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While developing an approach towhy-QA, we extended a passage retrieval system that uses off-
the-shelf retrieval technology with a re-ranking step incorporating structural information. We
get significantly higher scores in terms of MRR@150 (from 0.25 to 0.34) and success@10. The
23% improvement that we reach in terms of MRR is comparable to the improvement reached on
different QA tasks by other researchers in the field, although our re-ranking approach is based
on relatively lightweight overlap measures incorporating syntactic constituents, cue words, and
document structure.

1. Introduction

About 5% of all questions asked to QA systems are why-questions (Hovy, Hermjakob,
and Ravichandran 2002). Why-questions need a different approach than factoid ques-
tions, because their answers are explanations that usually cannot be stated in a single
phrase. Recently, research (Verberne 2006; Higashinaka and Isozaki 2008) has been
directed at QA forwhy-questions (why-QA). In earlier work on answeringwhy-questions
on the basis of Wikipedia, we found that the answers to most why-questions are pas-
sages of text that are at least one sentence and at most one paragraph in length (Verberne
et al. 2007b). Therefore, we aim at developing a system that takes as input a why-
question and gives as output a ranked list of candidate answer passages.

In the current article, we propose a three-step setup for a why-QA system: (1) a
question-processing module that transforms the input question to a query; (2) an off-
the-shelf retrieval module that retrieves and ranks passages of text that share content
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with the input query; and (3) a re-ranking module that adapts the scores of the re-
trieved passages using structural information from the input question and the retrieved
passages.

In the first part of this article, we focus on step 2, namely, passage retrieval. The
classic approach to finding passages in a text collection that share content with an
input query is retrieval using a bag-of-words (BOW) model (Salton and Buckley 1988).
BOWmodels are based on the assumption that text can be represented as an unordered
collection of words, disregarding grammatical structure. Most BOW-based models use
statistical weights based on term frequency, document frequency, passage length, and
term density (Tellex et al. 2003).

Because BOW approaches disregard grammatical structure, systems that rely on
a BOW model have their limitations in solving problems where the syntactic relation
betweenwords or word groups is crucial. The importance of syntax for QA is sometimes
illustrated by the sentence Ruby killed Oswald, which is not an answer to the question
Who did Oswald kill? (Bilotti et al. 2007). Therefore, a number of researchers in the field
investigated the use of structural information on top of a BOW approach for answer
retrieval and ranking (Tiedemann 2005; Quarteroni et al. 2007; Surdeanu, Ciaramita, and
Zaragoza 2008). These studies show that although the BOW model makes the largest
contribution to the QA system results, adding structural (syntactic information) can give
a significant improvement.

In the current article, we hypothesize that for the relatively complex problem of
why-QA, a significant improvement—at least comparable to the improvement gained
for factoidQA—can be gained from the addition of structural information to the ranking
component of the QA system. We first evaluate a passage retrieval system for why-QA
based on standard BOW ranking (step 1 and 2 in our set-up). Then we perform an
analysis of the strengths and weaknesses of the BOW model for retrieving and ranking
candidate answers. In view of the observed weaknesses of the BOW model, we choose
our feature set to be applied to the set of candidate answer passages in the re-ranking
module (step 3 in our set-up).

The structural features that we propose are based on the idea that some parts of the
question and the answer passage are more important for relevance ranking than other
parts. Therefore, our re-ranking features are overlap-based: They tell us which parts of
a why-question and its candidate answers are the most salient for ranking the answers.
We evaluate our initial and adapted ranking strategies using a set of why-questions and
a corpus of Wikipedia documents, and we analyze the contribution of both the BOW
model and the structural features.

The main contributions of this article are: (1) we address the relatively new problem
of why-QA and (2) we analyze the contribution of overlap-based structural information
to the problem of answer ranking.

The paper is organized as follows. In Section 2, related work is discussed. Section 3
presents the BOW-based passage retrieval method forwhy-QA, followed by a discussion
of the strengths andweaknesses of the approach in Section 4. In Section 5, we extend our
system with a re-ranking component based on structural overlap features. A discussion
of the results and our conclusions are presented in Sections 6 and 7, respectively.

2. Related Work

Wedistinguish relatedwork in two directions: research into the development of systems
for why-QA (Section 2.1), and research into combining structural and BOW features for
QA (Section 2.2).
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2.1 Research into Why-QA

In related work (Verberne et al. 2007a), we focused on selecting and ranking explanatory
passages for why-QA with the use of rhetorical structures. We developed a system that
employs the discourse relations in a manually annotated document collection: the RST
Treebank (Carlson, Marcu, and Okurowski 2003). This system matches the input ques-
tion to a text span in the discourse tree of the document and it retrieves as answer the
text span that has a specific discourse relation to this question span. We evaluated our
method on a set of 336 why-questions formulated to seven texts from the WSJ corpus.
We concluded that discourse structure can play an important role in why-QA, but that
systems relying on these structures can only work if candidate answer passages have
been annotated with discourse structure. Automatic parsers for creating full rhetorical
structures are currently unavailable. Therefore, a more practical approach appears to
be necessary for work in why-QA, namely, one which is based on automatically created
annotations.

Higashinaka and Isozaki (2008) focus on the problem of ranking candidate answer
paragraphs for Japanese why-questions. They assume that a document retrieval module
has returned the top 20 documents for a given question. They extract features for content
similarity, causal expressions, and causal relations from two annotated corpora and a
dictionary. Higashinaka and Isozaki evaluate their ranking method using a set of 1,000
why-questions that were formulated to a newspaper corpus by a text analysis expert.
70.3% of the reference answers for these questions are ranked in the top 10 by their
system, and MRR1 was 0.328.

Although the approach of Higashinaka and Isozaki is very interesting, their eval-
uation collection has the same flaw as the one used by Verberne et al. (2007a): Both
collections consist of questions formulated to a pre-selected answer text. Questions
elicited in response to newspaper texts tend to be unrepresentative of questions asked
in a real QA setting. In the current work, therefore, we work with a set of questions
formulated by users of an online QA system (see Section 3.1).

2.2 Combining Structural and Bag-of-Words Features for QA

Tiedemann (2005) investigates syntactic information from dependency structures in
passage retrieval for Dutch factoid QA. He indexes his corpus at different text layers
(BOW, part-of-speech, dependency relations) and uses the same layers for question
analysis and query creation. He optimizes the query parameters for the passage retrieval
task by having a genetic algorithm apply the weights to the query terms. Tiedemann
finds that the largest weights are assigned to the keywords from the BOW layer and
to the keywords related to the predicted answer type (such as ‘person’). The baseline
approach, using only the BOW layer, gives an MRR of 0.342. Using the optimized IR
settings with additional layers, MRR improves to 0.406.

Quarteroni et al. (2007) consider the problem of answering definition questions.
They use predicate–argument structures (PAS) for improved answer ranking. They find
that PAS as a stand-alone representation is inferior to parse tree representations, but
that together with the BOW it yields higher accuracy. Their results show a significant

1 The reciprocal rank (RR) for a question is 1 divided by the rank ordinal of the highest ranked relevant
answer. The Mean RR is obtained by averaging RR over all questions.
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improvement of PAS–BOW compared to parse trees (F-scores 70.7% vs. 59.6%) but PAS
makes only a very small contribution compared to BOW only (which gives an F-score
of 69.3%).

Recent work by Surdeanu, Ciaramita, and Zaragoza (2008) addresses the problem
of answer ranking for how-to-questions. From Yahoo! Answers,2 they extract a corpus
of 140,000 answers with 40,000 questions. They investigate the usefulness of a large
set of question and answer features in the ranking task. They conclude that the linguistic
features “yield a small, yet statistically significant performance increase on top of the
traditional BOW and n-gram representation (page 726).”

All these authors conclude that the addition of structural information in QA
gives a small but significant improvement compared to using a BOW-model only. For
why-questions, we also expect to gain improvement from the addition of structural
information.

3. Passage Retrieval for Why-QA Using a BOWModel

As explained in Section 1, our system comprises three modules: question2query, passage
retrieval, and re-ranking. In the current section, we present the first two system mod-
ules, and the re-ranking module, including a description of the structural features that
we consider, is presented in Section 5. First, however, we describe our data collection
and evaluation method.

3.1 Data and Evaluation Set-up

For our experiments, we use the Wikipedia INEX corpus (Denoyer and Gallinari 2006).
This corpus consists of all 659,388 articles from the online Wikipedia in the summer of
2006 in XML format.

For development and testing purposes, we exploit the Webclopedia question
set (Hovy, Hermjakob, and Ravichandran 2002), which contains questions asked to
the online QA system answers.com. Of these questions, 805 (5% of the total set) are
why-questions. For 700 randomly selected why-questions, we manually searched for an
answer in the Wikipedia XML corpus, saving the remaining 105 questions for future
testing purposes. 186 of these 700 questions have an answer in the corpus.3 Extraction
of one relevant answer for each of these questions resulted in a set of 186 why-questions
and their reference answers.4 Two examples illustrate the type of data we are working
with:

1. “Why didn’t Socrates leave Athens after he was convicted?” — “Socrates
considered it hypocrisy to escape the prison: he had knowingly agreed to
live under the city’s laws, and this meant the possibility of being judged
guilty of crimes by a large jury.”

2 See http://answers.yahoo.com/.
3 Thus, about 25% of our questions have an answer in the Wikipedia corpus. The other questions are either
too specific (Why do ceiling fans turn counter-clockwise but table fans turn clockwise?) or too trivial (Why do
hotdogs come in packages of 10 and hotdog buns in packages of 8?) for the coverage of Wikipedia in 2006.

4 Just like factoid questions, most why-questions generally have one correct answer that can be formulated
in different ways.
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2. “Why do most cereals crackle when you add milk?” — “They are made of
a sugary rice mixture which is shaped into the form of rice kernels and
toasted. These kernels bubble and rise in a manner which forms very thin
walls. When the cereal is exposed to milk or juices, these walls tend to
collapse suddenly, creating the famous ‘Snap, crackle and pop’ sounds.”

To be able to do fast evaluation without elaborate manual assessments, we manually
created one answer pattern for each of the questions in our set. The answer pattern is a
regular expression that defines which of the retrieved passages are considered a relevant
answer to the input question. The first version of the answer patterns was directly
based on the corresponding reference answer, but in the course of the development
and evaluation process, we extended the patterns in order to cover as many as possible
of the Wikipedia passages that contain an answer. For example, for question 1, we
developed the following answer pattern based on two variants of the correct answer
that occur in the corpus: /(Socrates.* opportunity.* escape.* Athens.* considered.*

hypocrisy | leave.* run.* away.* community.* reputation)/.5

In fact, answer judgment is a complex task due to the presence of multiple answer
variants in the corpus. It is a time-consuming process because of the large number of
candidate answers that need to be judged when long lists of answers are retrieved per
question. In future work, we will come back to the assessment of relevant and irrelevant
answers.

After applying our answer patterns to the passages retrieved, we count the ques-
tions that have at least one relevant answer in the top n results. This number divided by
the total number of questions in a test set gives the measure success@n. In Section 3.2,
we explain the levels for n that we use for evaluation. For the highest ranked relevant
answer per question, we determine the RR. Questions for which the system did not
retrieve an answer in the list of 150 results get an RR of 0. Over all questions, we calculate
the mean reciprocal rank MRR.

3.2 Method and Results

In the question2query module of our system we convert the input question to a query
by removing stop words6 and punctuation, and simply list the remaining content words
as query terms.

The second module of our system performs passage retrieval using off-the-shelf
retrieval technology. In Khalid and Verberne (2008), we compared a number of settings
for our passage retrieval task. We considered two different retrieval engines (Lemur7

and Wumpus8), four different ranking models, and two types of passage segmentation:
disjoint and sliding passages. In each setting, 150 results were obtained by the retrieval
engine and ranked by the retrieval model. We evaluated all retrieval settings in terms of

5 Note that the vertical bar separates the two alternatives.
6 To this end we use the stop word list that can be found at http://marlodge.supanet.com/museum/
funcword.html.We use all items except the numbers and the word why.

7 Lemur is an open source toolkit for information retrieval that provides flexible support for different types
of retrieval models. See http://www.lemurproject.org.

8 Wumpus is an information retrieval system mainly geared at XML retrieval. See http://www.wumpus-
search.org/.
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MRR@n9 and success@n for levels n = 10 and n = 150. For the evaluation of the retrieval
module, we were mainly interested in the scores for success@150 because re-ranking
can only be successful if at least one relevant answer was returned by the retrieval
module.

We found that the best-scoring passage retrieval setting in terms of success@150 is
Lemur on an index of sliding passages with TF-IDF (Zhai 2001) as ranking model. We
obtained the following results with this passage retrieval setting: success@150 is 78.5%,
success@10 is 45.2%, and MRR@150 is 0.25. We do not include the results obtained with
the other retrieval settings here because the differences were small.

The results show that for 21.5% of the questions in our set, no answer was retrieved
in the top-150 results. We attempted to increase this coverage by retrieving 250 or
500 answers per question but this barely increased the success score at maximum
n. The main problems for the questions that we miss are infamous retrieval prob-
lems such as the vocabulary gap between a question and its answer. For example,
the answer to Why do chefs wear funny hats? contains none of the words from the
question.

4. The Strengths and Weaknesses of the BOWModel

In order to understand how answer ranking is executed by the passage retrieval mod-
ule, we first take a closer look at the TF-IDF algorithm as it has been implemented in
Lemur. TF-IDF is a pure BOW model: Both the query and the passages in the corpus
are represented by the term frequencies (numbers of occurrences) for each of the words
they contain. The terms are weighted using their inverse document frequency (IDF),
which puts a higher weight on terms that occur in few passages than on terms that
occur in many passages. The term frequency (TF) functions for the query and the doc-
ument, and the parameter values chosen for these functions in Lemur can be found in
Zhai (2001).

As explained in the previous section, we consider success@150 to be the most
important measure for the retrieval module of our system. However, for the system as a
whole, success@10 is a more important evaluation measure. This is because users tend
to pay much more attention to the top 10 results of a retrieval system than to results that
are ranked lower (Joachims et al. 2005). Therefore, it is interesting to investigate which
questions are answered in the top 150 and not in the top 10 by our passage retrieval
module. This is the set of questions for which the BOW model is not effective enough
and additional (more specific) overlap information is needed for ranking a relevant
answer in the top 10.

We analyzed the set of questions that get a relevant answer at a rank between 10 and
150 (62 questions), which belowwewill refer to as our focus set. We compared our focus
set to the questions for which a relevant answer is in the top 10 (84 questions). Although
these numbers are too small to do a quantitative error analysis, a qualitative analysis
provides valuable insights into the strengths and weaknesses of a BOW representation
such as TF-IDF. In Sections 4.1 to 4.4 we discuss four different aspects of why-questions
that present problems for the BOWmodel.

9 Note that MRR is often used without the explicit cut-off point (n). We add it to clarify that RR is 0 for the
questions without a correct answer in the top-n.
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4.1 Short Questions

Ten questions in our focus set contain only one or two content words. We can see the
effect of short queries if we compare three questions that contain only one semantically
rich content word.10 The rank of the highest ranked relevant answer is given between
parentheses; the last of these three questions is in our focus set.

1. Why do people hiccup? (2)

2. Why do people sneeze? (4)

3. Why do we dream? (76)

We found that the rank of the relevant answer is related to the corpus frequency of
the single semantically rich word, which is 64 for hiccup, 220 for sneeze, and 13,458 for
dream. This means that many passages are retrieved for question 3, making the chances
for the relevant answer to be ranked in the top 10 smaller. One way to overcome the
problem of long result lists for short queries is by adding words to the query that make
it more specific. In the case of why-QA, we know that we are not simply searching
for information on dreaming but for an explanation for dreaming. Thus, in the ranking
process, we can extend the query with explanatory cue words such as because.11 We
expect that the addition of explanatory cue phrases will give an improvement in ranking
performance.

4.2 The Document Context of the Answer

There are many cases where the context of the candidate answer gives useful infor-
mation. Consider, for example, the question Why does a snake flick out its tongue?, the
correct answer to which was ranked 29. A human searcher expects to find the answer
in a Wikipedia article about snakes. Within the Snake article he or she may search for
the words flick and/or tongue in order to find the answer. This suggests that in some
cases there is a direct relation between a specific part of the question and the context
(document and/or section) of the candidate answer. In cases like this, the answer
document and the question apparently share the same topic (snake). By analogy with
linguistically motivated approaches to factoid QA (Ferret et al. 2002), we introduce the
term question focus for this topic.

In the example question flick is the word with the lowest corpus frequency (556),
followed by tongue (4,925) and snake (6,809). Using a BOW approach to document title
matching, candidate answers from documents with flick or tongue in their title would
be ranked higher than answers from documents with snake in their title. Thus, for
questions for which there is overlap between the question focus and the title of the
answer documents (two thirds of the questions in our set), we can improve the ranking
of candidate answers by correctly predicting the question focus. In Section 5.1.2, we
make concrete suggestions for achieving this.

10 The word people in subject position is a semantically poor content word.
11 The addition of cue words can also be considered to be applied in the retrieval step. We come back to this

in Section 6.3.
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4.3 Multi-Word Terms

A very important characteristic of the BOWmodel is that words are considered separate
terms. One of the consequences is that multi-word terms such as multi-word noun
phrases (mwNPs) are not treated as a single term. Here, three examples of questions
are shown in which the subject is realized by a mwNP (underlined in the examples; the
rank of the relevant answer is shown between brackets):

1. Why are hush puppies called hush puppies? (1)

2. Why is the coral reef disappearing? (29)

3. Why is a black hole black? (31)

We investigated the corpus frequencies for the separate parts of each mwNP. We found
that these are quite high for coral (3,316) and reef (2,597) compared to the corpus
frequency of the phrase coral reef (365). The numbers are even more extreme for black
(103,550) and hole (9,734) versus black hole (1,913). On the other hand, the answer to
the hush puppies question can more easily be ranked because the corpus frequencies
for the separate terms hush (594) and puppies (361) are relatively low. This shows that
multi-word terms do not necessarily give problems for the BOW model as long as the
document frequencies for the constituent words are relatively low. If (one of) the words
in the phrase is/are frequent, it is very difficult to rank the relevant answer high in the
result list with use of word overlap only.

In our focus set, 36 of the 62 questions contain a mwNP. For these questions, we can
expect improved ranking from the addition of NPs to our feature set.

4.4 Syntactic Structure

The BOW model does not take into account sentence structure. The potential impor-
tance of sentence structure for improved ranking can be exemplified by the following
two questions from our set. Note that both examples contain a subordinate clause (finite
or non-finite):

1. Why do baking soda and vinegar explode when you mix them together? (4)

2. Why are there 72 points to the inch when discussing fonts and printing? (36)

In both cases, the contents of the subordinate clause are less important to the goal of the
question than the contents of themain clause. In the first example, this is (coincidentally)
reflected by the corpus frequencies of the words in both clauses: mix (12,724) and
together (83,677) have high corpus frequencies compared to baking (832), soda (1,620),
vinegar (871), and explode (1,285). As a result, the reference answer containing these
terms is ranked in the top-10 by TF-IDF. In the second example, however, the corpus
frequencies do not reflect the importance of the terms. Fonts and printing have lower
corpus frequencies (1,243 and 6,978, respectively) than points (43,280) and inch (10,046).
Thus, fonts and printing are weighted heavier by TF-IDF although these terms are only
peripheral to the goal of the query, the core of which isWhy are there 72 points to the inch?
This cannot be derived from the corpus frequencies, but can only be inferred from the
syntactic function (adverbial) of when discussing fonts and printing in the question.

Thus, the lack of information about sentence structure in the BOW model does
not necessarily give rise to problems as long as the importance of the question terms
is reflected by their frequency counts. If term importance does not align with corpus
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frequency, grammatical structure becomes potentially useful. Therefore, we expect that
syntactic structure can make a contribution to cases where the importance of the terms
is not reflected by their corpus frequencies but can be derived from their syntactic
function.

4.5 What Can We Expect from Structural Information?

In Sections 4.1 to 4.4 we discussed four aspects of why-questions that are problematic
for the BOW model. We expect contributions from the inclusion of information on cue
phrases, question focus and the document context of the answer, noun phrases, and
the syntactic structure of the question. We think that it is possible to achieve improved
ranking performance if features based on structural overlap are taken into account
instead of global overlap information.

5. Adding Overlap-Based Structural Information

From our analyses in Section 4, we found a number of question and answer aspects
that are potentially useful for improving the ranking performance of our system. In
this section, we present the re-ranking module of our system. We define a feature set
that is inspired by the findings from Section 4 and aims to find out which structural
features of a question–answer pair contribute the most to better answer ranking. We
aim to weigh these features in such a way that we can optimize ranking performance.
The input data for our re-ranking experiments is the output of the passage retrieval
module. A success@150 score of 78.5% for passage retrieval (see Section 3.2) means that
the maximum success@10 score that we can achieve by re-ranking is 78.5%.

5.1 Features for Re-ranking

The first feature in our re-ranking method is the score that was assigned to a candidate
answer by Lemur/TF-IDF in the retrieval module (f0). In the following sections we
introduce the other features that we implemented. Each feature represents the overlap
between two item bags:12 a bag of question items (for example: all the question’s noun
phrases, or the question’s main verb) and a bag of answer items (for example: all answer
words, or all verbs in the answer). The value that is assigned to a feature is a function of
the overlap between these two bags. We used the following overlap function:

S(Q,A) =
QA + AQ
Q+ A

(1)

in whichQA is the number of question items that occur at least once in the bag of answer
items, AQ is the number of answer items that occur at least once in the bag of question
items, and Q+ A is the number of items in both bags of items joined together.

5.1.1 The Syntactic Structure of the Question. In Section 4.4, we argued that some syntactic
parts of the question may be more important for answer ranking than others. Because
we have no quantitative evidence yet which syntactic parts of the question are the most
important, we created overlap features for each of the following question parts: phrase

12 Note that a “bag” is a set in which duplicates are counted as distinct items.
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heads (f1), phrase modifiers (f2); the subject (f3), main verb (f4), nominal predicate (f5),
and direct object (f6) of the main clause; and all noun phrases (f11). For each of these
question parts, we calculated its word overlap with the bag of all answer words. For the
features f3–f6, we added a variant where as answer items only words/phrases with the
same syntactic function as the question token were included (f7, f8, f9, f10).

Consider for example question 1 from Section 3.1: Why didn’t Socrates leave Athens
after he was convicted?, and the reference answer as the candidate answer for which we
are determining the feature values: Socrates considered it hypocrisy to escape the prison: he
had knowingly agreed to live under the city’s laws, and this meant the possibility of being judged
guilty of crimes by a large jury.

From the parser output, our feature extraction script extracts Socrates as subject,
leave as main verb, and Athens as direct object. Neither leave nor Athens occur in the
answer passage, thus f4, f6, f8, and f10 are all given a value of 0. So are f5 and f9,
because the question has no nominal predicate. For the subject Socrates, our script finds
that it occurs once in the bag of answer words. The overlap count for the feature f3 is
thus calculated as 1+1

1+18 = 0.105.13 For the feature f7, our script extracts the grammatical
subjects Socrates, he, and this from the parser’s representation of the answer passage.
Because the bag of answer subjects for f7 contains three items, the overlap is calculated
as 1+1

1+3 = 0.5.

5.1.2 The Semantic Structure of the Question. In Section 4.2, we saw that often there is a
link between the question focus and the title of the document in which the reference
answer is found. In those cases, the answer document and the question share the same
topic. For most questions, the focus is the syntactic subject: Why do cats sleep so much?
Judging from our data, there are two exceptions to this general rule: (1) If the subject
is semantically poor, the question focus is the (verbal or nominal) predicate: Why do
people sneeze?, and (2) in case of etymology questions (which cover about 10% of
why-questions), the focus is the subject complement of the passive sentence: Why are
chicken wings called Buffalo Wings?

We included a feature (f12) for matching words from the question focus to words
from the document title and a feature (f13) for the relation between question focuswords
and all answer words. We also include a feature (f14) for the other, non-focus question
words.

5.1.3 The Document Context of the Answer. Not only is the document title in relation to
the question focus potentially useful for answer ranking, but also other aspects of the
answer context. We include four answer context features in our feature set: overlap
between the question words and the title of the Wikipedia document (f15), overlap be-
tween question words and the heading of the answer section (f16), the relative position
of the answer passage in the document (f17), and overlap between a fixed set of words
that we selected as explanatory cues when they occur in a section heading and the set
of words that occur in the section heading of the passage (f18).14

13 The bag of question subjects contains one item (Socrates, the 1 in the denominator) and one item from
this bag occurs in the bag of answer words (the left 1 in the numerator). Without stopwords, the bag of
all answer words contains 18 items, one of which occurs in the bag of question subjects (the right 1 in
the numerator).

14 We found these section heading cues by extracting all section headings from the Wikipedia corpus,
sorting them by frequency, and then manually marking those section heading words that we expect
to occur with explanatory sections. The result is a small set of heading cues (history, origin, origins,
background, etymology, name, source, sources) that is independent of the test set we work with.
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5.1.4 Synonyms. For each of the features f1 to f10 and f12 to f16 we add an alternative
feature (f19 to f34) covering the set of all WordNet synonyms for all question terms in
the original feature. For synonyms, we apply a variant of Equation (1) in which QA is
interpreted as the number of question items that have at least one synonym in the bag
of answer items and AQ as the number of answer items that occur in at least one of the
synonym sets of the question items.

5.1.5 WordNet Relatedness. Additionally, we included a feature representing the related-
ness between the question and the candidate answer using the WordNet Relatedness
tool (Pedersen, Patwardhan, and Michelizzi 2004) (f35). As a measure of relatedness,
we choose the Lesk measure, which incorporates information fromWordNet glosses.

5.1.6 Cue Phrases. Finally, as proposed in Section 4.1, we added a closed set of cue phrases
that are used to introduce an explanation (f36). We found these explanatory phrases in a
way that is commonly used for finding answer cues and that is independent of our own
set of question–answer pairs. We queried the key answer words to the most frequent
why-question on the Web Why is the sky blue? (blue sky rayleigh scattering) to the MSN
Search engine15 and crawled the first 250 answer fragments that are retrieved by the
engine. From these, we manually extracted all phrases that introduce the explanation.
This led to a set of 47 cue phrases such as because, as a result of, which explains why,
and so on.

5.2 Extracting Feature Values from the Data

For the majority of features we needed the syntactic structure of the input question,
and for some of the features also of the answer. We experimented with two different
syntactic parsers for these tasks: the Charniak parser (Charniak 2000) and a develop-
ment version of the Pelican parser.16 Of these, Pelican has a more detailed descriptive
model and gives better accuracy but Charniak is at present more robust for parsing
long sentences and large amounts of text. We parsed the questions with Pelican because
we need accurate parsings in order to correctly extract all constituents. We parsed all
answers (186 × 150 passages) with Charniak because of its speed and robustness.

For feature extraction, we used the following external components: A stop word
list,17 the sets of cue phrases as described in Sections 5.1.3 and 5.1.6, the CELEX Lemma
lexicon (Burnage et al. 1990), the WordNet synonym sets, the WordNet Similarity
tool (Pedersen, Patwardhan, and Michelizzi 2004), and a list of pronouns and semanti-
cally poor nouns.18 We used a Perl script for extracting feature values for each question–
answer pair. For each feature, the script composes the required bags of question items
and answer items. All words are lowercased and punctuation is removed. For terms
in the question set that consist of multiple words (for example, a multi-word subject),
spaces are replaced by underscores before stop words are removed from the question
and the answer. Then the script calculates the similarity between the two sets for each
feature following Equation (1).19

15 http://www.live.com.
16 See http://lands.let.ru.nl/projects/pelican/.
17 See Section 3.1.
18 Semantically poor nouns that we came across in our data set are the nouns humans and people.
19 A multi-word term from the question is counted as one item.

239

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/36/2/229/1810264/coli.09-032-r1-08-034.pdf by guest on 08 Septem
ber 2023



Computational Linguistics Volume 36, Number 2

Table 1
Results for the why-QA system: the complete system including re-ranking compared against
plain Lemur/TF-IDF for 187 why-questions.

Success@10 Success@150 MRR@150

Lemur/TF-IDF–sliding 45.2% 78.5% 0.25
TF-IDF + Re-ranking using 37 structural features 57.0% 78.5% 0.34

Whether or not to lemmatize the terms before matching them is open to debate.
In the literature, there is some discussion on the benefit of lemmatization for question
answering (Bilotti, Katz, and Lin 2004). Lemmatization can be especially problematic
in the case of proper names (which are not always recognizable by capitalization).
Therefore, we decided only to lemmatize verbs (for features f4 and f8) in the current
version of our system.

5.3 Re-ranking Method

Feature extraction led to a vector consisting of 37 feature values for each of the 27,900
items in the data set. We normalized the feature values over all 150 answer candidates
for the same question to a number between 0 and 1 using the L1 vector norm. Each
instance (representing one question–answer pair) was automatically labeled 1 if the
candidate answer matched the answer pattern for the question and 0 if it did not.
On average, a why-question had 1.6 correct answers among the set of 150 candidate
answers.

In the process of training our re-ranking module, we aim at combining the 37
features in a ranking function that is used for re-ordering the set of candidate answers.
The task of finding the optimal ranking function for ranking a set of items is referred to
as “learning to rank” in the information retrieval literature (Liu et al. 2007). In Verberne
et al. (2009), we compared several machine learning techniques20 for our learning-
to-rank problem. We evaluated the results using 5-fold cross validation on the ques-
tion set.

5.4 Results from Re-ranking

The results for the complete system compared with passage retrieval with Lemur/
TF-IDF only are in Table 1.We show the results in terms of success@10, success@150, and
MRR@150. We only present the results obtained using the best-performing learning-
to-rank technique: logistic regression.21 A more detailed description of our machine
learning method and a discussion of the results obtained with other learning techniques
can be found in Verberne et al. (2009).

20 Naive Bayes, Support Vector Classification, Support Vector Regression, Logistic regression, Ranking
SVM, and a genetic algorithm, all with several optimization functions.

21 We used the lrm function from the Design package in R (http://cran.r-project.org/web/packages/
Design) for training and evaluating models based on logistic regression.
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After applying our re-ranking module, we found a significant improvement over
bare TF-IDF in terms of success@10 and MRR@150 (z = −4.29, p < 0.0001 using the
Wilcoxon Signed-Rank test for paired reciprocal ranks).

5.5 Which Features Made the Improvement?

In order to evaluate the importance of our features, we rank them according to the
coefficient that was assigned to them in the logistic regression model (See Table 2). We
only consider features that are significant at the p = 0.05 level. We find that all eight
significant features are among the top nine features with the highest coefficient.

The feature ranking is discussed in Section 6.1.

6. Discussion

In the following sections, we discuss the feature ranking (Section 6.1), make a compari-
son to other re-ranking approaches (Section 6.2), and explain the attempts that we made
at solving the remaining problems (Section 6.3).

6.1 Discussion of the Feature Ranking

Table 2 shows that only a small subset (8) of our 37 features significantly contribute to
the re-ranking score. The highest ranked feature is TF-IDF (the bag of words), which is
not surprising since TF-IDF alone already reaches an MRR@150 of 0.25 (see Section 3.2).
In Section 4.5, we predicted a valuable contribution from the addition of cue phrases,
question focus, noun phrases, and the document context of the answer. This is partly
confirmed by Table 2, which shows that among the significant features are the feature
that links question focus to document title and the cue phrases feature. The noun
phrases feature (f11) is actually in the top nine features with the highest coefficient but
its contribution was not significant at the 0.05 level (p = 0.068).

The importance of question focus for why-QA is especially interesting because it
is a question feature that is specific to why-questions and does not similarly apply

Table 2
Features that significantly contribute to the re-ranking score (p < 0.05), ranked by their
coefficient in the logistic regression model (representing their importance).

Feature Coefficient

TF-IDF (f0) 0.39**
Overlap between question focus synonyms and document title (f30) 0.25**
Overlap between question object synonyms and answer words (f28) 0.22
Overlap between question object and answer objects (f10) 0.18*
Overlap between question words and document title synonyms (f33) 0.17
Overlap between question verb synonyms and answer words (f24) 0.16
WordNet Relatedness (f35) 0.16*
Cue phrases (f36) 0.15*

Asterisks on coefficients denote the level of significance for the feature: ** p < 0.001; * 0.001 <

p < 0.01; no asterisk means 0.01 < p < 0.05.
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to factoids or other question types. Moreover, the link from the question focus to the
document title shows that Wikipedia as an answer source can provide QA systems with
more information than a collection of plain texts with less discriminative document
titles does.

The significance of cue phrases is also an important finding. In fact, including cue
phrases in the why-QA process is the only feasible way of specifying which passages
are likely to contain an explanation (i.e., an answer to a why-question). In earlier work
(Verberne et al. 2007a), we pointed out that higher-level annotation such as discourse
structure can give useful information in the why-answer selection process. However,
the development of systems that incorporate discourse structure suffers from the lack
of tools for automated annotation. The current results show that surface patterns (the
literal presence of items from a fixed set of cue words) are a step in the direction of
answer selection.

The significant features in Table 2 also show us which question constituents are
the most salient for answer ranking: focus, main verb, and direct object. We think that
features incorporating the question’s subject are not found to be significant because, in
a subset of the questions, the subject is semantically poor. Moreover, because for most
questions the subject is the question focus, the subject features and the focus features are
correlated. In our data, the question focus apparently is the more powerful predictor.

6.2 Comparison to Other Approaches

The 23% improvement that we reach in terms of MRR@150 (from 0.25 to 0.34) is com-
parable to that reached by Tiedemann in his work on improving factoid QA with the
use of structural information.

In order to see whether the improvement that we achieved with re-ranking is
on account of structural information or just the benefit of using word sequences, we
experimented with a set of re-ranking features based on sequences of question words
that are not syntactically defined. In this re-ranking experiment, we included TF-IDF,
word bigrams, and word trigrams as features. The resulting performance was around
baseline level (MRR = 0.25), significantly worse than re-ranking with structural overlap
features. This is still true if we add the cue word feature (which, in isolation, only gives
a small improvement to baseline performance) to the n-gram features.

6.3 Solving the Remaining Problems

Although the results in terms of success@10 and MRR@150 are satisfactory, there is still
a substantial proportion of why-questions that is not answered in the top 10 result list.
In this section, we discuss a number of attempts that we made to further improve our
system.

First, after we found that for some question parts synonym expansion leads to
improvement (especially the main verb and direct object), we experimented with the
addition of synonyms for these constituents in the retrieval step of our system (Lemur).
We found, however, that it does not improve the results due to the large synonym sets
of many verbs and nouns which add much noise and lead to very long queries. The
same holds for the addition of cue words in the retrieval step.

Second, although our re-ranking module incorporates expansion to synonym sets,
there are many question–answer pairs where the vocabulary gap between the question
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and the answer is still a problem. There are cases where semantically related terms in
the question and the answer are of different word classes (e.g., hibernate—hibernation),
and there are cases of proper nouns that are not covered by WordNet (e.g., B.B. King).
We considered using dynamic stemming for verb–noun relations such as the hibernation
case but research has shown that stemming hurts as many queries as it helps (Bilotti,
Katz, and Lin 2004). Therefore, we experimented with a number of different semantic
resources, namely, the nominalization dictionary Nomlex (Meyers et al. 1998) and the
wikiOntology by Ponzetto and Strube (2007). However, in their current state of develop-
ment these semantic resources cannot improve our system because their coverage is too
low to make a contribution to our re-ranking module. Moreover, the present version of
the wikiOntology is very noisy and requires a large amount of cleaning up and filtering.

Third, we considered that the use of cue phrases may not be sophisticated enough
for finding explanatory relations between question and answer. Therefore, we exper-
imented with the addition of cause–effect pairs from the English version of the EDR
Concept Dictionary (Yokoi 1995) — as suggested by Higashinaka and Isozaki (2008).
Unfortunately, the list appeared to be extremely noisy, proving it not useful as a source
for answer ranking.

7. Conclusions and Directions for Future Research

In the current research, we extended a passage retrieval system for why-QA using off-
the-shelf retrieval technology (Lemur/TF-IDF) with a re-ranking step incorporating
structural information. We get significantly higher scores in terms of MRR@150 (from
0.25 to 0.34) and success@10. The 23% improvement that we reach in terms of MRR
is comparable to that reached on various other QA tasks by other researchers in the
field (see Section 6.3). This confirms our hypothesis in Section 1 that for the relatively
complex problem of why-QA, a significant improvement can be gained by the addition
of structural information to the ranking component of the QA system.

Most of the features that we implemented for answer re-ranking are based on word
overlap between part of the question and part of the answer. As a result of this set-up,
our features identify the parts of why-questions and their candidate answers that are the
most powerful/effective for ranking the answers. The question constituents that appear
to be the most important are the question focus, the main verb, and the direct object. On
the answer side, most important are the title of the document in which the candidate
answer is embedded and knowledge on the presence of cue phrases.

Because our features are overlap-based, they are relatively easy to implement. For
implementation of some of the significant features, a form of syntactic parsing is needed
that can identify subject, verb, and direct object from the question and sentences in
the candidate answers. An additional set of rules is needed for finding the question
focus. Finally, we need a fixed list for identifying cue phrases. Exploiting the title of
answer documents in the feature set is only feasible if the documents that may contain
the answers have titles and section headings similar to Wikipedia.

In conclusion, we developed a method for significantly improving a BOW-based
approach to why-QA that can be implemented without extensive semantic knowledge
sources. Our series of experiments suggest that we have reached the maximum per-
formance that can be obtained using a knowledge-poor approach. Experiments with
more complex types of information (discourse structure, cause–effect relations) show
that these information sources have not as yet developed sufficiently to be exploited in
a QA system.
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