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The general problem of finding satisfying solutions to constraint-based underspecified represen-
tations of quantifier scope is NP-complete. Existing frameworks, including Dominance Graphs,
Minimal Recursion Semantics, and Hole Semantics, have struggled to balance expressivity and
tractability in order to cover real natural language sentences with efficient algorithms. We
address this trade-off with a general principle of coherence, which requires that every variable
introduced in the domain of discourse must contribute to the overall semantics of the sentence.
We show that every underspecified representation meeting this criterion can be efficiently pro-
cessed, and that our set of representations subsumes all previously identified tractable sets.

1. Introduction

Quantifier scope ambiguity is a big challenge in deep language understanding systems.
Consider the following conversation:

Woman: I believe there is one true soulmate for every person.

Man: He must be very busy.1

Most people find the man’s answer unusual (humorous, sarcastic, etc.). This is because
one of the two scopings of the woman’s sentence feels so obvious that the less likely
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scoping is often missed at first glance. In the most likely interpretation, where there are
many soulmates, the quantifier every has wide scope, and, in the second interpretation,
where there is a unique soulmate, every has narrow scope. The following conversation
is of a similar nature:

Bob: How long have you and Opal been married now Earl?

Earl: I’ve lost track. But I can tell you this ... I don’t regret one day of it.

Bob: Which day don’t you regret?2

The difference, however, is that, in this example, the scope ambiguity is not be-
tween two quantifiers, but between a quantifier (one) and a scopal operator (negation).
Underspecification, that is, generating an unscoped semantic representation, has been
the most common way of dealing with quantifier scope ambiguity since the early days
of natural language processing. Underspecification is not adopted only because quan-
tifier scope disambiguation is difficult, but also because, for most practical purposes,
an underspecified representation (UR)3 will do the job. Equations (1) and (2) show an
unscoped logical form (LF) for the sentences There is one soulmate for every person and
I do not regret one day, respectively.

〈One x Soulmate〉
〈Every y Person〉
Of(x, y)

(1)
〈One x Day〉
Not(Regret(I, x))

(2)

Equation (3) shows the two scopings of the unscoped LF in Equation (2):

One(x, Day(x), Not(Regret(I, x)))

Not(One(x, Day(x), Regret(I, x)))
(3)

When the number of quantifiers increases, the number of possible scopings will increase
exponentially. More recent underspecification formalisms are constraint-based—that is,
they allow for constraints, restricting the order of quantifiers, to be added to filter out
unwanted scopings. The constraints can come from different sources, including deeper
processing steps, such as discourse or pragmatics. Several constraint-based underspec-
ification frameworks have been developed over the past couple of decades. Minimal
Recursion Semantics (MRS) (Copestake, Lascarides, and Flickinger 2001), Hole Seman-
tics (Bos 2002), and Dominance Constraints (Koller, Niehren, and Thater 2003) are
among those frameworks. Each framework is different in the type of constraints it
allows, and has its own advantages and disadvantages. A constraint-based UR defines

2 From Pickles (Brian Crane, 2005).
3 In the literature, UR is used to refer to underspecified representation within the context of Hole

Semantics. In this article, unless otherwise specified, we use UR as a blanket term for any
scope-underspecified representation.
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a computational problem that needs to be solved: Given a UR with a set of constraints,
one needs to check if these constraints are consistent, that is, whether there is a scoping
satisfying all the constraints. This is called the satisfiability problem. The satisfiability
problem for all these three frameworks, in their general form, is intractable (Althaus
et al. 2003). There has been some effort towards defining a notion of well-formedness
within the context of these frameworks. The goal has been to define a subset of URs, the
so-called well-formed UR, for which the satisfiability problem becomes tractable. For ex-
ample, Niehren and Thater (2003) defined the notion of (weak) net to characterize such
a subset. Well-formedness was also intended to bridge the gap between these under-
specification formalisms; the hope was that the differences between these formalisms
disappear and they become equivalent once restricted to well-formed structures.

As seen in Niehren and Thater (2003) and Fuchss et al. (2004), the problem with
those efforts on defining a notion of well-formedness is that their satisfaction of both
properties was only empirically supported, and hence the correctness of those state-
ments has remained a conjecture. In better words, first, there was no mathematical proof
to show that nets enforce the equivalence of qeq vs. dominance relations, the two dif-
ferent types of constraint used in MRS vs. Dominance Constraints/Hole Semantics, and
second, although they were proved to be tractable, there was no convincing linguistic
justification as to why nets cover all URs corresponding to coherent sentences. In fact,
this claim was later falsified when Thater (2007) presented examples of coherent sen-
tences that were unaccounted for by nets (Section 7.1). In summary, it has remained an
open question whether there is a linguistically justified notion of well-formedness that
not only (provably) bridges the gap between the above formalisms, but also guarantees
tractability. In this article, we propose such a notion of semantic coherence that not
only answers both of these open questions but also solves several other unanswered
questions within the context of scope underspecification. The contribution of this work
can be summarized as follows:

r We extend the previous tractable frameworks to cover those natural
language sentences that were known to be unaccounted for without
increasing the complexity of the algorithms.r We go beyond those known unaccounted examples and, once and
for all, prove that every semantically coherent natural language sentence
(based on a linguistically justified notion of semantic coherence) can be
solved in polynomial time, presenting a definitive answer to the open
question of whether solving unscoped representations of real-life natural
language sentences within the context of these formalisms is
tractable.r We prove that, under our notion of coherence, the two fundamentally
different types of constraint, dominance and qeq, become equivalent,
hence, the principal difference between these formalisms disappears.r We further bridge the gap between the constraint-based formalisms by
proving that binding constraints (constraints enforcing that quantified
variables be bound within the scope of their quantifiers), which are
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label-to-label dominance relations in nature, can be represented by
hole-to-label dominance relations, as long as the URs are coherent.
This explains how a formalism such as Hole Semantics, which does
not incorporate label-to-label dominance relations, does not lack the
power to model binding constraints.r Finally, given that quantifier scoping has traditionally been treated as an
ordering problem (i.e., predicting a permutation of quantifiers), whereas in
the constraint-based formalisms it is defined as predicting a tree structure,
our notion of coherence allows us to explain this discrepancy. We show
that, for coherent URs, quantifier scoping is reduced from predicting a tree
structure to finding a permutation.

Whereas we focus on finding solutions to underspecified representations with hard
constraints, our results have implications for statistical systems based on soft con-
straints. Because weighted soft constraints generalize hard constraints, finding efficient
algorithms for solving systems with hard constraints is a first step toward finding
efficient algorithms for finding the highest-scoring solution under weighted constraints.
We also show how our algorithm for finding solutions under hard constraints can be
used to guide search for the highest scoring solution given a combination of hard and
soft constraints.

Some of this article’s results (or a weaker version of them) have been proved in
our own previous work. In Manshadi, Allen, and Swift (2008b), we proved the equiv-
alence of qeq and dominance for canonical form MRS, which motivated the notion of
completeness. In Manshadi, Allen, and Swift (2009), we introduced the notion of heart-
connectedness, which, in the current work, forms the basis of coherence. In another line
of work (Manshadi and Allen 2012), we introduced a superset of nets, called supernets,
that covered the known examples unaccounted for by nets.

In this article, however, we combine completeness and heart-connectedness to
define a mathematically characterized notion of coherence. We show that this notion
directly follows from a linguistic property of semantically coherent sentences, as dis-
cussed by Frege (1923), among others. Under such a linguistically justified and math-
ematically characterized notion of coherence, we prove that (i) the given formalisms
become equivalent, (ii) coherence guarantees tractability, and (iii) quantifier scoping is
reduced to an ordering problem. More importantly, to connect our work to the previous
work within the context of Dominance Graph, we define the notion of hypernet, the
largest tractable subset of Dominance Graph found so far. Hypernets, in particular,
contain downward-connected nets (Koller and Thater 2007) as well as all coherent URs.

In order to build a mathematical infrastructure to be able to rigorously prove these
properties, in particular, the equivalence of different formalisms within a newly defined
notion of well-formedness (i.e., coherence), we define a framework, the underspecifi-
cation graph, by simultaneously incorporating both qeq and dominance constraints.
This allows us to compare URs represented within each of the individual formalisms
under a universal framework (as shown schematically in Figure 1), and ultimately to
formally prove equivalence. The structure of this paper is as follows. In Section 2, we
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Coherent UG
Section 4

Dominance Graph

Coherent MRS
(satisfiable and heart-connected)

Section 7.2

MRS

Normal DG

Hole Semantics’s UR
(satisfiable and hyper-normally connected)

Section 7.3

Hypernet
Section 5

Weak net
Section 7.1

Weakly Normal DG

Underspecification Graph
Section 2

CF-MRS

Complete UG
Section 3

Figure 1
Classes of underspecification graph introduced in this article. We define hypernet, show that it is
computationally tractable, and further show that it covers all coherent sentences, and that it
subsumes previously identified tractable classes.

give a formal definition of our universal framework (i.e., underspecification graph).
Section 3 defines a notion of completeness and proves that, under this notion, the
two fundamentally different types of constraint used in underspecification formalisms
(qeq and dominance) become equivalent. Section 4 defines a notion of coherence for a
complete UR. Section 5 discusses the tractability issue. We propose a tractable subset
of URs and prove that it is the largest tractable subset found so far. We then show that
every coherent UR belongs to this set, and we discuss implications for systems of mixed
hard and soft constraints. Section 6 shows that scope disambiguation can be treated as
an ordering problem. Finally, Section 7 gives a detailed comparison of our framework
with previous work, and Section 8 concludes.

2. Underspecification Graph

Consider the following example.

1. Every child of a politician runs.
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Early systems (Schubert and Pelletier 1982; Hobbs and Shieber 1987; Allen 1995) repre-
sented the semantics of such a sentence using an unscoped LF of the following general
form:

Every(x, Child(x, y),©), A(y, Politician(y),©), Run(x) (4)

To scope this LF, at each step, a quantifier is picked and the main predication (i.e.,
Run(x)) or the partially scoped formula built so far is fused to its body hole:

Step 1. Every(x, Child(x, y), Run(x))

Step 2. A(y, Politician(y), Every(x, Child(x, y), Run(x)))
(5)

By picking quantifiers in different orders, different scopings are generated.
Next, the notion of constraints was introduced into the domain of scope underspeci-

fied semantics. For example, Quasi Logical Form (Alshawi and Crouch 1992) allows for
constraints such as A > Every to be used to force one quantifier to rest within the scope
of another. By inventing some machinery that allows for Discourse Representation
Theory (Kamp 1981) to support scope underspecification, Underspecified Discourse
Representation Theory (or UDRT) (Reyle 1993) takes the notion of constraint-based
underspecification to a new level. UDRT introduces a complex system of constraints,
that, among other things, can define a maximum and a minimum range for the scope of
a quantifier relative to other scope bearing elements. It is fair to say that Reyle’s work
inspired the next two decades of research on constraint-based scope underspecification,
resulting in several underspecification formalisms such as Hole Semantics (HS; Bos
1996), MRS (Copestake, Lascarides, and Flickinger 2001), and Dominance Graph (DG;
Thater 2007). Unlike Quasi Logical Form or UDRT, the new formalisms treat underspec-
ification as an abstract algebraic framework which is independent of the target object
language, whether it is first order predicate calculus, modal logic, Discourse Represen-
tation Theory, etc. A UR in these formalisms is a set of abstract labeled formulas with
holes that can be filled in with other labeled formulas. The formulas come with a set of
constraints between the labels and holes, and in order for a scoping to be considered
valid, the set of constraints ought to be respected. Despite all the similarities, as will be
seen shortly, HS/DG and MRS differ in how they interpret the constraints.

Figure 2 shows the graphical depiction of the UR of Example (1) as proposed by
MRS. Solid nodes represent labeled formulas, and are called label nodes. The holes
of the formulas are represented by nodes with hollow circles, called the hole nodes.
Scopings of such a structure are built by fusing label nodes to hole nodes as shown
in Figure 2(b). This UR leaves both the body and the restriction of the quantifiers
underspecified. This is to allow for scopings such as Figure 2(c), in which quantifier A
lies between quantifier Every and its restriction. The dotted line between the label node
Child(x,y), call it l, and the restriction hole of Every, call it h, is an example of a constraint.
This constraint (also represented as h =q l), requires that either h is directly filled by l or
h is filled by a quantifier and the body hole of that quantifier is filled by l (or by another
quantifier and the body hole of the latter is filled by l, and so on so forth). This type of
constraint, first introduced by the MRS framework, is called a qeq constraint. It is easy
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Politician(y)

A(y)

Child(x,y)

Every(x)

Run(x)

q q

(a) UR for Example 1

Politician(y)

A(y)

Child(x,y)

Every(x)

Run(x)

(b) Fusing labels to holes

Every(x)

A(y)

Politician(y)

Run(x)

Child(x, y)

(c) Resulting scoping (d) Explicit binding constraints

Figure 2
Using graphical notation to represent unscoped LF.

to see that qeq directly implements the idea of wrapping a quantifier around a formula
as shown in Equation (5). It is easy to see that not every assignment of labels to holes
in the UR is a valid scoping, even if it satisfies both qeq constraints. This is because, in
addition to qeq constraints, the UR carries a group of implicit constraints, the so-called
binding constraints. The binding constraints force every variable (x, y, etc.) to be in the
scope of its quantifier. Unlike qeq, binding constraints enforce a mere outscoping (a.k.a.
dominance) relation. That is, to satisfy a binding constraint from u to v, it is enough that
u outscopes (a.k.a. dominates) v.

To simplify things, let us make the binding constraints explicit by using unlabeled
dotted edges as shown in Figure 2(d). We call the resulting representation that incor-
porates both dominance and qeq constraints an underspecification graph (UG).

Before moving to the formal definition of UG, it should be emphasized that what
is defined here as UG is nothing but the integration of the three existing concepts:
MRS, HS, and DG. Defining a framework that subsumes all three has proved very
useful in substantiating the results we have obtained and in providing rigorous proofs.
Otherwise, from a practical standpoint (as proved later), UG has little to no advantage
over DG. In addition, it serves us better to first define the general framework, and then
introduce subsets of it, rather than the other way around.

2.1 The Formal Definition

Quantifiers and scopal and non-scopal predications are the building blocks of a UR. As
seen in Figure 2, in graphical notation, they are depicted as single solid nodes or trees
with solid edges. In DG terminology, these are called fragments. We alternatively use
the term elementary tree, emphasizing that these are analogous to the MRS’s elementary
predications (Section 7.2).
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l l

h1 hn
(a) General form of ET

q q

l2 l4

l3 l5

h1 h2 h3 h4
q

l0

l1

h0

(b) An example of UG

Figure 3
Elementary tree and underspecification graph.

Definition 1 (Elementary Tree)
An elementary tree or ET (a.k.a. fragment) is an ordered4 tree of depth 0 or 1. The roots
of all ETs are represented by small solid circles and are referred to as label nodes or
simply labels. All the leaf nodes of the ETs of depth 1 are represented as big hollow
circles and are referred to as hole nodes or simply holes. ETs with holes are called
scopal ETs.5

Figure 3(a) shows the general form of an elementary tree for both cases of depth = 0
and depth = 1. When depth = 0, the elementary tree is a singleton.

Definition 2 (Underspecification Graph)
The 8-tuple U = 〈LU, HU, EU, QU, DU, TU, Lq

U, PU〉 is called a (scope) Underspecification
Graph or in short UG, if it is a finite structure with the following properties:r FU = 〈LU, HU, EU, PU〉 is a forest of elementary trees, with LU being the set

of label nodes, HU the set of hole nodes, and EU the set of directed solid
edges, going from the root of ETs to their holes. The order of holes in each
ET is defined by PU.6 In graphical notation, PU is not explicitly given, as it
is implicit in the left-to-right order by which the hole nodes of each ET are
depicted.r QU is a relation from HU to LU, that is, QU ⊂ HU × LU. In graphical
notation, each (h, l) ∈ QU is represented as a directed dotted edge from h to
l marked with a label q, called a qeq constraint.

4 Throughout this paper, unless otherwise specified, by tree we always mean a rooted ordered tree.
5 A mathematically precise definition requires ETs to be defined as graphs over pairs (u, s), where u is a

node and s is a symbol of the value L (for label nodes) orH (for hole nodes). Such notation will be quite
cumbersome and may become confusing, especially given that we later need to define two types of
edges, and even two types of dotted edges. Therefore, although we understand that the underlying
mathematical model is defined in this precise way, we avoid adopting the notation. Instead, we use l, l1,
and so forth, to denote labels and h, h1, and so forth, to denote holes. The same applies to different types
of edges defined later.

6 Therefore, PU is a partial order over HU that defines, for each ET ε, a total order over the set of holes of ε.
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r DU is a relation over HU ∪ LU. Each (u, v) ∈ DU is called a dominance
constraint and, in graphical notation, is represented as a directed
dotted edge from node u to node v. The dominance constraints can go
from any node to any node, except from holes to holes, therefore, DU ⊂
(LU ∪HU )× (LU ∪HU )−HU ×HU. Dominance (as opposed to qeq) is the
default constraint type, therefore, the label d is dropped for the sake
of brevity.r TU is a dummy ET of depth 1, with l0 ∈ LU, h0 ∈ HU, and e0 = (l0, h0) ∈ EU
being its root, its single hole, and its single edge. It is defined to be the
designated root of every scoping, therefore, TU, l0, and h0 are called top
ET, top label, and top hole, respectively.7 The set of all labels except l0 is
denoted by L̃U, that is, L̃U =def LU − {l0}.r Lq

U ⊂ L̃U is the set of floating scopal nodes. The ETs rooted at these nodes
are called floating scopal ETs. Every scopal ET other than the floating
scopal ETs is called a fixed-scopal ET. Floating scopal ETs are required to
have a hole as the right-most child of the root. This hole and its connecting
edge (sometimes distinguished with a label “b” for emphasis) are called
the body hole, and the body edge, respectively. In practice, floating scopal
ETs correspond to (generalized) quantifiers. Therefore, we use the terms
floating-scopal and (generalized) quantifier interchangeably. Quite often,
we do not explicitly define Lq

U, because (generalized) quantifiers can be
recognized from the context. Because quantifiers have one restriction and
one body preposition, throughout this article we only consider floating
scopals with two holes.

Scopings of a UG are built by fusing labels to holes. We call this a fusion.8

Definition 3 (Fusion)
Given a UG U, a (total) fusion f is a total function from L̃U to HU. A partial fusion f is a
partial function from L̃U to HU.

Figure 4(a) demonstrates a fusion for the UG U in Figure 3(b). Given a fusion f ,
the corresponding scoping is denoted by TU, f . We construct the graph of TU, f from U
by removing all the constraint edges and fusing l to f (l) for each l ∈ L̃U, as illustrated in

7 Most underspecification frameworks, such as MRS or Hole Semantics, implement such an ET, which does
not correspond to an actual predication of the sentence, but serves as the highest level predication of the
sentence, encompassing the overall semantics. For example, in a typed feature structure formalism like
MRS, this ET contains attribute-value pairs, encoding some global semantic properties of the sentence,
such as the speech act, which is not particular to any individual elementary predication.

8 We intentionally avoid using the existing term plugging from Hole Semantics, because plugging is defined
as a function from holes to labels (Bos 1996), while, in order to be able to fuse multiple labels to a single
hole, we define fusion in the opposite direction. This gives UG the power to model MRS’s operation of
forming conjunctions by equating labels.
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l2l0 l4

l3 l5

h1 h2h0 h3 h4

l1

(a) Graphical depiction of a fusion function

l0

l3( ),h1

l5( ),h3 l1( ),h4

l4( ),h2

l2( ),h0

(b) TU, f for fusion f on left

Figure 4
Building a solution for a UG.

Figure 4(b). Intuitively, we expect scopings to form a tree. Theorem 1 states the necessary
and sufficient condition for TU, f to be a tree.

Theorem 1
Given a UG U and a total fusion f of U, TU, f is a rooted tree if and only if TU, f is acyclic.

Proof. The “only if” direction is trivial. The “if” direction holds for the following reason.
Because f is a function, every label is fused into at most one hole, hence, has at most one
parent in TU, f . If f is total, then every label except l0 is fused into exactly one hole, hence,
has exactly one parent in TU, f . Therefore, with U being finite, if we start at any arbitrary
node and follow the sequence of parents, we have to end up at l0. This means TU, f is a
tree rooted at l0. 2

Although fusion is defined as any function from L̃ to H, we are only interested in
fusions that result in valid readings, that is, satisfy the constraints.

Definition 4 (Constraint Satisfaction and Admissibility)
Fusion f (similarly TU, f ) satisfiesr a qeq constraint q = (h, l), if h = f (l), or the directed path from h to l in

TU, f
9 consists of only the body edges of quantifier ETs (called a b-path);r a dominance constraint d = (u, v), if u dominates v in TU, f .

Fusion f of U is admissible if TU, f is acyclic and satisfies all the constraints in U.
So far we have informally used the term scoping to refer to a fully scope-

disambiguated UR. We now formally define this notion and call it a solution.

9 Note that each node u of a solution T (except the root) corresponds to exactly one hole hi and at least one
label ljof U with f (lj ) = hi. Hence, when we say node hi, node lj, or node (lj, hi ) of T , in all three cases,
we are referring to the same node u of T .
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Definition 5 (Solution)
T is called a solution of a UG U iff T = TU, f for some admissible, total, and onto10 fusion
f of U. In informal contexts, solutions are sometimes referred to as readings. U is called
satisfiable if U has at least one solution.

In this definition, admissibility ensures the satisfaction of all constraints, totality
ensures that every label (except the top) is fused into some hole, and onto-ness ensures
that no hole is left unfused. Following Lemma 1, Definition 5 guarantees that every
solution is a tree structure. The fusion in Figure 4(a) is admissible, total, and onto, and
hence, Figure 4(b) is a solution.

The following definition will later be used for the comparison of our framework
with other frameworks.

Definition 6 (Merging-Free Solutions)
The solution TU, f is called a merging-free, if f is a one-to-one function. Otherwise, it is
called a merging solution.

The following lemma directly follows from the definition.

Lemma 1
Given a UG U and a solution T of U, T is merging-free if and only if |L̃U| = |HU|.

Corollary 1
Either all the solutions of a UG are merging-free or none are.

In practice, merging solutions only happen when the underspecified representation
is incomplete, that is, when there are ETs that are floating around and, in order to build
a solution, they must be fixed up with other ETs to make conjunctions. In Section 3, we
prove that all solutions of a complete UG are merging-free.

2.2 Variations of UG

The definition of UG requires each ET to be of depth at most one and, when the depth
is exactly one, all the leaf nodes to be hole nodes. This definition perfectly imitates
the notion of elementary predications in MRS, but some frameworks, such as Hole
Semantics, use the concept of (labeled) formula, which does not precisely fit into this
definition. Figure 5(a) shows a graph, roughly corresponding to the UR that Hole
Semantics assigns to the sentence Every child of a politician runs. As seen in this figure,
we have to deal with ETs with depth more than one and leaves that are not necessarily a
hole. Even in MRS, ETs can be stacked to form trees of depth more than one. Figure 5(b)

10 A function f is onto if its image is equal to its codomain.

49

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/44/1/39/1808909/coli_a_00307.pdf by guest on 07 Septem
ber 2023



Computational Linguistics Volume 44, Number 1

Every(x)

Child(x)
Run(x)

A(y)

Politician(y)

Of(x, y)

And

(a) Hole Semantics UR with stacked ET

Cat(y)

A(y)

Dog(x)

Every(x)

Chase(x, y)

q q

Bark(x)

And

(b) MRS structure for the sentence in Example (2)

Figure 5
Examples of stacked ETs.

shows the MRS structure of the following sentence in graphical notation, obtained from
English Resource Grammar.11

2. Every dog barks and chases a cat.

Finally, a partially scoped UG U, even if all the ETs of U are standard, will inevitably
have these non-standard tree structures. Therefore, for the sake of the robustness of our
definitions, we should be able to model these structures. Fortunately, we will be able to
do this without too much effort. This is because a stacked ET can be converted into a
standard ET without affecting the number of solutions of the UG. This conversion has
been demonstrated in Figure 6(a). We now formally express this intuition.

Definition 7 (Stacked ET)
A stacked ET is an ordered tree of arbitrary depth whose interior nodes are all label
nodes, and whose leaves can be holes and/or labels.

Definition 8 (UG.1: variation 1 of UG)
A UG.1 is a 9-tuple U̇ = 〈LU̇, L′U̇, HU̇, EU̇, QU̇, DU̇, TU̇, Lq

U̇
, PU̇〉 (L′U̇ is the only additional

element with respect to standard UG), where FU̇ = 〈LU̇, L′U̇, HU̇, EU̇, PU̇〉 is a forest
of stacked ETs with L′U̇ being the set of non-root label nodes. Everything else in
Definition 2 remains the same.12

The definitions of fusion, admissibility, and solution for UG.1 will be exactly the
same as the definitions of those concepts for standard UG, as stated in Definitions 3,
4, and 5.

11 http://erg.delph-in.net/.
12 Note that stacked floating-scopal ETs, exactly the same as standard ones, are required to have a hole as

the right-most child of the root.
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qq qq

(a) Converting stacked ET into standard ET

q
h1 h2

l2

q
h1 h2

l2

(b) Hole-to-hole into hole-to-label

Figure 6
Conversion to original UG.

Theorem 2
Every UG.1 can be converted into a UG, while the solutions remain in a one-to-one
correspondence.

Proof. Consider a UG.1 U̇ with its set of solutions {Ṫ1, Ṫ2, . . . ṪK}. We build the UG U by
collapsing the set L′U̇,E of non-root label nodes of each stacked ET E into its root lE , as
demonstrated in Figure 6(a). Similarly, we convert each tree Ṫj into Tj by collapsing the
nodes L′U̇,E of T into lE for each stacked ET E . It is easy to see that {T1, T2, . . . , TK} is the
set of solutions of U. 2

In defining UG, we ruled out dominance constraints that go from holes to holes.
This does not restrict the power of UG, because hole-to-hole dominance constraints can
be replaced with hole-to-label constraints, while the set of solutions remains the same,
as demonstrated in Figure 6(b). In the following, we will state this idea formally.

Definition 9 (UG.2: variation 2 of UG)
A UG.2 is a 8-tuple Ü, in which the constraints in DÜ can go from any node to any node.
Everything else in Definition 2 remains the same.

Theorem 3
Every UG.2 can be transformed into a UG, while the set of solutions remains the same.

Proof. Consider the UG.2 Ü and a constraint d̈ = (h1, h2) in Ü (Figure 6(b)), and let l2 be
the parent of h2. We build U by replacing d̈ in Ü with d = (h1, l2), as demonstrated in
Figure 6(b). Ü and U have the same set of solutions. This is because if T is a solution of
Ü, then h1 dominates h2 in T . Because l2 immediately dominates h2 in T , h1 dominates l2
as well, hence, T satisfies d. The other direction is trivial. This procedure can be repeated
until all hole-to-hole constraints are transformed. 2

In the preceding sections, we defined two variations of UG that relaxed some
restrictions of the original definition, but we showed that this did not increase their
power. In the following, we define some other variations, imposing some restrictions
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on UG. These restrictions, however, limit the power of UG. The main motivation behind
defining these variations is to be able to compare UG with other frameworks (Section 7).

Definition 10 (Normality)
A UG is said to be normal iff all its dominance constraints go from holes to labels, that
is, DU ⊂ HU × LU.

Normality therefore rules out constraints emanating from a label node.

Definition 11 (Weak Normality)
A UG is said to be weakly normal, iff for every dominance constraint d = (u, v), v is a
label node.

Note that weak normality only rules out label-to-hole constraints.

3. Completeness

In this section, we define the notion of completeness. Intuitively, completeness means
that we have the minimum connectivity in terms of constraints that is required by the
syntax/semantic interface for a complete sentence. Here, we formally define the notion
of completeness and prove some properties.

Definition 12 (Canonical Form)
A UG is in canonical form (CF-UG) ifr The body hole of floating scopals is not involved in any qeq edge.

Every other hole has exactly one outgoing qeq edge.r Floating scopal nodes, as well as the top label, are not involved in any
qeq constraints. Every other label has exactly one incoming qeq edge.

Before we continue, let us define the notion of spanning sub/super-UG. Intuitively,
spanning sub/super-UG of G has the same ETs as the G, and only its set of constraints
differs. The motivation is to define a type of sub/super relation under which complete-
ness is closed (a super-UG of a complete UG is not necessarily complete, because it may
have one or more additional ETs that violate completeness conditions).

Definition 13 (Spanning Sub-UG)
U′ is a spanning sub-UG of U, if DU′ ⊂ DU and QU′ ⊂ QU. Every other element of the
tuple U′ is identical to the corresponding item in the tuple U. In particular, notice that
the set of ETs is the same in both U and U′, hence, the term spanning. U′ is a spanning
super-UG of U, if U is a spanning sub-UG of U′. Uq is defined as the spanning sub-UG
of U with no dominance edges, that is, DUq =∅ and QUq =QU.

Theorem 4 shows that CF-UGs, ignoring dominance edges, are in the form of
Figure 7.
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Figure 7
Uq of a generic CF-UG U.

Theorem 4
If U is in canonical form, then Uq is a forest of exactly |Lq

U|+ 1 trees, rooted at Lq
U ∪ {l0}.

RU =def Lq
U ∪ {l0} are called the roots of U.

Proof. According to the second condition in Definition 12, the n quantifier nodes and l0
are the only nodes with no incoming edge, therefore they form all and the only n + 1
roots of the graph of a CF-UG. Every other label or hole node must be dominated by
one of those n + 1 roots. According to the first condition of Definition 12, the body holes
of quantifiers have no outgoing edge, therefore every other node must be either under
the restriction of a quantifier or under h0. 2

Because qeq constraints were introduced by MRS, in Section 7.2, we show that, in
practice, all MRS structures generated by MRS’s proposed syntax/semantic interface
are in canonical form. Canonical form defines the smallest complete UG over a set of
ETs.

Definition 14 (Completeness)
A UG is complete if it has a spanning sub-UG in canonical form.

The following set of definitions become handy throughout the rest of this
paper.

Definition 15 (Floating Scopal Trees/Restriction Trees/Heart Tree)
We refer to T1, T2, . . . , Tn, the trees in Uq rooted at Lq

U, as floating scopal trees
(a.k.a. quantifier trees); Tr

1, Tr
2, . . . , Tr

n, the trees rooted at the restriction hole of the
floating scopals, as the restriction trees; and T0, the tree rooted at l0, as the heart
tree.
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3.1 Equivalence of Qeq and Dominance Relations

In this section, we show that, for every complete UG, qeq and dominance relations
are equivalent. That is, as stated by Theorem 5, if qeq constraints are replaced with
dominance relations, the solutions of the UG remain the same. This fact explains why
frameworks such as Dominance Graph are able to model scope underspecification
even though they only use dominance constraints, and helps to bridge the gap between
the two sets of formalisms. We first prove this for the case when there is no quantifier
in U.

Lemma 2
Let U be a complete UG with no quantifier. Let Û be the UG obtained from U by
treating all qeq edges as dominance constraints, that is, DÛ = DU ∪QU and QÛ = ∅.
Every solution of U is a solution of Û and vice versa.

Proof. The first direction is trivial because qeq is a special case of dominance. In order
to prove the other direction, consider the leaf label nodes of Û (Figure 8(a)). In any
solution of Û, these label nodes have to be fused to the hole from which they have re-
ceived a dominance constraint. Let us fuse these labels, and then, following Theorem 2,
collapse the EPs with the fused hole(s) into a single node. We can now apply the same
argument to the newly leaf nodes and repeat this until we reach the top (remember
that UGs are finite). This shows that every hole h of Û has to be fused with the label l
where (h, l) ∈ QU. Because h is fused directly with l, following the definition of qeq, the
constraint between h and l is satisfied, even if it is treated as qeq. This means that T̂ is
also a solution of U. 2

Theorem 5
Let U be a complete UG, and Û be the UG obtained from U by treating all qeq edges
as dominance constraints, that is, DÛ = DU ∪QU and QÛ = ∅. Every solution of Û is a
solution of U and vice versa.

(a) A UG with no quantifier

l qn

u

v w

T̂ u

w
b

⌧n

⌧ r
n ⌧ b

n

⌧ b
n

T̂ 0

(b) Inductive proof

Figure 8
Proof of Lemma 2 and Theorem 5.
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Proof. Because qeq always implies dominance, it is trivial that every solution of U is a
solution of Û. Using the lemma and induction on n, the number of quantifiers, we prove
the other direction, that is, if T̂ is a solution of Û, then it is also a solution of U.

Let n = 0. Because there is no quantifier in T̂ , according to Lemma 2, every hole h is
fused with l where (h, l) ∈ QU, therefore, every qeq constraint is satisfied.

Now let n > 0 and U be an arbitrary UG with n quantifiers (see Figure 7), and T̂ be
a solution of Û. Consider the quantifier node lq with the longest distance from the root
of T̂ (breaking ties arbitrarily), meaning that lq does not outscope any other quantifier
node in T̂ . Without loss of generality, assume that lq = lqn and use τ̂n, τ̂r

n, and τ̂b
n to refer

to the trees rooted at lqn and the left and the right child of lqn in T̂ , respectively, as shown
in Figure 8(b). According to Lemma 2:

(i) All qeq constraints in the quantifier tree Tr
n are satisfied in T̂ .

Now let us remove the quantifier tree rooted at lqn from U and Û and call the resulting
UGs U′ and Û′, respectively. Accordingly, detach the tree τ̂n from T̂ , replace it with τ̂b

n
and call the new tree T̂ ′, as demonstrated in Figure 8(b). T̂ ′ is a solution of Û′, and hence
(based on the induction assumption) is a solution of U′. Therefore, all qeq constraints in
U′ are satisfied in T̂ ′, which also proves:

(ii) All qeq constraints in U′ are satisfied in T̂ .

This is because if two nodes are connected with a b-path in T̂ ′, they are also connected
with a b-path (possibly including an additional b-edge (lqn, w)) in T̂ .

From (i) and (ii) every (h, l) ∈ QU is satisfied in T̂ , hence T̂ is a solution of U. 2

The next section introduces the heart of our framework, the concept of semantic
coherence.

4. Coherence

In this section, we introduce the notion of sentence-level semantic coherence based on
a simple principle: that every variable introduced in the domain of discourse must
contribute to the overall meaning of the sentence. We formally characterize this quality
as a property of a UG, and refer to sentences whose interpretation is a coherent UG as
coherent sentences. We posit as a general principle of language the requirement that
sentences should be coherent. This general principle goes back at least as far as Frege
(1923), and is widely accepted, although, because it is not a mathematical statement, it
cannot be proved. Our definition of coherent UG, on the other hand, is mathematically
precise, and can be used to prove that all coherent sentences are tractable, as we will see
in Section 5.

4.1 Mathematical Characterization of Semantic Coherence

A variable introduced in the domain of discourse is called relevant if it contributes
to the overall meaning of a sentence. This contribution may happen in two different
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ways, either by directly participating in the main predication13 or by participating in
the definition of another relevant variable. If variable x participates in the definition of
y, we say that y is (semantically) dependent on x. To summarize, a variable x is relevant if
either the heart or another relevant variable depends on it. For example, in the sentence
Every child of a politician runs, the variable x, quantified by Every, is relevant, because it
is an argument of the main predication, and the variable y, quantified by A, is relevant,
because x depends on it. Following these intuitions and given that dependencies in a UG
are encoded in the binding (i.e., dominance) constraints, we formally define relevance
as follows.

Definition 16 (Dependence/Relevance)
Consider a complete U,14 with the top hole l0 and lqi , lqj ∈ Lq

U:r lqj (l0, for j = 0) depends on lqi , if (lqi , u) ∈ DU for some u in a restriction
tree Tr

j .r lqi is said to be relevant if

(i) l0 depends on lqi ; or

(ii) lqj depends on lqi , and lqj is relevant.

Definition 17 (Coherence)
A complete UG U is called coherent if every lqi in U is relevant.

Trivially, relevance is closed under the increment of constraint edges, resulting in
the following lemma.

Lemma 3
Coherence is closed under the increment of (dominance) constraint edges.

In Manshadi, Allen, and Swift (2009), we defined the notion of semantic de-
pendency graph and a property of such graphs called heart-connectedness. Heart-
connectedness is nothing but a notational variant of coherence. In this article, we shall
use the notion of semantic dependency graph to compare our framework with Hole
Semantics (Section 7.3). Therefore, in the rest of this section, we formally define this
notion and prove that the two formulations of coherence are in fact equivalent.

Definition 18 (Semantic Dependency Graph)
Given a CF-UG U, we define semantic dependency graph or SDG of U as SDGU =

(V, E), wherer V = {0, 1, . . . , n}, where n = |Lq
U|.r (i, j) ∈ E if and only if i 6= j, i > 0, and (lqi , u) ∈ DU, where u is a node in Tr

j .

13 Here, by participation, we mean filling an argument position.
14 Hence, dependence and relevance are defined only if U is complete.
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(b) If some dog in a room barks every cat runs

2  1  0  

(c) SDG of the UG in (a)

0  3  1  2  

(d) SDG of the UG in (b)

Figure 9
Constructing semantic dependency graph.

Intuitively, SDGU is obtained by taking the CF-UG U and collapsing its heart and
quantifier trees—that is, each of the trees T0, . . . , Tn—into a single node, resulting in
a directed graph G of n + 1 nodes. Figure 9 demonstrates this transformation for two
real-life CF-UGs. The dependencies in U are simply encoded in the edges of G. In other
words, if i is the node of G corresponding to Ti, an edge from i to j in G means that lqj
(l0, if j = 0) depends on lqi in U. From Definition 18, SDGs are simple graphs, that is, (i)
they have no self-loops, and (ii) for every i, j there is at most one (directed) edge from
i to j. Node 0, which corresponds to the heart of the CF-UG, hence called the heart of
SDG, has no outgoing edge, therefore the heart is always a sink node.

Definition 19 (Heart-Connectedness)
A SDG G is called heart-connected if every node in G reaches the heart by a directed
path. A CF-UG U is called heart-connected, if SDGU is heart-connected.

Theorem 6
A CF-UG U is coherent if and only if it is heart-connected.

The theorem directly follows from the following lemma.

Lemma 4
The node lqi is relevant in a CF-UG U, if and only if i reaches the heart in SDGU.

Proof. Following Definition 16, the set R of all the relevant nodes in U can be constructed
as follows:

r R0 = {l0}.
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(a)

2  3  0  1  

(b)

Figure 10
UG and SDG for Somebody hates every politician whom I know a child of.

r R =
⋃n

m=0 Rm, where Rm (m > 0) is the set of nodes that R(m−1)

depends on.15

Using induction on m, it is easy to see that for every node lqi ∈ R, node i reaches the heart
in SDGU using a directed path of length m. 2

All examples of UG given so far are acyclic. This may suggest that the SDG of
every sentence is acyclic, but this is not the case. As a counterexample, consider the UG
in Figure 10, motivated by an example from Hobbs and Shieber (1987). This example
shows that coherent UGs form a very broad class of UGs, subsuming other previously
proposed classes, as we will see in Section 7. Notwithstanding their broad applicability,
coherent UGs can be tractably processed, as we will see in the next section.

5. Tractability

An algorithmic problem arising within the context of constraint-based underspecifica-
tion frameworks is to determine whether a given UG has a solution or not. This is called
the satisfiability problem, or, in short, SAT. This becomes important when new con-
straints are incrementally added at the deeper levels of language processing. Another
closely related problem commonly studied within the same context is to enumerate all
possible solutions, the enumeration problem, or, in short, ENUM. All the constraint-
based underspecification frameworks that we have built UG upon (HS, MRS, and DG)
are intractable in their general form, meaning that their satisfiability problem is NP-
complete. Over the last decade, there has been a series of work on finding a subset of
these frameworks that can be solved efficiently. The previously found tractable subset

15 We require that Rm ⊂ Lq
U −

⋃(m−1)
j=0 Rj.
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is inadequate in that it does not cover all natural language sentences (see Definition 29
in Section 7.1 for details), leaving open the question whether there is a tractable subset
with sufficient expressivity. In this section, we answer this question by introducing the
largest tractable subset found so far and prove that every coherent sentence, under our
linguistically justified notion of semantic coherence, belongs to this subset.

5.1 Dominance Graph

In the previous sections, we showed that for coherent (in fact, complete) UGs, qeq and
dominance constraints are equivalent. A UG with only dominance constraints is called a
dominance graph, or, in short, DG, which is the core concept of the Dominance Graphs
framework. Most of the work on finding a tractable subset of URs has previously
been done within the realm of this framework. Because coherent UGs are a subset of
dominance graphs, our work is built on top of this work, hence, in this section we only
work within this framework.

Remember from Definition 2 that a UG is an 8-tuple 〈L, H, E, Q, D, T, Lq, P〉. With
no qeq constraints, a dominance graph has no Q component. As a result, there is no
need to distinguish floating scopal (i.e., quantifier) ETs; and hence, there is also no
Lq component, which in turn means that there is no designated top ET in dominance
graphs. Therefore, all labels can potentially form the root of a solution. We now give a
formal definition of dominance graph.

Definition 20 (Dominance Graph)
A Dominance Graph, or DG, is a 5-tuple G = 〈LU, HU, EU, DU, PU〉where all the compo-
nents are as defined in Definition 2. Because there is no designated top node, analogous
to L̃U, we define L̃l

G = LU − {l} for every label node l. All the variations of UG defined
in Section 2.2 are defined correspondingly for DG.

It should be noted that in order to build a fusion, we have to first pick an arbitrary
label l, and then construct f as a function from L̃l

G to H. The node l will be a root of TU, f
(the only root, if f is total). Following this definition, every UG can be converted into a
DG by dropping the top ET and treating all qeq constraints as dominance constraints.

Definition 21 (DG Counterpart)
Given a UG U, GU, the DG counterpart of U, is obtained by removing the
top ET from U and converting all qeq edges into dominance. More precisely, GU =

〈HG, LG, EG, DG, PG〉 where HG = HU − {h0}, LG = LU − {l0}, EG = EU − {(l0, h0)}, DG =

DU ∪QU − {(u, v) | {u, v} ∩ {l0, h0} 6= ∅}, PG = PU.

The following lemma directly results from Theorem 5.

Lemma 5
There is a one-to-one relationship between the solutions of a complete UG U and those
of its DG counterpart GU.

In order to prove the tractability of coherent UG, we define a mathematically (more)
convenient notion, a subset of DG called hypernet. Hypernet includes all coherent UGs,
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Figure 11
Recursive construction of solutions.

and we treat it as the mathematical characterization of coherence within the context of
DGs. The definition of hypernet is motivated by the definition of (weak) nets (Niehren
and Thater 2003), a previously found tractable subset of DG, and it translates our
semantically motivated concept of coherence into (a slightly more powerful version of)
the already popular structures of DG. Built on top of the fairly complex notion of nets
together with the incorporation of heart-connectedness (as the mathematical characteri-
zation of coherence), there should be no surprise that the definition of hypernet is quite
complex. For this reason, instead of presenting the complete definition at once, we step
by step justify our way through the full definition of hypernet.

Remember that our ultimate goal is to efficiently solve (a subset of) DGs. Here is a
recursive approach. Pick an ET for the root of the solution and remove it from the DG.
Recursively solve each of the remaining smaller DGs and plug the root of the resulting
trees into the holes of that ET. Figure 11 demonstrates this procedure and Table 1 lists
the steps. In order for this approach to work, each of the resulting subgraphs should be
a valid DG. Let us make this intuition formal.

Definition 22 (Sub-DG)
A sub-DG G′ of G is a DG whose set of ETs and constraints is a subset of ETs and
constraints in G, respectively. A spanning sub-DG of G is a sub-DG that includes all the
ETs in G. An induced sub-DG G′ of G (by a subset F of ETs in G) is a sub-DG of G in
which (the set of ETs is F and) a constraint of G is present in G′, if and only if both its
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Table 1
Recursive procedure followed in Figure 11.

1: procedure SOLVE(DG G)
2: If G contains a single (label) node, return that node as a single-node tree T .
3: Pick an ET E satisfying all the conditions to be the root of a solution, otherwise,

fail.
4: Let Gr, Gb be the two DGs resulting from the removal of E (Figure 11(b)).
5: Let T r =SOLVE(Gr), T b =SOLVE(Gb)
6: Build T by plugging T r into hr and T b into hb.
7: return T .

Politician(y)Child(x,y)

Every(x)

Run(x)

A(y)

(a) DG G

Every(x)

A(y)

Politician(y)

Run(x)

Child(x, y)

T 0

(b) Solution T of G

Politician(y)Child(x,y)

A(y)

(c) Sub-DG induced by T ′

Figure 12
DG counterpart of the UG for Every child of a politician runs and a sub-DG of it.

ends are present in G′. Given a solution T of G and a subtree 16 T ′ of T , a sub-DG G′

induced by T ′ is the sub-DG induced by the set of ETs of T ′.

Figure 12 gives an example of these concepts. The following property, which di-
rectly follows from the definition, will help in proving the completeness of the recursive
method (Section 5.3).

Lemma 6
Consider a DG G, a solution T of G, and a subtree T ′ of T . If G′ is the sub-DG of G
induced by T ′, then T ′ is a solution of G′.

The notion of sub-DG helps in solving DGs recursively, as shown in Figure 12.
Depending on whether, at step 3, among all nodes satisfying the conditions, we pick a
node arbitrarily or iteratively determines whether the algorithm will be a SAT algorithm
(generating an arbitrary solution on success) or an iterative ENUM algorithm (every
branch of which builds one solution). Note that, whereas the total size of the output
for ENUM may be exponential, we are interested in bounding its running per solution
produced.

16 Throughout this article, by “subtree of a tree T,” we mean a node and all of its decedents in T.
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In the rest of this section, we form this intuition into a detailed algorithm and define
hypernet as a subset of DG for which the algorithm is both sound and complete. Because
label-to-hole constraints add another level of complexity, we first ignore those edges and
only consider weakly normal DGs. We then adopt the algorithm by Koller and Thater
(2007) to take care of label-to-hole constraints.

5.2 Hypernets

A look at the steps in Table 1 reveals that the heart of this procedure is to find the roots
of the solutions. The rest is simply recursing on the smaller DGs.

Definition 23 (Freeness)
A label l is said to be free if it is the root of some solution T of G. An ET E is called free
if its root is free.

Subsequently, we use some graph theory terminology that we need to define.
Remember that two nodes of a digraph are weakly connected if there is an undirected
path between the two. Because weak connectedness is an equivalence relation, it par-
titions the graph into equivalence classes each of which is called a weakly connected
component or WCC.

Theorem 7 states some necessary conditions for freeness, but first, we state a lemma
that is the key to the proof of this theorem.

Lemma 7
Given a weakly normal DG G and a solution T of G, if nodes u and v in G are weakly
connected using an undirected path p, there exists a node w on p such that w dominates
both u and v in T .

This lemma is analogous to Lemma 3 in Bodirsky et al. (2004). A detailed proof of
the lemma can be found there. We are now prepared to prove the theorem.

Theorem 7
Let G be a weakly normal DG and E be an ET with m holes rooted at label l. l can be a
free label, only if

T7a. l has no incoming (constraint) edge; and

T7b. Every distinct hole of E is in a distinct WCC in G−l; and

T7c. G−E consists of at least m WCCs.

Proof. Let T be a solution rooted at l, h a hole of E , and Gh the WCC of G− l
containing h.

T7a. This condition is trivial.

T7b. Following Lemma 7, every node in Gh must be in the scope of h (because
for any arbitrary node u in Gh, there is a node w dominating both h and u
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in T , but the only possible w is w = h). Because T is a tree, this proves that
every two holes of E belong to two distinct WCCs.

T7c. This follows from T7b and the fact that no hole may be left unfused. 2

We now look for a subset of DG, for which the conditions in T7a through T7c are
not only necessary, but also sufficient. In defining this subset, the following notion from
Althaus et al. (2003) plays an important role.

Definition 24 (Hyper-Normal Connectedness)
Given a DG G, a hyper-normal path is an undirected path with no two consecutive
constraint edges emanating from the same node. Node u is hyper-normally connected
to node v if there is at least one hyper-normal path between the two. G is called hyper-
normally connected if every pair of nodes in G are hyper-normally connected.

For example, in Figure 13, p2 is a hyper-normal path, but p1 is not. In spite of that,
the whole graph is hyper-normally connected, because even though p1 is not a hyper-
normal path, there is another hyper-normal path connecting the same two nodes. The
following notion from Thater (2007) will also come in handy.

Definition 25 (Openness)
A label or hole node u is called an open node if it has no outgoing constraint edge.

For example, l in Figure 14(a) is an open label node and h2 in Figure 14(b) is an open
hole.

Definition 26 (Hypernet)
A DG G is called a hypernet if it has a weakly normal spanning sub-DG G′ in which for
every elementary tree E rooted at l:

D26a. E has at most one open node.

D26b. If l1 and l2 are two dominance children of a hole h of E , then l1 and l2 are
hyper-normally connected in G′−h.

D26c. If E has no open hole in G′:

p1 p2

Figure 13
Illustration of hyper-normal path.
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l

h1 h2

U1 U2

l

h1 h2

U1 U2

(a) (b)

l

h1 h2

U1 U2

(c)

Figure 14
Three types of elementary trees: (a) open-root (b) open-hole (c) closed.

r Each dominance child of l is hyper-normally connected to a hole of
E in G′−l.

Otherwise (i.e., when E has an open hole):r All dominance children of l, not connected to a hole of E in G′−l,
are hyper-normally connected together.

Here, by dominance children of u, we mean nodes v where (u, v) is a dominance
edge. Notice that by enforcing conditions (D26a) through (D26c) on a spanning sub-DG
of G rather than G itself, we allow the hypernet to be closed under the increment of
constraint edges. This is in line with the definition of coherence, which imposes only
a minimum connectivity, hence, closed under the increment of dominance constraint
edges.17 Following condition (D26a), a weakly normal hypernet may have three types
of scopal ET, characterized in the following definition.

Definition 27
Given a DG G and an ET E , E is called

D27a. Open-root: iff only the root of E is open in G.

D27b. Open-hole: iff only a hole of E is open in G.

D27c. Closed: iff E has no open node in G.

Figures 14(a–c) show the three types of E , respectively. Definition 26 guarantees the
following property.

Theorem 8
Let G be a weakly normal hypernet and E be an ET of G with m holes and rooted at l. If
l satisfies the conditions in Theorem 7, G−E consists of exactly m WCCs, each of which
is a (weakly normal) hypernet.

17 Koller and Thater (2007) call this property “downward connectedness.”
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Proof. Following conditions (D26b) and (D26c), G−E consists of at most m WCCs (since
the children of each node of E are hyper-normally connected, they stay connected in
G−E). Based on condition (T7c), G−E has at least m WCCs. Therefore, G−E has exactly
m WCCs. To prove that each of these WCCs is a hypernet, we show that, for any two
nodes u and v not belonging to E , if u and v are hyper-normally connected in G, they
are also hyper-normally connected in G−E . We do so by proving that there is no hyper-
normal path between u and v in G that visits some node of E .

Suppose that E is an open-hole ET rooted at l (Figure 14(b); a similar line of reason-
ing can be used for open-root and closed ETs). Assume to the contrary that there is a
hyper-normal path p between u and v that visits some node of E . Because an ET consists
of a single label node l with some number of holes as children, one of the following three
cases holds:

i. p visits exactly one node of E .

ii. p visits (at least) two holes of E .

iii. p visits l and exactly one hole of E .

All three cases result in a contradiction: Case (i) means that p is not hyper-normal;
case (ii) shows that E violates condition (T7b); and case (iii) proves that G is not a
hypernet, because E violates condition (D26c). 2

The following corollary will be helpful in the subsequent subsections when stating
the relation between heart-connectedness and hyper-connectedness.

Corollary 2
Let G be a weakly normal hypernet and T be a solution of G. For any subtree T ′ of T ,
the sub-DG of G induced by T ′ is a (weakly normal) hypernet.

We are now ready to prove the main result of this subsection.

Theorem 9
If G is a satisfiable weakly normal hypernet, the necessary conditions of freeness
(Theorem 7) are also sufficient.

Proof. Let E rooted at l be an ET satisfying the freeness conditions in Theorem 7. Among
all the solutions of G, we pick a solution T in which the depth d of l is minimal. Using
proof by contradiction, we show that d = 0, hence, l is the root of T . Assume to the
contrary that d > 0, meaning that there is some node l′ outscoping l (Figure 15(a)).
Without loss of generality assume that E has only exactly two holes (Left and Right).
We show that at least one of the trees in Figures 15(b,c) is a solution of G, which means
G has a solution in which the depth of l is smaller than d—a contradiction!

Figure 15(d) shows G with the two WCCs of G− l called GL and GR. Note that all
the nodes in T2 and T3 have to be in GL and GR, respectively (in the figure, G2 and G3

show subgraphs of G induced by T2 and T3). In order to show that Tb or Tc is a solution,
we assume that Tb is not a solution and prove that Tc is. Because Tb is not a solution,
there are some unsatisfied constraints in Tb. However, there are not many constraints
that are satisfied in T but not in Tb (e.g., any constraints between the two nodes in T1,
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Figure 15
Proof of Theorem 9.

in T2, or in T3 are also satisfied in Tb). In fact, an unsatisfied constraint can only be in the
form of (l′, l2) or (h′, l2) with h′ being the right hole of l′ (the hole to which l is fused in
T ), and l2 being a label in T2 (it is true that a constraint from l′ to l is not satisfied in Tb
either, but such a constraint does not exist as l is a free node). Because l2 is in GL and
there is a constraint between l′ or h′ and l2, l′ belongs to GL as well.

Similar to Tb, in order for Tc not to be a solution, there must be a constraint (l′, v3)
or (h′, v3) violated, where v3 is a node in T3, and hence, in GR. But l′ and h′ are in GL, so
such constraints cannot exist. This means there cannot be any unsatisfied constraint in
Tc. This proves that Tc is a solution in which l has a lower depth. 2

5.3 SAT and ENUM Algorithms

Following Theorems 8 and 9, Table 2 gives the algorithms for SAT and ENUM.

Theorem 10
ENUM and SAT are correct for all weakly normal hypernets.

Table 2
SAT and ENUM algorithms for weakly normal hypernets.

1: procedure SOLVE(Weakly normal hypernet G)
2: If G contains a single (label) node, return the single-node tree T = ({l}, {}).
3: Pick an ET E satisfying the freeness conditions in Theorem 7, otherwise, fail.

. For SAT, pick arbitrarily.

. For ENUM, pick iteratively.
4: Let l be the root and m the number of holes of E .
5: Let G1, G2, . . . , Gm be WCCs of G−E .
6: Let Ti =SOLVE(Gi) for i = 1, . . . , m.
7: Let hi be the hole of E connected to Gi in G−l, for i = 1, . . . , m.

If E has an open hole hk, let Gk be the WCC not connected to any hole of E .
8: Build T by plugging the root of Ti into hi, for i = 1, . . . , m.
9: return T .
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Proof. Using Theorem 8 and induction on the depth of recursion, it is easy to see that if
ENUM or SAT return a tree T , T is a solution of G. This proves that ENUM and SAT are
sound.

An inductive proof is used to prove the completeness as well. By completeness,
we mean that any solution of G is arbitrarily/iteratively generated by SAT/ENUM. Let
T be an arbitrary solution of G rooted at the ET E , and T1, . . . , Tn be the subtrees of
T under the holes h1, . . . , hn of E . Following Lemma 6 (Section 5.1), in order for T
to be a solution of G, the subtrees T1, . . . , Tn must be the solutions to G1, . . . , Gn, the
WCCs of G−E connected to h1, . . . , hn in G−l, respectively (if E has an open hole hk,
Gk will be the WCC not connected to any hole of E in G−l). Based on the induction
assumption, T1, . . . , Tn are arbitrarily/iteratively generated by SOLVE(). Therefore, T is
also arbitrarily/iteratively generated. 2

The running time of the algorithms is proportional to the number of recursive calls
to SOLVE(), that is, O(|L|). At each call, it takes O(|G|) to find the set of free ETs (Bodirsky
et al. 2004) and also to compute G−E for some free ET E , where |G| =def |L|+ |H|+ |E|+
|D|. Therefore, SAT (as well as each branch of ENUM) runs in O(|L||G|) time, meaning
that the worst-case time-complexity of SAT (and each branch of ENUM) is quadratic in
the size of G.

This result is for weakly normal hypernets—that is, when there are no label-to-
hole constraints. Kallmeyer and Romero (2008) demonstrate cases where having such
constraints is meaningful. The function of label-to-hole constraints is quite counter-
intuitive. Consider the two ETs E and E ′ rooted at l and l′ and containing holes h and h′,
respectively. A label-to-hole constraint (l′, h) results in two types of solutions: those in
which l′ dominates l, and those in which l′ is plugged into h. The algorithm presented
in Table 2 may be easily modified to solve any hypernet by taking care of label-to-hole
constraints after a free ET E is picked. At step 3.1, every label-to-hole constraint (l, h′)
may be replaced with (l, l′). Every (l′, h) is taken care of by plugging l′ into h. This latter
step results in a stacked ET, but we know how to convert this into a standard ET without
affecting the set of solutions (Theorem 2). Note that, here, we have to recursively take
care of the incoming constraints to the holes of E ′. Koller and Thater (2007) prove that
adding such a step to the algorithm increases the complexity from quadratic to cubic,
when label-to-hole constraints exist. Following this discussion, we have:

Lemma 8
Every hypernet can be solved in polynomial time.

5.3.1 Weighted Constraints. Although we focus on hard constraints on UG solutions in
this article, our findings also have implications for statistical disambiguation systems
based on soft, or weighted, constraints. Hard constraints are equivalent to soft con-
straints with infinite weights, so NP-completeness results for hard constraints also
apply to systems with weighted constraints. By defining a framework that is tractable
with hard constraints, we open the theoretical possibility of efficient algorithms for
finding the highest scoring solution according to a set of weighted constraints. We now
briefly discuss two possible approaches to this problem.
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Table 3
Viterbi algorithm for weakly normal hypernets. We use a function sig to determine the dynamic
programming signature of a solution, an array δ to maintain the best scores found for partial
solutions, and an array best to maintain the best partial solutions themselves. Arrays δ and best
are indexed by a subgraph G and a signature. We use best[G] to denote the set of all the best
solutions found for G, regardless of their signature.

1: procedure VITERBI(Weakly normal hypernet G)
2: δ[G]← −∞ . Initialize for all signatures
3: best[G]← ∅
4: if G contains a single (label) node then
5: T = ({l}, {})
6: δ[G, sig(T )]←score(T )
7: best[G, sig(T )]← T
8: return
9: for each ET E satisfying the freeness conditions in Theorem 7 do

10: Let l be the root and m the number of holes of E .
11: Let G1, G2, . . . , Gm be WCCs of G−E .
12: For i = 1, . . . , m
13: if not defined best(Gi) then
14: VITERBI(Gi)

15: for (T1, . . . , Tm) ∈ best[G1]× · · · × best[Gm] do
16: Let hi be the hole of E connected to Gi in G−l, for i = 1, . . . , m.
17: If E has an open hole hk, let Gk be the WCC not connected to any hole of
E .

18: Build T by plugging the root of Ti into hi, for i = 1, . . . , m.
19: if score(T ) > δ[G, sig(T )] then
20: δ[G, sig(T )]←score(T )
21: best[G, sig(T )]← T

The first approach is simply to use the ENUM algorithm as the framework for
search in statistical scope disambiguation systems. We can use ENUM to list solutions
meeting the hard constraints and score each solution individually. This rescoring ap-
proach may take exponential time in the worst case, but may be an effective algorithm
when the hard constraints leave a tractable number of solutions in practice. This ap-
proach has the advantage that it can take advantage of arbitrary weighted constraints,
also known as features, in scoring candidate solutions.

The second approach is to use dynamic programming to score candidate UGs. In
this approach, we use the recursive ENUM algorithm as a framework for scoring partial
solutions to the input UG, as shown in the algorithm of Table 3. Dynamic programming
requires that the features used to score solutions must be local, that is, that they must be
functions of some local subgraph of the solution. We refer to this local subgraph as the
signature of a solution, and use it to index the dynamic programming chart.
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As an example of applying the ENUM together with dynamic programming, sup-
pose that the weighted features of the statistical system are restricted to consider only
an ET and the hole into which it is plugged. In this case, we can construct a dynamic
programming chart indexed by the subset of ETs covered by a partial solution, and the
identity of the ET at the root of the partial solution. The size of this chart is O(n2n) in the
number of ETs—still exponential in the worst case. However, as with the more general
features, the ENUM algorithm, memoizing recursive calls with the chart, can take ad-
vantage of the hard constraints of the UG to lower the time complexity in practice. More
generally, we can define a dynamic programming chart indexed by whatever features
of the partial solution are distinct to the statistical model, and memoize recursive calls
to ENUM according to this dynamic programming structure.

More efficient algorithms for finding the highest scoring solution may be possible,
and are an important area for future work. Our polynomial-time SAT algorithm does
not translate directly into a Viterbi algorithm that is polynomial in the size of the input
UG. However, we emphasize that for any NP-hard problem with hard constraints, the
weighted generalization is also NP-hard. Therefore, identifying a subset of UGs that is
tractable with hard constraints makes it possible to attempt to find efficient algorithms
for weighted constraints.

5.4 Coherence and Tractability

In this section, we show that coherent UGs are a subset of hypernets. Remember that
the key notion for defining hypernets is hyper-normal connectedness and for coher-
ence is heart-connectedness. Therefore, as the first step, we demonstrate how heart-
connectedness relates to hyper-normal connectedness.

Theorem 11
Let U be a CF-UG. If i is connected to j through a directed path in SDGU, then lqi and lqj
are hyper-normally connected in GU.

Proof. First assume that i is directly connected to j through the edge (i, j). This means
that there is a dominance constraint (lqi , u) in U for some node u of Tr

j . Being the root of
Tj, lqj reaches u by a directed, and hence hyper-normal, path p. The path pi,j between lqi
and lqj , which is the concatenation of p and (lqi , u), is therefore hyper-normal.

Now assume that i is connected to j through a directed path
−→
d . Following the

previous result, lqi is connected to lqj in GU through a path p, which is the concatenation
of hyper-normal paths corresponding to the edges of

−→
d . Because, at each point of

concatenation, one of the two edges is a solid edge (Figure 16(a)), the concatenation
remains hyper-normal. 2

This theorem proves that heart-connectedness subsumes hyper-normal connected-
ness for the following reason. Given any two arbitrary nodes u and v belonging to
trees Ti and Tj, both i and j can reach the heart through some directed path in SDGU.
Therefore, lqi and lqj are hyper-normally connected to the heart through hyper-normal
paths p1 and p2, as shown in Figure 16(b). Concatenating p1 and p2 while taking out the
common part, we can construct a hyper-normal path p connecting u and v.
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(a) Hyper-normal paths between lqi , lqj , and lqk
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(b) Constructing p from p1 and p2

Figure 16
The relation between heart-connectedness and hyper-normal connectedness.

Corollary 3
If U is a heart-connected CF-UG, GU is hyper-normally connected.
We now have the tools to prove our main theorem.

Theorem 12
For every coherent UG U, GU is a hypernet, and hence, tractable.

Proof. U is coherent, hence according to Theorem 6, U has a heart-connected canonical
form sub-UG U′. In the following proof, we show that U′ is a hypernet. Because hyper-
nets are closed under the increment of constraint edges, it follows that U is a hypernet.
Let E be an arbitrary ET in GU′ rooted at l.

T12a. (Proof of condition D26a) We need to show that E has at most one open
hole.

E is of one of the following three types:r Floating scopal. Because U′ is complete, the only possibly open
hole of E is its body hole. Since U′ is coherent, the root of Eq must
also be closed.r Fixed scopal. Because U′ is complete, E has no open hole, hence,
the only potentially open node is the root of E .r Non-scopal. E has a single label node, hence, its only potentially
open node.

T12b. (Proof of condition D26b) We need to prove the following statement.
If l1 and l2 are two dominance children of a hole h of E , l1 and l2 are
hyper-normally connected in G′U−h. This statement is vacuously true,
because no hole of G′U can have two or more dominance children, that is,
the antecedent never holds (this is because, in a CF-UG, the body hole of
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quantifiers have no outgoing constraint and every other hole has exactly
one).

T12c. (Proof of condition D26c) First consider the case where E has no open hole.
Because U′ is a CF-UG, E must be either a fixed scopal or a non-scopal ET.
In either case, l has no dominance children in G′U, hence, the statement is
vacuously true. Now consider the case where E has an open hole. Because
U′ is a CF-UG, E must be a floating scopal ET. Therefore, l has no incoming
dominance edge. Let u, v be the dominance children of l not connected to a
hole of E . Following Theorem 3, u and v are connected together through a
hyper-normal path p. p cannot visit l, otherwise u or v are hyper-normally
connected to a hole of E (l has no incoming dominance edge, hence, p must
go through a hole of E), which is in contradiction with how we chose u and
v in the first place. This proves that p is a path in G−l, hence u and v are
hyper-normally connected in G−l. 2

This theorem is the main result of our article. Given that coherence seems to be
a natural condition on the semantic interpretation of any sentence, this result implies
that it is tractable to resolve the quantifier scope of any sentence. Formally proving that
a semantic interpretation system always yields coherent representations will depend
on the specifics of the syntax/semantics interface. In Section 7, we will show that the
syntax semantics interfaces specified by MRS and HS do in fact always yield a coherent
representation.

6. Quantifier Scoping Is an Ordering Problem

Traditionally, scoping has been treated as an ordering problem. For example, all sta-
tistical scope disambiguation systems define scoping as learning to predict an order
(Higgins and Sadock 2003; Srinivasan and Yates 2009; Manshadi, Gildea, and Allen
2013). For this reason, n! has always been considered as the upper bound on the number
of readings of a sentence with n quantifiers. This is in contrast with the frameworks
discussed in this article, in which scoping means predicting a tree structure. A UG with
n quantifiers has 2n holes, hence (2n)! fusings can be built (assuming that the solutions
are merging-free). Some of these fusings can be filtered out, if we take qeq relations into
account. For example, given the following definition of first-order CF-UG, a first-order
CF-UG with two quantifiers has four potential solutions, as shown in Figure 17.

Definition 28 (First Order UG)
A UG U with no fixed-scopal ETs is called a first-order UG.

It is easy to calculate this number for n quantifiers.

Lemma 9
If U is a first-order CF-UG with n quantifiers , then Uq has exactly 2n−1n! solutions.

The factor 2n−1 results from the fact that once Q1 is decided to be in the scope of
Q2, there are two possible configurations based on whether Q1 is in the scope of the
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Figure 17
All potential solutions for first-order CF-UG with two quantifiers.

restriction or the body of Q2. It seems that in the past it has been taken for granted
that every permutation of quantifiers uniquely imposes a tree structure. One idea is
to filter some of these trees by taking dominance constraints into account, although it
should be noted that, unlike qeq constraints, the distribution of dominance constraints
is not predefined. The good news is that, using the machinery provided and the results
obtained in the last section, we can prove this conjecture. That is, although the exact
distribution of dominance constraints is not given, the minimum connectivity required
by hypernets guarantees this property. Next, we use the notion of tree order, which is the
order in which nodes of a tree are visited and depends on the traversal method (e.g.,
in pre-order traversal, first the branches are visited, then the node itself, while the post
order is the opposite). For this theorem, it does not matter which order is picked, but
once picked, we should stick to it.

Theorem 13
Let G be a hypernet, and π be an arbitrary permutation of ETs. There exists at most one
solution T of G with π being a tree order of ETs in T.

Proof. We prove this using induction on e the number of ETs in G. For e = 1, this is
trivial. Assume that it holds for e = k (k > 0) and let G be a DG with k + 1 ETs. If G has
no solution, whose tree order of ETs is π, we are done. Otherwise, E (the head of π), is
a free ET. Based on Theorem 7, G− E has exactly m WCCs G1, . . . , Gm, where m is the
number of holes in E . Based on the induction assumption, each sub-DG Gi has exactly
one solution Ei whose tree order of ETs matches π. In addition, because G is a hypernet,
following the third condition of Definition 26 (D26c), there is a unique hole of E into
which the root of each Ei can be plugged. Therefore, G has a unique solution whose tree
order of ETs is π. 2

This theorem proves that if the underspecified representation is coherent, then
quantifier scoping is indeed an ordering problem.

7. Comparison with Other Formalisms

In this section, we compare our work with the three frameworks it was built upon.
We show that our definition of coherence extends the set of tractable representations
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previously identified by the Dominance Graph framework. We further show that
the semantic representations returned by the syntax/semantics interfaces specified by
Minimal Recursion Semantics and Hole Semantics are always coherent, and hence
tractable. Our strategy in this section will be to show subsumption relations among
classes of underspecification graphs, as shown in Figure 1. We say that one class is
subsumed by another if it is a subset of the second class, or if there exists a (generally
very simple) syntactic transformation from elements of the first class to elements of the
second class such that the set of solutions remains the same. In either case, any algorithm
for finding solutions for the second class can be applied to graphs from the first class,
which is the property that we will use to establish tractability.

7.1 Dominance Graphs

Dominance Graphs18 and Underspecification Graphs19 are in fact equivalent when the
underspecified representation is complete. The only difference between the two is that
UG incorporates qeq relations in addition to dominance constraints, but, as we have
shown before, the two constraints become equivalent for complete UGs. The main
reason for us to define UG has been to provide a foundation to prove this equivalence.20

There is also a subtle difference in the terminology between the two frameworks.
What we have defined as solution in our framework corresponds to the notion of config-
uration in Dominance Graphs framework. Therefore, the satisfiability (or enumeration)
algorithm presented in this article, in Dominance Graphs terminology, decides whether
a DG has a configuration (or enumerates all possible configurations of a DG).

A major contribution of this paper was to extend the coverage of the previously
known tractable subset of DG, called weak net (Niehren and Thater 2003). We achieved
this goal by defining the notion of hypernet, motivated by and built upon weak net. In
the following, we give the definition of weak net from Thater (2007), translated into our
own terminology.

Definition 29 (Weak Net)
A weakly normal UG U is a weak net if and only if for every elementary tree E :

D29a. E has exactly one open node.

D29b. If l1, l2 are two dominance children of a node u of E , then l1 and l2 are
hyper-normally connected in U−u.

18 Dominance Graphs were derived from Dominance Constraints. Dominance Constraints were originally
developed as a broad framework for representing arbitrary tree structures. Dominance Graphs is a
revision of Dominance Constraints, which is better suited for modeling scope underspecification.
For details on how Dominance Graphs compare to Dominance Constraints, see Thater (2007).

19 When capitalized, the terms “Dominance Constraints,” “Dominance Graphs,” and “Underspecification
Graphs” refer to the frameworks; otherwise, and when abbreviated, they refer to a notion within the
framework.

20 Another advantage could be the ability to model an incomplete underspecified representation, for
example, when dealing with fragments, broken parse trees, and so forth. The latter, however, is not the
subject of this article.
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Probably

Politician(x) 
& Know(I,y)

Every(x)

Run(x)Child(y,x)

A(y)

(a)

Probably

Politician(x) 
& Know(I,y) Run(x)Child(y,x)

A(y)

(b)

Figure 18
A coherent UG which belongs to hypernet but is not a weak net, because the dominance children
of the quantifier Every, labeled Run(x) and Child(x, y), are not hyper-normally connected, if the
quantifier node is removed from the graph as in (b).

Comparing the definition of hypernet (Definition 26) with weak net, it is clear that
weak net is a subset of hypernet. By giving examples of natural language sentences
whose underspecified representation is a hypernet but not a weak net, we show that
weak net is a proper subset of hypernet. Consider GU in Figure 18(a), where U is the
CF-UG for the following sentence.

3. Every politician, whom I know a child of, probably runs.

Let E be the ET for the quantifier Every and l be the root of E . The two dominance
children of l are not (hyper-normally) connected in GU−l, as shown in Figure 18(b).
Therefore, GU is not a weak net. What makes this example special is that SDGU has a
loop. Weak net misses a whole class of sentences with similar structures. Because we
have proved that hypernet covers all coherent UGs, it should not be surprising that GU
is a hypernet, and hence, covered by our framework. This is because hypernet does
not require all the dominance children of the quantifier node u to be hyper-normally
connected in G−u, but only those that are not hyper-normally connected to a hole of u
(Condition D26c). Therefore, for this UG, since the node labeled Child(x, y) is hyper-
normally connected to a hole of u in G−u, it is not required to be hyper-normally
connected to the node labeled Run(x) in G−u.

7.2 Minimal Recursion Semantics

As the official semantic language of the LinGo English Resource Grammar (Copestake
and Flickinger 2000), Minimal Recursion Semantics has been used relatively widely in
practice. As mentioned before, UG has been defined in a way that it subsumes both
DG and MRS. Although MRS is not originally defined in graph terms, a limited version
of UG can serve as the notational variant of MRS. The limitation is on the usage of
dominance constraints. MRS only implicitly uses dominance constraints, and that is to
satisfy binding constraints, hence, only realizes dominance constraints that go from a
quantifier node to a non-quantifier label node. By restricting UG to only allow those
dominance constraints, we can obtain a notational variant of MRS in graphical form.
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The heart of MRS is the notion of Elementary Predication or EP, a labeled predica-
tion over a set of first order variables x, y, . . . and second order variables h1, h2, . . .

l : P(x, y, . . . , h1, h2, . . .) (6)

We have defined ET as the notational variant of EP. Similarly, the definitions of the
three types of ET—non scopal, fixed scopal, and floating scopal—have been inspired
by their EP counterparts. MRS does not notation-wise distinguish between holes and
labels. They are both referred to as handle and are represented by the letter h, often
subscripted with a number. In defining UG, we followed, for mathematical convenience,
the tradition of Hole Semantics and DG and distinguished between the two terms: A
handle that is the label of an EP is called a label, and the top handle (see below) and any
handle that is an argument of an EP is called a hole. The motivating example given at
the beginning of Section 2 was nothing but an MRS structure as a graph (Figure 2(d)).
Equation (7) represents the MRS of the same sentence in the original MRS language as
defined by Copestake, Lascarides, and Flickinger (2001).

〈h0, {h1 = Every(x, h2, h3), h4 = Child(x), h5 : A(y, h6, h7), h8 : Politician(y),

h9 : Of (x, y), h10 : Run(x)}, {h0 =q h10, h2 =q h4, h6 =q h8}〉
(7)

The handle represented as h0 is called (global) top handle and plays the role of the top
ET in UG. It is equivalent to having a dummy EP l0 : h0 as the top but then removing the
label node and leaving a floating hole. An MRS is defined as the triple 〈GT, R, C〉, where
GT is the top handle, R is the set of EPs, and C is the set of qeq constraints. As mentioned
before, the implicit binding constraints encoded in the first order variables x, y of the
MRS are made explicit in UG through dominance constraints. Given an MRS, a scope-
resolved structure (equivalent to the notion of solution in UG) is built by equating
handles.

h0 = h1, h2 = h5, h3 = h10, h6 = h8, h7 = h4, h9 = h4 (8)

Note that h9 = h4 in Equation (8) equates the label of two EPs, resulting in the EP
conjunction Child(x) ∧Of (x, y). UG allows EP conjunctions in two different ways: (1)
by defining fusion as a many-to-one mapping from labels to holes (e.g., fusing both h4
and h9 to h7); (2) Using stacked ETs. The second approach models the case where EP
conjunctions are built during the semantic composition and before any scope resolution
(something that can happen in MRS). Copestake et al. (2005) define a semantic compo-
sition process, presenting an algorithm on building MRS structures from constituency
trees. This algorithm has motivated our notion of canonical form. By following this
algorithm, Manshadi, Allen, and Swift (2008a) proved the following theorem.

Theorem 14
Every output of MRS’s semantic composition process (as spelled out by Copestake
et al. [2005]) is either in canonical form or trivially unsatisfiable.
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The detailed proof of this theorem can be found in Manshadi, Allen, and Swift
(2008a). Given that the result of the MRS semantic composition process is in canonical
form, we can use the tools developed in Section 5 to show that it is also tractable.

Theorem 15
Every output M of the semantic composition algorithm on a coherent sentence is either
trivially unsatisfiable or a coherent UG, and therefore tractable.

Proof. By Theorem 14, every output M of the semantic composition algorithm on a
coherent sentence is either trivially unsatisfiable or in canonical form. By Definition 14,
a canonical form UG is complete. The interpretation of a coherent sentence must be
heart-connected, and by Theorem 6, a heart-connected, complete UG is a coherent UG.
By Theorem 12, a coherent UG is a hypernet, and, by Lemma 8, a hypernet is tractable.2

7.3 Hole Semantics

Corresponding to the concept of UG in our framework, Hole Semantics defines the no-
tion of UR (Underspecified Representation). UR 21 is a subset of normal DGs, therefore
it allows for only one type of constraint, hole-to-label dominance constraints. Analogous
to the notion of coherence, which was motivated by the canonical form of the output
of MRS syntax/semantic interface, URs generated by the syntax/semantic interface,
as demonstrated by Koller, Niehren, and Thater (2003), conform to the following two
properties: (1) they are leaf-labeled (they call a DG with no open holes leaf-labeled); (2)
they are hyper-normally connected. Therefore, Hole Semantics UR equals the set of all
hyper-normally connected leaf-labeled normal DGs.

Now, we show that all satisfiable URs are hypernets.

Lemma 10
Let a hyper-normally connected normal DG G, with a solution T be given. If T′ is a
subtree of T, then G′, the sub-DG of G induced by T′ is also hyper-normally connected.

Proof. Assume to the contrary that G′ is not hyper-normally connected. Consider the two
nodes of G′ that are not hyper-normally connected in G′, and let P be the hyper-normal
path that connects these two nodes in G. We prove that l, the root of T′, is dominated by
two mutually exclusive nodes, which is a contradiction.

Without loss of generality, we assume that both nodes are label nodes (l1 and l2) and
that P contains no other node in G′.22

Because G is normal, the two nodes immediately after l1 and l2 in P have to be hole
nodes h1 and h2 with outgoing constraint edges to l1 and l2, respectively (see Figure 19).
Note that h1 6= h2, otherwise, P is not hyper-normal. The path between h1 and h2 cannot
be a directed path, because no solid edge leaves a hole, and no constraint edge leaves
h1 or h2 either (otherwise, P would not be a hypernormal path). Therefore, there are

21 Throughout this subsection, by UR we mean Hole Semantics’s UR.
22 Among all pairs of node not hyper-normally connected in G′, consider the pair for which the length of P

is the shortest.
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Figure 19
Proof of Lemma 10.

two back-to-back solid edges emanating from a node l3 on P, as shown in the figure on
the left.

We consider two options:

1. The segments of P between h3 and l1 and between h4 and l2 are both
directed, hence, l1 and l2 are under the scope of h3 and h4, respectively,
which means l is under the scope of both h3 and h4. Contradiction!

2. One of the two parts, say the segment of P between h4 and l2, is not
directed. Therefore, P has a segment like the one in the figure on the right.
Two possible cases may happen in T: h5 is in the scope of h6 or vice versa.
In either case l1 and l2, and hence l, are under the scope of two mutually
exclusive holes. Contradiction! 2

Theorem 16
Every satisfiable hyper-normally connected leaf-labeled normal DG is a hypernet.

Proof. Consider a normal DG G, an arbitrary ET E rooted at l, and a solution T of G. We
have to prove that the three conditions in Definition 26 hold. Condition D26a directly
follows from leaf-labeledness, which guarantees that there is no open hole in a UR.23

To prove condition D26b, consider l1 and l2, the two dominance children of a hole h of
E , and assume to the contrary that l1 and l2 are not hyper-normally connected in G− h.
Because G is satisfiable, let T be a solution of G, T ′ be the subtree of T rooted at l, and G′

23 In fact, since we are only considering satisfiable URs, we do not need to presume leaf-labeledness,
because it follows from hyper-normal connectedness. Assume to the contrary that this is not the case,
and h is the open hole of E . Let l′ be the label plugged into h in T . Because G is hyper-normally connected,
l′ is hyper-normally connected to l, and hence to some hole h′ of E in Gl−l, where Gl is the sub-DG of G
induced by the subtree of T rooted at l. Clearly, h′ 6= h, because h is open, but h′ is not, hence, according
to Lemma 7, l′ must be dominated by h′ in T , meaning that l′ is dominated by two distinct holes of E ;
contradiction!
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be the sub-DG of G induced by T ′. l1 and l2 are hyper-normally connected in G, and, by
Lemma 10, are hyper-normally connected in G′, but are not hyper-normally connected
in G′ − h. This means that the hyper-normal path p connecting the two nodes passes
h. Because l is the root of solution T ′, it does not have an incoming dominance edge,
therefore any path that connects l1 and l2 and passes h must also pass another hole h′ of
E . Let l1 be the node that connects to h′ by a path P without first going through l. Then
according to Lemma 7, there is a node u on P such that all the nodes on P are dominated
by u in T′. The only nodes dominating h′ in T′ are h′ itself and l, but l is not on P, hence,
u = h′. This means that one of the nodes l1 or l2 must be in the scope of h′, but we
know that they both are also in the scope of h. This is a contradiction! Condition D26c
is vacuously true because E has no open hole and l has no dominance children. 2

This theorem shows that, practically speaking, UR is a subset of hypernet. An
important question arising is, given that it does not allow for label-to-label constraints,
is Hole Semantics powerful enough to cover all coherent UGs? In other words, given
that some constraints, such as the binding constraints, are inherently label to label, how
does Hole Semantics get away without it? This question has remained unanswered
in the past. Once again, we use our notion of coherence to answer this question. We
show that, in coherent UGs, those label-to-label dominance constraints that implement
variable binding may be replaced with hole-to-label constraints without affecting the
set of solutions. First, we define some terminology.

Definition 30 (Ancestor/Disjoint)
Consider a complete UG U, SDGU = (V, E), and a node i ∈ V.r Anc(i) is the set of nodes that reaches i (through a directed path) in SDGU

(including i itself);r Dis(i) is the set of nodes that reaches the heart (through a directed path)
without going through i (including the heart itself).

For example, for the SDG in Figure 10, Anc(2) = {2, 3}, Dis(2) = {0, 1}. If U is
coherent, SDGU is heart-connected, hence the following lemma directly follows from the
definition.

Lemma 11
Given a coherent UG U and SDGU = (V, E), for every i, j in V:

i. Anc(i) ∪Dis(i) = V.

ii. i /∈ Dis(j)⇒ j ∈ Dis(i).

Theorem 17
Let U be a coherent UG, and T a solution of U, and consider the quantifiers Qi and Qj,
where lqi outscopes lqj in T .r if j ∈ Anc(i), lqj is under the restriction of lqi in T ;r if j ∈ Dis(i), lqj is under the body of lqi in T .
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Figure 20
Proof of Theorem 17 (lrk represents an arbitrary node in Tr

k).

Proof. Let j ∈ Anc(i), and τr
i and τb

i be the subtrees of T rooted at the restriction and
body hole of lqi respectively, as shown in Figure 20. We use induction on |P|, the length
of the path P from j to i in SDGU, to show that lqj is in the restriction of lqi . For |P| = 1,
j immediately dominates i in SDGU, hence there is a dominance edge from lqj to some
node lri ∈ Tr

i , where Tr
i is the restriction tree of lqi (Definition 13). Therefore, lri must be in

the scope of lqj in T . Since lri is in τr
i , lqj must also be in τr

i .
Now let |P| = n + 1 (n ≥ 1) and k be the node immediately after j on P. Because j

immediately dominates k in SDGU, there is a dominance edge from lqj to some node lrk ∈
Tr

k, which means lrk must be in the scope of lqj . According to the induction assumption,
lqk, and hence lri , is in τr

i . Therefore, lqj must also be in τr
i .

A similar argument applies for the second part, that is, when j ∈ Dis(i). 2

Corollary 4
Let U be a coherent UG, and Qi and Qj two quantifiers in U. If j ∈ Anc(i) ∩Dis(i), then
there exists no solution of U in which lqi outscopes lqj .

Now, we are ready to prove our main theorem.

Theorem 18
In a coherent UG U, all label-to-label constraints emanating from quantifier label nodes
to some node other than a quantifier label node may be replaced with hole-to-label
constraints with the set of solutions remaining exactly the same.

Proof. Consider a coherent UG U, an arbitrary quantifier Qi labelled at lqi , and an
arbitrary dominance edge (lqi , u) emanating from Qi. We need to show that either u is
always (i.e., in all solutions of U) under the body of Qi or always under its restriction.
Because U is coherent, it has a canonical form sub-UG (Figure 7 in Section 3); therefore,
u = lrj , where lrj is some node in the tree Tr

j . When j = 0, lrj belongs to the heart tree, hence
u is always under the body of Qi. Throughout the rest, we only consider the case where
j > 0, that is, u is a node in the restriction tree of Qj.

First, notice that because of the dominance edge (lqi , lrj ), SDGU = (V, E) contains an
edge from i to j. This means:

i ∈ Anc( j) (9)
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Now consider Anc(i); depending on whether j ∈ Anc(i) or not, we consider two possible
cases, and prove that the premise holds in both cases.

Case i. j ∈ Anc(i)24

We further consider two situations depending on whether i ∈ Dis(j) or not.

(a) i ∈ Dis(j). Following Equation (9), i ∈ Anc( j) ∩Dis( j), which means
Qj does not dominate Qi in any solution of U (Corollary 4). Because
Qi dominates a node in the restriction tree of Qj, it cannot be
disjoint either, hence, Qi outscopes Qj in every solution of U. Since
j ∈ Anc(i), following Theorem 17, Qj is under the restriction of Qi,
and so is u.

(b) i /∈ Dis( j). Following Lemma 11: j ∈ Dis(i), hence j ∈ Anc(i) ∩Dis(i),
meaning that Qj outscopes Qi in every solution, from which and
given that i ∈ Anc( j), Qi is under the restriction of Qj. This means
every node in the restriction tree of Qj, including u, is under the
body of Qi.25

Case ii. j /∈ Anc(i)

Unlike case i, here it is possible to simultaneously have both the solutions
where Qi outscopes Qj and those where Qj has the wide scope.
Interestingly (and again unlike case i), in both types of solution, u is
always under the body of lqi . We show this for each type separately.

(a) Qj dominates Qi in T .
Given that i ∈ Anc( j), Qi is in the restriction of Qj in T , meaning
that every node in Tr

j , including u, is under the scope of the body of
Qi.

(b) Qi dominates Qj in T .
Because j /∈ Anc(i), j ∈ Dis(i), hence, Qj is in the body of Qi, and so
is u.

Here we showed that, for a coherent UG, if Qi dominates some node u, it is impossible
to simultaneously have solutions where u is in the body of Qi and those where u is in
the restriction of Qj. This means that it is possible to build a UG U′ by replacing (lqi , u)
with either (hb

i , u) or (hr
i , u) while the set of solutions of U and U′ is the same. 2

Following this theorem, Hole Semantics is able to enforce variable binding using
hole-to-label dominance constraints. Figure 21 summarizes the expressive power of all

24 In this case, SDGU has a loop, which means, as discussed in the previous section (see Figure 18), U is not
a (weak) net. Therefore, as seen in the following, if it was not for the non-net cases, we could always
replace these label-to-label constraints with constraints emanating from the body hole of the quantifiers.

25 In the proof of the equivalence of qeq and dominance constraints in complete UGs (Section 3,
Theorem 5), we showed that given a solution T of a complete U, if Qi is plugged in the restriction hole of
Qj, all the nodes u ∈ Tr

j have to be under the scope of the body hole of Qi.
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Theorem 12Section 7.3 Theorem 16
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Definition 29

Definitions 11, 20

Theorem 18

Definition 26

Coherent UG

DG

Coherent MRS
(satisfiable and heart-connected)

MRS

Normal DG

Hole Semantics’s UR
(satisfiable and hyper-normally connected)

Hypernet

Weak net

Weakly Normal DG

UG

CF-MRS

Complete UG

Figure 21
Summary of subsumption relations shown in this article.

proposed subsets. The outcome of this theorem is demonstrated by the edge from Hole
Semantics’s UR to coherent MRS.

8. Conclusion

We have solved several open questions within the context of the prevalent constraint-
based scope underspecification frameworks: Minimal Recursion Semantics, Hole
Semantics, and Dominance Constraints.

Although these frameworks are fundamentally different, there has been a conjecture
that they become equivalent once restricted to the well-formed structures correspond-
ing to actual URs of natural language sentences. Until now, the characterization of this
well-formedness has been an open question, and so has the proof of the conjecture.

Ever since their satisfiability problem was proved to be intractable, there have been
efforts on finding a tractable subset of the frameworks that is expressive enough to cover
all well-formed structures. But even “(weak) net,” the largest tractable subset previously
found, leaves a group of natural language sentences uncovered.

Figure 21 summarizes this paper. At the top of this figure is UG, a framework we
have defined in this paper to encompass all the rest of constraint-based frameworks
shown here. In the heart of this figure, there are two subsets: coherent UG and hypernet.
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Coherent UG is the relevant part of UG. It is, in fact, our characterization of what
has been referred to in the past as well-formedness. We have linguistically justified
that the complete UGs of all coherent sentences belong to this subset. Analogous to
this linguistically motivated subset, we have the mathematically motivated notion of
hypernet, defined to guarantee the mathematical and computational properties we have
been looking for, but to be large enough to cover coherent UG. It is based on the notion of
(weak) net from Dominance Graph but expanded to include all coherent UGs. Another
central notion in this figure is CF, or canonical form, whose importance lies in the fact
that, within this subset, qeq and normal dominance constraints become equivalent, and,
hence, the main difference between UG (read MRS) and DG disappears.

There are several other properties of URs that have been taken for granted in the
past. For example, although scoping in general is about predicting a tree structure, it has
been treated as an ordering problem. We prove that for hypernet, and hence all coherent
UGs, scoping is indeed an ordering problem. Finally, a framework like Hole Semantics
has taken for granted that binding constraints, which are label-to-label in nature, may
be modeled by hole-to-label constraints. Here, we have proved that for coherent UGs,
label-to-label binding constraints may in fact be replaced with hole-to-label constraints,
bridging another gap between MRS and Hole Semantics.
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