
Looking Back, Looking
Forward: A Keynote Address
for the 2015 International
Computer Music
Conference

Carla Scaletti
Symbolic Sound Corporation
P.O. Box 2549
Champaign, Illinois 61825-2549, USA
carla@symbolicsound.com

Abstract: The invention of software in the mid-20th century was as big a breakthrough for modern humans as the
mastery over fire was for our prehistoric ancestors; the addition of cognitive fluidity to hardware has resulted in an
explosion of experimentation and creativity (which also poses some challenges). As is the case with any new technology,
humans immediately set about using software to connect with one another and extend our networks of distributed
cognition. Computer musicians are uniquely positioned to predict the future by composing it and coding it, because as
a group we combine the imagination and daring of artists with the technology that can make the imaginary real.

What follows is a transcript of a keynote speech
given at the 2015 International Computer Music
Conference (ICMC). A copy of the original slides
is available online at www.carlascaletti.com/Main
/LookingBackLookingForward.

Nostalgia: Not What It Used to Be

I’ve never been a big fan of nostalgia, but when I
found out the theme of this year’s conference was
going to be “Looking Back, Looking Forward,” I
decided to do a little research on the topic.

I found out that the word “nostalgia” comes from
the Greek word nostos, meaning homecoming or
the idea of returning home from a long journey,
combined with the word algos, meaning sorrow,
grief, or pain. Historically it was regarded as a brain
malfunction. Johannes Hofer, the Swiss doctor who
coined the term in 1688, described nostalgia as “a
neurological disease of essentially demonic cause,”
and some military physicians attributed it to brain
damage caused by the incessant clanging of cowbells
in the Alps [New York Times, 8 July 2013, “What Is
Nostalgia Good For?”]. So far, I was still not a fan.

Then I ran across the work of Tim Wildschut and
Constantine Sedikides. They lead a group of research
psychologists at the University of Southampton
called the Nostalgia Group, and they’ve published

Computer Music Journal, 40:1, pp. 10–24, Spring 2016
doi:10.1162/COMJ a 00341
c© 2016 Massachusetts Institute of Technology.

quite a bit of new research on nostalgia. Their
studies seem to indicate that you can use nostalgia
to establish the benchmarks of your biography,
giving you a sense of meaningfulness and continuity,
a connection with your past and optimism for the
future. And that engaging in nostalgia can even
enhance creativity by making you more open to
new experiences. So I thought, “Well . . . OK, maybe
nostalgia isn’t all bad.”

Most of these studies were focused on personal
nostalgia. But I thought maybe we could engage
in a form of collective nostalgia, because I know
that we have some shared stories of overcoming
challenges: stories where the protagonists are
computer musicians. Maybe telling these stories
can give us a connection to our history, a clearer
idea of how to overcome current challenges, and
a sense of optimism about the future of computer
music.

Later on in this talk, I’m going to try sharing a
couple of my computer music stories in the hopes
that they’ll remind you of some of your stories and
that you’ll share them with the rest of the computer
music community.

[Editor’s note: Readers are invited to send such
stories to cmj-editor@mit.edu for possible publica-
tion as letters to the editor. Please include “[CMJ]
story” in the subject line and mention this article in
the letter itself.]

Wildschut and his colleagues say that “nostalgia
entails fond evocation of momentous events in
which the self and significant others occupy central
roles—evocations that are often characterized

10 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023

http://www.carlascaletti.com/Main/LookingBackLookingForward


by redemptive narratives where one conquers
adversity” (Wildschut et al. 2006).

Which sounds to me a lot like the songs the
Hobbits would sing in Lord of the Rings, or the
inspirational stories we all heard from parents and
grandparents when we were growing up, or the
myths and epics and sagas that our ancestors told
(or more likely sang) around the fire at night. I’m
guessing that the epic sagas were sung because it’s
easier to remember long episodic sequences when
you set them to music.

Looking (Way) Back

One of those epic myths, the tale of two brothers
named Prometheus and Epimetheus, has an uncanny
connection to our theme. Because Epimetheus
means, literally, looking or thinking back, and
Prometheus means looking or thinking forward.
According to the story, Prometheus gave humans the
gift of fire and taught us language and mathematics,
and Epimetheus opened Pandora’s box to give us
evil, pain, and disease.

Immunologist Susumu Ohno used Epimetheus
and Prometheus as metaphors to describe the innate
and adaptive immune systems (Silverstein 2009).
He called the innate immune system “Epimethean”
because, like all results of natural selection, it
reflects the past: It’s a reaction to challenges
encountered by our predecessors, so it’s like looking
back. And he named the adaptive immune system
Promethean because it’s forward-looking: The
adaptive immune system can generate millions
of new sequences by recursively combining a
few hundred basic building blocks or modules. In
that way, the adaptive immune system is able to
anticipate new challenges that have never been
encountered in the past. But how did it get that
way? How did the adaptive immune system become
modular?

Modularity

It’s one thing to notice modularity in a circuit
designed by a human engineer, but how could a

modular system have evolved spontaneously under
a process of natural selection? To try to answer that
question, systems biologist Uri Alon did a series of
experiments using genetic algorithms (Kashton and
Alon 2005).

The idea was to use a genetic algorithm (GA) to
evolve a logic circuit using only NAND gates. Alon
set a goal in the form of a logic expression, then
he ran the genetic algorithm and kept testing the
results. It took ten thousand generations to converge
on a solution, but when it finally did converge, it
had found the optimal solution: the circuit with the
fewest gates and connections for computing that
logic expression. But it never evolved a modular
solution.

Then Alon made one change to the genetic
algorithm, and this one change caused the GA to
converge on a modular solution. Instead of giving
the GA a fixed goal, he changed the goal every 20
generations. When he did that, the genetic algorithm
converged on a modular circuit. Not only that, but
it converged ten times faster and didn’t get stuck
in long plateaus. The modular solution was never
quite as optimal as the fully wired solution, but it
was able to rewire itself within only five generations
whenever the goal changed again.

So it appears that life on Earth may be a modular
solution that evolved in response to changing
conditions. And, because it is modular, it can
quickly rewire itself in search of new solutions
when necessary.

Recombinance (Cognitive Fluidity)

In The Singing Neanderthals, Steven Mithen (2006)
writes that our brains probably have some special-
ized, domain-specific modules that developed in
response to pressures in our evolutionary past, but
that can’t explain how we are able to do things
like read a book or operate an iPhone—things that
didn’t exist in the Pleistocene environment. That
could only be accomplished through what Mithen
calls cognitive fluidity (what I would call “recom-
binance”), through the seamless combinations of
domain specific modules.

Scaletti 11

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



Distributed Cognition

In 900 BCE, with the story of Prometheus, the
ancient Greeks seemed to be saying that mastery
over fire is what made us human. In 2009, primatol-
ogist Richard Wrangham seems to agree, primarily
because fire provided the means for cooking food,
and that this “outsourcing of digestion,” as he calls
it, was far more efficient at extracting nutrients and
thus could support a larger brain (Wrangham 2009).

Which is pretty much what happened over the
last 3.8 million years. A modern human brain
is about three times larger than the brain of our
Australopithecus ancestor, Lucy, and most of that
growth occurred in a part of the brain called the
neocortex. So how did we use this monstrously
large, cognitively fluid organ in our heads to our
evolutionary advantage?

The evolutionary anthropologist Robin Dunbar
thinks we used our massive brains primarily to
predict the actions of each other (Dunbar 2003).
His theory of the “social brain” is that the human
neocortex evolved in response to the complexity
of maintaining social networks and predicting the
actions and intentions of other individuals in a
social group. He even found a correlation between
the size of the neocortex and the size of a species’
core social group, as well as in the amount of time
that a species spends in grooming activities (like
picking lice out of each other’s hair). Dunbar thinks
that, at some point in our development, we switched
over to using a kind of auditory grooming—using
laughter, music, dance, and eventually language—as
our primary means for establishing relationships and
maintaining the cohesiveness of our social groups.

Dunbar believes that it was probably language,
since it was far more efficient than physical groom-
ing, that enabled us to extend our core social groups
to form groups of groups, and groups that transcend
generations and geographical boundaries—bridged
by language, music, and other cultural artifacts.

The power of language is that it allows us to
learn things we haven’t seen directly for ourselves.
The power of a social network is that it enables us
to exponentially expand upon what we can know,
remember, and learn, and it allows us to engage in
what the philosopher Mark Johnson calls distributed

cognition (Johnson 2007). Human knowledge resides
in the entire group rather than in any one single
person. A feral child is unlikely to develop language
or mathematics in isolation—that knowledge is
in the network. Not only do we possess modular,
recombinant, and cognitively fluid brains, but we
also seem driven to extend our recombinant thinking
beyond the boundaries of a single brain.

Language and music gave us the ability to tell
stories, but not just about the things that really
happened. I’m guessing that the prehistoric com-
puter musicians probably modified and enhanced
their stories a little bit—practicing a prehistoric
form of digital signal processing. And that some
of them even told stories about events that never
happened—a kind of prehistoric digital synthesis.

Looking Back on the 20th Century

Viewed in that light, the invention of software in the
mid 20th century was as big a breakthrough as the
mastery over fire was for our prehistoric ancestors.
Language gave humans the ability to tell stories
about something that does not yet exist. Software
gave us the ability to make that imaginary thing
exist—for real—in the actual physical world.

The first time I witnessed a sequence of symbols
being transformed into an actual sound pressure
wave that I could hear, I felt like I was witnessing a
miracle. I thought it was a completely deterministic
and explainable miracle but a miracle nonetheless.
By simply manipulating symbols, software can
effect change in the physical world: It can make a
mechanical arm move, it can change the colors of
light arrays, it can print images, and it can create
three-dimensional objects. It can even write more
software and design new circuits on which to run
itself.

Software as Hardware with Cognitive Fluidity

When I say software, I mean hardware. Because the
invention of software was actually the invention
of a particular kind of hardware: a machine with
cognitive fluidity.

12 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



We’ve been building machines for a long time.
Typically, a machine is built to solve a particular
problem or serve a fixed function. In that sense, a
machine reflects a known problem, a problem we’ve
encountered before, at some time in the past.

But when you combine a modular machine with
software, it becomes a virtual machine. It may still
have modules with specific functions but, using
the software, you can combine those functions in
new ways to solve many different problems—even
some problems that have never been encountered
before.

What software did was to make it possible for
a single machine to take on the behavior of many
different machines, which drastically lowered the
physical cost of trying out a new idea and opened
the floodgates of experimentation and creativity.

Paul Doornbusch places the birth of “soft-
hardware” in 1943, when a programmable, vacuum-
tube calculator called Colossus was developed by
Alan Turing during World War II to help people like
Joan Clark, Jean Valentine, Ruth Biggs, and others
break the Enigma code (Doornbusch 2009).

In a way, it’s no surprise that it was only six
years later that someone first used a computer
to make sound. We are, as Oliver Sacks put
it, “an essentially, profoundly musical species”
(see http://youtu.be/HqKry0gh NA). In 1949, the
CSIRAC (Council for Scientific and Industrial
Research Automatic Computer) was the fourth
stored-program computer in the world. It didn’t
have a display, meaning there was no easy way to
know what a program was doing or when it had
finished executing, so they sent the output of the
serial bus directly to a speaker and developed a
special loop they called a “blurt” to indicate the end
of a program. This may be the first example of using
a computer for data sonification . . . in 1949! And by
1951 a programmer named Geoff Hill had figured
out how to write programs with loops to generate
sustained square waves at specific pitches and play
popular tunes.

One year later, the ILLIAC I (Illinois Automatic
Computer)—the vacuum-tube-based computer that
Lejaren Hiller used for his algorithmic music
composition, the Illiac Suite—was built at the
University of Illinois.

PLATO Becomes a Social Network
in Spite of Itself

In 1960, Don Bitzer had the idea to use the ILLIAC
I to deliver online courses and exams. Over the
next ten years, the PLATO (Programmed Logic
for Automatic Teaching Operations) system, as he
called it, grew into a worldwide network of over
a thousand flat-panel plasma display terminals. In
1967, PLATO became more cognitively fluid when
they added a programming language called TUTOR.
For the first time, PLATO users could program the
network to do whatever they wanted it to do—
which apparently was to connect with each other,
since most of the programs developed over the next
five to ten years were for music synthesis, e-mail,
news groups, chat rooms, instant messaging, and
inter-terminal games.

There was a PLATO classroom on the ground
floor of the CERL (Computer-based Education
Research Laboratory) building called the Zoo. There
were always a few people in the classroom working
on required coursework, but every night just before
10:00 PM the room would start to fill up. At precisely
10:00 PM, the systems programmers would lift the
restriction on games and the room would be filled
with gamers until 4:00 or 5:00 AM, when the system
went down for backups.

Witnessing this made me wonder whether people
are driven to use software—just as humans had used
language—to form ever-more-complex interactive
networks of people and knowledge, almost as if
we were genetically programmed to use every new
technology for purposes of connecting with each
other and extending the range of our distributed
cognition.

A Nostalgic Story about Hardware Gaining
Cognitive Fluidity

Up on the fifth floor of the CERL building that
housed PLATO there was an old radar research lab—
actually, it was just a temporary floor that had been
added during World War II that you had to access
using metal fire escape stairs. The fifth floor was
where a group of electrical and computer engineering

Scaletti 13

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023

http://youtu.be/HqKry0gh_NA


students were building digital synthesizers to work
with PLATO (Scaletti 1985).

I had first stumbled on the CERL Sound Group
at an Engineering Open House right around the
time I was finishing my music composition degree.
This was also around the time that I had started
to realize that, to do the things I really wanted to
do in computer music, I was going to have to learn
how to make the tools myself. So when Lippold
Haken offered me a research assistantship at CERL,
I jumped at the chance to go back to school and get
a degree in computer science.

What I wanted at that time was to be able to
work with sound directly and interactively, and to
be able to build new kinds of structures based on
sound, not based on the notes of music notation
and not limited to a model of instruments playing
scores. I loved voltage-controlled synthesizers, so I
wanted to be able to use outputs of some modules
to control or modulate the parameters of other
modules. I also loved cutting and splicing tape, so
I knew I would have to include ways to work with
audio recordings. I was a harpist so I wanted to
be able to create environments in which I could
perform live, generating sound and processing a
live signal from my harp in real time. And I had
just come to the same conclusion that many of
you have—which is that if you can’t find what
you need, then you just have to learn to build
it yourself.

Sound Hardware Becomes Softer

The history of the CERL Sound Group is practically
a case study in hardware gaining cognitive fluidity.
In 1974, Sherwin Gooch had designed a digital
synthesizer for PLATO with four fixed-waveform,
hardware oscillators, and CERL made dozens of
them to put into PLATO classrooms for teaching
music theory.

In 1978 Sherwin built a new and improved
version: the GCS (Gooch cybernetic synthesizer)
had 16 oscillators and performed additive synthesis.
It was a more powerful machine and implemented
more algorithms, but it was still a digital circuit
designed to do specific, fixed tasks like oscillators,
envelope generators, and mixers.

In 1981, Lippold Haken designed the IMS (inter-
active music system) as a replacement for the GCS.
Rather than designing a circuit with hard-wired
oscillators, envelope generators, and mixers, he de-
signed a more-general circuit based on two multiply
accumulators and memory, and he used software—
in this case machine-level microcode—to emulate
the oscillator, envelope generator, and mixer cir-
cuits of the GCS. In other words, from the outside,
the IMS behaved just like the old GCS. While he
was working on the microcode, Lippold realized
that he could extend the functionality to include
amplitude modulation, frequency modulation, and
waveshaping, and because it was software, he was
able to expand the functionality without modifying
the hardware.

At this point, the software was a virtual machine:
Lippold had used software to make generic hardware
behave like specific hardware. From the outside,
from the user’s point of view, though, the architec-
ture of the virtual machine was every bit as fixed
and unchangeable as a hardware implementation
would have been.

When Kurt Hebel saw the way I had been
working—running Music 360 batch jobs on the
campus mainframe and making once-a-week ap-
pointments to use the shared digital-to-analog
converter—he shook his head and said, “You could
do this in real time—all we’d have to do is make the
IMS microcode programmable by the user!”

So in 1984 Kurt and Lippold started redesigning
the IMS to have a user-definable microcode, making
it so the architecture of the “simulated synthe-
sizer” could be changed simply by loading a new
microcode. That was the Platypus. And Lippold as-
signed me the task of writing software for Platypus,
which was, of course, exactly what I wanted to do.
(Thank you, Lippold!)

Figure 1 is a photo of Kurt at the 1989 ICMC
in Ohio a few years later with the wire-wrapped
Platypus on top of the table and the SCSS (sound
conversion/storage system), the disk system that he
designed for the School of Music, underneath the
table.

The first piece I realized with the Platypus was
sunSurgeAutomata (1986), which was based on
self-organizing one-dimensional cellular automata,

14 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



Figure 1. Kurt J. Hebel at
the 1989 International
Computer Music
Conference in Ohio with
the Platypus on top of the
table and the SCSS (sound

conversion/storage
system), a disk system he
had designed for the
University of Illinois
School of Music,
underneath the table.

clicks, and a quote from Lewis Thomas about how
energy surging from the sun fuels the improbable
ordered dance we call life on Earth.

To make the piece, I wrote a microcode imple-
mentation of a one-dimensional cellular automaton
as a rhythmic pattern of clicks using Stephen Wol-
fram’s rule 90; another microcode where I used the
cellular automaton as a pattern of gates on a record-
ing of my voice speaking the Lewis Thomas text;
and yet another microcode where I tried to apply the
cellular automaton rules to a stream of samples by
taking an input stream of samples and forming each
output sample as a function of the previous and next
samples in a buffer (which ended up being pretty
close to a Karplus-Strong type resonator).

So, I was happy because there were no instruments
and no notes—instead the structure was self-

organizing patterns of clicks and algorithmic signal
processing.

Each program was a custom-written microcode,
meaning that it was a sequence of very long
instruction words for the Platypus. I loaded one
of the microcodes into the Platypus at a time
and recorded the output of the digital-to-analog
converter through the analog-to-digital converter
and onto Kurt’s SCSS disk. At the 1987 ICMC, Barry
Truax asked me why the piece was only five and a
half minutes long, and the answer was—that’s how
much time would fit on the disk.

So with sunSurgeAutomata I finally I had access
to the virtually infinite flexibility of software
synthesis and could hear the results in real time.
Instead of using a specific machine, I could create
any virtual machine (though only one at a time).

Sound Software Becomes More Modular
and Recombinant

Joel Chadabe likes to talk about the difference
between “control” and “power.” He describes
“control” as being like when you’re in a startup and
you do everything, from the low-level to high-level
jobs; and “power” as being like a big-shot CEO
where you “articulate a vision” and delegate all the
low-level details to someone else, or in this case
something else.

At this point, I had a very high degree of con-
trol, because I could write whatever sequence of
machine language instructions I wanted. But I
didn’t have a powerful way to leverage that con-
trol. There wasn’t a mechanism for reusing the
microcodes or for combining them in new ways.
It was time for the system to evolve some modu-
larity and recombinance. And that’s when I found
Smalltalk.

Smalltalk was invented at Xerox PARC, according
to Dan Ingalls, for the purpose of providing “com-
puter support for the creative spirit in everyone.”
In practical terms, what that really meant was that
they were trying to make complex software systems
more manageable. One way they did that was to
make the code more modular and recombinant.

As you probably already know, Smalltalk is based
on modules called “objects” whose internal states

Scaletti 15

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



Figure 2. Kyma Sounds are
both functional and
modular, making it
possible to incrementally
build or algorithmically
generate complex Sound
structures and save them
for future reuse.

are accessible only through that object’s defined
protocol, thus greatly reducing the dependencies
between objects. That makes it possible to replace
an object with a new object without breaking the rest
of the system. So you can incrementally improve
or optimize parts of the system while it’s running!
In that way, a Smalltalk image is almost like a
living system that you can continually extend and
modify.

The syntax of Smalltalk is very simple; what
makes it interesting is that it is like a large database
of code modules that you can recombine, modify,
and add to, and that the things you add and the
changes you make become part of the language.

So Smalltalk turned out to be the ideal environ-
ment for adding modularity and recombinance to
the Platypus microcodes. In Kyma, as in Smalltalk,
there’s a uniform metaphor: Everything is a Sound
(see Figure 2). On the Platypus, a Sound became a
data structure with a pointer to the microcode that
could generate the next sample in its sample stream
(Scaletti 1987).

Because everything is a Sound and the state of a
Sound’s parameters is internal to that Sound, you
can replace any Sound with any other, no matter
how simple or complex the Sounds may be. In other
words, Sounds are both functional and modular,
making it possible to incrementally build complex
Sound structures and save them in a library for
future use. This also makes it possible to generate
Sound structures algorithmically, as in the Kyma 7
Gallery. Kyma ends up being a little like Smalltalk

in the sense that it is a database of code modules
(Sounds) that one can recombine in new ways.

The extreme late binding in Smalltalk inspired
some other early features in Kyma: For example,
“lifted” or “abstracted” Sounds could have vari-
ables in their parameter fields, and you could use
Smalltalk scripts to create concrete instances of the
lifted templates and bind concrete values to the vari-
ables. The late binding also inspired another kind
of variable in Kyma called an EventValue, which
serves as an abstract placeholder for a live controller
and automatically generates its own widget in a
Virtual Control Surface that you can optionally
remap to external control sources. For example, see
the parameter fields in Figure 3.

Kyma also included some special, temporal
modules called TimeOffset and SetDuration, so you
could use Kyma to create a schedule of when to load
and start Sound objects and specify how long they
should run—meaning that I finally had a virtual
machine that could change over time.

Although the temporal objects were part of Kyma
from the beginning, it wasn’t until many years later,
when I added the graphical Timeline interface (see
Figure 4), that it became lot clearer how to use and
manipulate the temporal objects; it was only then
that people really started utilizing them extensively
(Scaletti 2002).

In 2015, with Kyma 7, I tried to get a little
closer to my longtime dream of a sound machine
with cognitive fluidity. In a Multigrid (see Figure
5) you can create new virtual machines at arbitrary

16 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



Figure 3. The extreme late
binding of Smalltalk
inspired the inclusion of
variables (names preceded
by question marks) and
EventValues (names

preceded by exclamation
points) as abstract
placeholders in Kyma
parameter fields that can
be bound by enclosing
environments.

times by activating modules with mouse clicks,
MIDI program changes, OSC (Open Sound Control)
messages, or algorithmically using Capytalk, the
event language that runs on the Pacarana (Scaletti
2015).

Origins of Symbolic Sound

Around 1988–1989, a political coup inside the
university succeeded in pushing Don Bitzer out
and shutting down the Computer Based Education
Laboratory. All 200 or so of us were given a year to
find another job—which was an amazingly generous
amount of time and what made it possible for me
to start Symbolic Sound with Kurt Hebel, even if it
was on a research assistantship salary.

On the morning of 6 June 1989, Kurt defended his
dissertation, and his idea of celebrating was to go
straight to his office, sit down at a big drawing table,
and start designing the Capybara. At that time, the
only commercially available DSP chips ran at half
the speed of the Platypus, so if we wanted to match

or exceed the power of the Platypus, our only choice
was to use more than one of them. Kurt ended up
using, not two, but eight DSPs, each one on a plug-in
card with its own memory, so it was modular and
scalable. Figure 6 shows the inside of a Capybara
circa 1990.

When we got our very first printed circuit boards
back, we discovered that the board manufacturer
had made a mistake on one of the thermals and they
had connected the power and ground planes. So all
our boards were useless and all our money was gone.
In desperation, I suggested we try drilling through
the connection using a home power drill. Amazingly
enough, it worked! Figure 7 is a photo of Kurt
drilling through the boards in our assembly room,
which was actually the kitchen of our fourth-floor
student apartment.

(Did you notice how I just followed the formula
for a nostalgic story: A seemingly insurmountable
challenge, the support of close allies, and the
triumph over adversity? I’m pretty sure you all have
stories like this!)

Luckily, the functional nature and modularity of
Kyma Sounds meant that they could be computed
on independent processors. There were a lot of ways
the processors could have been connected to each
other, but to fit the DAG (directed acyclic graph)
structure, Kurt connected them in a line, so the
outputs of the Sounds on one processor could feed
into the inputs of the Sounds on the next. It was a
coevolution of both hardware and software.

Six hardware generations later, with the Pacarana,
the multiprocessor architecture idea could be
extended outside the box, by connecting multiple
Pacas (or Pacaranas) to each other (see Figure 8).

This points to another trend in the late 20th
and early 21st centuries: a plateau in processor
performance. Although from 1986 to 2002, processor
performance was increasing at an average of 52
percent per year, ever since 2003, clock speeds
have hit a virtual plateau (Bailey 2015), as you can
see in a graph published by Intel Corporation at
www.gotw.ca/images/CPU.png. So, at least for now,
the way forward seems to be multiple, multicore
processors, and functional, modular computing
fits well within that architecture. That was just
one, nostalgic anecdote about the coevolution of

Scaletti 17

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



Figure 4. The graphical
Timeline interface made it
clear how to utilize and
manipulate the temporal
objects in Kyma.

Figure 4

Figure 5. In a Kyma 7
Multigrid with submixes,
signal flow graphs can be
re-routed and modified
without interruption to the
audio signal.

Figure 5

18 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



Figure 6. Kurt Hebel’s 1989
Capybara design had eight
digital signal processors,
each on its own card with
its own memory, so it was
modular and scalable.

Figure 6

Figure 7. Symbolic Sound’s
first assembly facility was
the kitchen of the
founders’ fourth-floor
student apartment.

Figure 7

Scaletti 19

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



Figure 8. With the advent
of the Pacarana, the
multiprocessor
architecture could be
extended outside the box.
Multiple Pacaranas can be

connected to each other
and appear, to the Kyma
software scheduler, as a
single multiprocessor
device. (Photograph by
Tobias Enhus.)

computer music hardware and software. This kind
of coevolution must have been going on everywhere
back then, and it continues today. Alan Kay said
that “people who are really serious about software
should make their own hardware.” Because, when
you come right down to it, software is just a special
kind of hardware—and the soft and hard parts can
evolve together as a system. That’s probably why
Apple designs their own hardware, and why they
make their own version of the ARM processor: so
they can optimize it to make their iOS perform well
on the iPhone and iPad.

A Nostalgic Story about Distributed Cognition

I remember one day in 1993, when my friend Dan
Brady from the National Center for Supercomputing
Applications said, “Hey, you should come over and
see this thing that Marc Andreessen is working on.
It’s a kind of multimedia hypertext way of accessing
that World Wide Web thing they have at CERN.”
It turned out that Dan was describing Mosaic—the
first Web browser. Looking back on that now, it feels
like having been present at Kitty Hawk.

But in a way, it wasn’t all that surprising after
what I had seen happen with the PLATO network.
The Web just looked like yet another case of humans
using every new technology for the purposes of
connecting to one another. And it started me
thinking about how I might be able to express that
idea in a new piece.

I ended up using Mosaic in a Web-based instal-
lation called Public Organ at the 1995 ICMC in
Banff. Public Organ was based on several quotes
from Lewis Thomas about how humans seem driven
to use language and technology to form networks
and engage in distributed cognition. Among other
things, you could add your own image to Public
Organ, either by sitting down on a piano bench
and triggering the camera or by connecting to
the installation remotely using CU-SeeMe (for a
history of the CU-SeeMe software, see Packetizer
2015).

The real reason I brought this up, though, is that
I came across the QuickTime file containing all the
images captured during that ICMC 20 years ago. So
I thought it might be fun for us to practice a little
group nostalgia. See if you recognize anyone . . . [see
supplementary materials available online at

20 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



mitpressjournals.org/doi/suppl/10.1162/COMJ
a 00341].

Current Challenges

Looking back at the 20th century, it seems that the
invention of software and our drive to construct
ever-expanding networks of distributed cognition
have resulted in an explosion of experimentation
and creativity.

It’s now easier to experiment and to test new
ideas quickly and inexpensively, which means there
are more ideas and more products, and they can
be more widely distributed more quickly. Which
also presents a challenge: The speed of development
is now so fast that it’s rare to have a chance to
get deeply into anything before something new is
being dangled in front of us. It requires an almost
monk-like ascetic focus to stick with any tool or
idea or project long enough to achieve deep mastery.

And the corollary is that the current model re-
wards projects that have short development times,
because one could potentially make a lot of money
on a single app if you can sell it to millions of
people. However, you only have about two weeks to
make most of those sales before the news of your
new app recedes back into the noise. In order to
sell something to that many people that quickly,
the temptation is to make an app that’s easy to
understand in a short amount of time. One way to
do that is to write hardwired, non-recombinant
software that looks and acts like something
familiar.

I hope everyone here has and will continue to
write hugely successful apps! And I hope that we
also manage to set aside time for our larger, longer-
term projects—projects like large-scale frameworks
that provide recombinance and fluidity.

The same model has succeeded in pushing the
monetary value of recorded music down to virtually
zero. So another challenge is to find alternative
models for presenting our sound art to the world.
This probably entails inventing new kinds of
experiences that can’t be captured in an audio
recording, whether that has to do with interaction,
with spatialization, with learning experiences, with

live unrepeatable performances, or perhaps with
incorporating what humans seem to love most,
which is interacting with each other.

News versus New

Finally, it’s useful to keep in mind what Alan
Kay calls the difference between something that’s
“news” and something that’s “new” (see youtu.be/
FvmTSpJU-Xc). News is always incremental. News
assumes you have a pretty good idea of the current
state of the world, and it gives you a daily update.
As such, news items have to be short and based on
familiar information that can be quickly understood.

Something truly new, on the other hand, is not
quickly or easily understood. It may require that
you learn a body of new information or new ways
of thinking, which can be time-consuming and
sometimes even painful.

It’s tempting to do projects that could get us into
the news—projects that are easy for the public to
understand because they are already familiar with
the ideas. And if you do something that is truly
new, it may take time for others to understand what
you’re saying. And they may not have the time,
because they’re trying to keep up with the news
instead of taking the time to understand something
new. So learning how to congratulate yourself can
be a pretty useful skill, because it might be a long
time before anyone else understands what you’re
doing.

I still remember how, at the 1987 ICMC, Iannis
Xenakis played an excerpt of his piece Bohor during
his keynote, and at the end of the piece, he let the
tape keep running so you could hear the audience
booing. It surprised me so much that it’s the only
thing I remember about his talk. In retrospect, I
think he took pride in the fact that his ideas were
new enough that not everyone in the audience
understood.

Looking Forward

So finally, looking forward . . .

By the way, why is it that so many of our words for
remembering and predicting are visual metaphors?

Scaletti 21

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



Why are we “looking” instead of “listening,” and
why is it “forward”? We have words like “envision,”
“envisage,” “imagine,” “picture,” “visualize,”
“foresee,” and “reflect” to mean anticipating or
remembering something in your mind, but when
I did a search for “hearing sound in your mind,”
the first things to come up were terms like “tinni-
tus,” “auditory hallucinations,” “hearing voices,”
“schizophrenia,” and “exploding head syndrome.”

I wonder why we call someone who can foresee
the future a “visionary,” but we think someone who
hears the future suffers from some kind of pathology.

Instead of articulating a “vision” for the future
in this last section, maybe we should invent a new
term and call ourselves “auditionaries.” Because, to
coin a phrase, computer music practitioners predict
the future by composing it and by coding it!

Softer Hardware

One of the biggest benefits of “soft-hardware” has
been that it has allowed us to increase our failure
rates. It’s fairly easy and inexpensive to try out ideas
in software, because if they don’t work, you can try
again—like the way the adaptive immune system
tries out millions of combinations to find one that
fits the new pathogen.

But right now, if you want to design your own
processor to fit your software, it’s still really expen-
sive, even if you use an FPGA (field-programmable
gate array). If some of the barriers to hardware fabri-
cation can be reduced, we’ll be able to experiment
with alternative hardware ideas almost as quickly
and inexpensively as we experiment with software
right now, further blurring the boundaries between
hardware and software development.

For example, researchers at PARC (the Palo
Alto Research Center) are designing a laser printer
to print microprocessors, memory, and MEMs
(microelectromechanical systems) through a process
Eugene Chow calls “xerographic microassembly,”
where the “ink” is made by breaking silicon wafers
into thousands of “chiplets” and “printing” them,
much as a laser printer prints toner onto paper.
An array of electrodes generates electric fields
that control the placement and orientation of the

circuits [New York Times, 9 April 2013, “Tiny
Chiplets”].

Circuit printing is starting to encourage more
experimentation and has already changed the way
we think about hardware. John A. Rogers and
Yongang Huang at Northwestern University are
developing techniques for printing a circuit onto a
thin, rubbery, water-soluble substrate so you can
apply it to your skin using water (Yeo et al. 2013).
Sensor arrays, LEDs, transistors, radio frequency
capacitors, wireless antennas, conductive coiled
wires, and solar cells for power can all be attached
directly to the skin, and the circuits are fabricated as
squiggly wires so they can bend, twist, and stretch
with your skin and still continue to function. It’s
like taking wearable computing to the next level.

Brain Music

The next step might be to go even deeper—beneath
the skin. After all, our sensory organs themselves are
just interfaces. In the auditory system, for example,
there is a mapping of air pressure variation to
physical movement of bones in the ear, to vibration
of the basilar membrane, to electrical patterns of
neuron firing, and so on up the eighth nerve to
temporal electrochemical patterns in the auditory
cortex.

If that’s true, could we then just skip over the
ear and create an interface that maps a numerical
model of sound directly to electrical stimulation of
the nerves leading to the brain or stimulation of the
brain itself?

We’re already sort of doing that with cochlear
implants. A cochlear implant takes a signal from a
microphone, splits it into 22 frequency bands, and
feeds the amplitude of each band to an electrode that
has been surgically implanted in the cochlea, kind
of like a 22-band vocoder. Which is both miraculous
and yet at the same time still pretty primitive,
considering that they’re trying to approximate the
behavior of 16,000 hair cells with only 22 electrodes.

As a next step, why not skip the microphone,
synthesize the audio input from a model, and route
the synthetic signal directly to the brain? We’ll have
to develop a deeper understanding of how sound

22 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023



actually maps to activity in the central nervous
system, and we’ll have to develop entirely new
forms of composing—new ways to synthesize and
structure a flow of experience for our audiences. So
it’s going to be really interesting; I can hardly wait!

Distributed Cognition: The Wired Version

So that was input to the brain. There are also inter-
faces that go in the opposite direction—interfaces
that monitor signals emanating from the brain, en-
abling you to do things like control prosthetic hands,
and of course, perform music and play computer
games.

If we have brain input interfaces and brain output
interfaces, then how long until we have a brain-to-
brain interface? Apparently not very long, because in
2013, neurobiologists at Duke along with colleagues
in Brazil and China published a paper in Scientific
Reports entitled “A Brain-to-Brain Interface for
Real-Time Sharing of Sensorimotor Information.”
The brain-to-brain interface (or BTBI, as they
call it) enables real-time transfer of sensorimotor
information between the brains of two rats. An
“encoder” rat was given a task with either tactile or
visual stimuli and two choices. While the encoder
rat performed the task, its cortical activity was
sampled and transmitted to the corresponding area
of a “decoder” rat’s brain. The decoder rat made
correct decisions guided solely by the information
provided from the encoder rat’s brain.

The researchers suggest that BTBIs could enable
networks of animal brains to exchange, process, and
store information, serving as the basis for what they
call “novel types of social interaction” and “bio-
logical computing devices” (Pais-Vieira et al. 2013).
You can view a video of one of the experiments in the
supplementary information included with their pa-
per: www.nature.com/article-assets/npg/srep/2013
/130228/srep01319/extref/srep01319-s1.mov.

Hearing the Future

Whatever the specifics of the technology, what I
hear for the future is what I hear us doing right now,

and what it seems we have always been driven to do:
to experiment, to extend our distributed cognition
into new areas, and to dare to try to make something
truly new—even if it sometimes means falling down
seven times and getting up eight.

Computer musicians are uniquely positioned
for this kind of experimentation, because we can
combine the imagination and daring of artists with
the technology that can make the imaginary real.

Postscript

Now that he knows how beneficial nostalgia can
be, Constantine Sedikides says that he intentionally
files away memories in anticipation of being able
to reflect on them in the future—now he’s actually
looking forward to looking back.

I hope you’ll go out now and intentionally create
a whole bunch of meaningful memories for your
future self to be able to look back on with fondness
and inspiration and optimism. Thanks!

Acknowledgments

Thanks to ICMC 2015 conference organizers Jon
Nelson, Panayiotis Kokoras, and Richard Dudas
for inviting me to reflect on the past, present, and
future of computer music. Thanks to Doug Keislar
for encouraging me to turn my keynote lecture into
an essay to help commemorate the 40th anniversary
of Computer Music Journal. And special thanks
to Kurt Hebel for patient listening and thoughtful
comments as I trimmed what was originally a
three-hour talk down to the requisite 50 minutes!

References

Bailey, M. 2015. “Parallel Programming: Moore’s Law and
Multicore.” Available online at web.engr.oregonstate
.edu/∼mjb/cs475/Handouts/moores.law.and.multicore
.2pp.pdf. Accessed 7 October 2015.

Doornbusch, P. 2009. “A Chronology of Electronic and
Computer Music and Related Events 1906–2013.”
Available online at www.doornbusch.net/chronology.
Accessed 6 October 2015.

Scaletti 23

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023

http://www.nature.com/article-assets/npg/srep/2013/130228/srep01319/extref/srep01319-s1.mov
http://www.web.engr.oregonstate.edu/~mjb/cs475/Handouts/moores.law.and.multicore.2pp.pdf
http://www.doornbusch.net/chronology


Dunbar, R. 2003. “The Social Brain: Mind, Language and
Society in Evolutionary Perspective.” Annual Review
of Anthropology 32:163–181.

Johnson, M. 2007. The Meaning of the Body: Aesthetics
of Human Understanding. Chicago: University of
Chicago Press.

Kashton, N., and U. Alon. 2005. “Spontaneous Evolution
of Modularity and Network Motifs.” Proceedings of the
National Academy of Sciences, U.S.A. 102(39):13773–
13778.

Mithen, S. 2006. The Singing Neanderthals: The
Origins of Music, Language, Mind, and Body.
Cambridge, Massachusetts: Harvard University
Press.

Packetizer, Inc. 2015. “The CU-SeeMe Project.” Avail-
able online at www.packetizer.com/ipmc/history-of
-videoconferencing/project.html. Accessed 16 October
2015.

Pais-Vieira, M., et al. 2013. “A Brain-to-Brain Interface
for Real-Time Sharing of Sensorimotor Information.”
Scientific Reports 3:1319.

Scaletti, C. 1985. “The CERL Music Project at the
University of Illinois.” Computer Music Journal
9(1):49–58.

Scaletti, C. 1987. “Kyma: An Object-Oriented Language
for Music Composition.” In Proceedings of the Interna-
tional Computer Music Conference, pp. 49–56.

Scaletti, C. 2002. “Computer Music Languages, Kyma,
and the Future.” Computer Music Journal 26(4):69–82.

Scaletti, C. 2015. “What’s New in Kyma 7?” Available
online at kyma.symbolicsound.com/whats-new-in
-kyma-7. Accessed 7 October 2015.

Silverstein, A. M. 2009. “Immune System: Promethean
Evolution.” Science 325(5939):393.

Wildschut, T., et al. 2006. “Nostalgia: Content, Trig-
gers, Functions.” Journal of Personality and Social
Psychology 91(5):975–993.

Wrangham, R. 2009. Catching Fire: How Cooking Made
Us Human. New York: Basic Books.

Yeo, W. H., et al. 2013. “Multifunctional Epidermal
Electronics Printed Directly Onto the Skin.” Advanced
Materials 25:2773–2778.

24 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/40/1/10/1856261/com

j_a_00341.pdf by guest on 07 Septem
ber 2023

http://www.packetizer.com/ipmc/history-of-videoconferencing/project.html
http://www.kyma.symbolicsound.com/whats-new-in-kyma-7

