

The highest score was obtained when averaging
chord probabilities for each chorus (final row in
Table 5) and the latent features averaging (penulti-
mate row) scored second. This suggests that mixing
the sequences after being processed by a trained
system leads to higher performance than combining
raw inputs. The latent features are obtained by the
encoder and the chord probabilities by the encoder-
decoder, showing that when more processing is
added the harmonic and melodic content seems to
be refined, at least for chord transcription.

In general, the system correctly detects chord
changes, especially on coarse time quantization like
beats. Nevertheless, around 29% of the chords are
misclassified (using the MIREX evaluation metric)
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are shown above and
predicted chords below.
(Note: The underscore
character is used to
indicate minor chords.)

Figure 6. Lead sheet-like
representation obtained
for Django Reinhart’s

“Minor Swing.” At each
bar, ground truth chords

“ A A

A_ A_
E, E,
E; E;
D_ D_
A_ D_ Bhdim
E, Bb,
E, E,

and it is found that some of these errors were caused
by chord transitions that were advanced or delayed
by at least one beat. This effect is found even when
the two chords involved are not similar, implying
that the error does not depend directly on their
musical content. Despite including a beat detector,
the network cannot always reliably capture the
temporal frame where a chord transitions. This
issue could be alleviated by postprocessing the
transcribed chords using hidden Markov models, as
done by McFee and Bello (2017), or using language
models to correct shifted chord transitions.

The beat detector seems to benefit from the
chorus combination techniques, nevertheless all
three methods have similar results. The system
is highly sensitive to the temporal tolerance and
the results increase by more than 30% when using
+50 msec instead of £25 msec. A hop length of
46 msec represents a coarse temporal resolution for
onset detection tasks, but is appropriate for chord
transcription.

Conclusions

We presented a novel approach for automatic chord
transcription of jazz music that performs an ex-
haustive analysis of the audio incorporating the
musical attributes of the genre. We focused on spe-
cific aspects of jazz that were exploited, in particular

D_ D_

A. D_ Bhdim

A_ A_

A_ A_

A_ A_

A_ A_
SN
A_ A_

the repetitive nature of a fundamental segment
called the chorus. We presented a study on chorus
alignment, where insights were obtained regarding
how this task should be addressed for jazz. Later,
we used the best method obtained to align all
choruses on a recording and performed chord tran-
scription combining the musical content from each
chorus.

The segment-alignment study focused on the
features input into the dynamic time-warping
algorithm, and how distance metrics exploited their
similarities. We found that using large feature sets,
describing musical aspects like pitch and timbre, are
considerably better at unveiling similarities than
single features like Chromagram, especially when
using the Mahalanobis distance metric.

Regarding the chord transcription stage, we
merged a beat detector and a chord predictor into
a single system, allowing us to have better beat-
synchronized chord sequences, which discouraged
chord transitions that were not on a beat. We
explored three options to combine the harmonic
content of each chorus and we concluded that
averaging the chord probabilities provides the best
results. This suggest that combining sequences after
being processed by a trained system leads to better
performance than mixing the raw inputs or the
intermediate latent features. Our method achieves
better performance on jazz music than other systems
trained on larger databases not specific to jazz.
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shown above and
predicted chords below.
(Note: The underscore
character is used to
indicate minor chords.)

Figure 7. Lead sheet-like
representation obtained
for [immy Giuffre’s “Four
Brothers.” At each bar,
ground truth chords are

I| Bb, Bb_ Eb5

Bb- F7 Eb;

| Bb_ o F
Bb_ Bb_ F4
Bby Bb_ Eb5
Bb, Bb, Eb,
Bb_ C_ F4
Bb_ Bb_ F5

| Db_ Gb, | B
Ab_ Gb, B

| D G, | C Dbgim
D_ Gy G; C Gy
Bb, Bb_ Eby
F4 Bb; Bb; Eb4
Bb_ C_ F4
Bb_ F7

Future Work

The JAAH database, which is used train the ACT
system, is moderately large and sufficient for many
musical research tasks. Nevertheless, is not enough
to train a robust chord transcription system without
overfitting. In our case, the system was trained

40

Ab Fy

Eb; Ab Ab F7

Bb_ Eby Ab F4

Bb_ EbA Ab

Ab F7

Eb7 Ab F7

Bb_ Eb+ Ab F4

Bb_ EbA Bb; Ab

E_ A | D |
B_ Ay A; D

D G, | c. F |
G7 C_ F7

Ab F7 |
Ab Fy

Bb_ Eb+ Ab |I
Bb_ Eb+ Ab

on over 15 epochs before validation loss started

to raise. We believe that a larger jazz database
could significantly improve the results, especially
for chord classes that have little presence, like
diminished or half-diminished sevenths. Also the
chord vocabulary could be expanded to include other
chord classes, such as augmented triads (currently
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considered as major) or suspended fourths (“sus”
chords).

Even if evaluation metrics were carefully chosen
and the chord dictionary is well suited for jazz
music, there are aspects regarding how information
is notated and how performance is measured that
can be improved for this musical genre. As can be
seen in Figure 6, on the 14th measure the annotated
chord is Bv” and the predicted chord is E7. Under
all current evaluation metrics the predicted chord
is incorrect, but the two chords are closely related
because they are tritone substitutions (widely used
in jazz, as noted earlier) and there should be at least
one metric that takes this aspect into account. Even
if these errors are not very frequent, they have a
meaningful musical interpretation and should be
addressed.

In our work, the musicological perspective was
not included with the adequate depth. This aspect
was not further explored because it is beyond the
scope of our current research, but the next steps of
this work should include an exhaustive literature
review on jazz harmony and probably needs super-
vision from a jazz musician, musicologist, or music
historian. A better understanding from the musical
perspective may lead to changes in the way an ACT
system is designed, implemented, and evaluated.
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