
A Visual Programming
Interface for Digital
Luthiery: Implementing
Circuits with Veneer

Vesa Norilo
and Alejandro Olarte
Sibelius Academy
University of the Arts Helsinki
PO Box 30, 00097 Taideyliopisto, Finland
{vno11100, alejandro.olarte}@uniarts.fi

Abstract: This article presents a method for programming musical signal-processing circuits visually, using expressive
idioms and abstractions from functional programming. Special attention is paid to the creative workflow, framing the
education in a constructionist context. Our aim is to empower musicians in signal processing: The claim was tested in
a university workshop for relatively inexperienced programmers. The participants were able to study and implement
signal-processing algorithms from literature and integrate them into their preexisting workflow, and appeared to gain
self-confidence while doing so.

Musical signal processing has evolved in recent
years and decades. The field has been active with
innovation, with professional instrument makers in
both academia and industry being joined by makers,
musicians, and autodidacts.

Novel interfaces, abstractions, and products have
been developed in the search for new expressive
power. The range and diversity of digital instru-
ments has never been greater or more accessible to
practitioners. The fundamentals of signal processing
have, at the same time, become obscured, abstracted
away from the direct relationship between classical
synthesizer controls and the topology of its sound
generation machinery.

Programming music is also easier than ever.
There is a wealth of free study material online, and
domain-specific languages abound. Being domain
languages, however, they are defined as much by
what they do not try to express as that which they
do. The field has an extensive history in expressing
scores, orchestras, and instruments, but tackling
the fundamentals of signal processing is a newer
development. Many music languages are based on a
set of built-in unit generators, whose inner workings
are deemed out of scope.

This article explores a novel method of delving
through that abstractive floor in musical signal
processing, fashioned as a visual interface, Veneer,
to a functional programming language, Kronos,
which deals with elementary signal processing. It is
capable of expressing both fundamental circuits and

Computer Music Journal, 44:4, pp. 8–25, Winter 2020
doi:10.1162/COMJ_a_00578
© 2021 Massachusetts Institute of Technology. Published under
a Creative Commons Attribution 4.0 International (CC BY 4.0)
license.

sophisticated abstraction, and it aims to empower
musicians to build digital instruments and deploy
them in a variety of ways.

We discuss the pedagogical thinking upon which
the software and teaching methods are based, and
report findings from a university-level workshop
on music-technology programming, with self-
assessment by the learners before and after four
hands-on sessions.

Teaching and Practicing Musical Signal Processing

The past six decades have seen a wealth of pro-
gramming environments dedicated to music. These
systems support the composition of musical pieces
and the development of music software; and they
provide instruments for live performance and scien-
tific research (Lazzarini 2013).

Time plays a special role in music. Roger Dannen-
berg (2018) finds dealing with time to be a central
feature of music languages. Time in music man-
ifests itself on different scales, spanning the arch
of macrostructure, rhythm, phrasing, down to the
oscillation of an audible waveform. The separation
of concerns in programming music is traditionally
split into the analogous layers of score, instrument,
and unit generator (Roads 1996, pp. 787–796).

Victor Lazzarini (2013) states that musical com-
position in the implicit context of the western
tradition was the primary motivation and use
case for early music languages. In this setting the
programmer is associated with the composer, the
program with the score, and the synthesizer with
the orchestra of musicians. The analogy is simplistic
and not intended to describe actual artistic practice,

8 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023

mailto:vno11100@uniarts.fi
mailto:alejandro.olarte@uniarts.fi
https://doi.org/10.1162/COMJ_a_00578


but serves as a point of departure for reflecting on
digital musicianship.

Practitioners keep blurring the lines between
instrument builders, composers, and performers,
and creative control is desired across timescales and
domains (McPherson and Tahiroğlu 2020, pp. 55–
56). With increasing computational power, details
of audio synthesis have become an increasingly
integral aspect of music programming, expand-
ing its focus towards the microscopic time scale
of digital samples—programming of timbre and
interpretation.

McPherson and Tahiroğlu (2020) find that music
languages employ rhetoric that emphasizes absence
of any stylistic or aesthetic bias, but that this may
not be accurate in practice. Stylistic and aesthetic
choices result not only from limitations, but also
from what is deemed idiomatic in a language—a
path of least resistance to implementation.

As such, many prominent music languages strug-
gle to express the internal unit generators (ugens),
the fundamental signal-processing algorithms that
underlie our performances and repertoire. Languages
in which a clear separation exists between built-in
ugen library and user-defined ugens tend to focus
on the construction of instruments from ugens,
which can run into an impenetrable barrier when
the desired algorithm cannot be expressed in terms
of the built-in ugens (Brandt 2002; Nishino, Osaka,
and Nakatsu 2013).

A Music Language for Signal Processing

The project under discussion addresses a specific am-
bition in music programming: The development of
an approachable visual tool that provides the ability
for music practitioners to develop production-grade
signal-processing programs, suitable for integration
into their artistic practice, while building and in-
ternalizing abstractions that both facilitate growth
as a programmer and make creation easier. From
a base of a sufficiently powerful signal-processing
language, we look into developing visually oriented,
pedagogically considered tools that aim to elucidate
the inner workings of familiar but often opaque
ugens and digital instruments.

We have described the presence or absence of
certain traits related to these goals in established
music languages in Table 1. In some cases we
consider a specific subset or mode of a music
language that is geared towards ugens and sample-
level processing, such as ChucK Chugens (Salazar
and Wang 2012), Csound user-defined opcodes
(Lazzarini et al. 2016) and Max gen∼. The table is
not intended to be exhaustive or indicative of the
relative merit of various music languages, but rather
their flavor of signal processing and capabilities
relevant to the stated goal. Most of the included
environments are open-source projects, with the
exception of Max. This we included owing to
its ubiquity. Reaktor, by Native Instruments, is
another example of a commercial program offering
programming capabilities, including sample-level
signal processing.

The features noted in the columns of the table
are as follows: (1) visual interface indicates that
the environment presents a spatial, diagram-like
programming interface rather than a sequence of
instructions; (2) unit-delay feedback is the capa-
bility to specify feedback paths with one-sample
delay, necessary for programming elementary ugens;
(3) multirate DSP shows whether user programs
can operate precise clocks that differ from the
audio clock but remain synchronized with it,
such as control rates or oversampled signal paths;
(4) discrete events indicate the ability to respond to
and schedule specific responses to one-shot events,
such as MIDI notes, in contrast to regular sampled
audio streams; (5) algorithmic circuits refer to any
means of composing complex circuits from simple
circuits (e.g., loops and control flow, program-
matic instantiation, or higher-order functions); and
(6) optimizing compiler is used as an umbrella term
for generation of native code, including techniques
like interprocedural optimization, indicating that
user programs can reach a high level of computa-
tional performance.

Veneer and Kronos are purpose-built to complete
this exact set of features, each of which is present
in several other environments, but never all at
once. In the subsequent sections, we elaborate on
some of the language design trade-offs these traits
engender.

Norilo and Olarte 9

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Table 1. Selected DSP Features in Music Languages

Language
Visual

interface
Unit-delay
feedback

Multirate
DSP

Discrete
events

Algorithmic
circuits

Optimizing
compiler

ChucK (Chugen) ∗ √ √
Csound (UDO) ∗∗ √
Faust

√
‡ †

√
Max

√ ∗ √
†

Max (with gen∼)
√ √ √

Nyquist
√ √ √

Pure Data
√ ∗ √

PWGL
√ ∗ †

SuperCollider ∗ √ √
Veneer/Kronos

√ √ √
††

√ √
xtlang

√ √ √
‡‡

∗Available when block size is set to 1, with significant performance degradation.
∗∗Control rate must be set to audio rate for the user-defined opcode.
‡Experimental research feature.
††Can receive events but not schedule new events.
†Special construct for parallel expansion.
‡‡Just-in-Time only, optimization limited by hot-swapping design.

Unit-Delay Feedback for Elementary DSP

The capability of expressing unit-delay feedback
paths is essential for programming signal processors.
Music languages typically schedule and route blocks
of samples rather than individual samples for reasons
of efficiency (Dannenberg and Thompson 1997).
Several established environments have support for
per-sample processing, however, and thus unit-delay
feedback.

PWGLSynth is a real-time synthesizer for the
PWGL environment (Laurson, Norilo, and Ku-
uskankare 2005). Built primarily for auralizing
scores with physics-based instrument models, it has
a per-sample scheduled ugen graph.

Csound has gained support for user-defined
opcodes (Lazzarini et al. 2016) that call a user-
defined routine at the control rate (krate). Because
Csound allows locally specified control rates, a
user-defined opcode can be made to run at the audio
rate and support unit-delay feedback.

ChucK (Wang, Cook, and Salazar 2015) offers the
possibility of processing audio in a “chugen,” a unit
generator with a custom callback for producing a
sample of audio.

These environments support unit-delay feedback,
but pay a significant price in performance when do-
ing so in an interpreter or a virtual machine (Norilo
2015). As such they should suffice for exploration
and study of signal processing algorithms, but may
run into problems if a larger number of instances is
required in a musical piece.

Diversity of Scheduling and Expression

Music languages use different strategies for dealing
with time. Regularly sampled signal flows are uti-
lized for audio and control signals, which require
determinism and precise synchronization. Many
music languages provide a built-in set of clock do-
mains such as block rate, control rate, and audio
rate. Csound (Lazzarini et al. 2016) allows instru-
ments to specify local control rates. Max and Pure
Data (Puckette 1996) offer asynchronous message
passing for flexible scheduling of low-bandwidth sig-
nals. ChucK features concurrent interacting threads
with explicit control of time (Wang and Cook 2003).
Xtlang, Nyquist, and Csound share the highly gen-
eral scheduling mechanism of temporal recursion

10 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



(Lazzarini et al. 2016; Dannenberg 1991; Sorensen
and Gardner 2010).

Many signal-processing tasks benefit from mul-
tirate processing. Some components require high-
bandwidth processing, such as audio or event over-
sampled audio. Control circuits, such as envelopes
and low-frequency oscillators, can run at much
lower bandwidth for significant efficiency gains.
In the feature matrix we denote Kronos, Faust,
and Nyquist as having first-class, computationally
efficient support for this type of processing (Dan-
nenberg 1997; Norilo 2015; Orlarey and Jouvelot
2016). Further, custom multirate schedulers could
be implemented by the user in any language that can
express imperative control flow, such as Csound or
xtlang (Sorensen and Gardner 2010; Lazzarini et al.
2016).

Compiled Languages

The conventional solution to improving the perfor-
mance of a program written in a high-level language
is to reimplement it in a lower-level language with
an optimizing compiler. This approach is supported
by many music languages, including all those dis-
cussed in the previous section; new ugens can be
implemented in C or C++. It is not ideal for an en-
vironment that is meant to scale from introductory
to advanced use; many end users never make the
transition to yet another programming language and
paradigm.

Recently, an increasing number of music lan-
guages have attempted to break the efficiency
barrier and support signal processing from first prin-
ciples without relying on external, general-purpose
systems languages. To do this, they integrate an
optimizing compiler. The open code-generation
framework, Low-Level Virtual Machine (LLVM cf.
Lattner and Adve 2004) has made such projects
feasible. Our recent work on Kronos (Norilo 2015) is
one such attempt.

Faust (Orlarey, Fober, and Letz 2004) is a high-
level functional signal-processing language for
producing highly efficient static circuits from block-
diagram algebra expressions. Faust programs are

expressive but terse, and the syntax presents a
challenge to many learners.

Xtlang is a new language that grew out of the
Impromptu and Extempore projects, aimed at audio
DSP and efficient numeric code (Sorensen and
Gardner 2017). It has runtime semantics similar
to C, with type inference, Lisp-like syntax, and
macros. It is a general-purpose systems programming
language, rather than specifically tied to music and
audio, and may be as difficult to master as traditional
systems languages.

Max, by Cycling ’74, is likely the most popular
music language. Current versions include gen∼, a
sublanguage for signal processing. Despite using the
same visual interface, gen∼ is a completely different
language with synchronous evaluation, overloaded
operators, and a distinct type system. As such, patch
fragments, algorithms, and skills do not necessar-
ily transfer from standard Max to gen∼ or vice
versa.

Visual Languages

Depicting programs visually instead of textually is
a common theme in end-user programming. Brad
Myers (1986) suggests that the spatial capabilities
of the human brain can be better utilized in the
visual domain. Ivan Sutherland (1964) developed
Sketchpad, an interactive visual programming
environment with elements of direct manipulation,
as early as 1964. Later, Hypercard enabled many
nonprogrammers to make applications (Nielsen,
Frehr, and Nymand 1991).

Object-oriented visual programming was at-
tempted by Fabrik (Ingalls et al. 1988), but especially
in music, dataflow languages proved more suit-
able for visual representation as “patches,” named
after the way modular synthesizers could be “pro-
grammed” by connecting modules with cords. In
addition to Max, Pure Data is a primary example.
Other examples include OpenMusic (Assayag et al.
1999) and PWGL, which pioneered musical scores
integrated into dataflow patches (Kuuskankare and
Laurson 2009; Laurson, Kuuskankare, and Norilo
2009).

Norilo and Olarte 11

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Teaching Programming

Engaging students in the learning process of a pro-
gramming language involves several challenges: how
to arouse curiosity to actively participate in the dis-
covery, how to maintain the necessary motivation
to persist while overcoming the obstacles related to
syntax, how to integrate new knowledge in learners’
personal workflow, and how to properly support the
individual and group learning experience for the ap-
propriation of a new programming language. These
challenges are well known to teachers in many areas
beyond computer music and demand both careful
planning and a variety of approaches to the learning
situation.

Programming is fundamentally about abstraction
(Blackwell 2002). To learn programming, one needs
to acquire and learn to deploy abstraction to solve
problems. Maximal solutions are highly regarded.
Instead of just focusing on the concrete problem at
hand, programmers are taught to reason deductively
about the problem space, seeking to solve a category
or a class of similar problems that are isomorphic
from a particular abstractive viewpoint. According
to Brooks and Brooks (1999, p. 104), construc-
tivist education frames the learning of tasks with
closely aligned words, such as “classify,” “analyze,”
“predict,” and “create.”

The natural tendency of constructivist thought
is to progress from the concrete to the abstract. In
the context of digital pedagogy, Seymour Papert
(1993) disagrees on a fundamental level. Although
computer music may seem abstract and detached
to some, its ultimate form is typically the concrete,
visceral experience of sound. As such we symphatize
with Papert’s argument that concrete thinking
deserves “deeper respect.”

Papert (1987) suggests that discovery learning can
be guided with microworlds, playgrounds with a
well-designed, limited set of tools for exploration—
not unlike educationally purposed interactive
patches. In the case of music programs, “tweak-
ing” program constants and listening for changes
in sound is a good, intuitive strategy, somewhat
in opposition to the deductive approach and to the
lionization of abstractive generalization.

Even though Papertian constructionism and dis-
covery learning is well regarded in digital pedagogy—
and this regard is shared by us—it is not universally
accepted. Dave Catlin (2019, pp. 13–16) provides a
recent overview of the arguments for and against.

Luthiery for the Digital Age

Our research into programming tools that could be
used to teach and practice musical signal process-
ing, using the patching metaphor with which many
musician-programmers are comfortable, has led to
the development of Kronos, a declarative metapro-
gramming language for signal processors (Norilo
2015), and Veneer, a web-based visual programming
front end (Norilo 2019). They build upon the history
of innovation in both signal processing and visual
programming.

The Faust project (Orlarey, Fober, and Letz 2004)
has demonstrated the viability of the functional
programming paradigm in producing efficient static
circuits. The core principle is that of zero (run-time)
overhead abstraction, in which expressive programs
are translated into static, deterministic, fast-running
signal processors. Time nearly disappears in the
realm of static circuits. The programs are fashioned
as topologies instead of chronologies. Instead, time
manifests itself as delay and memory operators built
into the language.

Functional programming is also aligned with
dataflow programming—a prominent feature of
visual environments. The Faust syntax presents
some challenges to visual representation, however.
Its block-diagram algebra is powerful, but describes
the construction of signal circuits indirectly via
function composition. This may well be suitable for
a visual representation, but one that is far removed
from the familiar signal-flow diagrams.

Visual Syntax

To combine familiar dataflow patches with func-
tional signal processing, we have designed Kronos
to exhibit isomorphic syntax in both text and patch

12 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Figure 1. Textbook
diagram of a biquadratic
(“biquad”) filter
representing a
second-order filter using a
direct form II topology.

form (Norilo 2015, 2019). The nodes in the Veneer
interface are not tied to particular “built-ins” or
ugens, but are rather defined as arbitrary expressions
in the Kronos language. This affords power and flex-
ibility for advanced users, while the user interface
steers beginners towards the familiar model of one
node per operation.

Consider the learner who looks to implement
a biquadratic filter, more commonly known by
the informal term “biquad.” A typical textbook
diagram is shown in Figure 1. The diagram consists
of feedforward and feedback unit delays, additions,
and multiplications, and its working principle is
relatively easy to grasp.

An implementation in xtlang (Sorensen and
Gardner 2010) is shown in Figure 2. The listing
shows a constructor function that returns a closure.
The closure is object-like, and captures variables
from the constructor that are used as state for the
delay memories. In a mainstream object-oriented
language, the implementation would be very similar.
The captured variables would be instance variables,
and the programmer would similarly think about
ordering of side-effects while plumbing samples
through delay memory and lifetimes of the various
program entities.

Faust (Orlarey, Fober, and Letz 2004) is more
restricted to the signal-processing domain, and
thus affords a higher level of abstraction without
sacrificing efficiency. The program shown in Figure 3
shows the recursive composition of two short
convolution kernels. There is certainly elegance

(bind-func static biquad
(lambda ()
(let* ((y1 0.0)

(y2 0.0)
(x1 0.0)
(x2 0.0)

(lambda (x b0 b1 b2 a1 a2)
(let ((y (+ (* b0 x)

(* b1 x1)
(* b2 x2)
(* a1 y1)
(* a2 y2))))

(set! y2 y1)
(set! y1 y)
(set! x2 x1)
(set! x1 x)
y))))))

Figure 2.

Figure 2. Biquad filter in
xtlang.

biquad(a1,a2,b0,b1,b2) = + ∼ conv2(a1,a2) :
conv3(b0,b1,b2)

with {
conv3(k0,k1,k2,x) = k0*x + k1*x’ + k2*x” ;
conv2(k0,k1,x) = k0*x + k1*x’ ;

};

Figure 3.

Figure 3. Biquad filter in
Faust.

in this approach, but the gap to bridge between
textbooks and this idiom remains daunting. Nor
does it lend itself to interactive visualization—
although the Faust compiler generates dataflow
diagrams from source code, it is not clear if actually
editing Faust programs as diagrams is feasible or
even desirable.

Figures 4 and 5 show the biquad filter in Max
8 and Veneer, respectively. Both examples can be
thought of as executable diagrams in the sense that
they very closely resemble the textbook diagram in
Figure 1—indeed, translating simple flow diagrams
to programs is an ideal application for a visual
language. Gen∼ makes use of implicit summation,
and chooses to call unit delay “history.” Veneer
uses DSP vernacular, “z−1”, but other than that,
the closer resemblance between the Veneer patch
and the textbook diagram is largely due to the fact

Norilo and Olarte 13

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Figure 4. Biquad filter in
Max gen∼.

Figure 5. Biquad filter in
Veneer.

Figure 4.

Figure 5.

that it is a straightforward transcription. Please
note that the Max implementation is the only one
in this section that does not invert the feedback
coefficients.

Functional Abstraction in the Visual Domain

Veneer explores the design space of visual pro-
gramming, with the goal of studying higher-level
abstraction in the context of signal processing and its
impact on learning. The representation of straight-
forward dataflow diagrams is well established, as
is evident in gen∼, but there is more ambiguity
in visualizing more-abstract programs that contain
conditionals or loops.

Much of this problem stems from diverging data
flow and control flow. In a pure dataflow program,
the order of computation is solely determined by
data dependencies. Imperative loops, on the other
hand, define program order explicitly.

How to present explicit program order and control
flow visually? Max supports a form of control flow
in the form of active inlets and bang messages, but
both are notably divergent and missing from both the
old-style buffered audio graph and the newer sample-
level gen∼. Patch cords in Max serve two different
purposes: to relay data, and to transfer program
control. This polysemy—a coupled data-and-control
flow—is a common source of confusion and makes
the programming model harder to understand.

Kronos and Veneer opt for a pure dataflow model
with no explicit control flow. In the absence of loops
and conditionals, program constructs that involve
repetition must be different. Suitable solutions are
abundant in the functional programming tradition
(Hudak 1989), based on higher-order functions.

A higher-order function is a function that receives
another function as a parameter. One use for this ar-
rangement is to decouple traversal of a data structure
from a transformation applied to its elements. Some
well-known higher-order functions that implement
traversals are incorporated into Kronos, including
(1) Map, which applies a single-argument parameter
function to all members of a parameter set, and (2)
Reduce, which threads members of a parameter set
through a two-argument parameter function from
left to right.

Applied to signal processing, Map generates
parallel routing, such as a filter bank, and Reduce
encodes serial routing, such as summing or cascade
circuits. More generally, higher-order functions
in signal processing are circuit generators that
construct algorithmic compositions of simpler
circuits (Norilo 2015).

Additive Synthesis with Higher-Order Functions

We will now present the approximation of a
downward sawtooth waveform via additive syn-
thesis as an example of using higher-order func-
tions to compose signal-processing circuits. The

14 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Figure 6. Example of
higher-order functions in
Veneer. Count produces a
list of harmonic numbers,
and Map applies the Sin
function to members of
this list. The higher-order

function Zip-With applies
a binary function
(division) to pairs of
elements from each list,
and Reduce sums the
harmonics generated by
Zip-With.

Figure 7. Partial
application of the
Resonator function by a
signal source (Noise) and
bandwidth (50), resulting
in a unary function of

frequency. Map applies
this function to a list of
frequencies to generate
multiple channels of
resonant noise.

approximation with N partials is described by the
following equation:

fsaw (θ ) =
N∑

k=1

cos(kθ )
k

. (1)

The corresponding Veneer patch for N = 4 is
shown in Figure 6. Count is used to produce a list of
harmonic numbers from 1 to 4. Map applies Gen:Sin
to members of this list, producing one sinusoidal
partial for each.

To achieve appropriate harmonic weights to
approximate the sawtooth wave, each partial n
must have an amplitude of 1/n. The higher-order
function Zip-With applies a binary function pairwise
to each element of the two lists, and is used here to
divide each partial waveform by its corresponding
harmonic number. Finally, summation is performed
with Reduce, which recursively combines the first
two elements of a list until just one element remains.
Notably, this patch generalizes to any constant
value of N, the input to Count, and produces
the appropriate number of elementary circuits to
match.

Each of the nodes that represent a parameter
function that is passed to a higher-order function
has disconnected inputs, empty slots indicated
by dotted circles. Veneer considers disconnected
nodes as unapplied functions. Unapplied function
nodes output a stream of function-typed values—
verbs—rather than the usual concretely typed

stream of nouns. Function-typed streams provide
the parameter functions to a higher-order function.

Visual Representation of Partial Application

To make higher-order functions ergonomical, func-
tional languages often make it easy to specify
anonymous ad hoc functions. Veneer allows ar-
bitrary textual expressions in any node, but the
visually oriented mechanism for creating ad hoc
functions is partial application. As disconnected
nodes produce unapplied functions, partially con-
nected nodes produce partially applied functions.

Figure 7 demonstrates a fan-out circuit built
with partial application and Map. The parameter
function here is Resonator, which has three inputs
for signal, frequency, and bandwidth, respectively.
We have connected the signal and bandwidth inputs,
resulting in a partially applied resonator with the
frequency input disconnected. From the perspective
of Map, this looks like a single-argument function,
which—applied by Map to the list of frequencies
440, 550, and 660—produces three resonant noise
signals.

For further details, please refer to our prior work
(Norilo 2019).

Higher-Order Functions and Beginners

It is reasonable to question whether the proposed use
of higher-order functions is really compatible with
teaching signal processing to nonprogrammers, as
the programs quickly become much more abstract.
Higher-order functions are not commonly used
in the context of signal processing. Although the
dataflow remains visually consistent, the increased
complexity of the data types themselves presents a
challenge.

Norilo and Olarte 15

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



The consistency of the dataflow model is a
pedagogical boon, however. Understanding data
types of increasing complexity can be developed
incrementally, without need of special rules for
evaluation and execution of special forms, or for
keywords in the language. Someone comfortable in
the imperative programming idiom easily forgets
how baffling mutable state and control flow can
be. Although functional abstraction is certainly
not trivial, it can avoid much of the imperative
baggage—we hypothesize that it is a ladder of
abstraction that affords a more logical progression
in the context of visual dataflow programs.

Partially applied nodes are a gentle nudge towards
discovering the concept of lambda abstraction—
conversion of a concrete program fragment into
a parametrized, more generally useful function
(Norilo 2019).

Students often independently discover the desire
and need to replicate parts of their program in
an algorithmic manner, and are thus primed to
internalize the rationale for higher-order functions.
Further, the knowledge and concepts are highly
transferable to other languages and domains besides
computer music.

Exploratory Programming and Rapid Development

Veneer aims for exploratory programming and rapid
development. We believe that these workflows
support the learner in generating frictionless mental
models of a program (Blackwell 2002), and that
in addition to learning, such mental models are
conductive to fostering creativity and spontaneous
expression.

Instant feedback and the ability to see and manip-
ulate program flow in real time are key to developing
this mental model. The read-evaluate-print loop
(REPL) is a well-known example: It is an interactive
prompt into which the user may type expressions to
be evaluated and see the results printed.

Debuggers and REPLs are some of the interactive
tools of inspection and interrogation of programs
and their state. More-recent advances include deeper
integration between the programming tool and the
inspection tool (Hancock 2003). Such an approach is

a natural fit to visual languages: Max and Pure Data
programs are routinely interspersed with numeric
and graphical displays of program state. Similarly,
the integration of control widgets, such as sliders or
dials, into the source of the program is a valuable
aid in helping programmers explore the parameter
space of their creation.

Veneer aims to make both the display of data
and the introduction of configurable parameters as
frictionless as possible. A real-time output display
bubble can be popped out at any point of the patch
with a single keystroke, and any constant numbers
in the program code can be turned into tweakable
parameters by simply dragging them with the
mouse. Additionally, sample-level programming is
greatly assisted by Veneer’s ability to stop or slow
down the audio clock by a factor of 256—allowing
the programmer to observe samples one by one as
they flow through the dataflow graph.

Deployment

Part of the barrier to learning programming is the
friction of installing and setting up the environment.
By deploying Veneer as a web application, we are able
to avoid the requirement for installing a program,
similar to several earlier projects (Michon and
Orlarey 2012; Roberts and Kuchera-Morin 2012;
Lazzarini et al. 2014). The web platform is not
without trade-offs, however, especially in the case
of an audio-intensive application. The various
strategies for targeting audio applications to the web
have recently been discussed by Yi and Letz (2020).

Veneer makes use of two recent developments,
WebAssembly and AudioWorklets, to approach
near-native audio performance in the browser. The
Kronos compiler has been compiled to WebAssem-
bly, and also enhanced to generate executable DSP
units as WebAssembly “blobs.” This allows the
real-time audio processing to sidestep Javascript
garbage collection and to use a compact bytecode
format.

AudioWorklet allows custom audio-processing
code on the web platform to run in the real audio
thread, no longer contesting the application main
thread. Before AudioWorklets, audio processing had

16 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



to be cooperatively scheduled in the application’s
main user-interface thread, which meant that robust
low-latency operation was technically unattainable.
Mozilla has recently produced an implementation
of AudioWorklet in Firefox, thus the technology is
no longer exclusive to Google’s Chrome browser. As
of this writing, Apple’s Safari browser also supports
AudioWorklets in its technology preview release,
boding well for the adoption of the standard.

The web platform is thus gradually reaching
towards parity with native applications, but a wide
gap remains to be closed. Thread priorities and CPU
numeric modes are constrained by browser security
and semantics, and WebAssembly performance is
still below that of native code. Use cases such as
multichannel input and output work sporadically.
For these reasons, Veneer ships with a WebAssembly
backend for maximum accessibility, but can also
connect to a locally running native compute server
for best performance.

Interfacing with the World

The role of tools is essential in defining digital
musicianship and creative identity (Partti 2014,
pp. 12–13). As such it is important for music soft-
ware, especially programming languages, to be
designed so that they can be readily assembled with
other components and interoperate in various ways
to accommodate even unanticipated workflows and
creative strategies.

An interesting effect of the compiler-based strat-
egy is that the executable artifacts that result from
user programs can be made independent of the
host language. This is in contrast to environments
that rely on a large interpreter or a runtime com-
ponent. Kronos generates artifacts that interface
natively via the C calling convention and require
only that the target platform be supported by the
LLVM framework. The dependency-free executables
are relatively easy to port to new platforms, such
as WebAssembly—essentially a virtual bare-metal
platform—or as extensions to other environments,
similarly to how Faust produces artifacts for a wide
range of audio software (Fober, Orlarey, and Letz
2011).

Veneer Workshop

We undertook a hands-on workshop with
undergraduate-level music technology students
to evaluate the software and method described in
this article. The workshop was conducted at the
University of the Arts Helsinki from February to
March 2020. It consisted of four three-hour sessions
with students who had registered for a course on
SuperCollider (McCartney 2002).

Methodology

Music technology programs tend to have a small
student body. The biannual intake at the University
of the Arts is between six and ten, which means
that the active student population is under 30 for
the five-and-a-half-year program. We secured twelve
registrants to the workshop, which is probably
near the practical upper bound at our institution.
Regardless, as a sample size for statistical methods
it is small. Kölling and McKay (2016, pp. 2–4)
describe this and other challenges in a formal
study of programming environments. Considering
these factors, we decided against a control group.
Direct evidence of superiority or inferiority of a
programming environment may be unobtainable in
any case.

In teaching art, the end goals are open-ended.
There are few skill requirements set in stone; rather,
studies should support and nurture the creative
expression of the individual. This should be reflected
in how we evaluate systems built to support such
learning, including the present project. We designed
a battery of questions meant to measure the levels
of confidence and motivation learners felt in a range
of specific aspects of audio programming. These
questions are a crude measure of empowerment felt
by the participants, and increased empowerment is
our ideal outcome.

The participants returned two electronic surveys,
one before and one after the hands-on sessions. The
multiple-choice “empowerment” question battery
was identical in both surveys. In addition, the
prior survey contained an interest profile, and the
posterior survey solicited feedback on the software

Norilo and Olarte 17

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Figure 8. Live interrogation
of patch dataflow,
including real-time display
of intermediate results
from the computation
pipeline.

and workshop with both multiple-choice and free-
form questions.

Workshop Content

To start with, the workshop deals with the basic
usage of the Veneer patcher. Novel features were
introduced early, such as the use of higher-order
functions in DSP, as in Figure 6, and real-time
interrogation of dataflows, as in Figure 8.

The rest of the workshop was devoted to exercises
and case studies. The culmination was a simplistic
modeling of the well-known Minimoog synthesizer.
We built a band-limited sawtooth oscillator using
the differentiated parabolic-wave algorithm (Vali-
maki et al. 2009), as well as a model of one stage
of the ladder filter. This stage includes a first-order
filter and soft saturation. A synthesis voice, in
which these components are included as abstracted
functions, is shown in Figure 9. We then studied a
simple step sequencer connected to a polyphonic
instantation of the synthesizer. Further, we stud-
ied Schroeder reverberation (2002), feedback-delay
networks (Rocchesso 1997), and granular synthesis.

A significant motivator for the learners was the
mechanism to export Veneer patches as native
extensions for SuperCollider. This capability was
provided to the web platform by a server-side
compilation service, similar to the Faust online
compiler by Michon and Orlarey (2012).

In our efforts to apply Papert’s paradigm (1993)
to abstraction in musical programming, we have
worked with the concepts of inductive and gradual
abstraction (Norilo 2019). We believe musical pro-
gramming tasks should focus on objects that make a
sound and can be manipulated. Direct manipulation

is one of the first casualties of abstraction (Blackwell
2002).

By starting with concrete values for things like
frequencies, amplitudes, and bandwidths, patches
can be more easily understood. Abstraction can
subsequently be introduced gradually: By replac-
ing constants with lambda terms, programs are
parametrized; they are abstracted inductively. Ve-
neer supports this programming style by allowing
automatic extraction of a subpatch as a new reusable
function, and the frictionless transformation of con-
stants into interactive controls.

In practice, the workshop was taught in three
broad categories or modes, which we discuss in the
subsequent subsections.

Here Is the Patch

Dismantling a working circuit or a well-coded ex-
ample aligns with deconstructionist learning theory.
Learners are exposed to the essential components
and relationships in the signal processing circuit
while reviewing the terminology, syntax, and con-
ceptual framework of the patch (Griffin 2019). A
ready-made educational patch is a good example of
a microworld (Papert 1987), a delimited space that
allows learners to explore. This was the mode of
presentation for the Minimoog example discussed
previously.

Watch Me Do, Hear Me Think

By observing an experienced programmer—the
teacher—stating a goal and implementing it, explic-
itly communicating the thinking process, learners
are exposed to to a well-developed workflow, but
also to the general strategy of problem solving. This
approach allows the teacher to underline what is
novel in the language in question and how it re-
lates to other languages the learners may already be
familiar with.

For example, while building reverberators from
primitive delay lines, we simultaneously exhibit
the theory of digital reverberation as well as its
expression with higher-order functions. Verbal-
izing the process helps learners to identify pat-
terns and categories, and to engage in building

18 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Figure 9. Minimoog-
inspired virtual analog
synthesiser. A
differentiated parabolic
wave oscillator is fed into
the ladder filter, which is
generated by repeating the

Filter-Stage function four
times with the Iterate
function. Resonance is
provided by a unit-delay
feedback path around the
entire ladder circuit.

more-complex programs and abstraction—the “pro-
cedural thinking” necessary to accomplish tasks
(Selby 2015).

Recreate and Transcribe

While independently recreating a patch or an tran-
scribing an implementation from literature, the
focus is on the learner’s own thinking and acting.
There is a lot of ground for discovery, experimen-
tation, knowledge manipulation, and application.
Errors may be common, but are secondary to design
principles and strategies. They may also lead to
“free experimentation,” “creatively failing,” and
“serendipitous” discoveries.

Constructing the knowledge of the environment
is done by manipulating and directly interacting
with the concepts and objects: not only the software
environment, but also the block diagrams, literature,
and sketches that “surround and embellish the
code” (Noss and Clayson 2015). For example, as
students independently implemented synthesis
with feedback amplitude modulation (Kleimola
et al. 2011), a series of creative answers emerged

from building, reflecting, and debugging as a process
of “knowledge appropriation” (Papert 1980).

Survey Results

The workshop results were assessed with web sur-
veys the participants returned prior to the first ses-
sion and after the last session. Twelve participants
answered the first survey (A), and nine participants
answered the second survey (B). The answers were
collected with Google Forms.

Quantitative

Survey A contained a section on the interests of the
participants, shown in Figure 10. The bars indicate
the mean of the responses, with standard error of the
mean shown as a range. The participants reported
interest in a wide range of topics and activities
broadly related to DSP. They generally reported
most interest in artistic activities, followed by
academic topics. Some ambivalence was shown
towards engineering and design.

Norilo and Olarte 19

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Figure 10. Learner interest
profile. The right-hand
ends of the thick bars
indicate the mean values,
with the standard error
indicated by the range at
the end.

Figure 11. Usefulness of
Veneer features. The
right-hand ends of the
thick bars indicate the
mean values, with the
standard error indicated
by the range at the end.

We solicited feedback on Veneer in two sections
of Survey B. The participants were asked to assess
the usefulness of various features, and to compare
Veneer to other software environments with which
they had prior familiarity.

Usefulness

Generally, the participants viewed Veneer favorably.
Given the amount of personal interaction between
us during the workshop, and the fact that they knew
they were responding to the author of the software,
empathy and a certain level of courtesy may have
created a positive bias. Further, we do not know
the reactions of those who only attended the first
session and did not return survey B. Perhaps they
only wanted a preview, or perhaps they reacted
negatively.

Given these caveats, we believe the results
can at best indicate which features of Veneer and
Kronos the respondents found the most and the least
impressive.

Responses to the questions on the usefulness of
various features are shown in Figure 11, sorted in
descending order. The bars indicate the mean of
responses, with standard error of the mean shown
as a range. The respondents could indicate the
usefulness of each feature, or that they did not
understand what it was about. In quantifying the

answers, we categorized the latter together with the
response “not useful.” The rationale for this is that
people who feel they are not qualified to comment
on the usefulness of a feature might gravitate to the
middle of the scale, even though a feature they do
not understand is quite literally not useful to them.

Respondents were most convinced of the useful-
ness of exporting Veneer patches as native exten-
sions, which is probably influenced by the fact that
they were studying SuperCollider. The interactivity
features, such as patch interrogation and real-time
interaction were also highly regarded.

The users were least impressed with the ba-
sic patching tools, which may indicate usability
problems. Generics also ranked low; the topic may
be too complicated for an introductory workshop.
Notably, the deviation was high for these ques-
tions. Bugs specific to the browser version might
contribute to usability problems, and prior program-
ming background may be a factor in appreciating
generics.

Comparison to Other Environments

We also asked the respondents to compare the
features listed in the preceding section with those
of other environments with which they had prior
experience. The mean of the responses, and standard
error, are shown in Figure 12.

20 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



Figure 12. Comparison
with other environments.
The right-hand ends of the
thick bars indicate the
mean values, with the
standard error indicated
by the range at the end.

Figure 13. Learners’
self-confidence and
motivation before and
after the workshop.

Figure 14. Effect sizes for
prior versus posterior
survey.

“Running in the browser” was clearly the most
significant feature in this section. The participants
may be unaware of prior work (Michon and Orlarey
2012; Roberts and Kuchera-Morin 2012; Lazzarini
et al. 2014). Other highly rated features included
building ugens from scratch and exporting them to
other environments, as well as algorithmic circuits
and patch interrogation.

The built-in ugen library was among the lowest-
rated features. The Kronos built-in library is less
extensive than most other environments because
of the emphasis on composability and ground-up
construction. The fact that the feature was still
rated better than “similar to other environments”
may result from a positive bias in the responses. The
deviation for all questions in this section indicates
a diversity of experience and opinion in this small
sample.

Impact of the Workshop on Learner
Self-Confidence

The primary goal of the Kronos project is to empower
and enable musicians and music technologists in the
development of tools for their specific artistic needs
and purposes. To assess whether the experimental
workshop helped the learners to take steps in that
direction, we asked questions about learners’ self-

Figure 13.

Figure 14.

confidence and motivation in both surveys. The
mean values to the responses, and their standard
errors, both before and after the workshop, are
shown in Figure 13.

All self-assessment means were stable or im-
proved during the workshop. Effect sizes according
to Cohen’s d-formula are shown in Figure 14. Be-
cause of the small and self-selected sample, we do
not make any claims of statistical significance. With
this caveat, we observe a large effect in “integrating

Norilo and Olarte 21

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



patches with the most important audio software I
use” and “construction of efficient audio programs.”
A medium effect is shown in “understanding how
digital filters work.”

It is somewhat surprising that self-confidence
in constructing efficient programs was among the
largest effects. Optimization was not a major theme
in the workshop. Several participants expressed
surprise at how little CPU time the exported patches
consumed, however. Also, the questions with
the largest effect size also had the lowest initial
baseline confidence. Apparently the learners had
little experience of constructing efficient DSP
units and integrating them, and they found that
it was easier than expected with the presented
method.

For many learners, the workshop was the first
time they had constructed elementary digital filters
from unit delays, accumulators, and gain coeffi-
cients. Most of them were able to implement filters
by directly translating textbooks diagrams to Veneer
patches, which may have made the topic appear
more accessible.

The course seemed to have the greatest impact
on those with the lowest baseline confidence. The
Pearson correlation coefficient of initial confidence
versus confidence improvement is −0.8, indicating
a strong inverse correlation. This is an encouraging,
if not unexpected, result for teaching a topic many
beginners find daunting.

Responses to Free-Form Questions

Finally, respondents were invited to give free-form
feedback in three parts; positive, negative, and
“other.” Six, four, and seven answers, respectively,
were submitted.

Low-level, per-sample processing and exporting
binaries to other environments were mentioned as
good or interesting in most responses. Participants
were most critical towards the perceived lack of
documentation. Several of them felt that the work-
shop was too short to really develop an interest in
the software or in the topic in general, and that they
were not always able to follow the mathematical
reasoning of the patches we built.

Future Work

The proposed programming method with Veneer and
Kronos is based on the idea of applying higher-order
functions and functional abstraction to increase the
expressive power of a signal processing language.
Although there is an undeniable compatibility be-
tween visual dataflow and functional programming,
we cannot at this time make any strong claims about
whether that translates to improved learning out-
comes. It appears to us that the set of abstractions
most beneficial in a visual-first programming envi-
ronment may be different from those in a textual
functional language, but this too requires further
study.

Music languages have expanded in scope to cover
growing subsets of musical programming tasks. Tra-
ditional score- and instrument-oriented languages
gain capabilities to express signal processing tasks;
our efforts with Kronos focus on expanding up-
wards from elementary DSP by means of increased
abstractive power of functions and types. Yet it is
unclear whether a “theory of everything” in musical
programming is attainable or even desirable.

Workshops and Tools

Our survey results demonstrate that instead of
trying to build a single tool for everything, focusing
on interoperability may be a more viable strategy.
Building extensions for another music language was
a successful strategy for motivating students to learn
DSP. Regarding the development of patching tools,
the interactive features and adhoc interrogation of
patches resonated with our workshop participants,
suggesting that the ideas are worth pursuing further.

The critical feedback indicates avenues of further
improvement in our user interface and documenta-
tion. The discoverability of features and documenta-
tion seems to be an issue. More attention should be
paid to familiarizing new users with the system and
providing relevant online help within the patcher
application.

Several users mentioned problems with mathe-
matical or theoretical prerequisites, even though we
designed the material to be as accessible as possible.

22 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023



In a short-form practical workshop, some theory is
necessarily glossed over. A longer-term course with
technology-assisted, musician-focused teaching of
the fundamentals of signal theory is an intriguing
possibility for further work.

Technology-assisted teaching of mathematical
fundamentals motivates additional development of
the interactive and visual affordances in Veneer,
such as improving its capabilities for interactive
mathematical plots. Some useful ideas can be found
in our prior work (Norilo 2012), as well as projects
like Jupyter (Perez and Granger 2015). Given the
positive reception of the web application, we should
further pursue the advantages of the web platform,
like network and cloud features, or embedding of
Veneer patches into pedagogical online hypermedia.

User Research

Further user research is necessary to gain a more-
complete picture of how well Veneer and Kronos
work for practitioners. The workshop presented
in this article could be extended in time, given
to a more diverse demographic, and otherwise
enhanced in scope. Multiple iterations would allow
for refinement and experimentation on the content,
presentation, and survey.

As a web application, Veneer would also be
suitable for a large-scale online user study. Detailed
data could be gathered by telemetry from consenting
participants, enabling a more detailed view into how
learners interact with it.

Outside of the pedagogical context, user research
on any music language should also encompass
creative and artistic practices and processes.

Conclusions

This article discussed our approach to teaching and
democratizing the fundamentals of signal processing
that underlie our musical repertoire. The goal of em-
powering musicians to study and master their tools
has informed the development of Veneer, a visual
patching environment built for Kronos, an expres-
sive language for signal processing. It extends the

prior art on visual dataflow programming with pow-
erful abstractions from functional programming,
while maintaining focus on interactivity, gradual
abstraction, and the performative and creative musi-
cal mindset. The entire programming environment
is freely available online as a web application. It was
found to run well, demonstrating the capability of
the web platform to adequately support a complex,
high-performance audio application.

We evaluated our approach in a hands-on work-
shop and a survey. The results indicate that there
is an empty niche for an online signal-processing
language that is easily approachable and integrates
smoothly with other tools. Relatively inexperienced
learners were able to transcribe implementations
from literature and seemed to gain self-confidence
while doing so. The responses also highlighted the
weaker parts of our method, including discoverabil-
ity of patcher program features and code written by
others.

The open-source software and material de-
scribed in this article is freely available at
https://kronoslang.io. As always, we welcome
contributions, discussion, and feedback from all
interested parties.

References

Assayag, G., et al. 1999. “Computer-Assisted Composition
at IRCAM: From PatchWork to OpenMusic.” Computer
Music Journal 23(3):59–72. 10.1162/014892699559896

Blackwell, A. F. 2002. “First Steps in Programming:
A Rationale for Attention Investment Models.” In
Proceedings of the IEEE Symposia on Human Centric
Computing Languages and Environments, pp. 2–10.

Brandt, E. 2002. “Temporal Type Constructors for Com-
puter Music Programming.” PhD dissertation, School
of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania.

Brooks, J. G., and M. G. Brooks. 1999. In Search of Un-
derstanding: The Case for Constructivist Classrooms.
Alexandria, Virginia: ASCD.

Catlin, D. 2019. “Beyond Coding: Back to the Future
with Education Robots.” In Smart Learning with
Educational Robotics. Berlin: Springer, pp. 1–41.

Dannenberg, R. 1991. “Expressing Temporal Behavior
Declaratively.” In R. F. Rashid, ed. CMU Computer

Norilo and Olarte 23

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023

https://kronoslang.io
https://doi.org/10.1162/014892699559896


Science: A 25th Anniversary Commemorative. New
York City: ACM Press, pp. 47–68.

Dannenberg, R. 1997. “The Implementation of Nyquist, a
Sound Synthesis Language.” Computer Music Journal
21(3):71–82. 10.2307/3681015

Dannenberg, R., and N. Thompson. 1997. “Real-Time
Software Synthesis on Superscalar Architectures.”
Computer Music Journal 21(3):83–94. 10.2307/3681016

Dannenberg, R. B. 2018. “Languages for Computer Music.”
Frontiers in Digital Humanities 5:Art. 26. 10.3389/
fdigh.2018.00026

Fober, D., Y. Orlarey, and S. Letz. 2011. “Faust Architec-
tures Design and OSC Support.” In Proceedings of the
International Conference on Digital Audio Effects, pp.
213–216.

Griffin, J. M. 2019. “Constructionism and De-
Constructionism: Opposite Yet Complementary
Pedagogies.” Constructivist Foundations 14(3):234–
243.

Hancock, C. M. 2003. “Real-Time Programming and the
Big Ideas of Computational Literacy.” PhD dissertation,
Massachusetts Institute of Technology, School of
Architecture and Planning, Cambridge, Massachusetts.

Hudak, P. 1989. “Conception, Evolution, and Application
of Functional Programming Languages.” ACM Com-
puting Surveys 21(3):359–411. 10.1145/72551.72554

Ingalls, D., et al. 1988. “Fabrik: A Visual Programming
Environment.” ACM SIGPLAN Notices 23(11):176–190.
10.1145/62084.62100

Kleimola, J., et al. 2011. “Feedback Amplitude Modulation
Synthesis.” EURASIP Journal on Advances in Signal
Processing 2011:Art. 434378. 10.1155/2011/434378,
PubMed: 24348546

Kölling, M., and F. McKay. 2016. “Heuristic Evaluation
for Novice Programming Systems.” ACM Transactions
on Computing Education 16(3):Art. 12.

Kuuskankare, M., and M. Laurson. 2009. “ENP:
A System for Contemporary Music Notation.”
Contemporary Music Review 28(2):221–235.
10.1080/07494460903322505

Lattner, C., and V. Adve. 2004. “LLVM: A Compila-
tion Framework for Lifelong Program Analysis and
Transformation.” In Proceedings of the International
Symposium on Code Generation and Optimization,
pp. 75–86.

Laurson, M., M. Kuuskankare, and V. Norilo. 2009. “An
Overview of PWGL, a Visual Programming Environ-
ment for Music.” Computer Music Journal 33(1):19–31.
10.1162/comj.2009.33.1.19

Laurson, M., V. Norilo, and M. Kuuskankare. 2005.
“PWGLSynth: A Visual Synthesis Language for Virtual

Instrument Design and Control.” Computer Music
Journal 29(3):29–41. 10.1162/0148926054798223

Lazzarini, V. 2013. “The Development of Computer
Music Programming Systems.” Journal of New Music
Research 42(1):97–110. 10.1080/09298215.2013.778890

Lazzarini, V., et al. 2014. “Csound on the Web.” In
Proceedings of the Linux Audio Conference, pp. 77–84.

Lazzarini, V., et al. 2016. “User-Defined Opcodes.” In
Csound. Berlin: Springer, pp. 139–151.

McCartney, J. 2002. “Rethinking the Computer Music
Language: SuperCollider.” Computer Music Journal
26(4):61–68. 10.1162/014892602320991383

McPherson, A., and K. Tahiroğlu., 2020. “Idiomatic
Patterns and Aesthetic Influence in Computer Music
Languages.” Organised Sound 25(1):53–63. 10.1017/
S1355771819000463

Michon, R., and Y. Orlarey. 2012. “The Faust Online
Compiler: A Web-based IDE for the Faust Program-
ming Language.” In Proceedings of the Linux Audio
Conference, pp. 111–116.

Myers, B. 1986. “Visual Programming, Program-
ming by Example, and Program Visualization: A
Taxonomy.” ACM SIGCHI Bulletin 17(4):59–66.
10.1145/22339.22349

Nielsen, J., I. Frehr, and H. O. Nymand. 1991. “The Learn-
ability of HyperCard as an Object-Oriented Program-
ming System.” Behaviour and Information Technology
10(2):111–120. 10.1080/01449299108924276

Nishino, H., N. Osaka, and R. Nakatsu. 2013. “Unit-
Generators Considered Harmful (for Microsound
Synthesis): A Novel Programming Model for Mi-
crosound Synthesis in LCSynth.” In Proceedings of the
International Computer Music Conference, pp. 148–
155.

Norilo, V. 2012. “Visualization of Signals and Algorithms
in Kronos.” In Proceedings of the International Confer-
ence on Digital Audio Effects, pp. 15–18.

Norilo, V. 2015. “Kronos: A Declarative Metapro-
gramming Language for Digital Signal Processing.”
Computer Music Journal 39(4):30–48. 10.1162/
COMJ_a_00330

Norilo, V. 2019. “Veneer: Visual and Touch-based Pro-
gramming for Audio.” In M. Queiroz and A. X. Sedó,
eds. Proceedings of the International Conference
on New Interfaces for Musical Expression, pp. 319–
324.

Noss, R., and J. Clayson. 2015. “Reconstructing Construc-
tionism.” Constructivist Foundations 10(3):285–288.

Orlarey, Y., D. Fober, and S. Letz 2004. “Syntactical
and Semantical Aspects of Faust.” Soft Computing
8(9):623–632. 10.1007/s00500-004-0388-1

24 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.2307/3681015
https://doi.org/10.2307/3681016
https://doi.org/10.3389/fdigh.2018.00026
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/62084.62100
https://doi.org/10.1155/2011/434378
https://www.ncbi.nlm.nih.gov/pubmed/24348546
https://doi.org/10.1080/07494460903322505
https://doi.org/10.1162/comj.2009.33.1.19
https://doi.org/10.1162/0148926054798223
https://doi.org/10.1080/09298215.2013.778890
https://doi.org/10.1162/014892602320991383
https://doi.org/10.1017/S1355771819000463
https://doi.org/10.1145/22339.22349
https://doi.org/10.1080/01449299108924276
https://doi.org/10.1162/COMJ_a_00330
https://doi.org/10.1007/s00500-004-0388-1


Orlarey, Y., and P. Jouvelot. 2016. “Signal Rate Inference
for Multidimensional Faust.” In Proceedings of the
Symposium on the Implementation and Application of
Functional Programming Languages, Art. 1.

Papert, S. 1980. Mindstorms: Children, Computers, and
Powerful Ideas. New York: Basic Books.

Papert, S. 1987. “Microworlds: Transforming Education.”
In Artificial Intelligence and Education, pp. 79–94.

Papert, S. 1993. The Children’s Machine: Rethinking
School in the Age of the Computer. New York: Basic
Books.

Partti, H. 2014. “Cosmopolitan Musicianship under Con-
struction: Digital Musicians Illuminating Emerging Val-
ues in Music Education.” International Journal of Music
Education 32(1):3–18. 10.1177/0255761411433727

Perez, F., and B. E. Granger. 2015. “Project Jupyter:
Computational Narratives as the Engine of Col-
laborative Data Science.” Available online at
archive.ipython.org/JupyterGrantNarrative-2015.pdf.
Accessed 3 June 2020.

Puckette, M. 1996. “Pure Data: Another Integrated
Computer Music Environment.” In Proceedings of the
International Computer Music Conference, pp. 269–
272.

Roads, C. 1996. The Computer Music Tutorial. Cambridge,
Massachusetts: MIT Press.

Roberts, C., and J. Kuchera-Morin. 2012. “Gibber: Live
Coding Audio in the Browser.” In Proceedings of the
International Computer Music Conference, pp. 64–69.

Rocchesso, D. 1997. “Maximally Diffusive Yet Efficient
Feedback Delay Networks for Artificial Reverberation.”
IEEE Signal Processing Letters 4(9):252–255. 10.1109/
97.623041

Salazar, S., and G. Wang. 2012. “Chugens, Chubgraphs,
ChuGins: Three Tiers for Extending ChucK.” In

Proceedings of the International Computer Music
Conference, pp. 60–63.

Schröder, B. 2002. Ordered Sets: An Introduction. Boston,
Massachusetts: Birkhäuser.

Selby, C. C. 2015. “Relationships: Computational Think-
ing, Pedagogy of Programming, and Bloom’s Taxon-
omy.” In Proceedings of the Workshop in Primary and
Secondary Computing Education, pp. 80–87.

Sorensen, A., and H. Gardner. 2010. “Programming with
Time Cyber: Physical Programming with Impromptu.”
ACM SIGPLAN Notices 45(10):822–834. 10.1145/
1932682.1869526

Sorensen, A., and H. Gardner. 2017. “Systems Level
Liveness with Extempore.” In Proceedings of the ACM
SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and
Software, pp. 214–228.

Sutherland, I. 1964. “Sketchpad: A Man–Machine Graph-
ical Communication System.” Transactions of the
Society for Computer Simulation 2(5):3–20.

Valimaki, V., et al. 2009. “Alias-Suppressed Oscillators
Based on Differentiated Polynomial Waveforms.”
IEEE Transactions on Audio, Speech, and Language
Processing 18(4):786–798. 10.1109/TASL.2009.2026507

Wang, G., P. Cook, and S. Salazar. 2015. “ChucK: A
Strongly Timed Computer Music Language.” Computer
Music Journal 39(4):10–29. 10.1162/COMJ_a_00324

Wang, G., and P. R. Cook 2003. “ChucK: A Concurrent,
On-the-Fly, Audio Programming Language.” In Proceed-
ings of the International Computer Music Conference,
pp. 219–226.

Yi, S., and S. Letz. 2020. “The Browser as a Platform for
Ubiquitous Music.” In V. Lazzarini, D. Keller, N. Otero,
and Turchet, eds. Ubiquitous Music Ecologies. New
York: Routledge, pp. 170–189.

Norilo and Olarte 25

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/44/4/8/2005884/com

j_a_00578.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1177/0255761411433727
http://archive.ipython.org/JupyterGrantNarrative-2015.pdf
https://doi.org/10.1109/97.623041
https://doi.org/10.1145/1932682.1869526
https://doi.org/10.1109/TASL.2009.2026507
https://doi.org/10.1162/COMJ_a_00324

