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Probabilistic topic modeling is a common first step in crosslingual tasks to enable knowledge
transfer and extract multilingual features. Although many multilingual topic models have been
developed, their assumptions about the training corpus are quite varied, and it is not clear how
well the different models can be utilized under various training conditions. In this article, the
knowledge transfer mechanisms behind different multilingual topic models are systematically
studied, and through a broad set of experiments with four models on ten languages, we provide
empirical insights that can inform the selection and future development of multilingual topic
models.

1. Introduction

Popularized by Latent Dirichlet Allocation (Blei, Ng, and Jordan 2003), probabilistic
topic models have been an important tool for analyzing large collections of texts (Blei
2012, 2018). Their simplicity and interpretability make topic models popular for many
natural language processing tasks, such as discovery of document networks (Chen
et al. 2013; Chang and Blei 2009) and authorship attribution (Seroussi, Zukerman, and
Bohnert 2014).

Topic models take a corpus D as input, where each document d ∈ D is usually
represented as a sparse vector in a vocabulary space, and project these documents
to a lower-dimensional topic space. In this sense, topic models are often used as a
dimensionality reduction technique to extract representative and human-interpretable
features.

Text collections, however, are often not in a single language, and thus there has been
a need to generalize topic models from monolingual to multilingual settings. Given a
corpus D(1,...,L) in languages ` ∈ {1, . . . , L}, multilingual topic models learn topics in
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each of the languages. From a human’s view, each topic should be related to the same
theme, even if the words are not in the same language (Figure 1(b)). From a machine’s
view, the word probabilities within a topic should be similar across languages, such that
the low-dimensional representation of documents is not dependent on the language.
In other words, the topic space in multilingual topic models is language agnostic
(Figure 1(a)).

This article presents two major contributions to multilingual topic models. We first
provide an alternative view of multilingual topic models by explicitly formulating a
crosslingual knowledge transfer process during posterior inference (Section 3). Based on
this analysis, we unify different multilingual topic models by defining a function called
the transfer operation. This function provides an abstracted view of the knowledge
transfer mechanism behind these models, while enabling further generalizations and
improvements. Using this formulation, we analyze several existing multilingual topic
models (Section 4).

Second, in our experiments we compare four representative models under different
training conditions (Section 5). The models are trained and evaluated on ten languages
from various language families to increase language diversity in the experiments. In
particular, we include five languages with relatively high resources and five others
with low resources. To quantitatively evaluate the models, we focus on topic quality
in Section 5.3.1, and performance of downstream tasks using crosslingual document
classification in Section 5.3.2. We investigate how sensitive the models are to different
language resources (i.e., parallel/comparable corpus and dictionaries), and analyze
what factors cause this difference (Sections 6 and 7).

Figure 1
Overview of multilingual topic models. (a) Multilingual topic models project-language specific
and high-dimensional features from the vocabulary space to a language-agnostic and
low-dimensional topic space. This figure shows a t-SNE (Maaten and Hinton 2008)
representation of a real data set. (b) Multilingual topic models produce theme-aligned topics for
all languages. From a human’s view, each topic contains different languages but the words are
describing the same thing.
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2. Background

We first review monolingual topic models, focusing on Latent Dirichlet Allocation, and
then describe two families of multilingual extensions. Based on the types of supervision
added to multilingual topic models, we separate the two model families into document-
level and word-level supervision.

Topic models provide a high-level view of latent thematic structures in a corpus.
Two main branches for topic models are non-probabilistic approaches such as Latent
Semantic Analysis (LSA; Deerwester et al. 1990) and Non-Negative Matrix Factorization
(Xu, Liu, and Gong 2003), and probabilistic ones such as Latent Dirichlet Allocation
(LDA; Blei, Ng, and Jordan 2003) and probabilistic LSA (pLSA; Hofmann 1999). All
these models were originally developed for monolingual data and later adapted to
multilingual situations. Though there has been work to adapt non-probabilistic models,
for example, based on “pseudo-bilingual” corpora approaches (Littman, Dumais, and
Landauer 1998), most multilingual topic models that are trained on multilingual cor-
pora are based on probabilistic models, especially LDA. Therefore, our work is focused
on the probabilistic topic models, and in the following section we start by describing
LDA.

2.1 Monolingual Topic Models

The most popular topic model is LDA, introduced by Blei, Ng, and Jordan (2003).
This model assumes each document d is represented by a multinomial distribution θd
over topics, and each “topic” k is a multinomial distribution φ(k) over the vocabulary
V. In the generative process, each θ and φ are generated from Dirichlet distributions
parameterized by α andβ, respectively. The hyperparameters for Dirichlet distributions
can be asymmetric (Wallach, Mimno, and McCallum 2009), though in this work we use
symmetric priors. Figure 2 shows the plate notation of LDA.

2.2 Multilingual Topic Models

We now describe a variety of multilingual topic models, organized into two families
based on the type of supervision they use. Later, in Section 4, we focus on a subset of the
models described here for deeper analysis using our knowledge transfer formulation,
selecting the most general and representative models.

2.2.1 Document Level. The first model proposed to process multilingual corpora using
LDA is the Polylingual Topic Model (PLTM; Mimno et al. 2009; Ni et al. 2009). This
model extracts language-consistent topics from parallel or highly comparable multi-
lingual corpora (for example, Wikipedia articles aligned across languages), assuming
that document translations share the same topic distributions. This model has been
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Figure 2
Plate notation of LDA. α and β are Dirichlet hyperparameters for θ and {φ(k)}K

k=1. Topic
assignments are denoted as z, and w denotes observed tokens.
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extensively used and adapted in various ways for different crosslingual tasks (Krstovski
and Smith 2011; Moens and Vulic 2013; Vulić and Moens 2014; Liu, Duh, and Matsumoto
2015; Krstovski and Smith 2016).

In the generative process, PLTM first generates language-specific topic-word dis-
tributions φ(`,k) ∼ Dir

(
β(`)

)
, for topics k = 1, . . . , K and languages ` = 1, . . . , L. Then,

for each document tuple d =
(
d(1), . . . , d(L)

)
, it generates a tuple-topic distribution θd ∼

Dir (α). Every topic in this document tuple is generated from θd, and the word tokens in
this document tuple are then generated from language-specific word distributionsφ(`,k)

for each language. To apply PLTM, the corpus must be parallel or closely comparable
to provide document-level supervision. We refer to this as the document links model
(DOCLINK).

Models that transfer knowledge on the document level have many variants, includ-
ing SOFTLINK (Hao and Paul 2018), comparable bilingual LDA (C-BILDA; Heyman,
Vulic, and Moens 2016), the partially connected multilingual topic model (PCMLTM;
Liu, Duh, and Matsumoto 2015), and multi-level hyperprior polylingual topic model
(MLHPLTM; Krstovski, Smith, and Kurtz 2016). SOFTLINK generalizes DOCLINK by
using a dictionary, so that documents can be linked based on overlap in their vocab-
ulary, even if the corpus is not parallel or comparable. C-BILDA is a direct extension
of DOCLINK that also models language-specific distributions to distinguish topics that
are shared across languages from language-specific topics. PCMLTM adds an additional
observed variable to indicate the absence of a language in a document tuple. MLHPLTM
uses a hierarchy of hyperparameters to generate section-topic distributions. This model
was motivated by applications to scientific research articles, where each section s has its
own topic distribution θ(s) shared by both languages.

2.2.2 Word Level. Instead of document-level connections between languages, Boyd-
Graber and Blei (2009) and Jagarlamudi and Daumé III (2010) proposed to model con-
nections between languages through words using a multilingual dictionary and apply
hyper-Dirichlet Type-I distributions (Andrzejewski, Zhu, and Craven 2009; Dennis III
1991). We refer to these approaches as the vocabulary links model (VOCLINK).

Specifically, VOCLINK uses a dictionary to create a tree structure where each internal
node contains word translations, and words that are not translated are attached directly
to the root of the tree r as leaves. In the generative process, for each language `, VOCLINK
first generates K multinomial distributions over all internal nodes and word types that
are not translated, φ(r,`,k) ∼ Dir

(
β(r,`)

)
, where β(r,`) is a vector of Dirichlet prior from

root r to internal nodes and untranslated words in language `. Then, under each internal
node i, for each language `, VOCLINK generates a multinomial φ(i,`,k) ∼ Dir

(
β(i,`)

)

over word types in language ` under the node i. Note that both β(r,`) and β(i,`) are
vectors. In the first vector β(r,`), each cell is parameterized by scalar β′ and scaled by
the number of word translations under that internal node. For the second vector β(i,`),
it is a symmetric hyperparameter where every cell uses the same scalar β′′. See Figure 3
for an illustration.

Thus, to draw a word in language ` is equivalent to generating a path from the root
to leaf nodes:

(
r→ i, i→ w(`)

)
or
(
r→ w(`)

)
:

Pr
(
r→ i, i→ w(`)|k

)
= Pr (i|k) · Pr

(
w(`)|k, i

)
(1)

Pr
(
r→ w(`)|k

)
= Pr

(
w(`)|k

)
(2)
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Figure 3
An illustration of the tree structure used in word-level models. Hyperparameters β(r,`) and β(i,`)

are both vectors, and β′ and β′′ are scalars. In the figure, i1 has three translations, so the
corresponding hyperparameter β(r,EN)

1 = β
(r,SV)
1 = 3β′.

Document-topic distributions θd are generated in the same way as monolingual
LDA, because no document translation is required.

The use of dictionaries to model similarities across topic-word distributions has
been formulated in other ways as well. PROBBILDA (Ma and Nasukawa 2017) uses
inverted indexing (Søgaard et al. 2015) to encode assumptions that word translations
are generated from same distributions. PROBBILDA does not use tree structures in the
parameters as in VOCLINK, but the general idea of sharing distributions among word
translations is similar. Gutiérrez et al. (2016) use part-of-speech taggers to separate
topic words (nouns) and perspective words (adjectives and verbs), developed for the
application of detecting cultural differences, such as how different languages have
different perspectives on the same topic. Topic words are modeled in the same way
as in VOCLINK, whereas perspective words are modeled in a monolingual fashion.

3. Crosslingual Transfer in Probabilistic Topic Models

Conceptually, the term “knowledge transfer” indicates that there is a process of carrying
information from a source to a destination. Using the representations of graphical
models, the process can be visualized as the dependence of random variables. For
example, X→ Y implies that the generation of variable Y is conditioned on X, and
thus the information of X is carried to Y. If X represents a probability distribution, the
distribution of Y is informed by X, presenting a process of knowledge transfer, as we
define it in this work.
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In our study, “knowledge” can be loosely defined as K multinomial distributions
over the vocabularies: {φ(k)}K

k=1. Thus, to study the transfer mechanisms in topic models
is to reveal how the models transfer {φ(k)}K

k=1 from one language to another. To date,
this transfer process has not been obvious in most models, because typical multilingual
topic models assume the tokens in multiple languages are generated jointly.

In this section, we present a reformulation of these models that breaks down the co-
generation assumption of current models and instead explicitly show the dependencies
between languages. Starting with a simple example in Section 3.1, we show that our
alternative formulation derives the same collapsed Gibbs sampler, and thus the same
posterior distribution over samples, as in the original model. With this prerequisite, in
Section 3.3 we introduce the transfer operation, which will be used to generalize and
extend current multilingual topic models in Section 4.

3.1 Transfer Dependencies

We start with a simple graphical model, where θ ∈ RK
+ is a K-dimensional categorical

distribution, drawn from a Dirichlet parameterized by α, a symmetric hyperparameter
(Figure 4(a)). Using θ, the model generates two variables, X and Y, and we use x and y
to denote the generated observations. In the co-generation assumption, the variables X
and Y are generated from the same θ at the same time, without dependencies between
each other. Thus, we call this the joint model denoted as G (X,Y) and the probability of the
sample (x, y) is Pr

(
x, y;α,G (X,Y)

)
.

According to Bayes’ theorem, there are two equivalent ways to expand the proba-
bility of (x, y):

Pr (x, y;α) = Pr (x|y;α) · Pr (y;α) (3)

Pr (x, y;α) = Pr (y|x;α) · Pr (x;α) (4)

where we notice that the generated sample is conditioned on another sample: Pr (x|y;α)
and Pr (y|x;α), which fits into our concept of “transfer.” We show both cases in
Figures 4(b) and 4(c), and denote the graphical structures as G (Y|X) and G (X|Y), respec-
tively, to show the dependencies between the two variables.

In this formulation, the model generates θx from Dirichlet (α) first and uses θx to
generate the sample of x. Using the histogram of x denoted as nx = [n1|x, n2|x, . . . , nK|x]

x

y

↵ ✓

Nx

Ny

(a)

↵

x

y

Nx

Ny

✓x

✓y|x

(b)

↵

x

y

Nx

Ny
✓y

✓x|y

(c)

Figure 4
(a) The co-generation assumption generates x and y at the same time from the same θ. (b) To
make the transfer process clear, we make the generation of y conditional on x and highlight the
dependency in red. Because both x and y are exchangeable, the dependency can go the other
way, as shown in (c).
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where nk|x is the number of instances of X assigned to category k, together with hyper-
parameter α, the model then generates a categorical distribution θy|x ∼ Dir (nx + α),
from which the sample y is drawn.

This differs from the original joint model in that original parameter vector θ has
been replaced with two variable-specific parameter vectors. The next section derives
posterior inference with Gibbs sampling after integrating out the θ parameters, and
we show that the sampler for each of two model formulations is equivalent and thus
samples from an equivalent posterior distribution over x and y.

3.2 Collapsed Gibbs Sampling

General approaches to infer posterior distributions over graphical model variables in-
clude Gibbs sampling, variational inference, and hybrid approaches (Kim, Voelker, and
Saul 2013). We focus on collapsed Gibbs sampling (Griffiths and Steyvers 2004), which
marginalizes out the parameters (θ in the example above) to focus on the variables of
interest (x and y in the example).

Continuing with the example from the previous section, in each iteration of Gibbs
sampling (a “sweep” of samples), the sampler goes through each example in the data,
which can be viewed as sampling from the full posterior of a joint model G (X,Y) as in
Figure 5(a). Thus, when sampling an instance xi ∈ x, the collapsed conditional likeli-
hood is

Pr
(
x = k|x−, y;α

)
=

Pr(x = k, x−, y;α)
Pr(x−, y;α) (5)

=
Γ
(
αk + nk|x + nk|y

)

Γ
(
Nx + Ny + 1>α

) ·
Γ
(

Nx + N(−i)
y + 1>α

)

Γ
(
αk + n(−i)

k|x + nk|y
) (6)

=
n(−i)

k|x + nk|y + αk

N(−i)
x + Ny + 1>α

(7)

where x− is the set of tokens excluding the current one and n(−i)
k|x is the number of

instances x assigned to category k except the current xi. Note that in this equation, α
is the hyperparameter for the Dirichlet prior, which gets added to the counts in the
formula after integrating out the parameters θ.

G(X,Y )

…

sweep 1

sweep 2

sweep t

xsample ysample

G(X,Y )

G(X,Y )

(a)

…

sweep 1

sweep 2

sweep t

xsample ysample

G(X|Y ) G(Y |X)

G(X|Y ) G(Y |X)

G(X|Y ) G(Y |X)

(b)

Figure 5
Sampling from a joint model G (X,Y) (a) and two conditional models G (X|Y) and G (Y|X) (b) yields the
same MAP estimates.
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Using our formulation from the previous section, we can separate each sweep into
two subprocedures, one for each variable. When sampling an instance of xi ∈ x, the
histogram of sample y is fixed, and therefore it is sampling from the conditional model
of G (X|Y). Thus, the conditional likelihood is

Pr
(

x = k|x−; y,α,G (X|Y)
)

=
Pr(x = k, x−; y,α)

Pr(x−; y,α) (8)

=
Γ
(
nk|x + (nk|y + αk)

)

Γ
(
Nx + (Ny + 1>α)

) ·
Γ
(

Nx + (N(−i)
y + 1>α)

)

Γ
(

n(−i)
k|x + (nk|y + αk)

) (9)

=
n(−i)

k|x + (nk|y + αk)

N(−i)
x + (Ny + 1>α)

(10)

where the hyperparameter for variable X and category k becomes nk|y + αk. Similarly,
when sampling yi ∈ y which is generated from the model G (Y|X), the conditional likeli-
hood is

Pr
(

y = k|y−; x,α,G (Y|X)
)

=
n(−i)

k|y + (nk|x + αk)

N(−i)
y + (Nx + 1>α)

(11)

with nk|x + αk as the hyperparameter for Y. This process is shown in Figure 5(b).
From the calculation perspective, although the meaning of Equations (7), (10), and

(11) are different, their formulae are identical. This allows us to analyze similar models
using the conditional formulation without changing the posterior estimation. A similar
approach is the pseudo-likelihood approximation, where a joint model is reformulated
as the combination of two conditional models, and the optimal parameters for the
pseudo-likelihood function are the same as for the original joint likelihood function
(Besag 1975; Koller and Friedman 2009; Leppä-aho et al. 2017).

3.3 Transfer Operation

Now that we have made the transfer process explicit and showed that this alternative
formulation yields same collapsed posterior, we are able to describe a similar process in
detail in the context of multilingual topic models.

If we treat X and Y in the previous example as two languages, and the samples
x and y as either words, tokens, or documents from the two languages, we have a
bilingual data set (x, y). Topic models have more complex graphical structures, where
the examples (tokens) are organized within certain scopes (e.g., documents). To define
the transfer process for a specific topic model, when generating samples in one language
based on the transfer process of the model, we have to specify what examples we want
to use from another language, how much, and where we want to use them. To this end,
we define the transfer operation, which allows us to examine different models under a
unified framework to compare them systematically.
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Definition 1 (Transfer operation)
Let Ω ∈ RM be the target distribution of knowledge transfer with dimensionality M.
A transfer operation on Ω from language `1 to `2 is defined as a function

hΩ : RL2×L1 × NL1×M × RL2×M
+ 7→ RL2×M (12)

where L1 and L2 are the relevant dimensionalities for languages `1 and `2, respectively.

In this definition, the first argument of the transfer operation is where the two lan-
guages connect to each other, and can be defined as any bilingual supervision needed to
enable transfer. The actual values of L1 and L2 depend on specific models. In an example
of generating a document in language `2, L1 is the number of documents in languages
`1 and L2 = 1, and δ ∈ RL1 could be an binary vector where δi = 1 if document i is the
translation to current document in `2, or zero otherwise. This is the core of crosslingual
transfer through the transfer operation; later we will see that different multilingual topic
models mostly only differ in the input of this argument, and designing this matrix is
critical for an efficient knowledge transfer.

The second argument in the transfer operation is the sufficient statistics of the trans-
fer source (`1 in the definition). After generating instances in language `1, the statistics
are organized into a matrix. The last argument is a prior distribution over the possible
target distributions Ω.

The output of the transfer operation depends on and has the same dimensionality
as the target distribution, which will be used as the prior to generate a multinomial dis-
tribution. Let Ω be the target distribution from which a topic of language `2 is generated:
z ∼Multinomial (Ω). With a transfer operation, a topic is generated as follows:

Ω ∼ Dirichlet
(
hΩ

(
δ, N(`1 ),ξ

))
(13)

z ∼ Multinomial (Ω) (14)

where δ is bilingual supervision, N(`1 ) the generated sample of language `1, and ξ a
prior distribution with the same dimensionality as Ω. See Figure 6 for an illustration.

In summary, this definition highlights three elements that are necessary to enable
transfer:

(1) language transformations or supervision from the transfer source to destination;
(2) data statistics in the source; and
(3) a prior on the destination.

In the next section, we show how different topic models can be formulated with transfer
operations, as well as how transfer operations can be used in the design of new models.

4. Representative Models

In this section, we describe four representative multilingual topic models in terms of
the transfer operation formulation. These are also the models we will experiment on in
Section 5. The plate notations of these models are shown in Figure 7, and we provide
notations frequently used in these models in Table 1.
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Figure 6
An illustration of a transfer operation on a 3-dimensional Dirichlet distribution. The first
argument of hΩ is a bilingual supervision δ, which is a 3× 3 matrix, where L1 = L2 = 3,
indicating word translations between two languages. The second argument N(`1 ) is the statistics
(or histogram) from the sample in language `1, whose dimension is aligned with δ, and M = 1.
With ξ as the prior knowledge (a symmetric hyperparameter), the result of hΩ is then used as
hyperparameters for the Dirichlet distribution.
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Figure 7
Plate notations of DOCLINK, C-BILDA, SOFTLINK, and VOCLINK (from left to right). We use red
lines to make the knowledge transfer component clear. Note that in VOCLINK we assume every
word is translated, so the plate notation does not include untranslated words.
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Table 1
Notation table.

Notations Descriptions

z The topic assignment to a token.

w(`) A word type in language `.

V(`) The size of vocabulary in language `.

D(`) The size of corpus in language `.

D(`1 ,`2 ) The number of document pairs in languages `1 and `2.

α A symmetric Dirichlet prior vector of size K, where K is the number of topics,
and each cell is denoted as αk.

θd,` Multinomial distribution over topics for a document d in language `.

β(`) A symmetric Dirichlet prior vector of size V(`), where V(`) is the size of
vocabulary in language `.

β(r,`) An asymmetric Dirichlet prior vector of size I + V(`,−), where I is the number
of internal nodes in a Dirichlet tree, and V(`,−) the number of untranslated
words in language `. Each cell is denoted as β(r,`)

i , indicating a scalar prior to
a specific node i or an untranslated word type.

β(i,`) A symmetric Dirichlet prior vector of size V(`)
i , where V(`)

i is the number of
word types in language ` under internal node i.

φ(`,k) Multinomial distribution over word types in language ` of topic k for topic k.

φ(r,`,k) Multinomial distribution over internal nodes in a Dirichlet tree for topic k.

φ(i,`,k) Multinomial distribution over all word types in language ` under internal
node i for topic k.

4.1 Standard Models

Typical multilingual topic models are designed based on simple observations of mul-
tilingual data, such as parallel corpora and dictionaries. We focus on three popular
models, and re-formulate them using the conditional generation assumption and the
transfer operation we introduced in the previous sections.

4.1.1 DOCLINK. The document links model (DOCLINK) uses parallel/comparable data
sets, so that each bilingual document pair shares the same distribution over topics.
Assume the document d in language `1 is paired with d in language `2. Thus, the transfer
target distribution is θd,`2 ∈ RK where K is the number of topics. For a document d`2, let
δ ∈ ND(`1 )

+ be an indicator vector to indicate if a document d`1 is a translation or compa-
rable document to d`2,

δd`1
= 1 {d`2 and d`1 are translations} (15)
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where D(`1 ) is the number of documents in language `1. Thus, the transfer operation for
each document d`2 can be defined as

hθd,`2

(
δ, N(`1 ),α

)
= δ ·N(`1 ) + α (16)

where N(`1 ) ∈ ND(`1 )×K is the sufficient statistics from language `1, and each cell ndk is
the count of topic k appearing in document d. We call this a “document-level” model,
because the transfer target distribution is document-wise.

On the other hand, DOCLINK does not have any word-level knowledge, such as
dictionaries, so the transfer operation on φ in DOCLINK is straightforward. For every
topic k = 1, . . . , K and each word type w regardless of its language,

hφ(`2,k)

(
0, N(`1 ),β(`2 )) = 0 ·N(`1 ) + β(`2 ) = β(`2 ) (17)

where β(`2 ) ∈ RV(`2 )

+ is a symmetric Dirichlet prior for the topic-vocabulary distributions
φ(`2,k), and V(`2 ) is the size of vocabulary in language `2.

4.1.2 C-BILDA. As a variation of DOCLINK, C-BILDA has all of the components of DOCLINK
and has the same transfer operations on θ and φ as in Equations (16) and (17), so this
model is considered as a document-level model as well. Recall that C-BILDA addition-
ally models topic-language distributions η.1 For each document pair d and each topic
k, a bivariate Bernoulli distribution over the two languages η(k,d) ∈ R2

+ is drawn from a
Beta distribution parameterized by

(
χ(d,`1 ),χ(d,`2 )

)
:

η(k,d) ∼ Beta
(
χ(d,`1 ),χ(d,`2 )

)
(18)

`(k,m) ∼ Bernoulli
(
η(k,d)

)
(19)

where `(k,m) is the language of the m-th token assigned to topic k in the entire document
pair d. Intuitively, η(k,d)

` is the probability of generating a token in language ` given the
current document pair d and topic k.

Before diving into the specific definition of the transfer operation for this model,
we need to take a closer look at the generative process of C-BILDA first, because in this
model, language itself is a random variable as well. We describe the generative process
in terms of the conditional formulation where one language is conditioned on the other.
As usual, a monolingual model first generates documents in `1, and at this point each
document pair d only has tokens in one language. Then for each document pair d,
the conditional model additionally generates a number of topics z using the transfer
operation on θ as defined in Equation (16). Instead of directly drawing a new word
type in language `2 according to z, C-BILDA adds a step to generate a language `′ from
η(z,d). Because the current token is supposed to be in language `2, if `′ 6= `2, this token
is dropped, and the model keeps drawing the next topic z; otherwise, a word type is
drawn from φ(z,`2 ) and attached to the document pair d. Once this process is over, each

1 The original notation for topic-language distribution is δ (Heyman, Vulic, and Moens 2016). To avoid
confusion in Equation (15), we change to η. We also follow the original paper where the model is for a
bilingual case.
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Figure 8
An illustration of difference between DOCLINK and C-BILDA in sequential generating process.
DOCLINK uses a transfer operation on θ to generate topics and then word types in Swedish (SV).
Additionally, C-BILDA uses a transfer operation on η to generate a language label according to a
topic z. If the language generated is in Swedish, it draws a word type from the vocabulary;
otherwise, the token is discarded.

document pair d contains tokens from two languages, and by separating the tokens
based on their languages we can obtain the corresponding set of comparable document
pairs. Conceptually, C-BILDA adds an additional “selector” in the generative process to
decide if a topic should appear more in `2 based on topics in `1. We use Figure 8 as an
illustration to show the difference between DOCLINK and C-BILDA.

It is clear that the generation of tokens in language `2 is affected by that of language
`1; thus we define an additional transfer operation on η(k,d). The bilingual supervision δ
is the same as Equation (15), which is a vector of dimension D(`1 ) indicating document
translations. We denote the statistics term N(`1 )

k ∈ RD(`1 )×2, where each cell in the first
column ndk is the counts of topic k in document d, while the second column is a zero
vector. Lastly, the prior term is also a two-dimensional vector χ(d) =

(
χ(d,`1 ),χ(d,`1 )

)
.

Together, we have the transfer operation defined as

hη(k,d)

(
δ, N(`1 )

k ,χ(d)
)

= δ ·N(`1 )
k + χ(d) (20)

4.1.3 VOCLINK. Jagarlamudi and Daumé III (2010) and Boyd-Graber and Blei (2009)
introduced another type of multilingual topic model, which uses a dictionary for word-
level supervision instead of parallel/comparable documents as supervision, and we
call this model VOCLINK.2 Because no document-level supervision is used, the transfer
operation on θ is simply defined as

hθd,`2

(
0, N(`1 ),α

)
= 0 ·N(`1 ) + α = α (21)

We now construct the transfer operation on the topic-word distribution φ based
on the tree-structued priors in VOCLINK (Figure 3). Recall that each word w(`) is asso-
ciated with at least one path, denoted as λw(`) . If w(`) is translated, the path is λw(`) =(
r→ i, i→ w(`)

)
where r is the root and i an internal node; otherwise, the path is

simply the edge from root to that word. Thus, on the first level of the tree, the Dirichlet

2 Although some models, as in Hu et al. (2014b), transfer knowledge at both document and word levels,
in this analysis, we only focus on the word level where no transfer happens on the document level. The
generalization simply involves using the same transfer operation on θ that is used in DOCLINK.
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distribution φ(r,`2,k) is of dimension I + V(`2,−), where I is the number of internal nodes
(i.e., word translation entries), and V(`2,−) are the untranslated word types in language

`2. Let δ ∈ R(I+V(`2,−))×V1
+ be an indicator matrix where V1 is the number of translated

words in language `1, and each cell is

δi,w(`1 ) = 1
{

w(`1 ) is under node i
}

(22)

Given a topic k, the statistics argument N(`1 ) ∈ RV1 is a vector where each cell nw
is the count of word w assigned to topic k. Note that in the tree structure, the prior for
Dirichlet is asymmetric and is scaled by the number of translations under each internal
node. Thus, the transfer operation on φ(r,`2,k) is

hφ(r,`2,k)

(
δ, N(`1 ),β(r,`2 )) = δ ·N(`1 ) + β(r,`2 ) (23)

Under each internal node, the Dirichlet is only related to specific languages, so no
transfer happens, and the transfer operation on φ(i,`2,k) for an internal node i is simply
β(i,`2 ):

hφ(i,`2,k)

(
0, N(`1 ),β(i,`2 )) = 0 ·N(`1 ) + β(i,`2 ) = β(i,`2 ) (24)

4.2 SOFTLINK: A Transfer Operation–Based Model

We have formulated three representative multilingual topic models by defining transfer
operations for each model above. Our recent work, called SOFTLINK (Hao and Paul
2018), is explicitly designed according to the understanding of this transfer process. We
present this model as a demonstration of how transfer operations can be used to build
new multilingual topic models, which might not have an equivalent formulation using
the standard co-generation model, by modifying the transfer operation.

In DOCLINK, the supervision argument δ in the transfer operation is constructed
using comparable data sets. This requirement, however, substantially limits the data
that can be used. Moreover, the supervision δ is also limited by the data; if there is
no translation available to a target document, δ is an all-zero vector, and the transfer
operation defined in Equation (16) will cancel out all the available information N(`1 )

for the target document, which is an ineffective use of the resource. Unlike parallel
corpora, dictionaries are widely available and often easy to obtain for many languages.
Thus, the general idea of SOFTLINK is to use a dictionary to retrieve as much as possible
information from `1 to construct δ in a way that links potentially comparable documents
together, even if the corpus itself does not explicitly link together documents.

Specifically, for a document d`2, instead of a pre-defined indicator vector, SOFTLINK
defines δ as a probabilistic distribution over all documents in language `1:

δd`1
∝ |

{
w(`1 )

}
∩
{

w(`2 )
}
|

|
{

w(`1 )
}
∪
{

w(`2 )
}
| (25)

where {w(`)} contains all the word types that appear in document d`, and
{

w(`1 )
}
∩{

w(`2 )
}

indicates all word pairs
(
w(`1 ), w(`2 )

)
in a dictionary as translations. Thus, δd`1

can be interpreted as the “probability” of d`1 being the translation of d`2. We call δ the
transfer distribution. See Figure 9 for an illustration.
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Figure 9
An example of how different inputs of transfer operation result in different Dirichlet priors
through DOCLINK and SOFTLINK. The middle is a mini-corpus in language `1 and each
document’s topic histogram. When a document in `2 is not translation to any of those in `1,
DOCLINK defines δ as an all-zero vector which leads to an uninformative symmetric prior. In
contrast, SOFTLINK uses a dictionary to create δ as a distribution so that the topic histogram in
each document in `1 can still be proportionally transferred.

In our initial work, we show that instead of a dense distribution, it is more efficient
to make the transfer distributions sparse by thresholding,

δ̃d`1
∝ 1

{
δd`1

> π ·max(δ)
}
· δd`1

(26)

where π ∈ [0, 1] is a fixed threshold parameter. With the same definition of N(`1 ) and α
in Equation (16) and δ defined as Equation (25), SOFTLINK completes the same transfer
operations,

hθd,`2

(
δ, N(`1 ),α

)
= δ ·N(`1 ) + α (27)

hφ(`2,k)

(
0, N(`1 ),β(`2 )) = 0 ·N(`1 ) + β(`2 ) = β(`2 ) (28)

4.3 Summary: Transfer Levels and Transfer Models

We categorize transfer operations into two groups based on the target transfer distribu-
tion. Document-level operations transfer knowledge on distributions related to the entire
document, such as θ in DOCLINK, C-BILDA, and SOFTLINK, and η in C-BILDA. Word-level
operations transfer knowledge on those related to the entire vocabulary or specific word
types, such as φ in VOCLINK.

When a model only has transfer operations on just one specific level, we also use
the transfer level to refer the model. For example, DOCLINK, C-BILDA, and SOFTLINK are
all document-level models, while VOCLINK is a word-level model. Those that transfer
knowledge on multiple levels, such as Hu et al. (2014b), are called mixed-level models.

We summarize the transfer operation definitions for different models in Table 2,
and add monolingual LDA as a reference to show how transfer operations are defined
when no transfer takes place. We will experiment on the four multilingual models in
Sections 4.1.1 through 4.2.

5. Experiment Settings

From discussions above, we are able to describe various multilingual topic models by
defining different transfer operations, which explicitly represent the language transfer
process. When designing and applying those transfer operations in practice, some
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Table 2
Summary of transfer operations defined in the compared models, where we assume the
direction of transfer is from `1 to `2.

Model Document level Word level Parameters of h

LDA α β(`2 ) —

DOCLINK δ ·N(`1 ) + α β(`2 ) δ: indicator vector;

δ ·N(`1 ) + α, N(`1 ): doc-by-topic matrix;
C-BILDA δ ·N(`1 )

k + χ(d) β(`2 ) supervision: comparable documents;

δ: transfer distribution;
SOFTLINK δ ·N(`1 ) + α β(`2 ) N(`1 ): doc-by-topic matrix;

supervision: dictionary;

δ: indicator vector;
VOCLINK α δ ·N(`1 ) + β(r,`2 ) N(`1 ): node-by-word matrix;

supervision: dictionary;

natural questions arise, such as which transfer operation is more effective in what
type of situation, and how to design a model that is more generalizable regardless of
availability of multilingual resources.

To study the model behaviors empirically, we train the four models described
in the previous section—DOCLINK, C-BILDA, SOFTLINK, and VOCLINK—in ten lan-
guages. Considering the resources available, we separate the ten languages into two
groups: high-resource languages (HIGHLAN) and low-resource languages (LOWLAN).
For HIGHLAN, we have relatively abundant resources such as dictionary entries and
document translations. We additionally use these languages to simulate the settings of
LOWLAN by training multilingual topic models with different amounts of resources. For
LOWLAN, we use all resources available to verify experiment results and conclusions
from HIGHLAN.

5.1 Language Groups and Preprocessing

We separate the ten languages into two groups: HIGHLAN and LOWLAN. In this section,
we describe the preprocessing details of these languages.

5.1.1 HIGHLAN. Languages in this group have a relatively large amount of resources,
and have been widely experimented on in multilingual studies. Considering language
diversity, we select representative languages from five different families: Arabic (AR,
Semitic), German (DE, Germanic), Spanish (ES, Romance), Russian (RU, Slavic), and
Chinese (ZH, Sinitic). We follow standard preprocessing procedures: We first use stem-
mers to process both documents and dictionaries (segmenter for Chinese), then we
remove stopwords based on a fixed list and the most 100 frequent word types in the
training corpus. The tools for preprocessing are listed in Table 3.

5.1.2 LOWLAN. Languages in this group have much fewer resources than those in HIGH-
LAN, considered as low-resource languages. We similarly select five languages from
different families: Amharic (AM, Afro-Asiatic), Aymara (AY, Aymaran), Macedonian
(MK, Indo-European), Swahili (SW, Niger-Congo), and Tagalog (TL, Austronesian). Note
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Table 3
List of source of stemmers and stopwords used in experiments for HIGHLAN.

Language Family Stemmer Stopwords

EN Germanic SnowBallStemmer 3 NLTK

DE Germanic SnowBallStemmer NLTK

ES Romance SnowBallStemmer NLTK

RU Slavic SnowBallStemmer NLTK

AR Semitic Assem’s Arabic Light Stemmer 4 GitHub 5

ZH Sinitic Jieba 6 GitHub

that some of these are not strictly “low-resource” compared with many endangered
languages. For the truly low-resource languages, it is very difficult to test the models
with enough data, and, therefore, we choose languages that are understudied in natural
language processing literature.

Preprocessing in this language group needs more consideration. Because they rep-
resent low-resource languages that most natural language processing tools are not
available for, we do not use a fixed stopword list. Stemmers are also not available for
these languages, so we do not apply stemming.

5.2 Training Sets and Model Configurations

There are many resources available for multilingual research, such as the European
Parliament Proceedings parallel corpus (EUROPARL; Koehn 2005), the Bible, and
Wikipedia. EuroParl provides a perfectly parallel corpus with precise translations, but
it only contains 21 European languages, which limits its generalizability to most of the
languages. The Bible, on the other hand, is also perfectly parallel and is widely available
in 2,530 languages.7 Its disadvantages, however, are that the contents are very limited
(mostly about family and religion), the data set size is small (1,189 chapters), and many
languages do not have digital format (Christodoulopoulos and Steedman 2015).

Compared with EUROPARL and the Bible, Wikipedia provides comparable docu-
ments in many languages with a large range of content, making it a very popular choice
for many multilingual studies. In our experiments, we create ten bilingual Wikipedia
corpora, each containing documents in one of the languages in either HIGHLAN or
LOWLAN, paired with documents in English (EN). Though most multilingual topic
models are not restricted to training bilingual corpora paired with English, this is a
helpful way to focus our experiments and analysis.

We present the statistics of the training corpus of Wikipedia and the dictionary we
use (from Wiktionary) in the experiments in Table 4. Note that we train topic models on

3 http://snowball.tartarus.org.
4 http://arabicstemmer.com.
5 https://github.com/6/stopwords-json.
6 https://github.com/fxsjy/jieba.
7 https://www.unitedbiblesocieties.org/.
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Table 4
Statistics of training Wikipedia corpus and Wiktionary.

English (EN) Paired language Wiktionary
#docs #tokens #types #docs #tokens #types #entries

H
IG

H
L

A
N AR 2,000 616,524 48,133 2,000 181,946 25,510 16,127

DE 2,000 332,794 35,921 2,000 254,179 55,610 32,225
ES 2,000 369,181 37,100 2,000 239,189 30,258 31,563
RU 2,000 410,530 39,870 2,000 227,987 37,928 33,574
ZH 2,000 392,745 38,217 2,000 168,804 44,228 23,276

L
O

W
L

A
N

AM 2,000 3,589,268 161,879 2,000 251,708 65,368 4,588
AY 2,000 1,758,811 84,064 2,000 169,439 24,136 1,982
MK 2,000 1,777,081 100,767 2,000 489,953 87,329 6,895
SW 2,000 2,513,838 143,691 2,000 353,038 46,359 15,257
TL 2,000 2,017,643 261,919 2,000 232,891 41,618 6,552

bilingual pairs, where one of the languages is always English, so in the table we show
statistics of English in every bilingual pair as well.

Lastly, we summarize the model configurations in Table 5. The goal of this study
is to bring current multilingual topic models together, studying their corresponding
strengths and limitations. To keep the experiments as comparable as possible, we use
constant hyperparameters that are consistent across the models. For all models, we set
the Dirichlet hyperparameter αk = 0.1 for each topic k = 1, . . . , K. We run 1,000 Gibbs
sampling iterations on the training set and 200 iterations on the test sets. The number of
topics K is set to 20 by default for efficiency reasons.

Table 5
Model specifications.

Model Hyperparameters

DOCLINK We set β to be a symmetric vector where each cell βi = 0.01 for all
word types of all the languages, and use the MALLET implemen-
tation for training (McCallum 2002). To enable consistent com-
parison, we disable hyperparameter optimization provided in the
package.

C-BILDA Following the experiment results from Heyman, Vulic, and Moens
(2016), we set χ = 2 to make the results more competitive to
DOCLINK. The rest of the settings are the same as for DOCLINK.

SOFTLINK We use the document-wise thresholding approach for calculating
the transfer distributions. The focus threshold is set to 0.8. The rest
of the settings are the same as for DOCLINK.

VOCLINK We set the scalar β′ = 0.01 for hyperparameter β(r,`) from the root
to both internal nodes or leaves. For those from internal nodes to
leaves, we set β′′ = 100, following the settings in Hu et al. (2014b).
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5.3 Evaluation

We evaluate all models using both intrinsic and extrinsic metrics. Intrinsic evaluation
is used to measure the topic quality or coherence learned from the training set, and
extrinsic evaluation measures performance after applying the trained distributions to
downstream crosslingual applications. For all the following experiments and tasks,
we start by analyzing languages in HIGHLAN. Then we apply the analyzed results to
LOWLAN.

We choose topic coherence (Hao, Boyd-Graber, and Paul 2018) and crosslingual
document classification (Smet, Tang, and Moens 2011) as intrinsic and extrinsic eval-
uation tasks, respectively. The reason for choosing these two tasks is that they examine
the models from different angles: Topic coherence looks at topic-word distributions,
whereas classification focuses on document-topic distributions. Other evaluation tasks,
such as word translation detection and crosslingual information retrieval, also utilize
the trained distributions, but here we focus on a straightforward and representative
task.

5.3.1 Intrinsic Evaluation: Topic Quality. Intrinsic evaluation refers to evaluating the
learned model directly without applying it to any particular task; for topic models,
this is usually based on the quality of the topics. Standard evaluation measures for
monolingual models, such as perplexity (or held-out likelihood; Wallach et al. 2009) and
Normalized Pointwise Mutual Information (NPMI, Lau, Newman, and Baldwin (2014)),
could potentially be considered for crosslingual models. However, when evaluating
multilingual topics, how words in different languages make sense together is also a
critical criterion in addition to coherence within each of the languages.

In monolingual studies, Chang et al. (2009) show that held-out likelihood is not
always positively correlated with human judgments of topics. Held-out likelihood is
additionally suboptimal for multilingual topic models, because this measure is only
calculated within each language, and the important crosslingual information is ignored.

Crosslingual Normalized Pointwise Mutual Information (CNPMI; Hao, Boyd-
Graber, and Paul 2018) is a measure designed specifically for multilingual topic models.
Extended from the widely used NPMI to measure topic quality in multilingual set-
tings, CNPMI uses a parallel reference corpus to extract crosslingual coherence. CNPMI
correlates well with bilingual speakers’ judgments on topic quality and predictive
performance in downstream applications. Therefore, we use CNPMI for intrinsic
evaluations.

Definition 2 (Crosslingual Normalized Pointwise Mutual Information, CNPMI)
LetW (`1,`2 )

C be the set of top C words in a bilingual topic, andR(`1,`2 ) a parallel reference
corpus. The CNPMI of this topic is calculated as

CNPMI
(
W (`1,`2 )

C

)
= − 1

C2

∑

wi,wj∈W
(`1,`2 )
C

log
Pr(wi,wj)

Pr(wi ) Pr(wj)
log Pr

(
wi, wj

) (29)

where wi and wj are from languages `1 and `2, respectively. Let d =
(
d`1 , d`2

)
be a pair of

parallel documents from the reference corpusR(`1,`2 ), whose size is denoted as
∣∣R(`1,`2 )

∣∣.∣∣{d : wi ∈ d`1 , wj ∈ d`2

}∣∣ is the number of parallel document pairs in which wi and wj
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appear. The co-occurrence probability of a word pair and the probability of a single
word are calculated as

Pr
(
wi, wj

)
,

∣∣{d : wi ∈ d`1 , wj ∈ d`2

}∣∣
∣∣R(`1,`2 )

∣∣ (30)

Pr (wi) ,

∣∣{d : wi ∈ d`1

}∣∣
∣∣R(`1,`2 )

∣∣ (31)

Intuitively, a coherent topic should contain words that make sense or fit in a spe-
cific context together. In the multilingual case, CNPMI measures how likely it is that
a bilingual word pair appears in a similar context provided by the parallel reference
corpus. We provide toy examples in Figure 10, where we show three bilingual topics.
In Topic A, both languages are about “language,” and all the bilingual word pairs have
high probability of appearing in the same comparable document pairs. Thus Topic A
is coherent crosslingually, and thus expected to have a high CNPMI score. Although we
can identify the themes within each language in Topic B, that is, education in English
and biology in Swahili, most of the bilingual word pairs do not make sense or appear in
the same context, which gives us a low CNPMI score. The last topic is not coherent even
within each language, so it has low CNPMI as well. Through this example, we see that
CNPMI detects crosslingual coherence in multiple ways, unlike other intrinsic measures
that might be adapted for crosslingual models.

In our experiments, we use 10, 000 linked Wikipedia article pairs for each language
pair (EN, `) (20, 000 in total) as the reference corpus, and set C = 10 by default. Note
that HIGHLAN has more Wikipedia articles, and we make sure the articles used for
evaluating CNPMI scores do not appear in the training set. However, for LOWLAN,
because the number of linked Wikipedia articles is extremely limited, we use all the
available pairs to evaluate CNPMI scores. The statistics are shown in Table 6.

5.3.2 Extrinsic Evaluation: Crosslingual Classification. Crosslingual document classification
is the most common downstream application for multilingual topic models (Smet, Tang,

word
dialect
vowel
latin

spoken
letter
Arabic
speaker

verb
linguist

ቋንቋ (language)
ቃላት (words)
ፊደል (letter)

ጽሕፈት (writing)
አልፋቤት (alphabet)

ድምጽ (audio)
እንግሊዝኛ (English)

ልሳናት (tongues)
ምልክት (signal)
ሰዎች (people)

degree
science

professor
award

bachelor
program
academic
institute
student

chemistry

bakteria (bacteria)
asidi (acid)

spishi (species)
amino (amino)

seli (cells)
aina (type)
bata (duck)
maji (water)

wanyama (animals)
protini  (protein)

food
secret
under
bridge
pills

diploma
frogs
lights
lie

donuts

крава (cow)
книга (book)

безбедност (security)
универзумот (universe)
започнете (start)

списание (magazine)
дрвја (trees)
завеса (curtain)
чудо (miracle)

витамин (vitamin)

Topic A (English-Amharic) Topic B (English-Swahili) Topic C (English-Macedonian)
cnpmi = 0.3632 cnpmi = �0.0094 cnpmi = 0.0643

Figure 10
CNPMI measures how likely a bilingual word pair appears in a similar context in two languages,
provided by a reference corpus. Topic A has a high CNPMI score because both languages are
talking about the same theme. Both Topic B and Topic C are incoherent multilingual topics,
although Topic B is coherent within each language.
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Table 6
Statistics of Wikipedia corpus for topic coherence evaluation (CNPMI).

English Paired language
#docs #tokens #types #docs #tokens #types

HIGHLAN

AR 10,000 3,597,322 128,926 10,000 996,801 64,197
DE 10,000 2,155,680 103,812 10,000 1,459,015 166,763
ES 10,000 3,021,732 149,423 10,000 1,737,312 142,086
RU 10,000 3,016,795 154,442 10,000 2,299,332 284,447
ZH 10,000 1,982,452 112,174 10,000 1,335,922 144,936

LOWLAN

AM 4,316 9,632,700 269,772 4,316 403,158 91,295
AY 4,187 5,231,260 167,531 4,187 280,194 32,424
MK 10,000 11,080,304 301,026 10,000 3,175,182 245,687
SW 10,000 13,931,839 341,231 10,000 1,755,514 134,152
TL 6,471 7,720,517 645,534 6,471 1,124,049 83,967

and Moens 2011; Vulić et al. 2015; Heyman, Vulic, and Moens 2016). Typically, a model
is trained on a multilingual training set D(`1, `2 ) in languages `1 and `2. Using the trained
topic-vocabulary distributions φ, the model infers topics in test sets D′(`1 ) and D′(`2 ).

In multilingual topic models, document-topic distributions θ can be used as features
for classification, where the θ̂d,`1 vectors in language `1 train a classifier tested by the
θ̂d,`2 vectors in language `2. A better classification performance indicates more consis-
tent features across languages. See Figure 11 for an illustration. In our experiments,
we use a linear support vector machine to train multilabel classifiers with five-fold
cross-validation. Then, we use micro-averaged F-1 scores to evaluate and compare
performance across different models.

For crosslingual classification, we also require held-out test data with labels or
annotations. In our experiments, we construct test sets from two sources: TED Talks
2013 (TED) and Global Voices (GV). TED contains parallel documents in all languages in
HIGHLAN, whereas GV contains all languages from both HIGHLAN and LOWLAN.

Train/Test classifierInfer topics on unseen documents
Train multilingual

topic models on        -

corpus

corpus

Classifier

D(`1,`2)

D(`1)

D(`2)

n
b�(`2,k)

oK

k=1

n
b�(`1,k)

oK

k=1 test corpus w/ labels
D0(`1) =

n⇣
b✓d,`1 , y

⌘o

test corpus
D0(`2) =

n⇣
b✓d,`2 , ·

⌘o

test

train

Figure 11
An illustration of crosslingual document classification. After training multilingual topic models,
the topics, {φ̂(`, k)} are used to infer document-topic distributions θ̂ of unseen documents in both
languages. A classifier is trained with the inferred distributions θ̂d, `1

as features and the labels y
in language `1, and predicts labels in language `2.
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Using the two multilingual sources, we create two types of test sets for HIGHLAN—
TED + TED and TED + GV, and only one type for LOWLAN—TED+GV. In TED+TED, we
infer document-topic distributions on documents from TED in English and the paired
language. This only applies to HIGHLAN, because TED do not have documents in
LOWLAN. In TED+GV, we infer topics on English documents from TED, and infer topics
on documents from GV in the paired language (both HIGHLAN and LOWLAN). The
two types of test sets also represent different application situations. TED + TED implies
that the test documents in both languages are parallel and come from the same source,
whereas TED + GV represents how the topic model performs when the two languages
have different data sources.

Both corpora are retrieved from http://opus.nlpl.eu/ (Tiedemann 2012). The la-
bels, however, are manually retrieved from http://ted.com/ and http://globalvoices.

org/. In TED corpus, each document is a transcript of a talk and is assigned to multiple
categories on the Web page, such as “technology,” “arts,” and so forth. We collect all
categories for the entire TED corpus, and use the three most frequent categories—
technology, culture, science—as document labels. Similarly, in GV corpus, each document
is a news story, and has been labeled with multiple categories on the Web page of the
story. Because in TED + GV, the two sets are from different sources, and training and
testing is only possible when both sets share the same labels, we apply the same three
labels from TED to GV as well. This processing requires minor mappings, for example,
from “arts-culture” in GV to “culture” in TED. The data statistics are presented in Table 7.

6. Document-Level Transfer and Its Limitations

We first explore the empirical characteristics of document-level transfer, using DOC-
LINK, C-BILDA, and SOFTLINK.

Multilingual corpora can be loosely categorized into three types: parallel, com-
parable, and incomparable. A parallel corpus contains exact document translations

Table 7
Statistics of TED Talks 2013 (TED) and Global Voices (GV) corpus.

Corpus statistics Label distributions
#docs #types #tokens #technology culture science

TED

AR 1,112 1,066,754 15,124 384 304 290
DE 1,063 774,734 19,826 364 289 276
ES 1,152 933,376 13,088 401 312 295
RU 1,010 831,873 17,020 346 275 261
ZH 1,123 1,032,708 19,594 386 315 290

GV
(HIGHLAN)

AR 2,000 325,879 13,072 510 489 33
DE 1,481 269,470 16,031 346 344 42
ES 2,000 367,631 11,104 457 387 38
RU 2,000 488,878 16,157 516 369 62
ZH 2,000 528,370 18,194 499 366 56

GV
(LOWLAN)

AM 39 10,589 4,047 3 3 1
AY 674 66,076 4,939 76 100 46
MK 1,992 388,713 29,022 343 426 182
SW 1,383 359,066 14,072 137 110 71
TL 254 26,072 6,138 32 67 19
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across languages, of which EUROPARL and the Bible, discussed before, are examples.
A comparable corpus contains document pairs (in the bilingual case), where each doc-
ument in one language has a related counterpart in the other language. However, these
document pairs are not exact translations of each other, and they can only be connected
through a loosely defined “theme.” Wikipedia is an example, where document pairs are
linked by article titles. Incomparable corpora contain potentially unrelated documents
across languages, with no explicit indicators of document pairs.

With different levels of comparability comes different availabilities of such corpora:
It is much harder to find parallel corpora in low-resource languages. Therefore, we
first focus on HIGHLAN, and use Wikipedia to simulate the low-resource situation in
Section 6.1, where we find that DOCLINK and C-BILDA are very sensitive to the training
corpus, and thus might not be the best option when it comes to low-resource languages.
We then examine LOWLAN in Section 6.2.

6.1 Sensitivity to Training Corpus

We first vary the comparability of the training corpus and study how different models
behave under different situations. All models are potentially affected by the compara-
bility of the training set, although only DOCLINK and C-BILDA explicitly rely on this
information to define transfer operations. This experiment shows that models transfer-
ring knowledge on the document level (DOCLINK and C-BILDA) are very sensitive to the
training set, but can be almost entirely insensitive with appropriate modifications to the
transfer operation as in SOFTLINK.

6.1.1 Experiment Settings. For each language pair (EN, `), we construct a random sub-
sample of 2, 000 documents from Wikipedia in each language (4, 000 in total). To vary
the comparability, we vary the proportion of linked Wikipedia articles between the two
languages, from 0.0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.8, to 1. When the percentage is zero, the
bilingual corpus is entirely incomparable, that is, no document-level translations can
be found in another language, and DOCLINK and C-BILDA degrade into monolingual
LDAs. The indicator matrix used by transfer operations in Section 4.1.1 is a zero matrix
δ = 0. When the percentage is one, meaning each document from one language is linked
to one document from another language, the corpus is considered fully comparable,
and δ is an identity matrix 1. Any number between 0 and 1 makes the corpus partially
comparable to different degrees. The CNPMI and crosslingual classification results are
shown in Figure 12, and the shades indicate the standard deviations across five Gibbs
sampling chains. For VOCLINK and SOFTLINK, we use all the dictionary entries.

6.1.2 Results. In terms of topic coherence (CNPMI), both DOCLINK and C-BILDA have
competitive performance on CNPMI, and achieve full potential when the corpus is
fully comparable. As expected, models transferring knowledge at the document level
(DOCLINK and C-BILDA) are very sensitive to the training corpus: The more aligned
the corpus is, the better topics the model learns. For the word-level model, VOCLINK
roughly stays at the same performance level, which is also expected, because this model
does not use linked documents as supervision. However, its performance on Russian is
surprisingly low compared with other languages and models. In the next section, we
will look closer at this problem by investigating the impact of dictionaries.

It is notable that SOFTLINK, a document-level model, is also insensitive to the
training corpus and outperforms other models most of the time. Recall that on the doc-
ument level, SOFTLINK defines transfer operation on document-topic distributions θ,
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Figure 12
Both SOFTLINK and VOCLINK stay at a stable performance level of either CNPMI or F-1 scores,
whereas DOCLINK and C-BILDA expectedly have better performance as there are more linked
Wikipedia articles.

similarly to DOCLINK and C-BILDA, but using dictionary resources. This implies that
good design of the supervision δ in the transfer operation could lead to a more stable
performance across different training situations.

When it comes to the classification task, the F-1 scores of DOCLINK and C-BILDA
have very large variations, and the increasing trend of F-1 scores is less obvious than
with CNPMI. This is especially true when the percentage of linked documents is very
small. For one, when the percentage is small, the transfer on the document level is
less constrained, leaving the projection of two languages into the same topic space
less predictive. The evaluation scope of CNPMI is actually much smaller and more
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concentrated than classification, because it only focuses on the top C words, which does
not lead to large variations.

One consistent result we notice is that SOFTLINK still performs well on classifi-
cation with very small variations and stable F-1 scores, which again benefits from
the definition of transfer operation in SOFTLINK. When transferring topics to another
language, SOFTLINK uses dictionary constraints as in VOCLINK, but instead of a simple
one-on-one word type mapping, it expands the transfer scope to the entire document.
Additionally, SOFTLINK distributionally transfers knowledge from the entire corpus in
another language, which actually reinforces the transfer efficiency without relying on
direct supervision at the document level.

6.2 Performance on LOWLAN

In this section, we take a look at languages in LOWLAN. For SOFTLINK and VOCLINK,
we use all dictionary entries to train languages in LOWLAN, because the sizes of
dictionaries in these languages are already very small. We again use a subsample of
2, 000 Wikipedia document pairs with English to make the results comparable with
HIGHLAN. In Figure 13(a), we also present results of models for HIGHLAN using fully
comparable training corpora and full dictionaries for direct comparison of the effect of
language resources.

In most cases, transfer on document level (particularly C-BILDA) performs better
than on word levels, in both HIGHLAN and LOWLAN. Considering the number of
dictionary entries available from Table 4, it is reasonable to suspect that the dictionary
is a major factor affecting the performance of word-level transfer.

On the other hand, although SOFTLINK does not model vocabularies directly as in
VOCLINK, transferring knowledge at the document level with a limited dictionary still
yields competitive CNPMI scores. Therefore, in this experiment on LOWLAN, we see that
with the same lexicon resource, it is generally more efficient to transfer knowledge at the
document level. We will also explore this in detail in Section 7.

We also present a comparison of micro-averaged F-1 scores between HIGHLAN
and LOWLAN in Figure 13(b). The test set used for this comparison is TED + GV, since
TED does not have articles available in LOWLAN. Also, languages such as Amharic
(AM) have fewer than 50 GV articles available, which is an extremely small number for
training a robust classifier, so in these experiments, we only train classifiers on English
(TED articles) and test them on languages in HIGHLAN and LOWLAN (GV articles).

Similarly, the classification results are generally better in document-level transfer,
and both C-BILDA and SOFTLINK give similar scores. However, it is worth noting that
VOCLINK has very large variations in all languages, and the F-1 scores are very low.
This again suggests that transferring knowledge on the word level is less effective, and
in Section 7 we study in detail why this is the case.

7. Word-Level Transfer and Its Limitations

In the previous section, we compared different multilingual topic models with a focus
on document-level models. We draw conclusions that DOCLINK and C-BILDA are very
sensitive to the training corpus, which is natural due to their definition of supervision
as a one-to-one document pair mapping. On the other hand, the word-level model
VOCLINK in general has lower performance, especially with LOWLAN, even if the
corpus is entirely comparable.
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(a) score comparison of different models and languages with cardinality C = 10.
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(b) Micro-averaged F-1 scores of different models and languages on TED+GV corpora.

Figure 13
Topic quality evaluation and classification performance on both HIGHLAN and LOWLAN. We
notice that VOCLINK has lower CNPMI and F-1 scores in general, with large standard deviations.
C-BILDA, on the other hand, outperforms other models in most of the languages.

One interesting result we observed from the previous section is that SOFTLINK
and VOCLINK use the same dictionary resource while transferring topics on different
levels, and SOFTLINK generally has better performance than VOCLINK. Therefore, in this
section, we explore the characteristics of the word-level model VOCLINK and compare it
with SOFTLINK to study why it does not use the same dictionary resource as effectively.
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To this end, we first vary the amount of dictionary entries available and compare
how SOFTLINK and VOCLINK perform (Section 7.1). Based on the results, we analyze
word-level transfer from three different angles: dictionary usage (Section 7.2) as an
intuitive explanation of the models, topic analysis (Section 7.3) from a more qualitative
perspective, and comparing transfer strength (Section 7.4) as a quantitative analysis.

7.1 Sensitivity to Dictionaries

Word-level models such as VOCLINK use a dictionary as supervision, and thus will
naturally be affected by the dictionary used. Although SOFTLINK transfers knowledge
on the document level, it uses the dictionary to calculate the transfer distributions used
in its document-level transfer operation. In this section, we focus on the comparison of
SOFTLINK and VOCLINK.

7.1.1 Sampling the Dictionary Resource. The dictionary is the essential part of SOFTLINK
and VOCLINK and is used in different ways to define transfer operations. The availabil-
ity of dictionaries, however, varies among different languages. From Table 4, we notice
that for LOWLAN the number of available dictionary entries is very limited, which
suggests it could be a major factor affecting the performance of word-level topic models.
Therefore, in this experiment, we sample different numbers of dictionary entries in
HIGHLAN to study how this alters performance of SOFTLINK and VOCLINK.

Given a bilingual dictionary, we add only a proportion of entries in it to SOFTLINK
and VOCLINK. As in the previous experiments varying the proportion of document
links, we change the proportion from 0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.8, to 1.0. When the
proportion is 0, both SOFTLINK and VOCLINK become monolingual LDA and no transfer
happens; when the proportion is 1, both models reach their highest potential with all the
dictionary entries available.

We also sample the dictionary in two manners: random- and frequency-based. In
random-based, the entries are randomly chosen from the dictionary, and the five chains
have different entries added to the models. In frequency-based, we select the most
frequent word types from the training corpus.

Figure 14 shows a detailed comparison among different evaluations and languages.
As expected, adding more dictionary entries helps both SOFTLINK and VOCLINK, with
increasing CNPMI scores and F-1 scores in general. However, we notice that adding more
dictionary entries can boost SOFTLINK’s performance very quickly, whereas the increase
in VOCLINK’s CNPMI scores is slower. Similar trends can be observed in the classification
task as well, where adding more words does not necessarily increase VOCLINK’s F-1
scores, and the variations are very high.

This comparison provides an interesting insight to increasing lexical resources effi-
ciently. In some applications, especially related to low-resource languages, the number
of available lexicon resources is very small, and one way to solve this problem is to
incorporate human feedback, such as interactive topic modeling proposed by Hu et al.
(2014a). In our case, a native speaker of the low-resource language could provide word
translations that could be incorporated into topic models. Because of limited time and
financial budget, however, it is impossible to translate all the word types that appear in
the corpus, so the challenge is how to boost the performance of the target task as much
as possible with less effort from humans. In this comparison, we see that if the target
task is to train coherent multilingual topics, training SOFTLINK is a more efficient way
than VOCLINK.
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Figure 14
SOFTLINK produces better topics and is more capable of crosslingual classification tasks than
VOCLINK when the number of dictionary entries is very limited.

7.1.2 Varying Comparability of the Corpus. For SOFTLINK and VOCLINK, the dictionary is
only one aspect of the training situation. As discussed in our document-level experi-
ments, the training corpus is also an important factor that could affect the performance
of all topic models. Although corpus comparability is not an explicit requirement of
SOFTLINK and VOCLINK, the comparability of the corpus might affect the coverage pro-
vided by the dictionary or affect performance in other ways. In SOFTLINK, comparability
could also affect the transfer operator’s ability to find similar documents to link to. In
this section, we study the relationship between dictionary coverage and comparability
of the training corpus.
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Similar to the previous section, we vary the dictionary coverage from 0.01, 0.05,
0.1, 0.2, 0.4, 0.8, to 1, using the frequency-based method as in the last experiment. We
also vary the number of linked Wikipedia articles from 0, 0.01, 0.05, 0.1, 0.2, 0.4, 0.8,
to 1. We present CNPMI scores in Figure 15(a), where the results are averaged over all
five languages in HIGHLAN. It is clear that SOFTLINK outperforms VOCLINK, regardless
of training corpus and dictionary size. This implies that SOFTLINK could potentially
learn coherent multilingual topics even when the training conditions are unfavorable:
for example, when the training corpus is incomparable and there is only a small number
of dictionary entries.
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(a) Average CNPMI scores on multilingual topic coherence.
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(b) Multilabel crosslingual document classification F-1 scores in HIGHLAN.

Figure 15
Adding more dictionary entries has a higher impact on word-level model VOCLINK. SOFTLINK
learns better quality topics than VOCLINK. SOFTLINK also generally performs better on
classification.
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The results of crosslingual classification are shown in Figure 15(b). When the test
sets are from the same source (TED + TED), SOFTLINK utilizes the dictionary more effi-
ciently and performs better than VOCLINK. In particular, F-1 scores of SOFTLINK using
only 20% of dictionary entries is already outperforming VOCLINK using the full dictio-
nary. A similar comparison can also be drawn when the test sets are from different
sources such as TED + GV.

7.1.3 Discussion. From the results so far, it is empirically clear that transferring knowl-
edge on the word level tends to be less efficient than the document level. This is arguably
counter-intuitive. Recall that the goal of multilingual topic models is to let semantically
related words and translations have similar distributions over topics. The word-level
model VOCLINK directly uses this information—dictionary entries—to define transfer
operations, yet its CNPMI scores are lower. In the following sections, therefore, we try to
explain this apparent contradiction. We first analyze the dictionary usage of VOCLINK
(Section 7.2), and then lead our discussion on the transfer strength comparisons between
document and word levels for all models (Sections 7.3 and 7.4).

7.2 Dictionary Usage

In practice, the assumption of VOCLINK is also often weakened by another important
factor: the presence of word translations in the training corpus. Given a word pair(
w(`1 ), w(`2 )

)
, the assumption of VOCLINK is valid only when both words appear in the

training corpus in their respective languages. If w(`2 ) is not in D(`2 ), w(`1 ) will be treated
as an untranslated word instead. Figure 16 shows an example of how tree structures in
VOCLINK are affected by the corpus and the dictionary.

In Figure 17, we present the statistics of word types from different sources on
a logarithmic scale. “Dictionary” is the number of word types that appeared in the
original dictionary as shown in the last column of Table 4, and we use the same
preprocessing to the dictionary as to the training corpus to make sure the quantities are
comparable. “Training set” is the number of word types that appeared in the training

Animals are multicellular 
eukaryotic organisms that 
form the biological 
kingdom Animalia. 

Djur är flercelliga 
organismer som 
kännetecknas av att de är 
rörliga och heterotrofa.
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Figure 16
The dictionary used by VOCLINK is affected by its overlap with the corpus. In this example, the
three entries in Dictionary A can all be found in the corpus, so the tree structure has all of them.
However, only one entry in Dictionary B can be found in the corpus. Although the Swedish
word “heterotrofa” is also in the dictionary, its English translation cannot be found in the corpus,
so Dictionary B ends up a tree with only one entry.
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Figure 17
The number of word types that are linked in VOCLINK is far less than the original dictionary and
even than that of word types in the training sets.

set, and “Linked by VOCLINK” is the number of word types that are actually used in
VOCLINK, that is, the number of non-zero entries in δ in the transfer operation.

Note that even when we use the complete dictionary to create the tree structure in
VOCLINK, in LOWLAN, there are far more word types in the training set than those in
the dictionary. In other words, the supervision matrix δ used by hφ(r,k) is never actually
full rank, and thus, the full potential of VOCLINK is very difficult to achieve due to
the properties of the training corpus. This situation is as if the document-level model
DOCLINK had only half of the linked documents in the training corpus.

On the other hand, we notice that in HIGHLAN, the number of word types in
the dictionary is usually comparable to that of the training set (except in AR). For
LOWLAN, however, the situation is quite the contrary: There are more word types in the
training set than in the dictionary. Thus, the availability of sufficient dictionary entries
is especially a problem for LOWLAN.

We conclude from Figure 15(a) that adding more dictionary entries will slowly
improve VOCLINK, but even when there are enough dictionary items, due to model
assumptions, VOCLINK will not achieve its full potential unless every word in the train-
ing corpus is in the dictionary. A possible solution is to first extract word alignments
from parallel corpora, and then create a tree structure using those word alignments, as
experimented in Hu et al. (2014b). However, when parallel corpora are available, we
have shown that document-level models such as DOCLINK work better anyway, and the
accuracy of word aligners is another possible limitation to consider.

7.3 Topic Analysis

Whereas VOCLINK uses a dictionary to directly model word translations, SOFTLINK
uses the same dictionary to define the supervision in transfer operation differently on
the document level. Experiments show that transferring knowledge on the document
level with a dictionary (i.e., SOFTLINK) is more efficient, resulting in stable and low-
variance topic qualities in various training situations. A natural question is why the
same resource results in different performance on different levels of transfer operations.
To answer this question from another angle, we further look into the actual topics
trained from SOFTLINK and VOCLINK in this section. The general idea is to look into
the same topic output from SOFTLINK and VOCLINK and see what topic words they
have in common (denoted asW+), and what words they have exclusively, denoted as
W−,SOFT andW−,VOC for SOFTLINK and VOCLINK, respectively. The words inW−,VOC are
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those with lower topic coherence and are thus the key to understanding the suboptimal
performance of VOCLINK.

7.3.1 Aligning Topics. To this end, the first step is to align possible topics between
VOCLINK and SOFTLINK, since the initialization of Gibbs samplers is random. Let
{WVOC

k }K
k=1 and {W SOFT

k }K
k=1 be the K topics learned by VOCLINK and SOFTLINK respec-

tively, from the same training conditions. For each topic pair (k, k′) we calculate the
Jaccard indexWVOC

k andW SOFT
k′ , one for each language, and use the average over the two

languages as the matching score mk,k′ of the topic pair:

mk, k′ = 1
2

(
J
(
WVOC

k,`1
,W SOFT

k′,`1

)
+ J

(
WVOC

k, `2
,W SOFT

k′, `2

))
(32)

where J(X, Y) is the Jaccard index between sets X and Y. Thus, there are K2 matching
scores with a number of topics K. We set a threshold of 0.8, so that a matching score is
valid only when it is greater than 0.8 ·max mk,k′ over all the K2 scores. For each topic k, if
its matching score is valid, we alignWVOC

k withW SOFT
k′ , and treat them as potentially the

same topic. When multiple matching scores are valid, we use the topic with the highest
score and ignore the rest.

7.3.2 Comparing Document Frequency. Using the approximate alignment algorithm we
described above, we are now able to compare each aligned topic pair between VOCLINK
and SOFTLINK.

For a word type w, we define the document frequency as the percentage of doc-
uments where w appears. A low document frequency of word w implies that w only
appears in a small number of documents. For every aligned topic pair

(
Wi,Wj

)
where

Wi andWj are topic word sets from SOFTLINK and VOCLINK, respectively, we have three
sets of topic words derived from this pair:

W+ = Wi ∩Wj (33)

W−,VOC = Wi \Wj (34)

W−,SOFT = Wj \Wi (35)

Then we calculate the average document frequencies over all the words in each of
the sets, and we show the results in Figure 18.

We observe that the average document frequencies over words inW−,VOC are con-
sistently lower in every language, whereas those in W+ are higher. This implies that
VOCLINK tends to give rare words higher probability in the topic-word distributions.
In other words, VOCLINK gives high probabilities to words that only appear in specific
contexts, such as named entities. Thus, when evaluating topics using a reference corpus,
the co-occurrence of such words with other words is relatively low due to lack of that
specific context in the reference corpus.

We show an example of an aligned topic in Figure 19. In this example, we see
that although both VOCLINK and SOFTLINK can discover semantically coherent words
shown in W+, VOCLINK focuses more on words that only appear in specific con-
texts: There are many words (mostly named entities) in W−,VOC that only appear in
one document. Due to lack of this very specific context in the reference corpora, the
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Figure 18
Average document frequencies ofW−,VOC are generally lower thanW−,SOFT andW+, shown in
the triangle markers.
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Figure 19
An example of real data showing the topic words of SOFTLINK and VOCLINK. Words that appear
in both models are inW+; words that only appear in SOFTLINK or VOCLINK are included in
W−,SOFT orW−,VOC, respectively.

co-occurrence of these words with other more general words is likely to be zero, result-
ing in lower CNPMI.

7.4 Comparing Transfer Strength

While we have looked at the topics to explain what kind of words produced by VOC-
LINK make the model’s performance lower than SOFTLINK, in this section, we try to
explain why this happens by analyzing their transfer operations. Recall that VOCLINK
defines transfer operations on topic-node distributions {φk,r}K

k=1 (Equation (23)), while
SOFTLINK defines transfer on document-topic distributions θ. The differences between
transfer levels with the same resources leads to a suspicion that document level has a
“stronger” transfer power.

The first question is to understand how this transfer operation actually functions
in the training of topic models. During Gibbs’ sampling of monolingual LDA, the
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conditional distribution for a token, denoted as P , is calculated by conditioning on all
the other tokens and their topics, and can be factorized into two conditionals: document-
level Pθ and word-level Pφ. Let the current token be of word type w, and w− and
z− all the other words and their current topic assignments in the corpus. The conditional
is then

Pk = Pr
(
z = k|w, w−, z−

)
(36)

∝
(
nk|d + αk

)
·

nw|k + βw

n·|k + 1>β
(37)

= Pθk · Pφk (38)

where nk|d is the number of topic k in document d, nw|k the number of word type w
in topic k, n·|k the number of tokens assigned to topic k, and 1 an all-one vector. In
this equation, the final conditional distribution can be treated as a “vote” from the two
conditionals: Pθ and Pφ (Yuan et al. 2015). If Pφ is a uniform distribution, then P = Pθ,
meaning the conditional on document Pθ dominates the decision of choosing a topic,
while the conditional on word Pφ is uninformative.

We apply this similar idea to multilingual topic models. For a token in language
`2, we let w be its word type, and P can also generally be factorized to two individual
conditionals,

Pk = Pr
(
z = k|w, w−, z−

)
(39)

∝
[
nk|d + hθ

(
δ, N(`1 ),α

)
k

]
︸ ︷︷ ︸

PDOC, k

·
nw|k + hφ

(
δ′, N(`1 ),β

)
w

n·|k + 1>hφ
(
δ′, N(`1 ),β

)
︸ ︷︷ ︸

PVOC, k

(40)

=PDOC,k · PVOC,k (41)

where the transfer operation is clearly incorporated into the calculation of the condi-
tional, and PDOC and PVOC are conditional distributions on document and word levels,
respectively. Thus, it is easy to see how transfers on different levels contribute to the
decision of a topic. This is also where our comparison of “transfer strength” starts.

To apply this idea, for each token, we first obtain three distributions described
before: P , PDOC, and PVOC. Then we calculate cosine similarities cos (PDOC,P ) and
cos (PVOC,P ). If r = cos(PDOC ,P )

cos(PVOC ,P ) > 1, we know that PDOC is dominant and helps shape the
conditional distribution P ; in other words, the document level transfer is stronger. We
calculate the ratio of similarities r = cos(PDOC ,P )

cos(PVOC ,P ) for all the tokens in every model, and take
the model-wise average over all the tokens (Figure 20). The most balanced situation is
r = 1, meaning transfers on both word and document levels are contributing equally to
the conditional distributions.

From the results, we notice that both DOCLINK and C-BILDA have stronger transfer
strength on the document level, which means that the transfer operations on the doc-
ument levels are actually informing the decision of a token’s topic. However, we also
notice that VOCLINK has very comparable transfer strength to DOCLINK and C-BILDA,
which makes less sense, because VOCLINK defines transfer operations on the word level.
This implies that transferring knowledge on the word level is weaker. This also explains
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Figure 20
Comparisons of transfer strength. A value of one (shown in red dotted line) means an equal
balance of transfer between document and word levels. We notice SOFTLINK has the most
balanced transfer strength, whereas VOCLINK has stronger transfer at the document level
although its transfer operation is defined on the word level.

why, in the previous section, VOCLINK tends to find topic words appearing in only a few
documents.

It is also interesting to see SOFTLINK having a relatively good balance between doc-
ument and word levels, with consistently the most balanced transfer strengths across
all models and languages.

8. Remarks and Conclusions

Multilingual topic models use corpora in multiple languages as input with additional
language resources as supervision. The traits of these models inevitably lead to a
wide variety of training scenarios, especially when a language’s resources are scarce,
whereas most previous studies on multilingual topic models have not analyzed in depth
the appropriateness of different models for different training situations and resource
availability. For example, experiments are most often done in European languages, with
models that are typically trained on parallel or comparable corpora.

The contributions of our study are providing a unifying framework of these differ-
ent models, and systematically analyzing their efficacy in different training situations.
We conclude by summarizing our findings along two dimensions: training corpora
characteristics and dictionary characteristics, since these are the necessary components
to enable crosslingual knowledge transfer.

8.1 Model Selection

Document-level models are shown to work best when the corpus is parallel or at least
comparable. In terms of learning high-quality topics, DOCLINK and C-BILDA yield very
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similar results. However, since C-BILDA has a “language selector” mechanism in the
generative process, it is slightly more efficient for training Wikipedia articles in low-
resource languages, where the document lengths have large gaps compared to English.
SOFTLINK, on the other hand, only needs a small dictionary to enable document-level
transfer, and yields very competitive results. This is especially useful for low-resource
languages when the dictionary size is small and only a small number of comparable
document pairs are available for training.

Word-level models are harder to achieve full potential of transfer, due to limits in
the dictionary size and training sets, and unrealistic assumptions of the generative pro-
cess regarding dictionary coverage. The representative model, VOCLINK, has similarly
good performance on document classification as other models, but the topic qualities
according to coherence-based metrics are lower. Comparing to SOFTLINK, which also
requires a dictionary as resource, directly modeling word translations in VOCLINK turns
out to be a less efficient way of transferring dictionary knowledge. Therefore, when
using dictionary information, we recommend SOFTLINK over VOCLINK.

8.2 Crosslingual Representations

As an alternative method to learning crosslingual representations, crosslingual word
embeddings have been gaining attention (Ruder, Vulic, and Søgaard 2019; Upadhyay
et al. 2016). Recent crosslingual embedding architectures have been applied to a wider
range of applications in natural language processing, and achieve state-of-the-art per-
formance. Similar to the topic space in multilingual topic models, crosslingual em-
beddings learn semantically consistent features in a shared embedding space for all
languages.

Both approaches—topic modeling and embedding—have advantages and limita-
tions. Multilingual topic models still rely on supervised data to learn crosslingual rep-
resentations. The choice of such supervision and model is important, which leads to our
main discussion of this work. Topic models have the advantage of being interpretable.
Embedding methods are powerful in many natural language processing tasks, and the
representations are more fine-grained. Recent advancements in crosslingual embedding
training do not require crosslingual supervision resources such as dictionary or parallel
data (Artetxe, Labaka, and Agirre 2018; Lample et al. 2018), which is a large step
toward generalization of crosslingual modeling. Although it is an open problem on
how to interpret the results and how to reduce the heavy computing resources required,
embedding based methods are a promising research direction.

Relations to Topic Models. A very common strategy for learning crosslingual embeddings
is to use a projection matrix as supervision or sub-objective to learn a projection matrix
that projects independently trained monolingual embeddings into a shared crosslingual
space (Dinu and Baroni 2014; Faruqui and Dyer 2014; Tsvetkov and Dyer 2016; Vulić and
Korhonen 2016).

In multilingual topic models, the supervision matrix δ plays the role of a projection
matrix between languages. In DOCLINK, for example, δd`2,d`1

projects document d`2 to
the document space of `1 (Equation (15)). SOFTLINK provides a simple extension by
forming δ to a matrix of transfer distirbutions based on word-level document similari-
ties. VOCLINK applies projections in the form of word translations.

Thus, we can see that the formation of projection matrices in multilingual topic
models is still static and restricted to an identity matrix or a simple pre-calculated
matrix. A generalization would be to add learning the projection matrix itself as an
objective into multilingual topic models. This could be a way to improve VOCLINK
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by extending word associations to polysemy across languages, and making it less
dependent on context.

8.3 Future Directions

Our study inspires future work in two directions. The first direction is to increase
the efficiency of word-level knowledge transfer. For example, it is possible to use co-
location information of translated words to transfer knowledge, though cautiously, to
untranslated words. It has been shown that word-level models can help find new word
translations, for example, by using the existing dictionary as “seed,” and gradually
adding more internal nodes to the tree structure using trained topic-word distributions.
Additionally, our analysis showed the benefits of using a “language selector” in C-
BILDA to make the generative process of DOCLINK more realistic, and one could also
implement a similar mechanism in VOCLINK to make the conditional distributions for
tokens less dependent on specific context.

The second direction is more general. By systematically synthesizing various mod-
els and abstracting the knowledge transfer mechanism through an explicit transfer
operation, we can construct models that shape the probabilistic distributions of a target
language using that of a source language. By defining different transfer operations,
more complex and robust models can be developed, and this transfer formulation may
provide new ways of constructing models than with a traditional joint formulation (Hao
and Paul 2019). For example, SOFTLINK is generalization DOCLINK based on transfer
operations that does not have an equivalent joint formulation. This framework for
thinking about multilingual topic models may lead to new ideas for other models.
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and Hervé Jégou. 2018. Word translation
without parallel data. In 6th International
Conference on Learning Representations,
ICLR 2018, Vancouver.

Lau, Jey Han, David Newman, and Timothy
Baldwin. 2014. Machine reading tea leaves:
automatically evaluating topic coherence
and topic model quality. In Proceedings of
the 14th Conference of the European Chapter of
the Association for Computational Linguistics,
EACL 2014, pages 530–539, Gothenburg.
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