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Despite the recent success of deep neural networks in natural language processing and other
spheres of artificial intelligence, their interpretability remains a challenge. We analyze the repre-
sentations learned by neural machine translation (NMT) models at various levels of granularity
and evaluate their quality through relevant extrinsic properties. In particular, we seek answers to
the following questions: (i) How accurately is word structure captured within the learned rep-
resentations, which is an important aspect in translating morphologically rich languages? (ii)
Do the representations capture long-range dependencies, and effectively handle syntactically
divergent languages? (iii) Do the representations capture lexical semantics? We conduct a
thorough investigation along several parameters: (i) Which layers in the architecture capture
each of these linguistic phenomena; (ii) How does the choice of translation unit (word, character,
or subword unit) impact the linguistic properties captured by the underlying representations?
(iii) Do the encoder and decoder learn differently and independently? (iv) Do the representations
learned by multilingual NMT models capture the same amount of linguistic information as
their bilingual counterparts? Our data-driven, quantitative evaluation illuminates important
aspects in NMT models and their ability to capture various linguistic phenomena. We show
that deep NMT models trained in an end-to-end fashion, without being provided any direct
supervision during the training process, learn a non-trivial amount of linguistic information.
Notable findings include the following observations: (i) Word morphology and part-of-speech
information are captured at the lower layers of the model; (ii) In contrast, lexical semantics or
non-local syntactic and semantic dependencies are better represented at the higher layers of the
model; (iii) Representations learned using characters are more informed about word-morphology
compared to those learned using subword units; and (iv) Representations learned by multilingual
models are richer compared to bilingual models.

1. Introduction

Deep neural networks have quickly become the predominant approach to most tasks in
artificial intelligence, including machine translation (MT). Compared with their tradi-
tional counterparts, these models are trained in an end-to-end fashion, providing a sim-
ple yet elegant mechanism. This simplicity, however, comes at the price of opaqueness.
Unlike traditional systems that contain specialized modules carrying specific sub-tasks,
neural MT (NMT) systems train one large network, optimized toward the overall task.
For example, non-neural statistical MT systems have sub-components to handle fluency
(Heafield 2011), lexical generation (Koehn, Och, and Marcu 2003), word reordering
(Galley and Manning 2008; Durrani, Schmid, and Fraser 2011), rich morphology (Koehn
and Hoang 2007), and a smorgasbord of features (Chiang, Knight, and Wang 2009) for
modeling different phenomena. Neural MT systems, on the other hand, contain a single
model based on an encoder-decoder mechanism (Sutskever, Vinyals, and Le 2014) with
attention (Bahdanau, Cho, and Bengio 2014). Despite its simplicity, neural MT surpassed
non-neural statistical MT within a few years of its emergence. Human evaluation and
error analysis revealed that the improvements were obtained through more fluent
outputs (Toral and Sánchez-Cartagena 2017) and better handling of morphology and
non-local dependencies (Bentivogli et al. 2016). However, it is not clear what the role of
different components in the network is, what kind of information is learned during the
training process, and how different components interact. Consequently, MT systems
trained using neural networks are often thought of as a “black-box”—that is, they
map inputs to outputs, but the internal machinery is opaque and difficult to interpret.
Gaining a better understanding of these systems is necessary for improving the design
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choices and performance. In current practice, their development is often limited to
a trial-and-error process, without gaining a real understanding of what the system
has learned. We aim to increase model transparency by analyzing the representations
learned by NMT models at different levels of granularity in light of various linguistic
phenomena—at morphological, syntactic, and semantic levels—that are considered im-
portant for the task of machine translation and for learning complex natural language
processing (NLP) problems. We thus strive for post-hoc decomposability, in the sense
of Lipton (2016). That is, we analyze models after they have been trained, to uncover
what linguistic phenomena are captured within the underlying representations. More
specifically, we aim to address the following questions in this article:

• What linguistic information is captured in deep learning models?

– Do the NMT representations capture word morphology?
– Do the NMT models, being trained on flat sequences of words, still

acquire structural information?
– Do the NMT models learn informative semantic representations?

• Is the language information well distributed across the network or are
designated parts (different layers, encoder vs. decoder) more focused on a
particular linguistic property?

• What impact does the choice of translation unit (characters, subword
units, or words) have on the learned representations in terms of different
linguistic phenomena?

• How does translating into different target languages affect the
representations on the (encoder) source-side?

• How do the representations acquired by multilingual models compare
with those acquired by bilingual models?

To this end, we follow a simple and effective procedure with three steps: (i) train
an NMT system; (ii) use the trained model to generate feature representations for
source/target language words; and (iii) train a classifier using the generated features
to make predictions for a relevant auxiliary task. We then evaluate the quality of the
trained classifier on the given task as a proxy to the quality of the trained NMT model.
In this way, we obtain a quantitative measure of how well the original NMT system
learns features that are relevant to the given task. This procedure has become common
for analyzing various neural NLP models (Belinkov and Glass 2019). In this work,
we analyze NMT representations through several linguistic annotation tasks: part-of-
speech (POS) tagging and morphological tagging for morphological knowledge; combi-
natory categorial grammar (CCG) supertagging and syntactic dependency labeling for
syntactic knowledge; and lexical semantic tagging and semantic dependency labeling
for semantic knowledge.

We experiment with several languages with varying degrees of morphological
richness and syntactic divergence (compared to English): French, German, Czech,
Russian, Arabic, and Hebrew. Our analyses reveal interesting insights such as:

• NMT models trained in an end-to-end fashion learn a non-trivial amount
of linguistic information without being provided with direct supervision
during the initial training process.

3

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/46/1/1/1847791/coli_a_00367.pdf by guest on 07 Septem
ber 2023



Computational Linguistics Volume 46, Number 1

• Linguistic information tends to be organized in a modular manner,
whereby different parts of the neural network generate representations
with varying amounts and types of linguistic properties.

• A hierarchy of language representations emerges in networks trained on
the complex tasks studied in this article. The lower layers of the network
focus on local, low-level linguistic properties (morphology, POS, local
relations), whereas higher layers are more concerned with global, high
level properties (lexical semantics, long-range relations).

• Character-based representations are better for learning morphology,
especially for unknown and low-frequency input words. In contrast,
representations learned using subword units are better for handling
syntactic and semantic dependencies.

• The target language impacts the kind of information learned by the MT
system. For example, translating into morphologically poorer languages
leads to better source-side word representations. This effect is especially
apparent in smaller data regimes.

• Representations learned by multilingual NMT models are richer in terms
of learning different linguistic phenomena and benefit from shared learning.1

This article is organized into the following sections. Section 2 provides an account
of the related work. Section 3 describes the linguistic properties and the representative
tasks used to carry out the analysis study. Section 4 describes the methodology taken for
analyzing the NMT representations. Section 5 describes data, annotations, and experi-
mental details. Sections 6, 7, and 8 provide empirical results and analysis to evaluate
the quality of NMT representations with respect to morphology, syntax, and semantics,
respectively, and Section 9 does the same for the multilingual NMT models. Section 10
sheds light on the overall patterns that arise from the experimental results from several
angles. Section 11 concludes the article. An open-source implementation of our analysis
code is available through the NeuroX toolkit (Dalvi et al. 2019b).

2. Related Work

The work related to this article can be divided into several groups:

2.1 Analysis of Neural Networks

The first group of related work aims at demystifying what information is learned within
the neural network black-box. One line of work visualizes hidden unit activations in re-
current neural networks (RNNs) that are trained for a given task (Elman 1991; Karpathy,
Johnson, and Li 2015; Kádár, Chrupała, and Alishahi 2017). Although such visualiza-
tions illuminate the inner workings of the network, they are often qualitative in nature
and somewhat anecdotal. Other work aims to evaluate systems on specific linguistic
phenomena represented in so-called challenge sets. Prominent examples include older
work on MT evaluation (King and Falkedal 1990), as well as more recent evaluations
via contrastive translation pairs (Burlot and Yvon 2017; Rios Gonzales, Mascarell, and

1 The learned parameters are implicitly shared by all the language pairs being modeled.
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Sennrich 2017; Sennrich 2017; Bawden et al. 2018). The latter line of work constructs
minimal pairs of translations that differ by a known linguistic property, and evaluates
whether the MT system assigns a higher score to the correct translation. The challenge
set evaluation may produce informative results on the quality of the overall model for
some linguistic property, but it does not directly assess the learned representations.

A different approach tries to provide a quantitative analysis by correlating parts of
the neural network with linguistic properties, for example, by training a classifier to pre-
dict a feature of interest (Adi et al. 2017; Hupkes, Veldhoen, and Zuidema 2017; Conneau
et al. 2018). Such an analysis has been conducted on word embeddings (Köhn 2015;
Qian, Qiu, and Huang 2016b), sentence embeddings (Adi et al. 2017; Ganesh, Gupta,
and Varma 2017; Conneau et al. 2018), and RNN states (Qian, Qiu, and Huang 2016a; Wu
and King 2016; Wang, Chung, and Lee 2017). The language properties mainly analyzed
are morphological (Qian, Qiu, and Huang 2016b; Vylomova et al. 2016; Belinkov et al.
2017a; Dalvi et al. 2017), semantic (Qian, Qiu, and Huang 2016b; Belinkov et al. 2017b),
and syntactic (Tran, Bisazza, and Monz 2018; Köhn 2015; Conneau et al. 2018). Recent
studies carried a more fine-grained neuron-level analysis for NMT and LM (Bau et al.
2019a; Dalvi et al. 2019a; Lakretz et al. 2019). In contrast to all of this work, we focus on
the representations learned in neural machine translation in light of various linguistic
properties (morphological, syntactic, and semantic) and phenomena such as handling
low frequency words. Our work is most similar to Shi, Padhi, and Knight (2016) and
Vylomova et al. (2016). The former used hidden vectors from a neural MT encoder
to predict syntactic properties on the English source side, whereas we study multiple
language properties in different languages. Vylomova et al. (2016) analyzed different
representations for morphologically rich languages in MT, but they did not directly
measure the quality of the learned representations. Surveying the work on analyzing
neural networks in NLP is beyond the scope of the present paper. We have highlighted
here several of the more relevant studies and refer to Belinkov and Glass (2019) for a
recent survey on the topic.

2.2 Subword Units

One of the major challenges in training NMT systems is handling less frequent and
out-of-vocabulary words. To address this issue, researchers have resorted to using
subword units for training the neural network models. Luong and Manning (2016)
trained a hybrid system that integrates character-level representation within a word-
based framework. Ling et al. (2015) used a bidirectional long short-term memory net-
work (LSTM; Hochreiter and Schmidhuber 1997) to compose word embeddings from
the character embeddings. Costa-jussà and Fonollosa (2016) and Renduchintala et al.
(2018) combined convolutional and highway layers to replace the standard lookup-
based word representations in NMT systems with character-aware representations.2

Sennrich, Haddow, and Birch (2016) used byte-pair encoding (BPE), a data-compression
algorithm, to segment words into smaller units. A variant of this method known as a
wordpiece model is used by Google (Wu et al. 2016a). Shapiro and Duh (2018) used
a similar convolutional architecture on top of BPE. Chung, Cho, and Bengio (2016)
used a combination of BPE-based encoder and character-based decoder to improve

2 Character-based systems have been used previously in phrase-based MT for handling morphologically
rich (Luong, Nakov, and Kan 2010) and closely related language pairs (Durrani et al. 2010; Nakov and
Tiedemann 2012) or for transliterating unknown words (Durrani et al. 2014).
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translation quality. Motivated by their findings, Lee, Cho, and Hofmann (2017) explored
using fully character representations (with no word boundaries) on both the source and
target sides. As BPE segmentation is not linguistically motivated, an alternative to using
morpheme-based segmentation has been explored in Bradbury and Socher (2016). It
is important to address what using different translation units (word, BPE, morpheme,
character) entails. Sennrich (2017) performed a comparative evaluation of character- and
BPE-based systems on carefully crafted synthetic tests and found that character-based
models are effective in handling unknown words, but perform worse in capturing long-
distance dependencies. Our work contributes to this body of research by analyzing how
models based on different units capture various linguistic properties. We analyze the
representations obtained by training systems on word, character, and BPE-based units.

3. Linguistic Properties

In this section, we describe the linguistic phenomena for which we analyze NMT
representations. We focus on linguistic properties that are considered important for the
task of machine translation, and that we believe are intrinsically learned in the model
to effectively perform the complex task of translation. We consider properties from
the realms of morphology, syntax, and semantics. In each case, we describe linguistic
properties of interest and define relevant classification tasks that aim to capture them
(see Table 1 for sequence labeling tasks).

3.1 Morphology

Modeling the structure of words and their relationship to other words in the sentence
is a fundamental task in any NLP application. Languages vary in the way they encode
information within words. Some languages exhibit grammatical relations such as sub-
ject/object/predicate or gender agreement by only changing the word form, whereas
others achieve the same through word order or addition of particles. Morphology (aka
word structure), poses an exigent problem in machine translation and is at the heart of
dealing with the challenge of data-sparsity. Although English is limited in morphology,
other languages such as Czech, Arabic, and Russian have highly inflected morphology.
This entails that for each lemma many possible word variants could exist, thus causing
an out-of-vocabulary word problem. For example, Huck et al. (2017) found only one
morphological variant of the Czech word “čës̆ka” (plural of English “kneecap”) in a
corpus of 50K parallel sentences. It required 50M sentences, a size of parallel corpus

Table 1
Example sentence with different word-level annotations. The CCG supertags are taken from
Nadejde et al. (2017). POS and semantic tags are our own annotation, as well as the German
translation and its morphological tags.

Words Obama receives Netanyahu in the capital of USA

POS NP VBZ NP IN DT NN IN NP
SEM PER ENS PER REL DEF REL REL GEO
CCG NP ((S[dcl]\NP)

/PP)/NP
NP PP/NP NP/N N (NP\NP)

/NP
NP

Words Obama empfängt Netanyahu in der Hauptstadt der USA

MORPH nn.nom.
sg.neut

vvfin.3.sg.
pres.ind

ne.nom.sg.* appr.– art.dat.
sg.fem

nn.dat.sg.fem art.gen.pl.* ne.gen.pl.*
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only available for a handful of language pairs, for them to observe all possible variants
of the word. Even if such a data set is available, the computational complexity requires
NMT systems to limit the vocabulary size. It is therefore important for an MT system
to model word-structure with the available data and vocabulary size limitation. In
traditional statistical machine translation, this is often addressed by splitting tokens in
morphologically rich languages into constituents in a preprocessing step, using word
segmentation in Arabic (Pasha et al. 2014; Abdelali et al. 2016) or compound splitting in
German (Koehn and Knight 2003). Previous work also explored generative morpholog-
ical models, known as Factored Translation Models, that explicitly integrate additional
linguistic markup at the word level to learn morphology (Koehn and Hoang 2007). In
NMT training, using subword units such as byte-pair encoding (Sennrich, Haddow,
and Birch 2016) has become a de facto standard in training competition grade systems
(Pinnis et al. 2017; Sennrich et al. 2017). A few have tried morpheme-based segmentation
(Bradbury and Socher 2016), and several even used character-based systems (Chung,
Cho, and Bengio 2016; Lee, Cho, and Hofmann 2017) to achieve similar performance as
the BPE-segmented systems.

Table 2 shows an example of each representation unit. BPE splits words into sym-
bols (a symbol is a sequence of characters) and then iteratively replaces the most fre-
quent sequences of symbols with a new merged symbol. In essence, frequent character
n-gram sequences merge to form one symbol. The number of merge operations is con-
trolled by a hyper-parameter OP, which directly affects the granularity of segmentation:
a high value of OP means coarse segmentation and a low value means fine-grained
segmentation. Note that although BPE and Morfessor (unsupervised morpheme-based
segmentation) segment words at a similar level of granularity, the segmentation gen-
erated by Morfessor (Smit et al. 2014) is linguistically motivated. For example, it splits
the gerund verb shooting into the base verb shoot and the suffix ing. In comparison, the
BPE segmentation sho + oting has no linguistic justification. At the extreme, the fully
character-level units treat each word as a sequence of characters.

Tagging tasks. In this paper, we study how effective neural MT representations are in
learning word morphology and what different translation units offer in this regard.
To answer such questions, we focus on the tasks of POS and full morphological tag-
ging, which is the identification of all pertinent morphological features for every word
(see Table 1). For example, the morphological tag vvfin.3.sg.pres.ind for the word
“empfängt” (English ‘receives’) marks that it is a finite verb, third person, singular
gender, present tense, and indicative mood.

Table 2
Example sentence with different segmentations: words, BPE subwords (Sennrich, Haddow, and
Birch 2016), Morfessor-based subwords (Smit et al. 2014), and characters. Notice that BPE
subwords do not necessarily conform to morphemes (“shooting”→ “sho@@” and “oting”),
while Morfessor tends to have a more morphological segmentation (“shoot@@”, “ing”).
“@@” indicates a split subword unit and “ ” marks a word boundary.

Words Professor admits to shooting his girlfriend

BPE Professor admits to sho@@ oting his gir@@ l@@ friend

Morfessor Professor admit@@ s to shoot@@ ing his girl@@ friend

Characters P r o f e s s o r a d m i t s t o s h o o t i n g h i s g i r l f r i e n d
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3.2 Syntax

Linguistic theories argue that words are hierarchically organized in syntactic con-
stituents referred to as syntactic trees. It is therefore natural to think that translation
models should be based on trees rather than a flat sequence representation of sentences.
For more than a decade of research in machine translation, a tremendous amount of
effort has been put into syntax-based machine translation (Yamada and Knight (2002);
Chiang (2005), Galley et al. (2006), Zhang et al. (2007), Shen, Xu, and Weischedel (2010);
Neubig and Duh (2014)), with notable success in languages such as Chinese and
German, which are syntactically divergent compared to English. However, the
sequence-to-sequence NMT systems were able to surpass the performance of the state-
of-the-art syntax-based systems in recent MT competitions (Bojar et al. 2016). The
LSTM-based RNN model with the help of the attention mechanism is able to handle
long-distance dependencies. There have also been recent attempts to integrate syntax
into NMT (Eriguchi, Hashimoto, and Tsuruoka 2016; Stahlberg et al. 2016; Aharoni and
Goldberg 2017; Chen et al. 2017; Wu et al. 2017), but sequence-to-sequence NMT models
without explicit syntax are the state of the art at the moment (Pinnis et al. 2017; Sennrich
et al. 2017).

Tagging tasks. In this paper, we analyze whether NMT models trained on flat sequences
acquire structural syntactic information. To answer this, we use two tagging tasks. First,
we use CCG supertagging, which captures global syntactic information locally at the
word level by assigning a label to each word annotating its syntactic role in the sentence.
The process is almost equivalent to parsing (Bangalore and Joshi 1999). For example, the
syntactic tag PP/NP (in Table 1) can be thought of as a function that takes a noun phrase on
the right (“the capital of USA”) and returns a prepositional phrase (“in the capital of USA”).3

Second, we use syntactic dependency labeling, the task of assigning a type to
each arc in a syntactic dependency tree. In dependency grammar, sentence structure
is represented by a labeled directed graph whose vertices are words and whose edges
are relations, or dependencies, between the words (Melčuk 1988; Nivre 2005). A depen-
dency is a directed bi-lexical relation between a head and its dependent, or modifier.
Dependency structures are attractive to study for three main reasons. First, dependency
formalisms have become increasingly popular in NLP in recent years, and much work
has been devoted to developing large annotated data sets for these formalisms. The
Universal Dependencies data set (Nivre et al. 2017) that is used in this article has been
especially influential. Second, there is a fairly rich history of using dependency struc-
tures in machine translation, although much work has focused on using constituency
structures (Williams et al. 2016). Third, as dependencies are bi-lexical relations between
words, it is straightforward to obtain representations for them from an NMT model.
This makes them amenable to the general methodology followed in this paper. Figure 1a
shows an example sentence with syntactic dependencies.

3.3 Semantics

The holy grail in MT has long been to achieve an interlingua-based translation model,
where the goal is to capture the meaning of the source sentence and generate a
target sentence with the same meaning. It has been believed since the inception of MT

3 Refer to Steedman and Baldridge (2011) and Clark and Curran (2004) for more information on CCG
supertagging.
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Figure 1
Example sentence with syntactic and semantic relations. (a) Syntactic relations according to the
Universal Dependencies formalism. Here “Obama” and “ Netanyahu” are the subject and object
of “receives”, respectively, obl refers to an oblique relation of the locative modifier, nmod denotes
the genitive relation, the prepositions “in” and “of” are treated as case-marking elements, and
“the” is a determiner. See https://universaldependencies.org/guidelines.html for detailed
definitions. (b) Semantic relations according to the PSD formalism. Here ACT-arg and PAT-arg
refer respectively to the originator and affected arguments of “receives”, LOC in the location, and
APP is the thing that “capital” belongs to. For detailed definitions, see Cinková et al. (2004).

that without acquiring such meaning representations it will be impossible to generate
human-like translations (Weaver 1955). Traditional statistical MT systems are weak at
capturing meaning representations (e.g., “who does what to whom—namely, what are
the agent, the action, and the patient in the sentence [Jones et al. 2012]). Although neural
MT systems are also trained only on parallel data, without providing any direct super-
vision of word meaning, they are a continuous space model, and are believed to capture
word meaning. Johnson et al. (2017), for example, found preliminary evidence that the
shared architecture in their multilingual NMT systems learns a universal interlingua.
There have also been some recent efforts to incorporate such information in NMT
systems, either explicitly (Rios Gonzales, Mascarell, and Sennrich 2017) or implicitly
(Liu, Lu, and Neubig 2018).

Tagging task. In this article, we study how semantic information is captured in NMT
through two tasks: lexical semantic tagging and semantic dependency labeling. First,
we utilize the lexical semantic (SEM) tagging task introduced by Bjerva, Plank, and Bos
(2016). It is a sequence labeling task: Given a sentence, the goal is to assign to each word
a tag representing a semantic class. This is a good task to use as a starting point for
investigating semantics because: (i) tagging words with semantic labels is very simple,
compared with building complex relational semantic structures; (ii) it provides a large
supervised data set to train on, in contrast to most of the available data sets on word sense
disambiguation, lexical substitution, and lexical similarity; and (iii) the proposed SEM
tagging task is an abstraction over POS tagging4 aimed at being language-neutral, and

4 For instance, proximal and distal demonstratives (e.g., “this” and “that”) are typically assigned the
same POS tag (DT) but receive different SEM tags (PRX and DST, respectively), and proper nouns are
disambiguated into several classes such as geo-political entity, location, organization, person, and artifact.
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oriented to multilingual semantic parsing, all relevant aspects to machine translation.
Table 1 shows an example sentence annotated with SEM tags. The semantic tag ENS

describes a present-simple event category.
The second semantic task is semantic dependency labeling, the task of assigning a

type to each arc in a semantic dependency graph. Such dependencies are also known as
predicate–argument relations, and may be seen as a first step toward semantic structure.
They capture different aspects from syntactic relations, as can be noticed by the different
graph structure (compare Figure 1b to Figure 1a). Predicate–argument relations have
also been used in many (non-neural) MT systems (Komachi, Matsumoto, and Nagata
2006; Wu et al. 2011; Xiong, Zhang, and Li 2012; Li, Resnik, and Daumé III 2013).
Figure 1b shows an example sentence annotated with Prague Semantic Dependencies
(PSD), a reduction of the tectogrammatical annotation in the Prague Czech–English
Dependency Treebank (Cinková et al. 2004; Cinková et al. 2009), which was made
available as part of the Semantic Dependency Parsing shared tasks in SemEval (Oepen
et al. 2014, 2015).

4. Methodology

We follow a 3-step process for studying linguistic information learned by the trained
neural MT systems. The steps include: (i) training a neural MT system; (ii) using the
trained model to generate feature representations for words in a language of interest;
and (iii) training a classifier using generated features to make predictions for the differ-
ent linguistic tagging tasks. The quality of the trained classifier on the given task serves
as a proxy to the quality of the generated representations. It thus provides a quantitative
measure of how well the original MT system learns features that are relevant to the
given task.

In this work, we focus on neural MT systems trained using the sequence-to-
sequence with attention architecture (Bahdanau, Cho, and Bengio 2014), where an
encoder network first encodes the source sentence, followed by an attention mechanism
to compute a weighted average of the encoder states that the decoder network uses to
generate the target sentence. Both the encoder and the decoder networks are recurrent
neural networks in our case. Several other architectures, for example the Transformer
models (Vaswani et al. 2017), have recently been proposed for neural MT. We discuss
these briefly in Section 10.5.

Formally, let s = {s1, s2, . . . , sN} denote a source sentence, and t = {t1, t2, . . . , tM} de-
note a target sentence, where si and ti are words. We first describe the simple case where
we have word-level model and linguistic properties. Later we extend this scenario to
subword units and to linguistic properties that involve multiple words.

We first use the encoder (Equation 1) to compute a set of hidden states h =
{h1, h2, . . . , hN}, where hi represents the hidden state for word si. The encoder is a
stacked LSTM with L layers, where the output of layer l− 1 is passed as input to layer l
(at each timestep). We then use an attention mechanism to compute a weighted average
of these hidden states from the previous decoder state (di−1), known as the context
vector ci (Equation 2). The context vector is a real valued vector of k dimensions, which
is set to be the same as the hidden states in our case. The attention model computes
a weight whi for each hidden state of the encoder, thus giving soft alignment for each
target word. The context vector is then used by the decoder (Equation 3), which is also
a stacked LSTM, to generate the next word in the target sequence:

ENCsi : si, ei−1 7→ hi (1 ≤ i ≤ N) (1)
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ATTNi : {h1, . . . , hN}, di−1, ti−1 7→ ci ∈ Rk (1 ≤ i ≤M) (2)

DECti : ci, di−1, ti−1 7→ ti (1 ≤ i ≤M) (3)

After training the NMT system, we freeze the parameters of the network and use
the encoder or the decoder as a feature extractor to generate vectors representing words
in the sentence. Let ENCl

si
denote the representation of a source word si at layer l in our

stacked LSTM. We use ENCl
si

from a particular layer l or concatenate all layer represen-
tations to train the external classifier for predicting a linguistic tag for si. The quality of
the representation can be deduced from our ability to train a good classifier. For word
representations on the target side, we feed our word of interest ti as the previously
predicted word, and extract the representation DECti (see Figure 2 for illustration).

Generating representations for dependency labeling. We used dependency structures to
evaluate the syntactic and semantic quality of the learned NMT representations (see
Sections 3.2 and 3.3 for details). Given two words that are known to participate in
a relation, a classifier is trained to predict the relation type. For the relation labeling
task, the input to the classifier is a concatenation of encoder representations for two
words in a relation, ENCl

si
and ENCl

sj
, where (si, sj) is a known dependency pair with

head si and modifier sj. Again, we perform experiments with both representations from

Figure 2
Illustration of our approach: After training an NMT system on parallel data, we extract
activations as features from the encoder/decoder and use these along with the labels to train an
external classifier. For morphological tagging, we consider the activations for the word alone,
while for syntactic/semantic relations we concatenate the activations for the two words involved
in the relation.
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a particular layer l and the concatenated representation from all layers. Note that this
formulation assumes that the order of the dependency is known. This formulation can
be seen as a dependency labeling problem, where dependency labels are predicted
independently. Although limited in scope, this formulation captures a basic notion of
structural relations between words.5

Generating representations with subword and character units. Previous work on analyzing
NMT representations has been limited to the analysis of word representations only,
where there is a one-to-one mapping from translation units (words) and their NMT rep-
resentations (hidden states) to their linguistic annotations (e.g., POS tags).6 In the case of
character- or BPE-based systems, each word is split into multiple translation units, and
each unit has its own representation. It is less trivial to define which representations
should be evaluated when predicting a linguistic property such as the part-of-speech.
In this work, we consider two simple approximations, illustrated in Figure 3:

1. Average: For every source (or target) word, average the activation
values of all the subwords (or characters) comprising it. In the case of a
bidirectional encoder, we concatenate the averages from the forward and
backward encoders’ activations on the subwords (or characters) that
represent the current word.7

2. Last: Consider the activation of the last subword (or character) as the
representation of the word. For the bidirectional encoder, concatenate the
forward encoder’s activation on the last subword unit with the backward
encoder’s activation on the first subword unit.

This formalization allows us to analyze the quality of character- and subword-based
representations via prediction tasks, which has not been explored before.

5. Experimental Setup

5.1 NMT Training Data

We experiment with several languages with varying degrees of morphological richness
and syntactic divergence (compared to English): Spanish (es), French (fr), German (de),
Czech (cs), Arabic (ar), Russian (ru), and Hebrew (he). We trained NMT systems using
data made available by the two popular machine translation campaigns, namely, WMT
(Bojar et al. 2017) and IWSLT (Cettolo et al. 2016). The MT models were trained using
a concatenation of NEWS, TED, and Europarl training data (≈ 2.5M sentence pairs).
The multilingual systems were trained by simply concatenating data from different

5 It is also not unrealistic, as dependency parsers often work in two stages, first predicting an unlabeled
dependency tree, and then labeling its edges (McDonald and Nivre 2011; McDonald, Lerman, and Pereira
2006). More complicated formulations can be conceived, from predicting the existence of dependencies
independently to solving the full parsing task, but dependency labeling is a simple basic task to begin
with.

6 Although we studied representations from a charCNN (Kim et al. 2015) in Belinkov et al. (2017a), the
extracted features were still based on word representations produced by the charCNN. As a result, in that
work we could not analyze and compare subword and character-based models that do not assume a
segmentation into words.

7 One could envision more sophisticated averages, such as weighting via an attention mechanism.
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Figure 3
Illustration of a bidirectional layer. Representations from the forward and backward layers are
concatenated. For the average method, all of the hidden states corresponding to subwords or
characters of a given word are averaged together for each layer. For the last method, only the
hidden state of the final subword or character is considered.

language pairs (a total of ≈10M sentence pairs) and training a shared encoder-decoder
pipeline. We used German, French, Spanish, and Czech to/from English to train multi-
lingual systems. Language codes were added as prefixes before each sentence. We used
official TED test sets to report translation quality (Papineni et al. 2002). We also used the
fully aligned United Nations corpus (Ziemski, Junczys-Dowmunt, and Pouliquen 2016)
for training the models in some of our experiments. It includes six languages: Arabic,
Chinese, English, French, Spanish, and Russian. This data set has the benefit of multiple
alignment of the several languages, which allows for comparable cross-linguistic anal-
ysis, for example, studying the effect of only changing the target language. We used the
first 2 million sentences of the training set, using the official training/development/test
split.

5.2 Neural MT Systems
5.2.1 Preprocessing. We used the standard Moses (Koehn et al. 2007) pipeline for pre-
processing the data, which includes tokenization, filtering for length, and true-casing.
The systems were trained with a a maximum sentence length of 80 words. For the BPE
systems, we used a vocabulary size using 50,000 operations. In the case of multilingual
systems, we used 90,000 operations. For the character-based systems, we simply split
the words into characters.8 We used Morfessor (Smit et al. 2014) with default settings to
get morpheme-segmented data. The subword (BPE and Morfessor) and character-based

8 We also explored charCNN (Kim et al. 2015; Costa-jussà and Fonollosa 2016) models in our preliminary
experiments, and found the charCNN variant to perform poorly, compared with the simple char-based
LSTM model both in translation quality and when comparing classifier accuracy. Therefore, we decided
to leave them out for brevity. See Appendix for the results.
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systems were trained with a maximum sentence length of 100, 100–120, and 400–550
units, respectively.9

5.2.2 Model Training. We used the seq2seq-attn implementation (Kim 2016) with the
following default settings: word embeddings and LSTM states with 500 dimensions,
initialized with default Torch initialization, SGD with an initial learning rate of 1.0 and
decay rate of 0.5 (after the ninth epoch), and dropout rate of 0.3. We used 2–4 hidden
layers for both the encoder and the decoder. The NMT system was trained for 20 epochs,
and the model with the best validation loss was used for generating features for the
external classifier. These are the settings that we have generally used for the experiments
reported in this article. We will explicitly mention in the individual sections where we
digress from the prescribed settings.

5.3 Classifier Settings

The classifier is a logistic regression model whose input is either hidden states in word-
based models, or Last or Average representations in character- and subword-based
models. Because we concatenate forward and backward states from all layers, this ends
up being 4,000/2,000 dimensions when classifying the encoder/decoder: 500 dimen-
sions × 4 layers × 2 directions (1 for decoder). The objective function is categorical
cross-entropy, optimized by Adam (Kingma and Ba 2014). Training is run with shuffled
mini-batches of size 512 and stopped after 20 epochs.

The choice of classifier is motivated by two considerations. First, the classifier takes
features only from the current word (or word-pair), without additional context. The
goal is to evaluate how well the word representation itself captures pertinent informa-
tion, potentially including contextual information through the NMT LSTM encoder or
decoder. Second, using a linear classifier enables focusing on the quality of the repre-
sentations learned by the NMT system, rather than obtaining state-of-the-art prediction
performance. In the literature on analyzing neural representations by classification
tasks, simple linear classifiers are a popular choice (Belinkov and Glass 2019). Using
a stronger classifier may lead to better overall numbers, but does not typically change
the relative quality of different representations (Qian, Qiu, and Huang 2016b; Belinkov
2018, Chapter D.1), which is our main concern in this work.

5.4 Supervised Data and Annotations

We make use of gold-standard annotations wherever available, but in some cases we
have to rely on using automatic taggers to obtain the annotations. In particular, to
analyze the representations on the decoder side, we require parallel sentences.10 It is
difficult to obtain gold-standard data with parallel sentences, so we rely on automatic
annotation tools. An advantage of using automatic annotations, though, is that we
can reduce the effect of domain mismatch and high out-of-vocabulary (OOV) rate in
analyzing these representations.

We used Tree-Tagger (Schmid 1994) for annotating Russian and the MADAMIRA
tagger (Pasha et al. 2014) for annotating Arabic. For the remaining languages (French,

9 The sentence length was varied across different configurations, to keep the training data sizes the same
for all systems.

10 We need source sentences to generate encoder states, which in turn are required for obtaining the decoder
states that we want to analyze.
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Table 3
Train and test data (number of sentences) used to train MT classifiers to predict different tasks.
We used automated tools to annotate data for the morphology tasks and gold annotations for
syntactic and semantics tasks.

de en cs ru fr es

POS tags Train 14,498 14,498 14,498 11,824 11,495 14,006
Test 8,172 8,172 8,172 5,999 3,003 5,640

Morph tags Train 14,498 14,498 14,498 11,824 11,495 14,006
Test 8,172 8,172 8,172 5,999 3,003 5,640

CCG tags Train – 41,586 – – – –
Test – 2,407 – – – –

Syntactic dependency Train 14,118 12,467 14,553 3,848 – –
Test 1,776 4,049 1,894 1,180 – –

Semantic tags Train 1,490 14,084 – – – –
Test 373 12,168 – – – –

Semantic dependency Train – 12,000 11,999 – – –
Test – 9,692 10,010 – – –

German, Spanish, and Czech) we used RDRPOST (Nguyen et al. 2014), a state-of-the-art
morphological tagger. For experiments using gold tags, we used the Arabic Treebank
for Arabic (with the versions and splits described in the MADAMIRA manual) and
the Tiger corpus for German.11 For semantic tagging, we used the semantic tags from
the Groningen Parallel Meaning Bank (Abzianidze et al. 2017). For syntactic relation
labeling we used the Universal Dependencies data set (Nivre et al. 2017). For CCG
supertagging we used the English CCGBank (Hockenmaier and Steedman 2007).12 For
semantic dependency labeling we used PSD, which is a reduction of the tectogram-
matical analysis layer of the Prague Czech–English Dependency Treebank, and is made
available as part of the Semantic Dependency Parsing data set (Oepen et al. 2014, 2015).
Most of the PSD dependency labels mark semantic roles of arguments, which are called
functors in the Prague dependency treebank.13 PSD annotations are available in English
and Czech. Table 3 provides the amount of data used to train the MT classifiers for
different NLP tasks. Table 4 details the number of tags (or labels) in each task across
different languages.

6. Morphology Results

In this section, we investigate what kind of morphological information is captured
within NMT models, using the tasks of POS and morphological tagging. To probe this,
we annotated a subset of the training data (see Table 3) using POS or morphological

11 http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger.html.

12 There are no available CCG banks for the other languages we experiment with, except for a German CCG
bank, which is not publicly available (Hockenmaier 2006).

13 The main differences between PSD and the original tectogrammatical annotation are the omission of
elided elements, such that all nodes are surface tokens; the inclusion of functional and punctuation
tokens; ignoring most cases of function word attachments to content words; ignoring coreference links;
and ignoring grammatemes (tectogrammatical correlates of morphological categories). As a side effect,
these simplifications make it straightforward to generate representations for surface tokens participating
in dependency relations under the PSD formalism. See http://sdp.delph-in.net for more information
on PSD and refer to Cinková et al. (2009) for details on the original tectogrammatical annotations.
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Table 4
Number of tags (for word-level tasks) and labels (for relation-level tasks) per task in different
languages.

de cs ru en ar fr es

POS tags 54 – – 42 42 33 –
Morphological tags 509 1,004 602 – 1,969 183 212
Semantic tags 69 – – 66 – –
CCG tags – – – 1,272 – –
Syntactic dependency labels 35 41 40 – – 40 32
Semantic dependency labels – 64 – 87 – – –

taggers. We then generated features from the trained NMT models and trained a linear
classifier using these features to predict the POS or morphological tags.

Although our goal is not to surpass state-of-the-art tagging performance, we still
wanted to compare against several reference points to assess the quality of the un-
derlying representations. To this end we report several baselines: (i) A simple local
majority baseline where each word is assigned its most frequent tag and unknown
words are assigned the most frequent global tag. (ii) We annotated the data used to
train NMT models using the tools mentioned above and trained char-to-tag models
using the same sequence-to-sequence regime we used to train our MT systems. This can
be seen as a skyline reference. (iii) To have a closer comparison with our MT classifier,
we generate features from the trained char-to-tag models and train a linear classifier
using these features. This allows us to exactly compare representations learned for the
task of translation versus the representations that are directly optimized toward the task
(POS or morphological tagging, for example).

Table 5 shows the prediction accuracy of the classifiers trained on the encoder-
side representations. MT classifiers always outperform the majority baseline, which en-
tails that the representations contain non-trivial linguistic information about language

Table 5
POS and morphological tagging results: Comparing classifier trained on char-based NMT
representations with several baselines: (i) Local majority baseline (most frequent tag), (ii)
Character-to-tag trained using sequence-to-sequence model on the same training data as the MT
systems, (iii) Classifier trained on representations extracted from (ii) to match the MT generated
representations). NMT systems used here to extract representations are character-based models,
trained on translating each language to English (and English to German). The classifier results
are substantially above the majority baseline, indicating that NMT representations learn
non-trivial amounts of morphological information.

de cs ru en fr

POS tags MT classifier 94.0 – – 95.8 96.3

Baselines Majority 88.4 – – 90.1 92.6
char-to-POS 98.3 – – 97.7 99.2
POS classifier 95.4 – – 96.0 98.5

Morphological tags MT classifier 80.5 85.2 87.7 – 88.2

Baselines Majority 68.3 70.4 74.8 – 84.7
char-to-Morph 92.7 95.7 94.2 – 98.6
Morph classifier 89.6 90.5 90.5 – 95.8
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morphology. The accuracy is high when the language is morphologically poor (e.g.,
English) or the task is simpler (fewer tags to predict; see Table 4). On the contrary,
the accuracy in the case of a morphologically rich language such as Czech is lower.
The char-to-POS/Morph baselines seems to give much higher numbers compared with
ours, but remember that these models are trained on considerably more data (the entire
data on which the MT models were trained) and with a more sophisticated bilingual
LSTM with attention model, compared with the MT classifier, which is trained on a
small subset of neural activations using a simple logistic regression. A much closer
skyline reference is the POS/Morph classifiers that are trained on the same data and
model architecture as the MT classifier, with the difference that the former is trained
on the representations optimized for the task itself whereas the latter is trained on the
representations optimized toward the task of machine translation. Therefore, this is still
comparing apples to oranges, but provides a more exact reference for the quality of MT
representations with respect to learning morphology.

We now proceed with answering more specific questions regarding several aspects
of the NMT systems: (i) How do the representations trained from different translation
units (word vs. character vs. subword units) compare? (ii) How do the representations
trained from the encoder and decoder compare? (iii) What kind of information do
different layers capture? and (iv) How does the target language affect the learned source
language representations?

6.1 Impact of Translation Unit on Learning Morphology

We trained NMT systems with different translation units: word, character, and subword
units, of which we tried two, namely, BPE (Sennrich, Haddow, and Birch 2016) and
morphological segmentation (Smit et al. 2014). For subword and character units, we
found that the activation of the last subword/character unit of a word performed
consistently better than using the average of all activations, so we present the results
using the Last method throughout the article (see Table 6 for comparison).

Figure 4 summarizes the results of predicting morphology with representations
learned by different models. The character-based representations consistently outper-
formed other representations on all language pairs, while the word-based represen-
tations achieved the lowest accuracy. The differences are more significant in the case
of languages with relatively complex morphology, notably Czech and Russian. We
see a difference of up to 14% in favor of using character-based representations when
compared with the word-based representations. The improvement is minimal in the

Table 6
Classification accuracy for morphological tags using representations generated by aggregating
BPE subword or character representations using either the average or the last LSTM state for
each word. Here the representations are obtained by concatenating the encoding layers of NMT
models trained on translating each language to English. Using the last hidden state consistently
outperforms the average state.

de cs ru
subword char subword char subword char

Last 78.5 80.5 78.6 88.3 80.0 88.8
Average 76.3 79.2 76.4 84.9 78.3 84.4
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Figure 4
Morphological classification accuracy with different translation units and language pairs. When
comparing encoder (decoder) representations, we train NMT models with different source
(target) side translation units—words, BPE subwords, Morfessor subwords, or characters—and
hold the target (source) side unit fixed as BPE subwords.

Table 7
BLEU scores across language pairs with different translation units on the source side (the target
side is held fixed as BPE). The NMT models are trained on NEWS+TED data.

de-en cs-en ru-en en-de

word 34.0 27.5 20.9 29.7
bpe 35.6 28.4 22.4 30.2
morfessor 35.5 28.5 22.5 29.9
char 34.9 29.0 21.3 30.0

Table 8
OOV rate (%) in the (source-side) MT and morphological classification test sets. The
morphologically richer Czech (cs) and Russian (ru) have higher OOV rates.

de-en cs-en ru-en en-de

MT 3.42 6.46 6.86 0.82
Classifier 4.42 6.13 6.61 2.09

case of English (1.2%), which is a morphologically simpler language. Comparing sub-
word units as obtained using Morfessor and BPE, we found Morfessor to provide
much better morphological tagging performance, especially in the case of the mor-
phologically richer languages, Czech and Russian. The representations learned from
morpheme-segmented units were found helpful in learning language morphology.
These findings are also somewhat reflected in the translation quality (see Table 7).
The character-based segmentation gave higher BLEU scores compared with a BPE-based
system in the case of the morphologically rich language Czech, but character-based
models performed poorly in the case of German, which requires handling long-distance
dependencies. Our results (discussed later in Section 7) show that character-based
representations are less effective at handling syntactic dependencies.
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Figure 5
Morphological tagging accuracy vs. word frequency for different translation units on the
encoder-side. The target side is held fixed as BPE. The representations for training the
morphological classifier are obtained from the top layer of the encoder. Character
representations perform better than other ones, especially in low-frequency regimes.

6.1.1 Handling Unknown and Low Frequency Words. We further investigated whether
the performance difference between various representations is due to the difference in
modeling infrequent and OOV words. As Table 8 shows, the morphologically richer
languages have higher OOV rates. Figure 5 reveals that the gap between different
representations is inversely related to the frequency of the word in the training data:
Character-based models perform much better than others on less frequent and OOV
words. The ranking of different units in low frequency regimes is consistent with the
overall results in Figure 4—characters perform best, followed by Morfessor subwords,
BPE subwords, and words.

6.2 Encoder versus Decoder Representations

The decoder DEC is a crucial part in an MT system with access to both source-side
representations and partially generated target-side representations, which it uses to
generate the next target word. We now examine whether the representations learned on
the decoder-side possess the same amount of morphological knowledge as the encoder
side. To probe this, we flipped the language direction and trained NMT systems with
English→{German, Czech, Russian} configurations. Then, we use the trained model
to encode a source sentence and generate features for words in the target sentence.
These features are used to train a classifier on morphological tagging on the target side.
Note that in this case the decoder is given the correct target words one by one, similar
to the usual NMT training regime. The right-hand side of Figure 4 shows a similar
performance trend as in the case of encoder-side representations, with character units
performing the best and word units performing the worst. Again, morphological units
performed better than the BPE-based units.

Comparing encoder representations with decoder representations, it is interesting
to see that in several cases the decoder-side representations performed better than the
encoder-side representations, even though they are trained using a unidirectional LSTM
only. Because we did not see any notable trends in differences between encoder and
decoder side representations, we only present the encoder-side results in the rest of the
paper.
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6.3 Effect of Network Depth

Modern NMT systems use very deep architectures (Wu et al. 2016b; Zhou et al. 2016).
We are interested in understanding what kind of information different layers cap-
ture. Given a trained NMT model with multiple layers, we extract feature represen-
tations from the different layers in the encoder. We trained 4-layered models (using
(NEW+TED+Europarl data).

Figure 6 shows morphological tagging results using representations from different
encoder and decoder layers across five language pairs. The general trend shows that
representations from the first layer are better than those from the higher layers, for the
purpose of capturing morphology. We found this observation to be true in multi-layered
decoder as well (see the right side of Figure 6). We verified these findings with models
trained using 2, 3, and 4 layers. Layer 1 was consistently found to give better accuracy
on the task of POS tagging and morphology learning. We also found the pattern to hold
for representations trained on other units (e.g., character-based units).

Another interesting result to note is that concatenating representations from all the
layers gave significantly better results compared to any individual layer (see Combi-
nation bars in Figure 6). This implies that although much of the information related to
morphology is captured at the lower layer, some of it is also distributed to the higher
layers. We analyzed individual tags across layers and found that open class categories
such as verbs and nouns are distributed across several layers, although the majority of
the learning of these phenomena is still done at layer 1. Please refer to Dalvi et al. (2019a)
for further information.

6.4 Effect of Target Language

The task of machine translation involves translating from one language into another.
While translating from morphologically rich languages is a challenging task, translating
into such languages is even harder. How does the target language affect the learned
source language representations? Does translating into a morphologically rich language

Figure 6
Morphological tagging accuracy using representations from layers 1 to 4, taken from encoders
and decoders of different language pairs. Here, the NMT models were trained with BPE units.
Layer 1 generates the best representations and in most cases there is a gradual decrease with
each layer. The combination of representations improves beyond layer 1, indicating that some
morphological information is distributed among layers.
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require more knowledge about source language morphology? To investigate these ques-
tions, we trained NMT models by keeping the source side constant and using different
target languages. To make a fair comparison, the models are trained on the intersection
of the training data based on the source language.

Figure 7 shows the results of such an experiment, with models translating from
Arabic to several languages: English, Hebrew, German, and Arabic itself. These target
languages represent a morphologically poor language (English), a morphologically rich
language with similar morphology to the source language (Hebrew), and a morpho-
logically rich language with different morphology (German). As the figure shows, the
representations that are learned when translating into English are better for predicting
POS or morphology than those learned when translating into German, which are in turn
better than those learned when translating into Hebrew.

How should we interpret these results? English is a morphologically poor lan-
guage that does not display many of the morphological properties that are found
in the Arabic source. In contrast, German and Hebrew have richer morphologies, so
one could expect that translating into them would make the model learn more about
morphology. However, Arabic representations learned from the Arabic→English model
are superior in learning morphology. A possible explanation for this phenomenon is
that the Arabic→English model is simply better than the Arabic→Hebrew and Arabic-
German models, as hinted by the BLEU scores. The inherent difficulty in translating
Arabic to Hebrew/German may affect the ability to learn good representations of word
structure or perhaps more data is required in the case of these languages to learn
Arabic representations of the same quality. However, it turns out that an Arabic→Arabic
autoencoder learns to recreate the test sentences extremely well, even though its word
representations are actually inferior for the purpose of POS/morphological tagging
(Figure 7). This implies that a higher BLEU score does not necessarily entail better
morphological representations. In other words, a better translation model learns more
informative representations, but only when it is actually learning to translate rather
than merely memorizing the data as in the autoencoder case. We found these results
to be consistent in other language pairs, that is, by changing the source from Arabic to
German and Czech and also using character models instead of words (see Section A.2
in the Appendix for more details); however, more through study is required along this
direction as Bisazza and Tump (2018) performed a similar experiment on a fine-grained
tag level and found contrastive results.

7. Syntax Results

To evaluate the NMT representations from a syntactic perspective, we consider two
tasks. First, we made use of CCG supertagging, which is assumed to capture syntax
at the word level. Second, we used dependency relations between any two words in
the sentence for which a dependency edge exists, to investigate how words compose.
Specifically, we ask the following questions: (i) Do NMT models acquire structural
information while they are being trained on flat sequences of bilingual sentences? (ii)
How do representations trained on different translation units (word vs. character vs.
subword units) compare with respect to syntax? and (iii) Do higher layers learn better
representations for these kinds of properties than lower layers?

The analysis carried out previously was chiefly based on lexical properties. To
strengthen our analysis, we further used dependency relations that are available for
many different language pairs unlike CCG supertags. Here we concatenate the repre-
sentations of two words in a relation and ask the classifier to predict their syntactic
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Figure 7
Effect of target language on representation quality of the Arabic source. POS and morphological
tagging accuracy, and BLEU scores, using encoder-side representations from NMT models
trained with different target languages. These results are obtained with top-layer representations
of 2-layer word-based NMT models. The target language has a small effect on source-side
representation quality, with better MT models generating better representations, except in the
auto-encoder case (Arabic bar).

relation. Table 9 shows that NMT representations are syntax aware. In both tasks
(CCG supertagging and syntactic dependency labeling), the classifier accuracy is much
higher compared to the local majority baseline,14 demonstrating that the representations
learned during NMT training learn non-trivial amounts of syntactic information.15 We
now proceed to answer the other two questions, namely, the impacts of translation unit
and representation depth.

7.1 Impact of Translation Unit on Learning Syntax

Although character-based models are effective at handling unknown and low-
frequency words, they have been found poor at capturing long-distance dependencies.
Sennrich (2017) performed an evaluation based on contrastive translation pairs and
found the subword-based system better in capturing long-distance dependencies. Here

14 For the syntactic dependency majority baseline, we assume the most frequent label of the arc
(head-modifier pair). When the pair is unseen during test, we ignore the head and fall back to using
modifier only. It is non-trivial to train sequence-to-sequence models for the dependency tasks, so we only
rely on the majority baseline for comparison.

15 We do not have similar baselines for the syntax and semantic tasks as we have for the task of morphology
prediction. The reason for this discrepancy is that we used automatic tools for annotating data for
POS and morphological tagging, but gold annotated data for syntax and semantic tasks. Whereas
state-of-the-art POS and morphological tagging tools are freely available, the same is not true for
semantic and CCG tagging. We therefore resorted to use the published numbers as the skyline baseline in
this case. For syntactic and semantic dependency labeling tasks an additional complexity is how to train a
seq-to-seq baseline with such annotations. Remember that the task involves modeling head and
modifier word to predict a dependency relation. In the case of semantic dependency, there could be
multiple heads for a modifier word.
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Table 9
Local majority baseline (most frequent tag/label) and classification accuracy using encoder
representations generated by the NMT models, on syntactic tasks. The models are trained on
translating each language to English (or German in the English case). The classifier results are far
superior to the majority baseline, indicating that NMT representations contain a non-trivial
amount of syntactic information.

de cs ru en fr

Syntactic dependency MT classifier 91.5 91.8 89.6 93.4 94.4
Majority 69.0 68.6 59.4 67.1 72.4
OOV rate 10.3 12.9 21.7 5.9 10.9

CCG tags Xu, Auli, and Clark (2015) – – – 93.1 –
MT classifier – – – 91.9 –
Majority – – – 72.1 –
OOV rate – – – 6.9 –

we directly pit the representations trained on different translation units against each
other and compare their performance in predicting syntactic properties. Figure 8 shows
that representations learned from subword units (BPE and Morfessor) consistently
outperform the ones learned from character units in both tasks (CCG and syntactic
dependency labeling), reinforcing the results found by Sennrich (2017). Character-
based models, on the other hand, do better than word-based models, which could be
attributed to unknown words (in the word-based models). We found subword units,
particularly those obtained using a morpheme-based segmentation, to give the best
results. This could be because the linguistically motivated subword units are more
aligned with the syntactic task than the compression-based BPE segmentation.

A possible confound is that character-based models start from a lower linguistic
level compared to word or subword models and may require more depth to learn long-
range dependencies. To verify this, we trained 3-layered character models for Czech-
to-English and English-to-German. We extracted feature representations and trained

Figure 8
Dependency labeling and CCG supertagging accuracy using encoder representations obtained
from NMT models trained with different translation units on the source side; the target side is
fixed as BPE. Subword units generate better representations than character- or word-based ones.
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Figure 9
Syntactic and semantic dependency labeling accuracy using representations from layers 1 to 4,
taken from encoders of BPE-based NMT models in different language pairs. Higher layers
generate better representations for these tasks in most cases, but a combination of all layers
works best, indicating that some relevant information is also captured in the lower layers.

classifiers to predict syntactic dependency labels. Our results show that using an ad-
ditional layer does improve the prediction accuracy, giving the same result as subword
segmentation (Morfessor) in the case of Czech-to-English, but still worse in the case of
English-to-Czech (see Table A.4 in the Appendix for results).

7.2 Effect of Network Depth

We previously found that morphology is predominantly being captured in layer 1 of
the NMT models. We now repeat the experiments for syntactic dependencies. Figure 9a
shows the results of predicting syntactic dependency labels using representations from
different layers in the trained models. We found that representations from layer 4
performed better than representations from lower layers except for the French encoder,
where layer 3 performs better. We also repeated this experiment with CCG supertags
(see Table A.5 in the supplementary material) and found that higher layers (3 and 4)
consistently outperform lower layers and except for English-Czech, the final layer gives
the best accuracy in all cases.16 These results are consistent with the syntactic depen-
dency results. We repeated these experiments with the multi-parallel UN corpus by
training English-to-{French, Arabic, Spanish, Russian, and English} bilingual models.
Comparing successive layers (for example, comparing layer 2 versus layer 3), in the
majority of the cases, the higher layer performed statistically significantly better than
the lower one (ρ < 0.01), according to the approximate randomization test (Padó 2006).17

Similar to the results on morphological tagging, a combination of all layers achieved the
best results. See the Combination bar in Figure 9a. This implies that although syntax is

16 In their study of NMT and language model representations, Zhang and Bowman (2018) noticed that POS
is better represented at layer 1 whereas CCG supertags are sometimes, but not always, better represented
at layer 2 (out of 2-layer encoders).

17 See Section 11 in the supplementary information for the detailed results.
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mainly learned at higher layers, syntactic information is at least partly distributed across
the network.

One possible concern with these results is that they may be appearing because of the
stacked RNN layers, and not necessarily due to the translation task. In the extreme case,
perhaps even a random computation that is performed in stacked RNN layers would
lead to improved performance in higher layers. This may be especially concerning when
predicting relation labels, as this requires combining information about two words in
the sentence. To verify that the actual translation task is important, we can look at the
performance with random models, initialized in the same manner but not trained at all.
Figure 10 shows that higher layers in random networks generally generate worse rep-
resentations. Layer 1 does improve the performance compared to layer 0 (word embed-
dings without contextual information) showing that some information is captured even
in random models. However, after layer 1 the performance degrades drastically, demon-
strating that higher layers in random models do not generate informative representations.

The experiment with random weights shows that training the NMT system is im-
portant. Does the actual translation task matter? Figure 10 also shows the results using
representations from English-to-English models, that is, an autoencoder scenario. There

Figure 10
Syntactic dependency labeling results with representations from different encoding layers of
(word-based) NMT models trained on translating English to other languages (en-to-*, averaged
over target languages), compared with an auto-encoder (en-to-en) and to untrained modeled
with random weights (en-to-* rand). The MT-trained representations improve with each layer,
while the random representations degrade after layer 1. The auto-encoder representations also
improve but are below the MT-trained ones. These results show that learning to translate is
important for obtaining good representations.
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Figure 11
Improvement in accuracy of syntactic relation labeling with layers 2/3/4 compared with layer 1.
The figure shows the five most improved relations when averaging results obtained with
encoder representations from (word-based) NMT models trained on translating English to other
languages.

is a notable degradation in representation quality when comparing the autoencoder
results to those of the machine translation models. For example, the best results for
predicting syntactic dependencies with the autoencoder are around 80% at layer 4. In
contrast, the same layer in the translation models produces a score of 88%. In general,
the representations from the machine translation models are always better than those
from the autoencoder, and this gap increases as we go higher in the layers. This trend is
similar to the results on morphological and semantic tagging with representations from
autoencoders that were reported previously.

7.3 Analysis

In this section, we analyze two aspects of how information on syntactic dependencies
is captured in different NMT layers: how different types of relations are represented
and what the effect of head-modifier distance is. The results in this section are obtained
using models trained on the United Nations corpus, as described in Section 5.1.
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Figure 12
Results of syntactic relation labeling at different relation distances using encoder representations
from different layers of (word-based) NMT models trained on translating English to other
languages (averaged over target language). Long-distance relations are difficult to capture at all
layers, but higher layers mitigate more of the drop in performance.

7.3.1 Effect of Relation Type. When are higher-layer representations especially important
for syntactic relations? Figure 11 breaks down the performance according to the type of
syntactic relations. The figure shows the five relations that benefit most from higher
layer representations.18 The general trend is that the quality of the representation
improves with higher layers, with up to 20−25% improvement with representations
from layer 4 compared with layer 1. The improvement is larger for certain relations:
dependent clauses (advcl, ccomp), loose relations (list, parataxis), and other typ-
ically long-range dependencies such as conjunctions (conj) and appositions (appos).
Core nominal arguments like subject (nsubj) and object (obj) also show consistent
improvements with higher layers. Relations that do not benefit much from higher layers
are mostly function words (aux, cop, det), which are local relations by nature, and
the relation between a conjunct and the conjunction (cc), as opposed to the relation
between two conjuncts (conj). These relations are local by nature and also typically less
ambiguous. For example, the relation between a conjunction and and a noun is always
labeled as cc, whereas a verb and a noun may have a subject or object relation.

7.3.2 Effect of Relation Distance. In order to quantify the notions of global and local
relations, let us consider relation distance. Figure 12 shows the representation quality

18 The results shown are with English dependencies using NMT models trained on English to other
languages, but the trends are similar for other language pairs.
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as a function of the distance between the words participating in the relation. Predicting
long-distance relations is clearly more difficult than predicting short-distance ones. As
the distance between the words in the relation grows, the quality of the representations
decreases. When no context is available (layer 0, corresponding to word embeddings),
the performance quickly drops with longer distance relations. The drop is more mod-
erate in the hidden layers, but in low layers the effect of relation distance can still be
as high as 25%. Higher layers of the network mitigate this effect and bring the decrease
down to under 5%. Moreover, every layer is performing better than the previous one
at each distance group. This indicates that higher layers are much better at capturing
long-distance syntactic information.

8. Semantics Results

We now study how information on meaning is captured in NMT models in the context
of lexical semantic (SEM) tagging and semantic dependency labeling tasks (refer to Sec-
tion 3.3 for details on the tasks). We study the following specific questions: (i) Do NMT
systems learn informative semantic representations? (ii) Can a neural network model
learn to map a sequence of subwords or character symbols to a meaning representation?
and (iii) What layers in the model learn more about semantic tags and relations?

The experiments reported in this section on are conducted mainly on English, as
the semantic tagging task and data set are recent developments that were initially only
available in English. We also experiment and report results for German, for which a
new semantic tagging data set is being developed. However, as the German annotations
are very sparse (see Section 5.4), we performed a cross-fold evaluation when reporting
results for German. For the semantic dependency labeling, we additionally used Czech
data to strengthen the empirical evidence.

In this section we only report encoder-side representation as the the analysis of
decoder-side representations requires parallel data to generate the hidden representations
and no standard tools for annotating the data exist. Table 10 shows the results. The
classifier achieves 91.4% on the semantic tagging task and 85% and 80% on the task of
semantic labeling for Czech and English, respectively. All results are significantly better
than the local majority baseline, suggesting that NMT representations learn substantial
semantic information.

Table 10
Local majority baseline (most frequent tag/label) and classification accuracy using encoder
representations generated by the NMT models, on semantic tasks. The models are trained on
translating Czech to English (cs column) or English to German (en column). The classifier results
are far superior to the majority baseline, indicating that NMT representations contain a
non-trivial amount of semantic information.

cs en

Semantic dependencies MT classifier 87.8 81.5
Majority 63.1 57.3
OOV rate 12.1 6.3

Semantic tags Bjerva, Plank, and Bos (2016) – 95.2
MT classifier – 93.4
Majority – 84.2
OOV rate – 4.1
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8.1 Impact of Translation Unit on Learning Semantics

Next we investigate whether the representations learned from characters or subword
units can effectively model semantic information. We trained classifiers using the rep-
resentations generated from different NMT models that were trained using character or
subword units (BPE and Morfessor). Figure 13 summarizes the results on the semantic
dependency labeling task and the semantic tagging task. In the semantic dependency
labeling task, the character-based models perform significantly worse compared with
the word-based and subword-based counterparts. We found that using subword-based
representations, particularly morpheme-based segmentation, gives better performance
in most scenarios. These results are in contrast with morphological tagging results,
where character-based representations were consistently and significantly better com-
pared with their subword counterparts. On comparing the prediction results between
subword and character-based representations, we found that in many cases, character-
based models failed to predict the label correctly when the head and modifier words are
further apart, that is, in the case of long-distance dependencies. However, this was not
always true as in some cases character-based models were able to correctly predict the
dependency label for a head that was 12 words apart.

On semantic tags, subword-based (BPE and Morfessor) representations and
character-based representation achieve comparable results for English. However, for
German, BPE-based representations performed better than the other representations.

8.2 Effect of Network Depth

We found the representations learned in the lower encoding layer to perform better on
the task of morphological tagging. Here we investigate the quality of representations at
different encoding layers, from the perspective of semantic properties.

Figure 13
Semantic tagging and dependency labeling results using representations of NMT models trained
with different translation units on the source side; the target side is always BPE.
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Table 11
Semantic tagging accuracy using features from the k-th encoding layer of 4-layered NMT models
trained with different target languages. “En” column is an English autoencoder. BLEU scores are
given for reference. Statistically significant differences from layer 1 are shown at p < 0.001(∗) and
p < 0.01(∗∗). See text for details.

k Ar Es Fr Ru En

SEM tagging accuracy

0 81.9∗ 81.9∗ 81.8∗ 81.8∗ 81.2∗
1 87.9 87.7 87.8 87.9 84.5
2 87.4∗ 87.5∗ 87.4∗ 87.3∗ 83.2∗
3 87.8 87.9∗ 87.9∗∗ 87.3∗ 82.9∗
4 88.3∗ 88.6∗ 88.4∗ 88.1∗ 82.1∗

BLEU

32.7 49.1 38.5 34.2 96.6

Concerning lexical semantic tagging, as Table 11 shows, representations from layers
2 and 3 do not consistently improve performance above layer 1. However, representa-
tions from layer 4 lead to small but significant improvement with all target languages,
according to the approximate randomization test.19 We observed a similar pattern in the
case of semantic dependency labeling tasks (see Figure 9b), where higher layers (layer
4 in the case of Czech-English and English-German and layer 3 in the case of English-
Czech) gave better accuracy. Intuitively, higher layers have a more global perspective
because they have access to higher representations of the word and its context, while
lower layers have a more local perspective. Layer 1 has access to context but only
through one hidden layer, which may not be sufficient for capturing semantics. It
appears that higher representations are necessary for learning even relatively simple
lexical semantics and, especially, predicate–argument relations.

8.3 Analysis of Lexical Semantics

In this section, we analyze three aspects of lexical semantic information as represented
in the semantic tagging data set. First, we categorize semantic tags into coarse-grained
categories and compare the classification quality within and across categories. Second,
we perform a qualitative analysis of discourse relations and when they are better
represented in different NMT layers. Third, we compare the quality of encoder represen-
tations when translating into different target languages. The results in this section are
obtained using models trained on the United Nations corpus, as described in Section 5.1.

8.3.1 Semantic Tag Level Analysis. The SEM tags are grouped in coarse-grained categories
such as events, names, time, and logical expressions. Figure 14 shows the change in F1
score (averaged over target languages) when moving from layer 1 to layer 4 represen-
tations. The blue bars describe the differences per coarse tag when directly predicting
coarse tags. The red bars show the same differences when predicting fine-grained tags
and micro-averaging inside each coarse tag. The former shows the differences between

19 These results are obtained using models trained on the United Nations multi-parallel corpus.
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the two layers at distinguishing among coarse tags. The latter gives an idea of the
differences when distinguishing between fine-grained tags within a coarse category.
The first observation is that in the majority of cases there is an advantage for classifiers
trained with layer 4 representations, that is, higher layer representations are better
suited for learning the SEM tags, at both coarse and fine-grained levels.

Considering specific tags, higher layers of the NMT model are especially better
at capturing semantic information such as discourse relations (DIS tag: subordinate vs.
coordinate vs. apposition relations), semantic properties of nouns (roles vs. concepts,
within the ENT tag), events and predicate tense (EVE and TNS tags), logic relations and
quantifiers (LOG tag: disjunction, conjunction, implication, existential, universal, etc.),
and comparative constructions (COM tag: equatives, comparatives, and superlatives). These
examples represent semantic concepts and relations that require a level of abstraction
going beyond the lexeme or word form, and thus might be better represented in higher
layers in the deep network.

8.3.2 Analyzing Discourse Relations. Now we analyze specific cases of disagreement be-
tween predictions using representations from layer 1 and layer 4. We focus on discourse
relations, as they show the largest improvement when going from layer 1 to layer 4
representations (DIS category in Figure 14). Intuitively, identifying discourse relations
requires a relatively large context so it is expected that higher layers would perform
better in this case.

There are three discourse relations in the SEM tags annotation scheme: subordinate
(SUB), coordinate (COO), and apposition (APP) relations. For each of those, Figure 15

Figure 14
Difference in semantic tagging F1 when using representations from layer 4 compared to layer 1,
showing F1 when directly predicting coarse tags (blue) and when predicting fine-grained tags
and averaging inside each coarse tag (red). The representations are taken from encoders of
(word-based) NMT models trained on translating English to other languages (averaged over
target language).
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(examples 1–9) shows the first three cases in the test set where layer 4 representations
correctly predicted the tag but layer 1 representations were wrong. Examples 1–3 have
subordinate conjunctions (as, after, because) connecting a main and an embedded clause,
which layer 4 is able to correctly predict. Layer 1 mistakes these as attribute tags (REL,
IST) that are usually used for prepositions. In examples 4–5, the coordinate conjunction
and is used to connect sentences/clauses, which layer 4 correctly tags as COO. Layer 1
wrongly predicts the tag AND, which is used for conjunctions connecting shorter expres-
sions like words (e.g., “murder and sabotage” in example 1). Example 6 is probably
an annotation error, as and connects the phrases “lame gait” and “wrinkled skin” and
should be tagged as AND. In this case, layer 1 is actually correct. In examples 7–9, layer 4 cor-
rectly identifies the comma as introducing an apposition, while layer 1 predicts NIL, a tag
for punctuation marks without semantic content (e.g., end-of-sentence period). As expected,
in most of these cases identifying the discourse function requires a fairly large context.

Finally, we show in examples 10–12 the first three occurrences of AND in the test set,
where layer 1 was correct and layer 4 was wrong. Interestingly, two of these (10, 11) are
clear cases of and connecting clauses or sentences, which should have been annotated
as COO, and the last (12) is a conjunction of two gerunds. The predictions from layer 4 in
these cases thus appear justifiable.

8.3.3 Effect of Target Language. Does translating into different languages make the NMT
system learn different source-side representations? We previously found a fairly con-
sistent effect of the target language on the quality of encoder representations for POS
and morphological tagging, with differences of ∼2–3% in accuracy. Here we examine
whether such an effect exists in SEM tagging. We trained 4-layered English-to-{Arabic,

Figure 15
Examples of cases of disagreement between layer 1 (L1) and layer 4 (L4) representations when
predicting semantic tags. The correct tag is italicized and the relevant word is underlined.
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Russian, French, Spanish, English}models with the multi-parallel UN corpus. Table 11
shows results using features obtained by training NMT systems on different target
languages (the English source remains fixed). There are very small differences with
different target languages (∼0.5%). While the differences are small, they are mostly sta-
tistically significant. For example, at layer 4, all the pairwise comparisons with different
target languages are statistically significant (p < 0.001). Again, we note that training an
English autoencoder results in much worse representations compared with MT models.
In contrast, the autoencoder has excellent sentence recreation capability (96.6 BLEU).
This indicates that learning to translate (to any foreign language) is important for
obtaining useful representations for semantic tagging, as it is for morphological tagging.

8.4 Analysis of Semantic Dependencies

In the previous sections, we analyzed how the layer depth impacts the representations
from the perspective of specific syntactic relations (Section 7.3.1) and lexical semantic
tags (Section 8.3.1). We found that higher layers tend to better represent properties that
are more global, loose, and abstract compared with lower layers. Does the same hold
for semantic dependencies?

Figure 16 shows the improvement from higher layer representations. The five most
improved relations are highlighted. The following are examples from the PSD manual
(Cinková et al. 2004). We give in parentheses the average distance in words between
head and modifier, per relation. Four of the top five relations are looser kinds of relations
that syntactically correspond to adjuncts: accompaniment (ACMP; “He works without
his glasses”; distance 6.93); to whose advantage something happens (BEN; “He did it
for their sake”; distance 4.40); direction (DIR1; “He made a step from the wall”; dis-
tance 4.41); and location (LOC; “a match in a foreign country”; distance 4.77); The fifth
is an addressee argument (ADDR-arg; “He gave the child a toy.”; distance 3.69). These
relations also have longer distances between head and modifier compared to the overall
average distance (3.34 words).

In contrast, the relations that benefit the least (highlighted at the top of Figure 16)
include a disjunctive that captures the relation between the disjunction “or” and a word
in a list (DISJ.member; distance 2.22); expressing difference (DIFF; “The goods were de-
livered four days later”; distance 2.54 ); a degree specifier for expressing extent (EXT; e.g.,
the relation between “about” or “almost” and a quantity; distance 1.87); a rhematizer
that often connects a negation word to its negated verb (RHEM; “Cray Research did not
want to...”, example from the PSD data set; distance 2.17); and linking the clause to
the preceding text (PREC; “Hence, I’m happy”; distance 7.73). Of these, the first three
actually drop in performance when using (some of the) higher layer representations,
which may be explained by their more local, tight relation. This also partly accords
with the distances, which are below average for the bottom 4. The PREC relation is an
exception, with a relatively large distance but almost no benefit from higher layers. This
can be explained by its use for words linking the clause to the preceding text, which are
limited and easy to memorize (“However”, “Nevertheless”, “Moreover”, etc.). As these
cases are assigned the main verb as the PREC head, they may span over large distances,
but their closed-class nature enables simple memorization even at low layers. However,
relation distance does not explain the entire benefit from higher layers, as some of the
most distant relations are not the ones that benefit most from higher layers. Still, similar
to the syntactic dependencies, the representations from higher layers benefit more in
case of looser, less tight semantic relations.
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Figure 16
Improvement in accuracy of semantic relation labeling with layers 2/3/4 compared with layer 1,
when averaging results obtained with encoder representations from (word-based) NMT models
trained on translating English to other languages. The five least/most improved relations are
highlighted.
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9. Comparison Against Multilingual Models

Languages share orthography, morphological patterns, and grammar. Learning to trans-
late between several pairs simultaneously can help improve the translation quality of
the underlying languages and also enable translation for language pairs with little or
no parallel data. Johnson et al. (2017) exploited a remarkably simple idea of appending
a language code to each training sentence, in a shared encoder-decoder framework.
The models are trained with all multilingual data consisting of multiple language pairs
at once. In their projection of a small corpus of 74 triples of semantically identical
cross-language (Japanese, Korean, English) phrases to 3D space via t-SNE, they found
preliminary evidence that the shared architecture in their multilingual NMT systems
learns a universal interlingua. We use this idea with our machinery to investigate
how effective the multilingual representations are in learning morphology, syntax, and
semantics, compared to their corresponding bilingual models.

We trained 4-layer multilingual systems with many-to-one and one-to-many con-
figurations with English on one side (encoder/decoder) and German, Spanish, French,
and Czech on the other side. The models were trained with BPE subword units. We
trained two versions of the multilingual model, one with the same parameters as the
bilingual models and another with word embeddings and LSTM states with 1,024
dimensions (as opposed to the default 500 dimensions). Our goal was to investigate
the effect of increasing model parameters on translation quality and representation
quality in terms of the understudied linguistic phenomenon. The systems were trained
on NEWS+TED+Europarl, approximately 2.5M sentences per language pair, and a total
of 10M sentences for training the multilingual models.

Figure 17 shows BLEU scores comparing bilingual and multilingual translation
systems across different language pairs. We see that the many-to-one multilingual
system (i.e., *-to-English) is on par or slightly behind bilingual systems when trained
with the same number of parameters as the bilingual models. In contrast, the one-
to-many multilingual system (i.e., English-to-*) is significantly worse compared with
its bilingual counterparts. The reason for this discrepancy could be that generation
is a harder task than encoding, especially when translating into morphologically-rich
languages: An average difference of −1.35 is observed when translating out of English
compared with −0.13 when translating into English. The larger multilingual models
(with twice as many parameters) restored the baseline performance, in fact showing
significant improvements in many cases. We also trained two of the bilingual baselines
(Czech ↔ English) by doubling the parameters. While the large multilingual system
gave an improvement of +1.4 (see Table 12) over the baseline multilingual system by

Figure 17
Comparing bilingual and multilingual systems in terms of translation quality. The multilingual
models are many-to-one (*-to-English) or one-to-many (English-to-*) during training, but run on
a specific language pair during testing.
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Table 12
Comparing bilingual and multilingual Czech↔English models across translation quality and
classifying different linguistic properties. bi = bilingual model; bi* = larger bilingual model;
multi = multilingual model; multi* = larger multilingual model. Larger models have twice
the number of word embedding and LSTM state dimensions. The larger models improve
substantially the multilingual systems, but only slightly improve the bilingual systems.
Morphology = morphological tagging; Syntax = syntactic dependency labeling; Semantics =
semantic dependency labeling.

cs-en en-cs
BLEU Morphology Syntax Semantics BLEU Morphology Syntax Semantics

bi 29.6 78.9 90.6 86.4 22.3 81.8 − 78.8
bi* 29.8 77.7 91.2 84.6 22.6 82.5 − 79.3
multi 30.0 82.1 91.8 86.8 21.8 81.8 − 81.2
multi* 31.4 84.0 88.7 87.8 23.7 84.6 − 81.4

doubling the parameters size, the bilingual system only obtained an improvement of
+0.2 by increasing the model size. A similar pattern was observed in the opposite
direction where increasing the model size gave a BLEU improvement of +1.9 in the
multilingual system, but only +0.3 in the case of the bilingual system. These results
show that multilingual systems benefit from other language pairs being trained in
tandem and suggest that the underlying representations are richer than the ones trained
using bilingual models. We now proceed to analyze these representations in light of the
understudied linguistic properties.

Figures 18, 19a, and 19b show that the representations learned from multilin-
gual models, despite sharing the encoder and decoder representations among four
languages, can still effectively learn the same amount of morphology, syntax, and
semantics as learned by their bilingual counterparts. In almost all cases, the multilingual
representations are either better or at par with the bilingual models. Using a larger mul-
tilingual model (double the parameters size) gave consistent improvements in accuracy,
which resonate with the improvement in translation quality.

Focusing on morphology (Figure 18), a multilingual encoder generates representa-
tions that are better than its bilingual counterpart in most cases, while a multilingual
decoder slightly degrades representation quality compared to the bilingual decoder.
However, using a larger multilingual model leads to substantial improvements. These
results mirror the patterns shown in terms of translation quality (Figure 17). In the case
of syntactic and semantic dependencies (Figures 19a and 19b), even the default-sized
multilingual model works better than the bilingual model, and the larger multilingual

Figure 18
Comparing bilingual and multilingual models in terms of morphological tagging accuracy.
Same-size multilingual models benefit the encoder representations compared to bilingual
models, but not decoder representations; larger multilingual models benefit also the decoder.
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Figure 19
Comparing bilingual and multilingual models with syntactic and semantic dependencies.
Multilingual models consistently improve the NMT representations.

model leads to additional small improvements in syntactic dependencies and in Czech
semantic dependencies (the Czech-English bars in Figure 19b). The larger multilin-
gual model does not improve in the case of English semantic dependencies (English-
Czech/German bars in Figure 19b), even though the corresponding BLEU scores do
improve with a larger multilingual model (Figure 17).20

In an effort to probe whether increasing the number of parameters in a bilingual
model would result in similar performance improvements, Table 12 shows results across
different properties in Czech↔English language pairs. We consistently found that in-
creasing the model size does not lead to the same improvements as we observed in the
case of multilingual models. These results reinforce that multilingual NMT models learn
richer representations compared to the bilingual model and benefit from the shared
properties across different language pairs.

10. Discussion

In this section, we discuss the overall patterns that arise from the experimental results
from several angles. First, we discuss how to assess the overall quality of the learned
NMT representations with regard to other baselines and upper bounds. Second, we
consider NMT representations from the perspective of contextualized word represen-
tations and contrast them to recent popular representations. Third, we reflect on the
methodological approach taken in this work, and what it may or may not tell us about
how the NMT model exploits language representations. Fourth, we briefly discuss the
relation of our results to other NMT architectures. Finally, we touch upon the role of
analysis work in understanding and improving NMT models.

10.1 Assessing Representation Quality

The analyses presented in this work shed light on the quality of different language rep-
resentations in NMT, with a particular focus on comparing various NMT components
and design choices (layers, translation units, etc.). Our questions, therefore, have mostly

20 One speculation for this might be that translating into several target languages does not add much
semantic information on the source side because this kind of information is more language-agnostic, but
at this point there is insufficient evidence for this kind of claim.
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been from a comparative perspective: How good are certain NMT representations
compared with others with respect to certain linguistic tasks. But just how good are the
NMT representations overall? Answers to this question may depend on the use case.
One could, for example, evaluate the utility of NMT representations to improve state-
of-the-art performance by plugging them as additional features in some strong model.
Indeed, McCann et al. (2017) found this approach to yield state-of-the-art results in
several language understanding tasks. It is also important to consider the quality of the
NMT representations for the understudied tasks here in comparison to other baselines
and competitive systems. Throughout the article, we have compared the results to a
majority baseline, arguing that NMT representations obtain substantial improvements.
Here we compare, for each linguistic task, the best performing NMT representations
with several baselines and upper bounds. We compare with the local majority baseline
(most frequent tag/label for each word according to the training data, and the globally
most frequent tag/label for words not seen in training) and with a classifier trained on
word embeddings that are pre-trained on the source-side of the MT training data. We
also train an encoder-decoder on converting text to tags, by automatically annotating
the source side of the MT parallel data. Then we use this encoder-decoder to tag the test
set of the supervised data and evaluate its quality. Finally, we generate representations
from the encoder of this encoder-decoder model and train a classifier on them to
predict the tags. This setting aims to mimic our main scenario, except that we generate
representations with an encoder-decoder specially trained on the linguistic task that we
evaluate, rather than representations generated by an NMT model.

Table 5 shows the results. A classifier trained on NMT representations performs
far better than the majority baseline, as we have already confirmed. A similar classifier
trained on representations from a task-specific encoder-decoder performs even better.
This indicates that training on a specific task leads to representations more geared
toward that task, as may be expected. In fact, a similar behavior has been noted with
other contextual word representations (Liu et al. 2019). Still, the representations do not
contain all available information (or, not all information may be extracted by a simple
classifier), as the task-specific encoder-decoder performs better than a classifier trained
on its representations.

10.2 Contextualized Word Representations

The representations generated by NMT models may be thought of as contextualized
word representations (CWRs), as they capture context via the NMT encoder or decoder.
We have already mentioned one work exploiting this idea, known as CoVE (McCann
et al. 2017), which used NMT representations as features in other models to perform
various NLP tasks. Other prominent contextualizers include ELMo (Peters et al. 2018a),
which trains two separate, forward and backward LSTM language models (with a
character CNN building block) and concatenates their representations across several
layers; GPT (Radford et al. 2018) and GPT-2 (Radford et al. 2019), which use transformer
language models based on self-attention (Vaswani et al. 2017); and BERT (Devlin et al.
2019), which uses a bidirectional transformer model trained on masked language mod-
eling (filling the blanks). All these generate representations that feed into task-specific
classifiers, potentially with fine-tuning the contextualizer weights.21

21 See Peters, Ruder, and Smith (2019) for an evaluation of when it is worthwhile to fine-tune.
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How do NMT representations compare with CWRs trained from raw text? Directly
answering this question is beyond the scope of this work, and is also tricky to perform
for two reasons. First, CWRs like ELMo, BERT, and GPT require very large amounts of
data, on the order of billions of words, which is far beyond what typical NMT systems
are trained on (our largest NMT systems are trained on an order of magnitude fewer
words). Second, at present, various CWRs are trained in incomparable settings in terms
of data, number of parameters, and infrastructure. It seems that a comparison of com-
mon CWRs themselves is necessary before they are compared to NMT representations.

There is, however, indirect information that may tell us something about how
CWRs trained on raw texts behave in comparison to NMT representations. Bowman
et al. (2018) compared sentence encoders trained on a variety of tasks, including the
CoVE translation representations, and evaluated on language understanding tasks.
They found language modeling pre-training to perform best, but cautioned that without
fine-tuning, many of the results are not far above trivial baselines. They also found
that grammar-related tasks benefit more from such pre-training than meaning-oriented
tasks. Peters et al. (2018b) compared the ELMo LSTM with similar systems based on
convolutions or transformer-style self-attention. They found that all architectures learn
hierarchical representations: The word embedding layer focuses on morphology, low
encoding layers focus on local syntax, and high encoding layers carry more semantic
information. These results are mostly in line with our findings concerning represen-
tation depth, although we have not noticed a clear separation between syntactic and
semantic properties. Zhang and Bowman (2018) compared representations from NMT
and bidirectional language models on POS tagging and CCG supertagging. They found
the language model representations to consistently outperform those from NMT. In
other work, we have found that language model representations are of similar quality
to NMT ones in terms of POS and morphology, but are behind in terms of semantic
tagging (Dalvi et al. 2019a).

Tenney et al. (2019) compared representations from CoVE, ELMo, GPT, and BERT
on a number of classiciation tasks, partially overlapping with the ones we study. They
found that CWRs trained on raw texts outperform the MT representations of CoVE;
however, as noted above these models are all trained in very different setups and
cannot be fairly compared. Another interesting finding is that learning a weighted mix
of layers works better than any one layer, and also better than concatenating. This
again indicates that some layers are better than others for different tasks, consistent
with our results. Concerning different tasks, Tenney et al. (2019) found that CWRs
are especially helpful (compared with a lexical baseline) with syntactic tasks, such as
dependency and constituent labeling, and less helpful with certain semantic tasks like
capturing fine-grained semantic attributes and pronoun resolution. They did notice im-
provements with semantic roles, which are related to our predicate–argument relations,
where we also noticed significant improvements at higher layers. Finally, Liu et al.
(2019) compared ELMo, GPT, and BERT on various classification tasks in terms of their
linguistic knowledge and transferability. They found that a simple classifier trained on
top of the (frozen) representations led to state-of-the-art results in many cases, but failed
on tasks requiring fine-grained linguistic knowledge like conjunct identification. They
observed that the first layer of LSTM-based CWRs performs better than other layers,
while in transformer-based models the intermediate layers are the best. Considering
different pre-training tasks, higher layer representations were more task-specific (and
less general) in LSTM models, but not in transformer models. In our investigation, the
top layers of the (LSTM) NMT models were better for syntactic and semantic tasks. One
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possible explanation for this could be that translation is more aligned with the syntactic
and semantic properties than language modeling.

The development and analysis of CWRs is still ongoing. At present, NMT represen-
tations appear to be weaker than those obtained by contextualizers trained on raw texts,
at least when the latter are trained on much larger amounts of data. It remains to be seen
whether NMT representations can complement raw-text CWRs in certain scenarios.

10.3 On the Impact of Language Representation on Translation Output

Our methodological approach evaluates whether various linguistic properties are de-
codable from learned NMT representations. Our assumption was that the quality of
a trained classifier can serve as a proxy to the quality of the original model, for a
given task. However, it is not clear whether the NMT model really “cares” about the
linguistic properties, in the sense that it relies on them for performing the translation
tasks. In essence, we only provide correlational evidence, not causal evidence. This is
a limitation of much of the work using classification tasks to analyze neural networks,
as explained by Belinkov and Glass (2019). One avenue for addressing this question
in causal terms is to define interventions: Change something in the representation and
test whether and how it impacts the output translation. Bau et al. (2019b) perform such
intervention experiments in NMT. They identify individual neurons that capture certain
morphological properties—gender, number, and tense—and modify their activations.
They evaluate how such intervention affects the output translations, finding that tense
is fairly well modified, but gender and number are not as affected. Following similar
ideas may be a fruitful area for further investigation of various linguistic properties and
how much NMT systems depend on them when producing a translation.

10.4 Why Analyze?

There are various motivations for work on interpretability and analysis of neural net-
work models in NLP and other domains. There are also questions concerning their
necessity. Although this article does not aim to solve this debate,22 we would like to
highlight a few potential benefits of the analysis. First, several of our results may serve
as guidelines for improving the quality of NMT systems and their utility for other tasks.
The results on using different translation units suggest that their choice may depend on
what properties one would like to capture. This may have implications for using MT
systems in different languages (morphologically rich vs. poor, free vs. fixed word order)
or genre (short, simple sentences vs. long, complex ones). The results on representation
depth suggest that using NMT representations for contextualization may benefit from
combining layers, maybe with task-wise weighting. One could also imagine performing
multi-task learning of MT and other tasks, with auxiliary losses integrated in different
layers. The results on multilingual systems indicate that such systems may lead to better
representations, but often require greater capacity. Inspecting language representations
in a zero-shot MT scenario (Johnson et al. 2017; Arivazhagan et al. 2019) may also yield
new insights for improving such systems.

22 See Belinkov and Glass (2019) and references therein for considerations in the context of NLP.
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10.5 Other NMT Architectures

The NMT models analyzed in this work are all based on recurrent LSTM encoder-
decoder models with attention. Although this is the first successful NMT architecture,
and still a dominant one, it is certainly not the only one. Other sucessful architectures
include fully convolutional (Gehring et al. 2017) and fully attentional, transformer
encoder-decoder models (Vaswani et al. 2017). There are also non-autoregressive mod-
els, which are promising in terms of efficiency (Gu et al. 2018). At present, NMT systems
based on transformer components appear to be the most successful. Combinations of
transformer and recurrent components may also be helpful (Chen et al. 2018).

The generalization of the particular results in this work to other architectures is
a question of study. Recent efforts to analyze transformer-based NMT models include
attempts to extract syntactic trees from self-attention weights (Mareček and Rosa 2018;
Raganato and Tiedemann 2018) and evaluating representations from the transformer
encoder (Raganato and Tiedemann 2018). The latter found that lower layers tend to
focus on POS and shallow syntax, whereas higher layers are more focused on semantic
tagging. These results are in line with our findings. However, more work is needed
to understand the linguistic representational power of various NMT architectures. We
expect the questions themselves, and the methods, to remain an active field of investi-
gation with newer architectures and systems.

11. Conclusion and Future Work

In this article, we presented a comprehensive analysis of the representations learned
during NMT training from the perspective of core linguistic phenomena, namely, mor-
phology, syntax, and semantics. We evaluated the representation quality on the tasks
of morphological, syntactic, and semantic tagging and using syntactic and semantic
dependency labeling. Our results show that the representations learned during neural
MT training learn a non-trivial amount of linguistic information. We found that different
properties are represented to varying extents in different components of the NMT
models. The main insights are:

• Comparing representations at different layer depths, we found that word
morphology is learned at the lower layer in the LSTM encoder-decoder
model, whereas non-local linguistic phenomena in syntax and semantics
are better represented at the higher layers. For example, we found that
higher layers are better at predicting clause-level syntactic dependencies,
or second and third semantic arguments, in contrast to short-range
dependencies, which do not benefit much from higher layers.

• Comparing representations with different translation units, we found that
representations learned using characters perform best at capturing word
morphology, and therefore provide a more viable option when translating
morphologically rich languages such as Czech. They are more robust
toward handling unknown and low frequency words.

• In contrast, representations learned from subword units are better at
capturing syntactic and semantic information that requires learning
non-local dependencies. Character-based representations, on the other
hand, are poor at handling long-range dependencies and therefore inferior
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when translating syntactically divergent language pairs such as
German-English.

• We found morpheme-segmented units to give better representations than
the ones learned using non-linguistic BPE units. The former outperformed
the latter in most scenarios, even giving slightly better translation quality.

• We found that multilingual models benefit from the shared properties
across different language pairs and learn richer representations compared
to the bilingual model.

Future work can expand the analysis into many directions. For instance, in terms
of the studied linguistic properties, moving beyond words and relations to explore
phrase and sentence structures could be an interesting frontier to explore. The current
study focused on NMT models based on LSTMs. Analyzing other architectures such as
Transformers (Vaswani et al. 2017), which recently set a new state of the art compared
to both recurrent and convolutional models (Gehring et al. 2017), would be an exciting
direction to pursue.

Appendix A

A.1 Character-Based Models

The character-based models reported in this article were trained using bidirectional
LSTM models only. We simply segmented words into characters and marked word
boundaries. However, we did try charCNN (Kim et al. 2015; Costa-jussà and Fonollosa
2016) models in our preliminary experiments. The model is a CNN with a highway
network over characters and trains an LSTM on top of it. In our results, we found the
charCNN variant to perform poorly (see Table A.1), compared to the simple char-based
LSTM model, both in translation quality and comparing classifier accuracy. We therefore
left it out and focused on char-based LSTM models.

A.2 Effect of Target Language

Our results showed that the representations that are learned when translating into En-
glish are better for predicting POS or morphology than those learned when translating
into German, which are in turn better than those learned when translating into Hebrew.
The inherent difficulty in translating Arabic to (morphologically rich) Hebrew/German
languages may affect the ability to learn good representations of word structure, or
perhaps more data are required in the case of these languages to learn Arabic represen-

Table A.1
BLEU scores and morphological classifier accuracy across language pairs, comparing (encoders
of) fully character-based LSTM and charCNN LSTM models.

BLEU Accuracy
de-en cs-en de-en cs-en

char→ bpe 34.9 29.0 79.3 81.7
charCNN→ bpe 32.3 28.0 79.0 79.9
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Table A.2
Effect of changing the target language on POS and morphological tagging with classifiers
trained on the encoder side of both word-based and character-based (here: charCNN) models.
The source language, for which classification is done, is always Arabic.

ar he de en

Word POS 67.21 78.13 78.85 80.21
Morphology 55.63 64.87 65.91 67.18
BLEU 80.43 9.51 11.49 23.8

Char POS 87.72 92.67 93.05 93.63
Morphology 75.21 80.50 80.61 81.49
BLEU 75.48 11.15 12.86 27.82

Table A.3
Impact of changing the target language on POS tagging accuracy with classifiers trained on the
encoder side. Self = German/Czech in rows 1/2, respectively.

Target language
Source language English Arabic Self

German 93.5 92.7 89.3
Czech 75.7 75.2 71.8

Table A.4
Results on syntactic and semantic tagging and labeling with representations obtained from
char-based models trained with an extra layer.

cs-en en-de
Syn Dep Sem Dep Syn Dep Sem Dep Sem tags

char (layer 2) 89.3 84.3 90.3 78.9 92.3
char (layer 3) 90.2 85.2 91.1 79.6 92.7
best subword 90.3 86.3 91.4 80.4 93.2

tations of the same quality. We found these results to be consistent in other language
pairs, that is, by changing the source from Arabic to German and Czech and when
training character-based models instead of word-based models. See Tables A.2 and A.3
for these results.

A.3 Three Layered Character-Based Models

In order to probe whether character-based models require additional depth in the
network to capture the same amount of information, we carried out further experiments
training 3-layered character models for Czech-to-English and English-to-German. We
extracted feature representations and trained classifiers to predict syntactic dependency
labels. Our results show that using an additional layer does improve the prediction
accuracy, giving the same result as subword segmentation (Morfessor) in the case of
Czech-to-English, but still worse in the case of English-to-Czech (see Table A.4).
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Table A.5
CCG tagging accuracy using features from the k-th encoding layer of 4-layered English-to-*
NMT models trained with different target languages (German, Czech, French, and Spanish).

k de cs fr es

1 88.15 84.90 87.70 87.55
2 88.70 86.20 88.60 88.10
3 88.80 86.60 88.10 88.35
4 89.50 85.10 88.80 88.90

All 91.60 89.90 91.30 91.20

Table A.6
Statistical significance results for syntactic dependency labeling from Section 7.2. The cells above
the main diagonal are for the translation direction A→ and below it are for the direction B→ A.
ns = p > 0.05, † = p < 0.01, ‡ = p < 0.001. Comparisons at empty cells are not shown.

English-Arabic English-Spanish English-French
k 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 ‡ ‡ ‡
1 ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡
2 ‡ ns ‡ ns ‡ ‡ † ‡ ‡
3 ‡ ns ‡ ‡ ‡ ‡ ‡ ‡ ‡
4 ‡ † ns ‡ ‡ ‡ ‡ ‡ ‡

English-Russian English-English
k 0 1 2 3 4 0 1 2 3 4

0 ‡ ‡
1 ‡ † ‡ ‡ ‡ † † ‡
2 ‡ ‡ ‡ † ns ‡
3 ‡ ns † † ns ‡
4 ‡ ‡ ‡ ‡ ‡ ‡

A.4 Layer-Wise Experiments Using CCG Tags

Along with the syntactic dependency labeling task, we found higher layers to give better
classifier accuracy also in the CCG tagging task. See Table A.5 for the results.

A.5 Statistical Significance Results

Table A.6 shows statistical significance results for syntactic dependency labeling exper-
iments from Section 7.2.
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Maria Jesus Aranzabe, Masayuki Asahara,
Aitziber Atutxa, Miguel Ballesteros et al.
2017. Universal Dependencies 2.0.
LINDAT/CLARIN digital library at the
Institute of Formal and Applied
Linguistics, Charles University.

Oepen, Stephan, Marco Kuhlmann, Yusuke
Miyao, Daniel Zeman, Silvie Cinkova, Dan
Flickinger, Jan Hajic, and Zdenka Uresova.
2015. Semeval 2015 task 18: Broad-
coverage semantic dependency parsing. In
Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015),
pages 915–926.

Oepen, Stephan, Marco Kuhlmann, Yusuke
Miyao, Daniel Zeman, Dan Flickinger, Jan
Hajic, Angelina Ivanova, and Yi Zhang.
2014. Semeval 2014 Task 8: Broad-coverage
semantic dependency parsing. In
Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014),
pages 63–72.
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