
Design and Simulation of a
Multilayer Chemical Neural
Network That Learns
via Backpropagation

Abstract The design and implementation of adaptive chemical
reaction networks, capable of adjusting their behavior over time in
response to experience, is a key goal for the fields of molecular
computing and DNA nanotechnology. Mainstream machine
learning research offers powerful tools for implementing learning
behavior that could one day be realized in a wet chemistry system.
Here we develop an abstract chemical reaction network model that
implements the backpropagation learning algorithm for a
feedforward neural network whose nodes employ the nonlinear
“leaky rectified linear unit” transfer function. Our network directly
implements the mathematics behind this well-studied learning
algorithm, and we demonstrate its capabilities by training the system
to learn a linearly inseparable decision surface, specifically, the XOR
logic function. We show that this simulation quantitatively follows
the definition of the underlying algorithm. To implement this
system, we also report ProBioSim, a simulator that enables arbitrary
training protocols for simulated chemical reaction networks to be
straightforwardly defined using constructs from the host
programming language. This work thus provides new insight into the
capabilities of learning chemical reaction networks and also develops
new computational tools to simulate their behavior, which could be
applied in the design and implementations of adaptive artificial life.

Matthew R. Lakin
University of New Mexico

Department of Computer Science
Department of Chemical and

Biological Engineering
Center for Biomedical Engineering

mlakin@cs.unm.edu

Keywords
Neural networks, chemical reaction
networks, backpropagation, leaky rectified
linear unit, simulations

1 Introduction

The field of molecular computing has made great strides in the implementation of sophisticated
information processing systems at the nanoscale, including logic circuits (Qian & Winfree, 2011a;
Seelig et al., 2006), distributed algorithms (Chen et al., 2013), and artificial neural networks (Cherry
& Qian, 2018; Qian et al., 2011). Such systems often use DNA molecules to implement their com-
putational processes because the sequence-specific nature of DNA chemistry makes it possible to
encode structures and interactions based solely on the sequences of the constituent molecules that
make up these systems. The ability to process information at the nanoscale has a range of en-
ticing applications in biomedical diagnostics and therapeutics (Chatterjee et al., 2018; Chen et al.,
2015; Groves et al., 2016; C. Zhang et al., 2020) and in the control of nanoscale robotic devices
(Thubagere, Li, et al., 2017).

© 2023 Massachusetts Institute of Technology Artificial Life 29: 308–335 (2023) https://doi.org/10.1162/artl_a_00405

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

mailto:mlakin@cs.unm.edu
https://doi.org/10.1162/artl_a_00405

M. R. Lakin Neural Network Leaning via Backpropagation

The fact that molecular computing devices can mimic the computational behavior of artificial
neural networks is of particular interest because it hints at the possibility of implementing adaptive
behavior in engineered biochemical systems, if those molecular systems could be made to learn. To
date, this has not been accomplished in a molecular implementation of an artificial neural network.
However, living systems exhibit a range of adaptive behaviors, and even single-celled organisms
have been shown to adapt to changes in their environment (Dexter et al., 2019), with claims made
in the literature that even these simple organisms are capable of learning (Hennessey et al., 1979;
Wood, 1988). This implies that there may be a molecular basis for learning behaviors in biological
systems and, furthermore, that engineered molecular computing systems might be able to replicate
some of that behavioral complexity. The design and implementation of learning algorithms for
molecular computing systems is of great interest and would enable the development of engineered
nanoscale control systems capable of intelligently responding to changes in their environment. For
example, smart biomedical devices endowed with molecular learning circuits could be programmed
to learn and adapt to the specifics of a particular patient’s physiology.

In mainstream machine learning research, artificial neural networks have become established as
a powerful mechanism for training models. Given that previous work has demonstrated the im-
plementation of neural networks using DNA strand displacement reactions (Cherry & Qian, 2018;
Qian et al., 2011), neural networks are a promising framework for implementing machine learn-
ing algorithms in a molecular computing system. Furthermore, mathematically well-defined learning
algorithms exist for training, such as the well-established backpropagation algorithm (Rumelhart
et al., 1986). Therefore, in this article, we show that a simple neural network learning algorithm
based on backpropagation can be realized as an abstract chemical reacton network (CRN). CRNs
are the underlying “programming language” of molecular computing circuits (Cook et al., 2009),
and it has been shown that any such network can be compiled into a corresponding network in real
wet chemistry using DNA strand displacement reactions (Soloveichik et al., 2010). This provides a
potential route to a future laboratory implementation of our circuit designs. Furthermore, simulating
CRNs is of great interest for molecular programming.

Here we outline the design of an abstract CRN that can implement backpropagation learning in a
multilayer artificial neural network architecture. The neurons in our system utilize the leaky rectified
linear unit (leaky ReLU) nonlinearity, which is widely used in modern machine learning models. We
demonstrate the use of our system to train a simple neural network to learn a logic function that
is not linearly separable, by simulating an deterministic ordinary differential equation (ODE) model
of the CRN. We illustrate the correctness of this CRN design by comparing its output to that from
a reference implementation of the underlying backpropagation algorithm. We develop a flexible,
general-purpose simulator to enable these simulations to be carried out straightforwardly. Our work
therefore demonstrates the first implementation of backpropagation learning in a multilayer nonlin-
ear chemical neural network design, thereby opening the door to future development of chemical
reaction network designs with advanced learning capabilities.

2 Related Work

Previous work by ourselves and others has developed and simulated designs for neural network–like
chemical reaction systems capable of learning, from which we draw inspiration for the current work.
In early work, we developed designs for systems capable of supervised learning in networks of
DNAzyme-based reactions (Lakin et al., 2014) and toehold-mediated DNA strand displacement re-
actions (Lakin & Stefanovic, 2016). Blount et al. (2017) reported a feedforward chemical network
that uses a backpropagation-style algorithm for learning; however, the system design does not im-
plement a rigorous mathematical specification of the algorithm, and thus its behavior is somewhat
hard to predict a priori. Other approaches to learning in chemical systems have also been inves-
tigated, including training via reinforcement learning (Banda et al., 2014) and learning via weight

Artificial Life Volume 29, Number 3 309

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

perturbation learning in a multilayer network of neurons using the tanh nonlinearity (Arredondo &
Lakin, 2022). The crucial goal in all of this work has been to establish systems in which the learn-
ing process is carried out solely within the simulated chemistry and not via external computational
mechanisms. Autonomous chemical learning systems could, at least in principle, be developed to
function autonomously and be trained by an experimenter to implement specific computational
functions. However, there remains a lack of circuit designs that can implement the standard and
well-known algorithm of backpropagation for supervised learning in a well-understood and clearly
specified manner; the current article aims to address this.

Theroretical work on chemical neural networks that can compute outputs but cannot learn has
yielded promising approaches to use deep learning to program molecular circuits (Vasić et al., 2020).
Previous work has discovered rate-independent chemical reaction systems for computing the non-
leaky version of the rectified linear unit (ReLU) nonlinearity (Vasić, Soloveichik, & Khurshid, 2020b)
and has also explored the potential for DNA-based implementations of binarized neural networks
(Linder et al., 2021). However, while using neurons with binarized weights greatly simplifies the
forward computation, training such neurons via gradient descent is challenging because gradient
descent works by making many small changes to the weight values, which cannot be done if the
weights are binarized. Thus an additional continuous representation of the weights must be main-
tained for training purposes, which is then binarized for carrying out the forward computations
(Simons & Lee, 2019).

Much of the work discussed has focused on high-level abstract specifications of CRNs, in which
the system design is expressed in terms of transformation rules between abstract chemical reac-
tants and products. While abstract, such specifications can nevertheless be related to experimen-
tal science via translation into networks of toehold-mediated DNA strand displacement reactions
(D. Y. Zhang & Seelig, 2011). This correspondence was established by Soloveichik et al. (2010)
for arbitrary abstract CRNs, and previous work has studied a range of distinct translation schemes
(Cardelli, 2010, 2013). Thus abstract CRNs are conveniently high level while also linked to low-level
molecular implementations; therefore a range of computational tools to design and test these trans-
lations has been developed. Such tools specialized for DNA nanotechnology include the Nuskell
and Peppercorn tools developed in the Winfree group (Badelt et al., 2017, 2020), which are also
embedded within Python. The Visual DSD system for DNA strand displacement modeling (Lakin
et al., 2011) has limited facilities for perturbing the system (Yordanov et al., 2014). With regard
to tools more suited for simulations of adaptive and trainable chemical systems, other, more gen-
eral simulators, such as StochKit2 (Sanft et al., 2011) and GillesPy (Abel et al., 2016), use both
time-based and state-based event triggers for system perturbations that can be used to model ex-
ternal interference from an experimenter or other feedback from the chemical environment. The
Kappa system includes perturbation events expressed in the Kappa DSL itself (Boutillier et al.,
2018), along with alarms that check these periodically. The COEL cloud-based simulation frame-
work (Banda & Teuscher, 2016) uses perturbation definitions based on the Java Math Expression
Parser. To our knowledge, these related systems do not permit the use of arbitrary computation in a
general-purpose host language to specify arbitrarily complex interventions in the system when those
triggers are activated, as is possible with the simulator on which we report herein.

Finally, some experimental work on computational DNA strand displacement circuits has yielded
exciting results in terms of neural network implementations. Most notably, Qian et al. (2011) im-
plemented a recurrent Hopfield neural network using catalytic “seesaw” DNA strand displacement
reactions (Qian & Winfree, 2011b). That work was subsequently scaled up to much larger networks
that could carry out pattern recognition tasks on a version of the MNIST data set of handwrit-
ten digits (Cherry & Qian, 2018). These results hint at exciting future developments in molecular
learning circuits. However, these systems are still very small and very simple by the standards of
modern-day silicon-based computing hardware, and the amount of additional circuitry required to
go from a one-shot neural network implementation to a version with built-in learning capabilities is
significant. Thus computational work still has a part to play in laying out future paths for this work.

310 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

3 Chemical Reaction Networks

In this article, we will use abstract chemical reaction networks under a deterministic mass-action
semantics to define and simulate our trainable chemical neural network implementation. Briefly, an
abstract CRN consists of a finite set of species {X1, . . . , Xn} and a finite set of reactions {r1, . . . , rq}
over those species. Each reaction ri has the form

n∑
j=1

�i jXj
ki→

n∑
j=1

mi jXj

where �ij and mi j are nonnegative integer-valued stoichiometric coefficients. (Equivalently, the
left-hand and right-hand sides of the reaction are both multisets over the set of species.) The
left-hand species are said to be the reactants, and the right-hand species are said to be the prod-
ucts. Note that these may be zero, meaning that the given species does not appear in that reaction as
a reactant or product or both, as appropriate.

The stoichiometry of species Xj in reaction ri is then defined as

stoich(Xj, ri) = mi j − �i j

This quantity represents the net change in the quantity of species Xj caused by a single execution
of reaction ri. As per the law of mass action, the flux through reaction ri is proportional to the
products of the concentrations of all of the reactants, with the constant of proportionality being the
nonnegative real-valued rate constant, ki; we write this as follows:

flux(ri) = ki ×
∑

j∈{i, ..., n}
[Xj]�i j

Here the concentration [Xj] is raised to the power of �ij to account for the fact that multiple copies
of Xj could in theory be required to be present as reactants.

Therefore the differential equation for d[Xj]
dt , the rate of change of the concentration of species

Xj over time, can be expressed as follows:

d[Xj]
dt

=
∑

i∈{1, ..., q}

∑
j∈{1, ..., n}

stoich(Xj, ri) · flux(ri)

where stoich(Xj, ri) and flux(ri) are as defined earlier. For any given abstract CRN, this set of cou-
pled ODEs can be formed via a mechanical translation, with one differential equation per species.
Given an initial set of species concentrations, the CRN can be simulated by numerically integrating
these ODEs with respect to time using any suitable ODE solver, thereby solving the corresponding
initial value problem. (As a practical matter, one can implement such simulations computationally
by forming the corresponding stoichiometry matrix, a matrix that records all the stoichiometric coef-
ficients of all species in all reactions in the CRN. In conjunction with a function that calculates the
flux through each reaction at each time point based on the current species concentrations, the time
derivatives can be calculated via simple matrix multiplication operations.)

Artificial Life Volume 29, Number 3 311

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

Figure 1. Neural network structure used in this work. (a) Schematic of a single neuron. (b) Plot of leaky ReLU transfer
function when α = 0.1 (the gradient for input x < 0) and β = 1 (the gradient for input x ≥ 0). (c) Schematic of the
whole network simulated in this work.

4 Results

4.1 Neural Network Structure and Definition
In this work, we use abstract CRNs to input trainable neural networks composed of leaky ReLU
neurons. This nonlinearity is in widespread use in mainstream machine learning research because
of its relative simplificity and good learning performance. Figure 1 outlines the schematics of single
neurons and the network structure under study. In a single neuron, the input signals are multipled by
weights before being passed through the leaky ReLU nonlinearity. The whole network under study
accepts two input signals, X1 and X2, that are passed into two hidden layer neurons, N0 and N1.
These produce output signals H0 and H1, respectively. These signals are fed into a single output
layer neuron, N2, which produces the overall output signal, Y. Each neuron also has a third input,
a bias signal that is clamped to −1. Importantly, this is a feedforward network, which means that
we can straightforwardly apply the backpropagation algorithm to calculate the weight updates, as
outlined in what follows.

The most general definition of the leaky ReLU transfer function is as follows:

ReLUα,β(x) =
{
α · x if x < 0
β · x if x ≥ 0

In this work, we set β = 1 and assume that the values of α and β are identical for all neurons in
the network. Given this definition, the output Y of our network for a given α and β can then be
defined as follows:

NET0 = (W00 × (−1)) + (W01 × X1) + (W02 × X2)
H0 = ReLUα,β(NET0)

NET1 = (W10 × (−1)) + (W11 × X1) + (W12 × X2)
H1 = ReLUα,β(NET1)

NET2 = (W20 × (−1)) + (W21 × H0) + (W22 × H1)
Y = ReLUα,β(NET2)

312 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

where we write NETi for the result of the linear weighting calculation carried out within neuron Ni,
before that value is passed through the leaky ReLU nonlinearity.

4.2 Derivations of Loss Derivatives
The goal of this work is to design and simulate a CRN that implements a neural network capable
of being trained via backpropagation, a well-defined and well-understood training algorithm from
mainstream machine learning research. For this, we use the basic gradient descent weight update
rule,

W ji := W ji − α × ∂L
∂W ji

which requires us to derive the partial derivative of the loss function with respect to each weight
Wji in the network. The backpropagation algorithm for supervised learning in a feedforward neural
network (such as ours) works by propagating input signals forward through the network to produce
an output signal, using this and the target value to compute the loss function. This loss value is then
backpropagated through the network to compute the partial derivative of the loss with respect to
each weight via repeated application of the chain rule. Here and henceforth, we follow the notational
convention of Mitchell (1997).

See section S1 of the Supplemental Material for a full derivation. Briefly, the derivative of the
leaky ReLU transfer function with respect to its input is

∂

∂x
ReLUα,β(x) =

{
α if x < 0
β if x ≥ 0

Furthermore, in general, by the chain rule, we have the following:

∂L
∂Wji

= ∂L
∂NETj

· ∂NETj
∂Wji

= ∂L
∂NETj

· Xji

where Xji is the ith input to the jth neuron. Thus the main issue will be to calculate ∂L
∂NETj for each

neuron in the system. There are two cases to consider: an output neuron (N2) and a hidden layer
neuron (N0 and N1).

We define the loss function as L = 1
2 · (Y − TARGET)2, and for the output neuron N2, we

calculate ∂L
∂Y and ∂Y

∂NET2 and then use the chain rule to give an expression for ∂L
∂NET2 . Thus we

obtain the following set of loss derivatives with respect to the weights associated with neuron N2:

∂L
∂W20

= −1 · Q2
∂L

∂W21
= H0 · Q2

∂L
∂W22

= H1 · Q2

where

Q2 =
{
α · (Y − TARGET) if NET2 < 0
β · (Y − TARGET) if NET2 ≥ 0

For a hidden layer neuron, say, N1 in general, we would need to sum over the contributions from
all downstream neurons, thus

∂L
∂NET1

=
∑

k∈downstream(N1)

(
∂L

∂NETk
· ∂NETk
∂NET1

)

Artificial Life Volume 29, Number 3 313

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

However, in our network, there is only one downstream neuron (N2), so we can simplify the pre-
ceding equation to

∂L
∂NET1

= ∂L
∂NET2

· ∂NET2
∂NET1

We have already computed ∂L
∂NET2 ; thus we need only to compute ∂NET2

∂NET1 . This we can obtain by
using the chain rule on ∂NET2

∂H1 and ∂H1
∂NET1 . Thus we obtain the following set of loss derivatives with

respect to the weights associated with neuron N1:

∂L
∂W10

= −1 · Q1
∂L

∂W11
= X1 · Q1

∂L
∂W12

= X2 · Q1

where

Q1 =
{
α · W22 if NET1 < 0
β · W22 if NET1 ≥ 0

The loss derivatives for the weights associated with N0 can be calculated similarly. We now have
expressions for all of the values that our neural network CRN must compute, not just for forward
propagation of input signals to produce an output signal and the corresponding loss value but also
for the backpropagation of the loss signal through the network to produce loss derivatives and thus
the desired weight update values.

4.3 Designing a CRN to Directly Compute the Loss Derivatives
Given the mathematical definition of our network’s desired operation, both for output generation
and for learning, we can now start to build an abstract CRN implementation of this behavior. This
is a key advantage of our approach; by grounding our system in a well-studied and well-understood
network implementation and learning algorithm, we have a concrete target against which to test our
CRN implementation so as to gauge its performance. In this section, we describe the various features
of our CRN neural network structure and implementation. Although the various components of the
CRN design are presented separately, our system is a single well-mixed solution in which all reactions
are assumed to be occurring simultaneously within a one-pot reaction vessel. As outlined in what
follows, the timing of reactions is mediated by the use of a chemical clock signal, but the reactions
are all assumed to be occurring in parallel and competing for reactants; indeed, this competition is a
key aspect of our system design.

4.3.1 Regulation by a Molecular Clock Signal
Drawing on previous work (Vasić, Soloveichik, & Khurshid, 2020a) and our own previous work
on learning via weight perturbation in CRNs (Arredondo & Lakin, 2022), here we use a molecular
oscillator to organize the reactions in our neural network system into discrete stages. To this end,
we use a molecular oscillator consisting of reactions of the form

C1 + C2
kClock

C2 + C2 C2 + C3
kClock

C3 + C3 . . .

C25 + C25
kClock

C26 + C26 C26 + C1
kClock

C1 + C1

where kClock = 0.1 is the corresponding bimolecular rate constant. By initializing the clock species
C25 and C26 with concentration 1.0 (written [C25]) = [C26] = 1.0 and with [Ci] = 10−6 for all
other clock species Ci, we obtain a robust oscillation that cycles through precisely one of the clock
species going high (with a maximum concentration of 2.0) at any given time, in order. By using these

314 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

Table 1. Division ofoperations between clock phases.

Clock phase Operations carried out

C1 Input fanout

C3 Input copying and weight calculations for hidden layer neurons (N0) and N1

C5 Preparing leaky ReLU calculations for N0 and N1

C7 Executing leaky ReLU calculations for N0 and N1

C9 Input copying and weight calculations for output layer neuron (N2)

C11 Preparing leaky ReLU calculation for N2

C13 Executing leaky ReLU calculation for N2

C15 Calculation of network loss

C17 Calculation of backpropagation signal into N2

C19 Calculation of weight updates for N2 and backpropagation signals into N1 and N0

C21 Calculation of weight updates for N1 and N0

C23 Application of weight updates

C25 Cleanup (degradation of various signals) in preparation for next training round

clock species as catalysts to drive other reactions, we can ensure that those reactions experience
only a nonnegligible flux through them when the particular clock species in question is the high
one. As in previous work (Arredondo & Lakin, 2022; Vasić, Soloveichik, & Khurshid, 2020a), we
use only odd-numbered clock species as catalysts, to prevent any overlap between the phases. Our
design uses a relatively large number of distinct clock phases, though it is possible that this could be
optimized in future work. The division of different parts of the feedforward network computation
and backpropgation learning process between the various clock phases is summarized in Table 1;
the details of these operations and their implementations are described in the following pages.

4.3.2 Dual-Rail Signal Representation
The basic representation for signals in our system is as the concentration of an abstract chemi-
cal species corresponding to that variable. However, although the signals involved in our network
may take on negative values (for example, the bias inputs to the neurons), chemical concentrations
cannot fall below zero. Therefore, as in previous work (Arredondo & Lakin, 2022), here we use a
dual-rail representation of a signal X as a pair of chemical species: Xp to represent the positive com-
ponent and Xm to represent the negative component. We interpret the true value of the signal X
and [Xp] − [Xm]. However, for each such species pair, we include a dual-rail annihilation reaction
of the form

Xp + Xm
kAnnih∅

Artificial Life Volume 29, Number 3 315

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

with a rate constant value of kAnnih = 1.0. These reactions do not require a clock species as catalyst
and can therefore fire at any time. This ensures that only one of the two dual-rail species will be
present at any given time with a nonnegligible concentration, which simplifies the interpretation of
the system state.

4.3.3 Input Fan-out
In each training round, the inputs to the network are provided via two dual-rail input signals (X1
and X2) and the bias input (BIAS). The latter always takes the value −1, however, we include both
dual-rail species for consistency with the other, similar signals. In the first (C1) clock cycle, these in-
puts are transferred into multiple locations as required for the calculation of multiple neuron signals
that operate on the same inputs. This is achieved by simple reactions, catalyzed by the C1 clock sig-
nal, that consume the inputs entirely and produce the same concentration of several output species
as products. For example, the dual-rail positive input species X1p is fanned out into corresponding
input species X01p and X11p for neurons N0 and N1, respectively, via the single reaction

C1 + X1p k→ C1 + X01p + X11p

This and the vast majority of subsequent reactions described use rate constant k = 1.0. Similar
reactions are used for the fan-out of X1m and both dual-rail components of the X2 signal. The
fan-out reactions for the bias signals are similar but include an additional product species because
the bias signal must be duplicated for all three neurons in the network, not just for the two input
neurons, for example, for BIASm

C1 + BIASm k→ C1 + BIAS0m + BIAS1m + BIAS2m

Note that, in theory, we could eliminate these fan-out reactions and require the input to be provided
separately to each of the neurons in equal concentrations; however, for simplicity of the input
interface, we have the first phase of the network calculation do these reactions internally.

4.3.4 Input Weighting
All input signals to our neurons must be scaled by multiplying them by the corresponding weight
value. In order that the weights can be adjusted autonomously over time as the network learns,
these weights must also be represented in the system as the concentrations of (dual-rail) chemical
species. We used the same approach to this issue as in our previous work on training chemical neural
networks (Arredondo & Lakin, 2022). Briefly, as inspired by previous work (Buisman et al., 2009),
the concentration of an “input” species X can be transferred into the concentration of an “output”
species Y, scaled by the concentration of a “weight” species W, via the pair of competitive reactions

W + X k→ W + X + Y X k→ ∅.

Forming the differential equations for this small CRN, we observe that the flux per unit time through
the first reaction (that produces the output Y) is k · [W] · [X], while the flux through the second
reaction is just k · [X]. In the absence of other reactions simultaneously producing or consuming
these species (which is effectively the case in our clocked CRN implementation), each input X will
thus catalyze the first reaction [W] times before it is consumed in the second reaction, leading to the
steady state concentration [Y] being the product of the initial values of [W] and [X]. The input X
is consumed by this process, which is slightly different to the approach from Buisman et al. (2009),
in which the inputs act catalytically to produce the outputs with a scaled concentration. This feature
fits well with some aspects of our network design, for example, the fact that the calculation of the
leaky ReLU nonlinearity depends on one of the positive or negative dual-rail signals annihilating the

316 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

other. However, we do need the original input values for the backpropagation calculations, because
the partial loss derivatives with respect to the weights do depend on the input values. Therefore
we must also copy the input values so they are available during backpropagation, as outlined in the
Input Copying section.

We used the preceding template to generate sets of similar reactions for scaling the input species
to all of our neurons (both in the hidden layer and in the output layer), as well as the bias inputs,
by the corresponding weight values. These reactions must be provided for all combinations of the
positive and negative dual-rail species, with the correct combination of signs in each case. The
assignment of weight names to neuron inputs in our model reactions follows the naming scheme
set out in Figure 1(c). These reactions must also be catalyzed by the correct clock species, as per
Table 1. As a concrete example, the complete set of reactions for weighting the bias input to neuron
N0 is as follows:

C3 + W00p + BIAS0p k→ C3 + W00p + BIAS0p + NET0p
C3 + W00m + BIAS0m k→ C3 + W00m + BIAS0m + NET0p
C3 + W00p + BIAS0m k→ C3 + W00p + BIAS0m + NET0m
C3 + W00m + BIAS0p k→ C3 + W00m + BIAS0p + NET0m
C3 + BIAS0p k→ C3 C3 + BIAS0m k→ C3

For a given neuron, all reactions produce the same output species (NET0, for instance), which
means that the resulting concentration of that species is the sum of the weight inputs, as required.

4.3.5 Input Copying
As mentioned, we must copy the input signals for each neuron into a separate species before they are
consumed during the weight process, so that they may be used in the subsequent backpropagation
calculations to calculate the weight update values. In the case of hidden layer neuron N0, this can
be achieved via the reactions

C3 + BIAS0p k→ C3 + BIAS0p + K00p C3 + BIAS0m k→ C3 + BIAS0m + K00m
C3 + X01p k→ C3 + X01p + K01p C3 + X01m k→ C3 + X01m + K01m
C3 + X02p k→ C3 + X02p + K02p C3 + X02m k→ C3 + X02m + K02m

Each input serves as a catalyst for the generation of the corresponding “copy” (K) species. Because
these reactions are occurring in parallel with the input weighting reactions outlined previously, the
combination of this catalysis reaction and the input degradation reactions shown as part of the input
weight reactions means that the final concentration of each copy species matches the initial concen-
tration of the corresponding input species. Thus the input copying reactions record the input values
for use in the subsequent weight update calculations specified in the backpropagation algorithm,
and because the inputs serve as catalysts in these reactions, the operation of the input weighting
reactions is unaffected. Similar reactions take place in clock phase C3 for the N1 inputs, and similar
reactions also take place in clock phase C9 for the inputs to the output neuron N2 (which are the
outputs from the hidden layer neurons, as shown in Figure 1(c)).

4.3.6 Calculation of Leaky ReLU Nonlinearity
Having calculated the weighted sums of the inputs, and copied the input values as appropriate, the
next step in the feedforward network computation is to pass the weighted inputs through the leaky
ReLU nonlinearity. Previous work (Linder et al., 2021; Vasić, Soloveichik, & Khurshid, 2020b) has
uncovered rate-independent CRNs for calculating the nonleaky variant of the ReLU nonlinearity;
however, here we wish to use the leaky variant and thus must design our own, new CRN.

Artificial Life Volume 29, Number 3 317

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

Our approach is driven by the observation that computing the leaky ReLU is another simple
linear weighting process, once it is known whether the input is positive or negative. Therefore we
first select the required gradient for the leaky ReLU unit in a given neuron, say, N0 based on the
value of the corresponding weighted sum of the inputs, which we call NET0 in the case of N0. We
assume the existence of a pair of species that store the values of the two different gradients for the
leaky ReLU unit, corresponding to the α and β constants from the definition of the leaky ReLU
transfer function. These do not need to be dual-rail species, as the leaky ReLU gradients must be
positive. There is a separate pair of such species for each neuron, so the gradients could be varied on
a per-neuron basis if desired, though here we do not do so. For neuron i, these species are DPOSi
and DNEGi for the gradients for positive and negative x input values, respectively. One of these
will then be copied into the Di species, which represents the correct gradient to be applied to the
waiting input value. This is achieved for neuron N0 via the following reactions:

C5 + NET0p + DPOS0
kCopy

C5 + NET0p + DPOS0 + D0p C5 + NET0p + D0p
kCopy

C5 + NET0p

C5 + NET0m + DNEG0
kCopy

C5 + NET0m + DNEG0 + D0p C5 + NET0m + D0p
kCopy

C5 + NET0m

These reactions use a new rate constant, kCopy, which we set to 1.0 by default but which could
enables us to tune the behavior of the leaky ReLU calculations around the discontinuity when the
input x = 0, if required (see Discussion). These are simple copying reactions using the scheme of
Buisman et al. (2009). They work as expected because the dual-rail annihilation reactions will have
already ensured that only one of NET0p and NET0m is present at the start of the C5 clock phase.
Then, the value of either DPOS0 or DNEG0 will be copied into the D0 species. (For the sake of
simplifying the model setup code, we use a dual-rail species for Di, even though it will only ever
be a positive value.) We assume that the correct concentrations of the DPOSi and DNEGi species
for each neuron have been supplied in the initial system setup, and our network does not modify
these values during its execution. We also assume that the values of the Di species are neglible at
the start of each training round; this is true in our initial setup, and the cleanup phase at the end of
each training round (outlined later) ensures that this invariant holds for subsequent training rounds.
Similar reactions take place in the C5 clock phase for the second hidden layer neuron, N1, and in
the C11 clock phase for the output neuron, N2.

Having chosen the correct gradient to apply based on the sign of the input value, actually calcu-
lating the output from the leaky ReLU unit is just a simple weighting calculation in which the input
value is multiplied by the chosen gradient. The reaction scheme for accomplishing this is identical
to that for the linear input weighting outlined earlier. We run these in the clock phase after the gra-
dient selection reactions to ensure that the results from the calculation are accurate. For example,
the corresponding reactions for neuron N0 are as follows:

C7 + D0p + NET0p k→ C7 + D0p + NET0p + H0p
C7 + D0m + NET0m k→ C7 + D0m + NET0m + H0p
C7 + D0p + NET0m k→ C7 + D0p + NET0m + H0m
C7 + D0m + NET0p k→ C7 + D0m + NET0p + H0m
C7 + NET0p k→ C7 C7 + NET0m k→ C7

The resulting final output from N0 is stored in the H0 dual-rail species. Similar reactions take place
in the C7 clock phase for neuron N1, producing the H1 output signal. Finally, similar reactionstake
place in the C13 clock phase for the output neuron N2, producing the Y signal. The concentra-
tion of this dual-rail signal represents the overall output from the feedforward network computa-
tion. Importantly, the chosen gradient values remain stored in the Di species after this phase has

318 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

completed, which means they are available for subsequent use in the backpropagation algorithm
that calculates the weight updates, as outlined in what follows.

4.3.7 Calculation of Network Error
Having completed the feedforward network computation, before we can start the backpropagation
learning stage, we must first calculate the network error (also known as loss) between the output
signal Y produced by the output neuron and the expected output value TARGET, which we assume
is supplied by the experimenter along with the input signals at the start of each training round.

In fact, what we actually calculate to serve as the input to the backpropagation algorithm is
the partial derivative of the loss with respect to the network output, ∂L

∂Y . Given that we define
the loss as L = 1

2 · (Y − TARGET)2, this partial derivative can be computed straightforwardly as
∂L
∂Y = Y − TARGET. This obviates the need to calculate the square of the difference between the
output Y and the target output TARGET, although this could in principle be computed by a CRN
using previously reported techniques (Buisman et al., 2009).

We compute ∂L
∂Y and store it in the dual-rail CRN signal E using the following four simple

reactions, which occur in the C15 clock phase:

C15 + Yp k→ C15 + Ep C15 + Ym k→ C15 + Em
C15 + TARGETp k→ C15 + Em C15 + TARGETp k→ C15 + Ep

These reactions simply transfer the values from the Y and TARGET species into the E dual-rail
signal, with the signs matched in the case of Y and inverted in the case of TARGET, so as to
correcly realize the subtraction operation.

4.3.8 Calculation of Loss Derivatives via Backpropagation
The loss derivative ∂L

∂Y having been calculated as the dual-rail species E, this can serve as the input
to the backpropagation calculations required to compute the weight updates for gradient descent
learning. This is the crux of our CRN learning algorithm. The outline structure of the backpropaga-
tion calculations is summarized in Figure 2. Once the input signals and chosen leaky ReLU gradients
have been copied as outlined earlier, the backpropagation phase is just a series of straightforward
multiplications, following the derivations presented in section S1 of the Supplemental Material.

Figure 2. Overview of backpropagation computations in learning CRN design. The dual-rail E signal stores the partial
derivative of the network loss with respect to output, and this value is fed back through this network, which paral-
lels the structure of the neural network itself from Figure 1(c), to compute the DeltaWij values that represent the
updates to be applied to each weight Wij from the current training round. The terms highlighted in red are constants
that are copied into a temporary species during the feedforward calculation phase for use in the backpropagation
phase. The weight terms highlighted in blue can be used without the need for copying into a temporary species.

Artificial Life Volume 29, Number 3 319

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

For each neuron, we divide the backpropagation calculation into two parts, the computing of the
backpropagation signal “into” that neuron, which is the same for all weight updates associated with
that neuron, and the computing of the individual weight updates, which differ between the various
weights associated with a given neuron. To simplify the analysis of the CRN, these occur in distinct
clock phases, although they could be combined if reducing clock phases were a concern. We use
species Qi to represent the shared incoming value for neuron Ni in the backpropagation calculation.

In the case of the output neuron N2, the value stored in the Q2 signal represents the value
of ∂L

∂NET2 , which is calculated (see section S1 of the Supplemental Material) by multiplying the E
signal generated earlier by the leaky ReLU gradient for N2 in this training round, which is stored
in the D2 species, as outlined previously. This is a straightforward dual-rail multiplication process,
implemented by the following reactions which occur in the C17 clock phase:

C17 + Ep + D2p k→ C17 + Ep + D2p + Q2p C17 + Em + D2m k→ C17 + Em + D2m + Q2p
C17 + Ep + D2m k→ C17 + Ep + D2m + Q2m C17 + Em + D2p k→ C17 + Em + D2p + Q2m

C17 + D2p k→ C17 C17 + D2m k→ C17

The Q2 signal having been calculated, this can be used to compute the partial loss derivatives for
the N2 weights. It must also be propagated backward through the network to serve as one of the
inputs for the equivalent calculations for the hidden layer neurons, N1 and N0. Because these re-
actions will consume the Q2 species, as earlier, these processes need to happen in parallel, during
the C19 clock phase. With regard to the N2 weight updates, these are calculated by multiplying the
value stored in Q2 by the copied input value associated with each weight, producing a dual-rail
signal DeltaWij representing the partial derivative of the network loss with respect to weight
Wij. (These will be scaled by the learning rate parameter and actually applied to the weights in
a subsequent phase, outlined later.) Given that the input scaled by weight Wij has already been
copied into the species Kij, it follows that we must multiply Q2 by K2j to produce the correspond-
ing weight update DeltaW2j. This is implemented via the following reactions:

C19 + K20p + Q2p k→ C19 + K20p + Q2p + DeltaW20p
C19 + K20m + Q2m k→ C19 + K20m + Q2m + DeltaW20p
C19 + K20p + Q2m k→ C19 + K20p + Q2m + DeltaW20m
C19 + K20m + Q2p k→ C19 + K20m + Q2p + DeltaW20m
C19 + Q2p k→ C19 C19 + Q2m k→ C19

Similar reactions are executed in the C19 clock phase to calculate DeltaW21 and DeltaW22. Note,
however, that the degradation reactions shown for Q2p and Q2m should not be duplicated; oth-
erwise, this will be the equivalent of multiplying the rate constant for those reactions, and the
calculations will be incorrect because the competition will be biased in favor of the degradation
reactions.

In parallel, the Q2 species must be used to calculate Q1 and Q0, as outlined in Figure 2. Consid-
ering neuron N1 as an example, the value of Q1 represents ∂NET2

∂NET1 · ∂L
∂NET2 ; thus we must multiply

the value of Q2 by W22 and also by the leaky ReLU gradient from neuron N1 in this cycle, which is
stored as D1. This double multiplication can be achieved via the following reactions, which follow
the same approach as for multipication, except with an additional catalyst representing the extra
multiplier; note that there are now eight reactions to cover all combinations of signs for the three

320 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

dual-rail inputs to this multiplication process:

C19 + W22p + D1p + Q2p k→ C19 + W22p + D1p + Q2p + Q1p
C19 + W22m + D1p + Q2p k→ C19 + W22m + D1p + Q2p + Q1m
C19 + W22p + D1m + Q2p k→ C19 + W22p + D1m + Q2p + Q1m
C19 + W22m + D1m + Q2p k→ C19 + W22m + D1m + Q2p + Q1p
C19 + W22p + D1p + Q2m k→ C19 + W22p + D1p + Q2m + Q1m
C19 + W22m + D1p + Q2m k→ C19 + W22m + D1p + Q2m + Q1p
C19 + W22p + D1m + Q2m k→ C19 + W22p + D1m + Q2m + Q1p
C19 + W22m + D1m + Q2m k→ C19 + W22m + D1m + Q2m + Q1m

Note that we again reuse the same degradation reactions for the Q2p and Q2m already specified to
run in the C19 clock phase to provide the competition for these multiplication reactions. Similar
reactions are run simultaneously in the C19 phase to compute the corresponding Q0 signal for N0.
These are followed by reactions during the C21 clock phase to calculate the weight updates for the
weights associated with N1 and N0; these follow the same pattern as described for computing the
weight updates for the output neuron N2. Thus, once the C21 clock phase finishes, the backprop-
agation phase of our learning CRN will have computed all of the partial loss derivatives ∂L

∂Wi j and
stored them in corresponding DeltaWi j dual-rail chemical species.

4.3.9 Application of Weight Updates
Having calculated the partial loss derivatives, we can now apply the updates to the weights. Note
that each weight cannot be updated immediately as the partial loss derivatives are calculated because
the original weight values used in the feedforward network computation phase of each training cycle
are required to compute the backpropagation signals; these computations are going on at the same
time, as outlined previously. Thus we compute the partial loss derivatives as earlier for all weights,
then apply the weight updates in the next clock phase (C23) after the backpropagation process has
concluded.

Recall the gradient descent weight update rule, which is as follows:

Wji := Wji − α × ∂L
∂Wji

Having calculated the partial loss derivatives, we must thus simply multiply each of these by the
learning rate α (a small positive constant that scales the size of the step taken at each training
round) and subtract these products from the current value of the corresponding weight to produce
the new weight value. Given that the learning rate must be positive, we will represent this as the
concentration of a single species Alpha and note it as a dual-rail species, which will simplify these
reactions. Furthermore, the subtraction reaction can be combined with the multiplication by invert-
ing the signs of the products with respect to the dual-rail inputs. For example, the reactions asso-
ciated with updating weight W00 are as follows:

C23 + Alpha + DeltaW00p k→ C23 + Alpha + DeltaW00p + W00m
C23 + Alpha + DeltaW00m k→ C23 + Alpha + DeltaW00m + W00p
C23 + DeltaW00p k→ C23 C23 + DeltaW00m k→ C23

Artificial Life Volume 29, Number 3 321

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

Similar reactions occur in clock phase C23 for all of the other weights, meaning that all weights are
updated together after the backpropagation phase has concluded, in preparation for the next round
of training.

4.3.10 Cleanup at the End of Training Cycle
Finally, having updated the stored weights for all neurons in the network, the last task that remains
is to clean up those species still remaining with nonnegligible concentrations that must be removed
so that the next training round can proceed with a clean state. Given that many of the reactions
outlined earlier actually consume their input signals as they compute, not every signal involved
in the learning network must be reset in this way. Specifically, we must clean up the E dual-rail
species that stored the partial derivative of network loss with respect to network output, the Di
dual-rail species that stored the leaky ReLU gradient used by each neuron in the last cycle, and the
Kij dual-rail signals that stored the duplicated values of each input value presented to the network
in the preceding training round. These are removed via simple degradation reactions catalyzed by
the C25 clock signal, which is the last one actually used to drive reactions in our circuit design. For
example, the E dual-rail signal is reset to approximately zero by the following two reactions:

C25 + Ep k→ C25 C25 + Em k→ C25

Thus, at the end of the cleanup phase, all species that require it will have been degraded to approx-
imately zero concentration (the concentrations will asymptote toward zero under the deterministic
ODE semantics). The system will therefore be in a state equivalent to that at the start of the train-
ing round, except with modified weights due to the backpropagation learning algorithm. Thus it is
primed and ready for the cycle to begin again with a new set of inputs and a new target output value,
so that training of the network can proceed through multiple cycles.

4.3.11 Chemical Reaction Network Size
The numbers of species and reactions required are a common metric for CRN design complexity;
the CRN design outlined herein includes a total of 135 species and 315 reactions. This is similar
to the simpler of the two similar networks from our previous work that we trained via weight per-
turbation (Arredondo & Lakin, 2022); that CRN involved 144 species and 286 reactions. However,
only one weight could be adjusted per training round in that version, while our backpropgation
network adjusts every weight in each training cycle. The similar network that could adjust every
weight in each training cycle via weight perturbation was significantly larger, involving 583 species
and 1,213 reactions. Thus the design outlined herein improves on previous work to enable the entire
network to be trained using a more compact design than previously available. A full listing of the
backpropagation CRN species and reactions is presented in section S3 of the Supplemental Material.

4.3.12 Initial Network State
In the initial state of the CRN, the concentrations of the clock species C25 and C26 are set to 1.0,
with all other clock species concentrations set to 10−6. Thus the system starts in the “last” cycle
of the oscillator, and the first full training round will begin shortly after the simulation begins. The
dual-rail weight species Wij are initialized with values corresponding to the initial values of all the
corresponding weights in the untrained network. The DPOSi and DNEGi species for each neuron
Ni are initialized with the values for the leaky ReLU gradient parameters α and β for each neuron.
(These could, in principle, be different for each neuron.) Finally, the Alpha species is assigned a
concentration corresponding to the value of the learning rate parameter for the network. The initial
concentrations of all other CRN species are set to zero.

322 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

4.3.13 Training Implementation
The CRN is trained by increasing the concentrations of the species representing the dual-rail input
signals (X1, X2, and BIAS) at the start of each C1 oscillator phase, which corresponds to the
start of a new training cycle. The amount of the increase represents the value of that signal for
this training cycle. An additional concentration of the TARGET species, representing the expected
output of the network given these inputs, is also supplied. These additions represent the actions of
an experimenter external to the system; thus, the system will undergo supervised learning. We assume
that the volume increase associated with these additions is neglible so that we do not need to model
dilution effects. This is repeated at the start of the next training cycle, and so on. These additions are
modeled via a system of model perturbations implemented in our simulation engine, which we describe
later.

4.4 Simulation Methodology
Having established a design for abstract CRNs capable of backpropagation learning, we need a
methodology to easily simulate their behavior. To this end, we have developed ProBioSim, a simu-
lator that incorporates features specifically to simulate such systems, in which the CRN component
interacts with an environment that is specified externally to the CRN itself but that can modify the
CRN in an arbitrarily complex, state- and time-dependent manner. Given that existing designs for
molecular systems are currently beyond our experimental capabilities, many of these potential ap-
plications of DNA nanotechnology have been studied in silico. This motivates the development of
software tools targeted specifically for the study of the interactions of engineered molecular systems
with externally specified environments.

4.4.1 ProBioSim Simulator Outline
As outlined in Figure 3(a), ProBioSim is a Python library that incorporates domain-specific language
(DSL) for molecular circuits (Lakin & Phillips, 2020). The DSL included within ProBioSim is a
simple syntax for specifying the reactions, rate constants, and simulation settings required to define
and simulate the behavior of abstract CRNs. This language also includes the capability to specify
simple external interventions to add or remove quantities of certain chemical species at specified
points in simulation time. This syntax can encode unconditional, deterministic perturbations of
the system like those used in previous work on supervised learning in chemical systems (Lakin
& Stefanovic, 2016) and allows for rapid prototyping and testing of candidate CRN designs. The
fact that ProBioSim is based on Python means that it can be trivially integrated with systems for
rapid prototyping and visual feedback, such as Jupyter Notebooks (Kluyver et al., 2016), which
also enhances reproducibility of modeling and simulation workflows.

There are two types of perturbation in ProBioSim: perturbation actions and perturbation functions.
In each case, the perturbation is scheduled to occur at a specific time point in the simulation, at

Figure 3. ProBioSim, a simulation tool for training adaptive chemical reaction networks. (a) Summary of the key features
of ProBioSim. (b) Flowchart of basic ProBioSim simulation process.

Artificial Life Volume 29, Number 3 323

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

which point the simulation (either stochastic or deterministic) is paused, the specified changes to
the simulation state are applied, and the simulation is restarted, as outlined in Figure 3(b). Multiple
perturbation actions and functions can be specified to execute at the same time point.

4.4.2 Perturbation Actions
Perturbation actions are explicitly specified modifications to the state of the simulation. They can be
specified within the text-based CRN specification language included within ProBioSim and can be
exported to and imported from text files that specify the model. The set of perturbation actions that
can be specified in this way is limited to the following:

• increment the concentration or count of a species by a specified amount,

• decrement the concentration or count of a species by a specified amount, or

• set the concentration or count of a species to a specified absolute amount.

As an example, a perturbation that adds 10 units of species X at simulation time 5.0 would be
specified by the following line in the model definition input text:

perturbation X + = 10 @ 5.0

4.4.3 Arbitrary Perturbation Functions Expressed as Python Code
The real power of the ProBioSim system comes from its ability to define perturbations to the
CRN system in terms of arbitrary code. This is possible because, in contrast to some other molec-
ular design tools (Lakin et al., 2011), ProBioSim is embedded within a host language: the Python
general-purpose programming language. This provides a ready-made language for expressing arbi-
trary responses to CRN behaviors, which can be used to simulate the interactions of the CRN with
an experimenter or a responsive external environment. Such perturbation functions are modifications to
the simulation state that are specified in terms of functions written in Python. As such, perturbation
functions are significantly more powerful than perturbation actions, as they allow arbitrary compu-
tations to be carried out to determine how the state of the system should be updated. ProBioSim
itself does not check the content of user-supplied perturbation functions. However, those pertur-
bation functions must be written in a particular way to enable them to be called by the simulator as
required. Specifically, the form of a perturbation function must be as follows:

def pfun(t, x0, get, set, adjust):
... perturbation code here ...

where the meanings of the function arguments t, x0, get, set, adjust are as follows:

• t is the simulation time at which the function is called;

• x0 is the simulation state passed into the function;

• get is a function that, when called as get(x0, sp), returns the current value associated
with species sp in the current state x0;

• set is a function that, when called as set(x0, sp, n), updates the state x0 by
assigning the value n to the species sp; and

• adjust is a function that, when called as adjust (x0, sp, n), updates the state x0
by adding n (which could be negative) to the value currently assigned to the species sp.

Note that the exact names used for these arguments in the function are unimportant, but the num-
ber of arguments does need to be correct. These function arguments abstract away from the internal

324 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

implementation details of the simulation engine. Thus the perturbation function can access the cur-
rent state of the CRN and also modify it. This approach allows arbitrary Python code, including any
Python library, to be used to compute the additions or removals of species to or from the system. In
principle, the adjust function can be implemented in terms of the get and set functions but
is included for the sake of convenience. These functions can be used as outlined to get state values,
perform arbitrary computations on them, and update the simulation state as a side effect. Because
the current simulation time is passed to the perturbation function as an argument, the perturbation
functions can be time-dependent, thereby modeling dynamically changing environments. For exam-
ple, the perturbation action example from earlier can be implemented (with some terminal output)
as the following function:

def pfun(t, x0, get, set, adjust):
print(’>>> Value of X __before__ perturbation at time ’ +

str(t) + ’ = ’ + str(get(x0, ’X’)))
adjust(x0, ’X’, 10.0)
print(’>>> Value of X __after__ perturbation at time ’ +

str(t) + ’ = ’ + str(get(x0, ’X’)))

Once defined, perturbation functions must be attached to the model object programmatically at
the desired simulation times. For simple examples consisting of a single function call, the Python
lambda keyword can be used to implement simple perturbation functions.

This approach to defining perturbations obviates the need to define a full DSL capable of im-
plementing a desired set of environmental responses to the behavior of the simulated CRN. In
addition, free variables in the perturbation function can be used to pass in additional information to
the perturbation function. For example, random number generator objects can be straightforwardly
defined in the simulation setup code and referenced as free variables in the perturbation function.
In this way, randomized responses can be trivially implemented, as outlined in section S4 in the
Supplemental Material. Other uses of this technique could include passing a file handle into the
simulator to enable facile logging of the simulation state at each perturbation.

4.4.4 Applying Perturbations
Perturbations can be defined in any order in the input and are organized into time order by the
simulator. If multiple perturbation actions or functions are specified at the same time point (or at
time points that are indistinguishable up to the tolerance of floating-point arithmetic), then all of
the perturbation actions will be applied to the simulation first, followed by all of the perturbation
functions. Within these two categories, the actions and functions will be applied in the order in which
they were added to the model. (Note that changing the order of addition could therefore change the
overall result of the perturbations applied at a given time point.)

After the perturbation actions and functions are applied, the resulting state must be checked to
ensure the integrity of the simulation. First, the resulting state of the system is checked to ensure that
there are no negative values; if there are, these are set to zero (negative concentrations or species
counts being unrealistic). Then, if the simulation is stochastic, any noninteger values are converted
to integers, by rounding down if necessary. This prevents fractional species counts being recorded. The
simulator is then restarted, beginning from the new state that resulted from the application of the
perturbations.

4.4.5 Model Import and Export
ProBioSim models can be saved to a human-readable text file and subsequently reparsed back from
that file (with the exception of perturbation functions, which must be added to the model program-
matically). Models can also be typeset via generation of corresponding LaTeX code. However, all
model construction and modification functions can also be carried out programmatically from a
Python script, enabling the automated, modular construction of large-scale CRNs. See section S4

Artificial Life Volume 29, Number 3 325

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

in the Supplemental Material for example model definitions specified partially as text and defined
programmatically using Python code.

4.4.6 Simulating ProBioSim Models
Time courses of ProBioSim models can be simulated under mass-action kinetics either with a de-
terministic semantics or with a stochastic semantics. Deterministic simulations are implemented by
forming an ODE representation of the mass-action system kinetics. Briefly, for each species Xi, the
corresponding ODE is given by

d[Xi]
dt

=
∑

j
(stoich(Xi, rj) × rate(rj))

where rj are the reactions included in the model, the stoich(Xi, rj) function returns the stoichiometry
(net change) in Xi from one occurrence of reaction rj, and the rate(rj) function returns the rate
constant value associated with reaction rj. The system of such mass-action ODEs for all species Xi
in the model is formed and then integrated over time using the solve_ivp function from the
scipy.integrate module (Virtanen et al., 2020). The user can choose between using a stiff
solver, which uses the LSODA method, or a nonstiff solver, which uses the RK45 Runge–Kutta
method.

Stochastic simulations are implemented using Gillespie’s (1977) direct method, which provides
an exact implementation of stochastic mass-action kinetics. Briefly, for each reaction rj, the counts
of all reactant species are multiplied together and by the reaction’s rate constant rate(rj) to calculate
the propensity ρj of that reaction. The next reaction is chosen at random, with the probability of
choosing rj given by ρj/(

∑
j ρj), that is, with probability proportional to the corresponding reaction

propensity. The time until the next reaction fires is drawn from an exponential distribution with mean
1/(

∑
j ρj). The reaction is applied to update the state, the propensities are recalculated, and the

simulation loop moves on to the next iteration. (Note, however, that our backpropagation learning
simulations will only use the deterministic ODE solving simulation method.)

In the following section, we present results from learning simulations on our backpropagation-
based chemical neural network design, carried out using the ProBioSim simulator. We refer the
reader to section S4 of the Supplemental Material for further examples of ProBioSim model code
and simulation outputs, including some examples involving state-dependent and probabilistic per-
turbations that show the full power of the ProBioSim approach, including some examples of asso-
ciative learning in simple abstract chemical reaction networks.

4.5 Learning Simulation Results
To demonstrate the successful operation of our CRN, we simulated it learning the XOR logic
function. The truth table for this function can be summarized as follows:

F XOR F = F F XOR T = T T XOR F = T T XOR T = F

Importantly, this function is not linearly separable and thus provably requires a multilayer network
to implement. Unlike previous work that used the tanh nonlinearity (Arredondo & Lakin, 2022),
which squashes its output into the interval (−1, +1), our use of the leaky ReLU nonlinearity here
means that the outputs from the system are not constrained to a finite output domain. In addition,
our use of an ODE solver to carry out the learning process in the simulated chemistry means that
very long training runs, such as those common in mainstream machine learning, can be challenging.
Therefore, we ran some initial screens to identify systems that can be trained to implement XOR in
a tractable number of training rounds.

The specific CRN instance that we simulated starts with the following initial weight val-
ues: W00 = −0.8, W01 = −0.8, W02 = −0.8, W10 = −2.0, W11 = −0.8, W12 = −1.0, W20 =
−1.2, W21 = 1.6, and W22 = −1.0. For each neuron i, the values of DPOSi and DNEGi,

326 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

Figure 4. Heat maps of decision surfaces illustrating training of the CRN to learn the XOR logic function. The training
schedule is as outlined in the main text; we present heat maps showing the outputs of the system with the initial
weights, the weights after the final training round (round 24), and several intermediate points. Colors indicate the
outputs from the network for each pair of input values; these were plotted by extracting the weights from the CRN
and calculating the expected model output for those weights. These example plots show the system learning a band
of high output from the top left to bottom right, corresponding to the expected output from the XOR function when
precisely one input signal is high. Thus, our CRN design can successfully learn XOR, which is not linearly separable and
thus can be implemented only by a multilayer network, via the backpropagation algorithm.

representing the gradients for the positive and negative arms of the leaky ReLU transfer function,
are 1.0 and 0.1, respectively. The value of the learning rate parameter was α = 0.5. To train the
system, the following sequence of eight training instances was repeated three times, for a total of 24
training rounds:

• X1 = −1, X2 = −1, TARGET = −1;

• X1 = −1, X2 = 1, TARGET = 1;

• X1 = 1, X2 = −1, TARGET = 1;

• X1 = 1, X2 = 1, TARGET = −1;

• X1 = −0.5, X2 = −0.5, TARGET = −1;

• X1 = −0.5, X2 = 0.5, TARGET = 1;

• X1 = 0.5, X2 = −0.5, TARGET = 1; and

• X1 = 0.5, X2 = 0.5, TARGET = −1.

Artificial Life Volume 29, Number 3 327

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

Table 2. Table of errors in weights learned by the CRN example illustrated in Figure 4 after each of the 24 training
rounds.

Round W00 W01 W02 W10 W11 W12 W20 W21 W22
1 −0.0029 −0.0029 −0.0029 0.0018 0.0018 0.0018 −0.0010 0.0028 0.0043

2 −0.0030 −0.0030 −0.0028 −0.0013 −0.0013 0.0049 −0.0007 0.0028 0.0032

3 −0.0031 −0.0029 −0.0029 −0.0048 0.0022 0.0014 −0.0003 0.0029 0.0007

4 −0.0005 −0.0055 −0.0056 −0.0045 0.0018 0.0011 −0.0000 0.0045 0.0002

5 −0.0005 −0.0055 −0.0056 −0.0046 0.0018 0.0010 −0.0000 0.0045 0.0003

6 −0.0006 −0.0056 −0.0055 −0.0054 0.0014 0.0014 0.0000 0.0045 0.0006

7 −0.0006 −0.0055 −0.0056 −0.0060 0.0017 0.0011 0.0000 0.0045 0.0010

8 −0.0004 −0.0057 −0.0057 −0.0060 0.0017 0.0010 0.0000 0.0047 0.0010

9 −0.0004 −0.0057 −0.0057 −0.0063 0.0014 0.0008 0.0001 0.0048 0.0010

10 −0.0005 −0.0057 −0.0057 −0.0067 0.0010 0.0012 0.0001 0.0048 0.0014

11 −0.0005 −0.0057 −0.0057 −0.0072 0.0015 0.0007 0.0001 0.0048 0.0018

12 −0.0006 −0.0056 −0.0057 −0.0072 0.0015 0.0007 0.0002 0.0047 0.0018

13 −0.0005 −0.0056 −0.0057 −0.0069 0.0017 0.0009 0.0001 0.0046 0.0020

14 −0.0006 −0.0056 −0.0057 −0.0072 0.0016 0.0011 0.0001 0.0046 0.0024

15 −0.0006 −0.0056 −0.0057 −0.0075 0.0017 0.0009 0.0000 0.0046 0.0028

16 −0.0003 −0.0058 −0.0058 −0.0075 0.0017 0.0009 0.0000 0.0048 0.0028

17 −0.0003 −0.0057 −0.0058 −0.0074 0.0018 0.0010 0.0000 0.0048 0.0029

18 −0.0004 −0.0058 −0.0058 −0.0077 0.0015 0.0013 −0.0000 0.0048 0.0033

19 −0.0004 −0.0057 −0.0058 −0.0080 0.0018 0.0010 −0.0001 0.0048 0.0037

20 −0.0005 −0.0056 −0.0057 −0.0081 0.0019 0.0010 0.0001 0.0046 0.0037

21 −0.0005 −0.0056 −0.0057 −0.0074 0.0022 0.0013 −0.0000 0.0045 0.0037

22 −0.0006 −0.0057 −0.0056 −0.0067 0.0026 0.0010 −0.0007 0.0045 0.0040

23 −0.0006 −0.0057 −0.0056 −0.0066 0.0025 0.0010 −0.0015 0.0045 0.0042

24 −0.0003 −0.0058 −0.0057 −0.0065 0.0025 0.0010 −0.0015 0.0047 0.0041

Note. Error values were calculated as CRN output minus expected output and are shown to four decimal places. These
values demonstrate that the learning calculations carried out by our CRN design produce results very close to those
expected based on a direct mathematical calculation of the expected system behavior.

Here we use values of 1 and −1 to represent “true” and “false” logic values, respectively. Thus the
first four training rounds specify the desired behavior at the extrema of the intended input ranges.
The final four training rounds specify certain intermediate values, so as to help drive the system
toward the desired form of decision surface.

328 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

The learning CRN corresponding to this system was compiled into reactions and perturbations,
and the resulting ProBioSim model is presented in section S3 of the Supplemental Material. This
CRN was simulated by integrating a deterministic ODE model, and the resulting weights were
used to calculate the decision surface after certain training rounds; these are plotted as heat maps
in Figure 4. The heat maps show the decision surface induced by the weights shifting toward the
desired form over the course of the training rounds; eventually, it ends up in the expected shape,
with a band of high output running diagonally between the (−1, +1) and (+1, −1) corners of the
space, with low output in the vicinity of the (−1, −1) and (+1, +1) corners. This qualitatively
indicates that our CRN system is indeed able to learn the challenging XOR example using the
backpropagation learning algorithm. To illustrate the sequence of key operations that takes place
during training, section S2 of the Supplemental Material presents example time course figures from
the first training round of this simulation, covering both the feedforward and backpropagation
phases.

To assess the quantitative performance of our learning CRN, we compared the sequence of
weights obtained in this simulation with those that would be expected to arise from a direct refer-
ence implementation of the backpropagation algorithm. We calculated the difference between the
weight values observed at the end of each training round in our simulated learning CRN and the
corresponding weight values obtained from a reference implementation written in Python. These
values are presented in Table 2. We observe accuracy to at least two decimal places in all cases and
to three or more in many cases. This indicates that our system is quantitatively correct in that its
behavior closely matches that of the underlying learning algorithm that it aims to implement. We
briefly outline some potential sources of error in the following pages.

5 Discussion

5.1 CRN Learning Performance
The results presented in Table 2 demonstrate that our learning CRN design qualitatively implements
the backpropagation learning algorithm for our leaky ReLU neural network with relatively small er-
rors. However, although the errors are small, they are nonzero, which means there is some potential
room for improvement in our designs. One posssible source of error is that the various reactions in
our CRN design are scheduled via a molecular clock; though the off-cycle clock phases are low in
the times between their correct cycles, they are not zero, which means that the reactions catalyzed
by them are still happening in our model, albeit with very low fluxes through them. This intro-
duces small errors into the computation that cannot be avoided if we wish to use an autonomous
clock of this form to organize the reactions, as in previous work (Arredondo & Lakin, 2022; Vasić,
Soloveichik, & Khurshid, 2020a). An additional potential source of inaccuracy is the fact that our
leaky ReLU calculations have some inherent error around the discontinuity in the derivative when
the input equals zero. This is because the species representing the input signal catalyzes copying
of the species representing the gradient values into the corresponding species required for comput-
ing the partial loss derivatives during the backpropagation phase; this process might fail to complete
before the associated clock cycle ends if the input value is very close to zero. This could be alleviated
by increasing the value of the kCopy rate constant.

5.2 Learning CRN Design Considerations
The design of our CRN and neural network reflects certain limitations of the CRN formal-
ism and the ability to train within that formalism. In particular, the basic arithmetic operations
that our system must perform (addition, subtraction, and multiplication) can all be implemented
straightforwardly in an abstract CRN using established techniques (Buisman et al., 2009). We use
the molecular clock methodology to sequence reactions into discrete phases in large part because
this makes it simpler to calculate the discontinuous derivatives of the leaky ReLU units by simply
copying the appropriate value into a specific output species, before using that value for computation

Artificial Life Volume 29, Number 3 329

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

in a subsequent step. Other approaches, such as rate-independent calculations of the nonleaky ReLU
function (Vasić, Soloveichik, & Khurshid, 2020b), are valid only for integer-valued signal represen-
tations in stochastic models; furthermore, as has been established, that nonlinearity suffers from
the “dying ReLU” problem in that neurons can no longer learn if their input goes negative and the
derivative is zero. Note also that in previous work (Arredondo & Lakin, 2022), we used a tanh non-
linearity and trained the system via weight perturbation rather than backpropagation; that was done
because our approach to calculating the tanh(x) function could not be straightforwardly applied
to compute its derivative, which is 1 − tanh2(x), because the second derivative at x = 0 is already
zero. By not using a sigmoidal nonlinearity here, we avoid that problem, but there is the alternative
possibility of unbounded output signals being produced by our network, which can cause training
to fail. Thus the approach taken here is shaped by the desire to produce a system that can be trained
within the chemistry using relatively well-known approaches, while still using a transfer function
that is of practical relevance.

5.3 Future Directions for Work on Learning CRNs
Future work on learning CRNs such as ours could take a number of directions. For example, the
approach taken here of using sequential phases to execute the various parts of the calculation could
be adapted to these other approaches with discontinuities in their derivatives. Previous work (Linder
et al., 2021) also used the “hardtanh” transfer function (a piecewise linear approximation to tanh);
this could be amenable to our approach. However, that system suffers from some of the same
issues as the nonleaky ReLU function due to having gradients of zero in both the positive and
negative directions. In addition, the use of complex CRN designs such as those presented here to
implement these learning systems would make them extremely challenging to realize in an actual
wet chemistry experiment. Some of these challenges could be ameliorated in future iterations of our
learning CRN design, for example, by trying to reduce the number of distinct clock phases required
to drive the system, or perhaps by doing away with the autonomous molecular clock altogether and
using manually controlled signals to regulate the operation of the circuit.

Ideally, chemical learning systems would leverage the massive parallelism inherent in chem-
istry to advantage, and possible approaches might eventually move beyond feedforward networks
to recurrent networks. Related work on chemical Boltzmann machines (Poole et al., 2017) and
message-passing inference algorithms (Napp & Adams, 2013) could offer inspiration here, as could
work on chemical implementations of reservoir computing systems (Goudarzi et al., 2013), which
use a highly recurrent fixed network attached to a linear readout layer that could be trained relatively
straightforwardly.

Given the practical difficulties with building molecular computing networks in the laboratory,
the development of adaptive and trainable molecular systems is an important goal for the field
of molecular programming, not least because it would enable a “build now, train later” approach
that could greatly simplify the development and deployment of molecular circuits with specific
autonomous behaviors for practical tasks, such as the diagnosis of disease (Lopez et al., 2018;
C. Zhang et al., 2020). Finally, molecular learning systems could find applications in Artificial Life,
as they could serve as adaptive control programs for engineered lifelike systems and synthetic cells.

Thus a major challenge in the field of chemical learning networks is to find a formalism that both
fits naturally with the CRN framework and is also tractable to simulate and, ultimately, build in the
laboratory. The latter criterion would imply that the system would need to be very simple; it could
well be that learning systems that go beyond supervised learning to embrace alternative frameworks,
like reinforcement learning (Banda et al., 2014) or associative learning (Fernando et al., 2009), could
hold the answer.

With regard to our particular design, the presence of trimolecular reactions is a possible sticking
point for future experimental implementations; however, we note that CRN implementation frame-
works such as DNA strand displacement reactions (Soloveichik et al., 2010; D. Y. Zhang & Seelig,
2011) are theoretically capable of realizing such systems via their multistep encodings. However, it

330 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

is worth noting that the third reactant in the trimolecular reactions in our scheme is always a clock
catalyst; this could make it easier to realize in an experimental system via alternative means, such
as the presence or absence of some nonchemical signal that controls whether the reactions may
proceed, such as an optical signal (Prokup et al., 2012). Furthermore, given that our design relies on
competition for input species to drive the computation, rate constants do need to be well balanced
to ensure that the results are accurate; this is a fundamental difficulty in analog computation. Recent
work on rate-independent chemical implementations of ReLU networks (Vasić et al., 2022) offers
a possible way forward here; alternatively, for an experimental implementation using DNA strand
displacement, models now exist to predict strand displacement kinetics based on sequence (J. X.
Zhang et al., 2021). Experimentalists are also able to tune the concentrations of other components
as necessary to recover the desired kinetic balance (Thubagere, Thachuk, et al., 2017).

5.4 Future Directions for Work on the ProBioSim Simulator
Future work to further develop the ProBioSim simulator may include performance optimizations
as well as the implementation of alternative simulation algorithms, such as tau-leaping (Gillespie,
2001), or the implementation of additional rate laws, such as Michaelis–Menten kinetics. To en-
hance the expressiveness of the system, the format of the perturbation functions outlined herein
could be generalized to modify other simulation parameters. In particular, the ability to perturb rate
constant values would allowProBioSim to straightforwardly model physical changes in the system,
such as changes in temperature or pH (Idili et al., 2014) or the activation of optical control signals
(Prokup et al., 2012). These are of interest because they could be used to modulate the behavior of
an experimental implementation of the learning CRNs outlined earlier. The simulator could also be
modified to explicitly model dilution effects when species are added to perturb the system, as these
are not currently modeled explicitly. Our current assumption is reasonable if one makes the assump-
tion that the volume of new sample added during the perturbation is negligible compared to the
overall reaction volume. However, it is worth noting that the flexibility of our perturbation function
approach could already be used to model these effects; any changes in this regard would be purely
for convenience. One could also imagine implementing triggers for events based on state-based
predicates, such as the counts or concentrations of various species. These could be implemented
(to some extent) within the perturbation function framework, although such conditional perturba-
tions could only possibly be applied at the prespecified times at which the perturbation function
is applied. Finally, the ProBioSim simulator could in principle be integrated with techniques for
parameter estimation to infer rate constants and other model parameters based on experimental
data, although this would only be of real use if such data were available: this is not yet the case for
experimental implementations of learning in chemical reaction networks.

6 Conclusions

In conclusion, we have reported a design for novel abstract CRNs that can implement supervised
learning via the standard backpropagation training algorithm. This CRN design directly implements
the mathematics of backpropagation for a class of nonlinear neurons using the leaky ReLU non-
linear transfer function. We have demonstrated the capabilities of this system to carry out learning
tasks by training it to learn the two-input XOR logic function, a function that is not linearly sep-
arable and thus provably requires the use of a multilayer network. In addition, we have reported
ProBioSim, a simulator for CRNs that incorporates the novel capability to define perturbations to
the concentrations (or counts) of species as the results of arbitrary pieces of code expressed in the
host programming language, Python. This enables the straightforward modeling of nontrivial envi-
ronmental responses to the behavior of the CRN component of the system, such as our training
protocols. These would otherwise require an ad hoc infrastructure for calculating and implementing
these perturbations to be constructed around the underlying simulator. Our approach allows such
calculations to be integrated directly into the simulation engine via a straightforward mechanism,

Artificial Life Volume 29, Number 3 331

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

M. R. Lakin Neural Network Leaning via Backpropagation

enabling facile programming of complex interdependencies between an abstract CRN and the sim-
ulated training environment. ProBioSim is released under an open source license, and the source
code is available online at https://github.com/matthewlakin/ProBioSim/.

Acknowledgments
This material is based on work supported by the National Science Foundation under grants 1518861
and 1935087.

References
Abel, J. H., Drawert, B., Hellander, A., & Petzold, L. R. (2016). GillesPy: A Python package for stochastic

model building and simulation. IEEE Life Sciences Letter, 2(3), 35–38. https://doi.org/10.1109/LLS.2017
.2652448, PubMed: 28630888

Arredondo, D., & Lakin, M. R. (2022). Supervised learning in a multilayer, nonlinear chemical neural network.
IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3146057,
PubMed: 35133970

Badelt, S., Grun, C., Sarma, K. V., Wolfe, B., Shin, S. W., & Winfree, E. (2020). A domain-level DNA strand
displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. Journal of the
Royal Society Interface, 17(167), 20190866. https://doi.org/10.1098/rsif.2019.0866, PubMed: 32486951

Badelt, S., Shin, S. W., Johnson, R. F., Dong, Q., Thachuk, C., & Winfree, E. (2017). A general-purpose
CRN-to-DSD compiler with formal verification, optimization, and simulation capabilities. In R. Brijder &
L. Qian (Eds.), Proceedings of the 23rd International Conference on DNA Computing and Molecular Programming
(Lecture Notes in Computer Science, Vol. 10467, pp. 232–248). Springer. https://doi.org/10.1007/978-3
-319-66799-7_15

Banda, P., & Teuscher, C. (2016). COEL: A cloud-based reaction network simulator. Frontiers in Robotics and
AI, 3, 13. https://doi.org/10.3389/frobt.2016.00013

Banda, P., Teuscher, C., & Stefanovic, D. (2014). Training an asymmetric signal perceptron through
reinforcement in an artificial chemistry. Journal of the Royal Society Interface, 11(93), 20131100. https://doi.org
/10.1098/rsif.2013.1100, PubMed: 24478284

Blount, D., Banda, P., Teuscher, C., & Stefanovic, D. (2017). Feedforward chemical neural network: An in
silico chemical system that learns XOR. Artificial Life, 23(3), 295–317. https://doi.org/10.1162/ARTL_a
_00233, PubMed: 28786723

Boutillier, P., Maasha, M., Li, X., Medina-Abarca, H. F., Krivine, J., Feret, J., Cristescu, I., Forbes, A. G., &
Fontana, W. (2018). The Kappa platform for rule-based modeling. Bioinformatics, 34(13), i583–i592.
https://doi.org/10.1093/bioinformatics/bty272, PubMed: 29950016

Buisman, H. J., ten Eikelder, H. M. M., Hilbers, P. A. J., & Liekens, A. M. L. (2009). Computing algebraic
functions with biochemical reaction networks. Artificial Life, 15(1), 5–19. https://doi.org/10.1162/artl
.2009.15.1.15101, PubMed: 18855568

Cardelli, L. (2010). Strand algebras for DNA computing. Natural Computing, 10(1), 407–428. https://doi.org
/10.1007/s11047-010-9236-7

Cardelli, L. (2013). Two-domain DNA strand displacement. Mathematical Structures in Computer Science, 23,
247–271. https://doi.org/10.1017/S0960129512000102

Chatterjee, G., Chen, Y. J., & Seelig, G. (2018). Nucleic acid strand displacement with synthetic mRNA inputs
in living mammalian cells. ACS Synthetic Biology, 7(12), 2737–2741. https://doi.org/10.1021/acssynbio
.8b00288, PubMed: 30441897

Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., & Seelig, G. (2013).
Programmable chemical controllers made from DNA. Nature Nanotechnology, 8(10), 755–762. https://doi
.org/10.1038/nnano.2013.189, PubMed: 24077029

Chen, Y.-J., Groves, B., Muscat, R. A., & Seelig, G. (2015). DNA nanotechnology from the test tube to the
cell. Nature Nanotechnology, 10(9), 748–760. https://doi.org/10.1038/nnano.2015.195, PubMed: 26329111

Cherry, K. M., & Qian, L. (2018). Scaling up molecular pattern recognition with DNA-based winner-take-all
neural networks. Nature, 559(7714), 370–376. https://doi.org/10.1038/s41586-018-0289-6, PubMed:
29973727

332 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

https://github.com/matthewlakin/ProBioSim/
https://doi.org/10.1109/LLS.2017.2652448
https://doi.org/10.1109/LLS.2017.2652448
https://pubmed.ncbi.nlm.nih.gov/28630888
https://doi.org/10.1109/TNNLS.2022.3146057
https://pubmed.ncbi.nlm.nih.gov/35133970
https://doi.org/10.1098/rsif.2019.0866
https://pubmed.ncbi.nlm.nih.gov/32486951
https://doi.org/10.1007/978-3-319-66799-7_15
https://doi.org/10.1007/978-3-319-66799-7_15
https://doi.org/10.3389/frobt.2016.00013
https://doi.org/10.1098/rsif.2013.1100
https://doi.org/10.1098/rsif.2013.1100
https://pubmed.ncbi.nlm.nih.gov/24478284
https://doi.org/10.1162/ARTL_a_00233
https://doi.org/10.1162/ARTL_a_00233
https://pubmed.ncbi.nlm.nih.gov/28786723
https://doi.org/10.1093/bioinformatics/bty272
https://pubmed.ncbi.nlm.nih.gov/29950016
https://doi.org/10.1162/artl.2009.15.1.15101
https://doi.org/10.1162/artl.2009.15.1.15101
https://pubmed.ncbi.nlm.nih.gov/18855568
https://doi.org/10.1007/s11047-010-9236-7
https://doi.org/10.1007/s11047-010-9236-7
https://doi.org/10.1017/S0960129512000102
https://doi.org/10.1021/acssynbio.8b00288
https://doi.org/10.1021/acssynbio.8b00288
https://pubmed.ncbi.nlm.nih.gov/30441897
https://doi.org/10.1038/nnano.2013.189
https://doi.org/10.1038/nnano.2013.189
https://pubmed.ncbi.nlm.nih.gov/24077029
https://doi.org/10.1038/nnano.2015.195
https://pubmed.ncbi.nlm.nih.gov/26329111
https://doi.org/10.1038/s41586-018-0289-6
https://pubmed.ncbi.nlm.nih.gov/29973727

M. R. Lakin Neural Network Leaning via Backpropagation

Cook, M., Soloveichik, D., Winfree, E., & Bruck, J. (2009). Programmability of chemical reaction networks. In
A. Condon, D. Harel, J. N. Kok, A. Salomaa, & E. Winfree (Eds.), Algorithmic bioprocesses (pp. 543–584).
Springer. https://doi.org/10.1007/978-3-540-88869-7_27

Dexter, J. P., Prabakaran, S., & Gunawardena, J. (2019). A complex hierarchy of avoidance behaviors in a
single-cell eukaryote. Current Biology, 29(24), 4323–4329. https://doi.org/10.1016/j.cub.2019.10.059,
PubMed: 31813604

Fernando, C. T., Liekens, A. M. L., Bingle, L. E. H., Beck, C., Lenser, T., Stekel, D. J., & Rowe, J. E. (2009).
Molecular circuits for associative learning in single-celled organisms. Journal of the Royal Society Interface,
6(34), 463–469. https://doi.org/10.1098/rsif.2008.0344, PubMed: 18835803

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry,
81(25), 2340–2361. https://doi.org/10.1021/j100540a008

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically reacting systems. Journal
of Chemical Physics, 115(4), 1716–1733. https://doi.org/10.1063/1.1378322

Goudarzi, A., Lakin, M. R., & Stefanovic, D. (2013). DNA reservoir computing: A novel molecular
computing approach. In D. Soloveichik & B. Yurke (Eds.), Proceedings of the 19th International Conference on
DNA Computing and Molecular Programming (Lecture Notes in Computer Science, Vol. 8141, pp. 76–89).
Springer. https://doi.org/10.1007/978-3-319-01928-4_6

Groves, B., Chen, Y. J., Zurla, C., Pochekailov, S., Kirschman, J. L., Santangelo, P. J., & Seelig, G. (2016).
Computing in mammalian cells with nucleic acid strand exchange. Nature Nanotechnology, 11(3), 287–294.
https://doi.org/10.1038/nnano.2015.278, PubMed: 26689378

Hennessey, T. M., Rucker, W. B., & McDiarmid, C. G. (1979). Classical conditioning in paramecia. Animal
Learning and Behavior, 7(4), 417–423. https://doi.org/10.3758/BF03209695

Idili, A., Vallée-Bélisle, Alexis., & Ricci, F. (2014). Programmable pH-triggered DNA nanoswitches. Journal of
the American Chemical Society, 136(16), 5836–5839. https://doi.org/10.1021/ja500619w,
PubMed: 24716858

Kluyver, T., Ragan-Kelley, B., Pérez, Fernando., Granger, B., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, C. (2016). Jupyter
Notebooks—A publishing format for reproducible computational workflows. In F. Loizides & B. Schmidt
(Eds.), Positioning and Power in Academic Publishing: Players, Agents and Agendas (pp. 87–90). IOS Press.
https://doi.org/10.3233/978-1-61499-649-1-87

Lakin, M. R., Minnich, A., Lane, T., & Stefanovic, D. (2014). Design of a biochemical circuit motif for
learning linear functions. Journal of the Royal Society Interface, 11(101), 20140902. https://doi.org/10.1098
/rsif.2014.0902, PubMed: 25401175

Lakin, M. R., & Phillips, A. (2020). Domain-specific programming languages for computational nucleic acid
systems. ACS Synthetic Biology, 9(7), 1499–1513. https://doi.org/10.1021/acssynbio.0c00050, PubMed:
32589838

Lakin, M. R., & Stefanovic, D. (2016). Supervised learning in adaptive DNA strand displacement networks.
ACS Synthetic Biology, 5(8), 885–897. https://doi.org/10.1021/acssynbio.6b00009, PubMed: 27111037

Lakin, M. R., Youssef, S., Polo, F., Emmott, S., & Phillips, A. (2011). Visual DSD: A design and analysis tool
for DNA strand displacement systems. Bioinformatics, 27(22), 3211–3213. https://doi.org/10.1093
/bioinformatics/btr543, PubMed: 21984756

Linder, J., Chen, Y. J., Wong, D., Seelig, G., Ceze, L., & Strauss, K. (2021). Robust digital molecular design of
binarized neural networks. In M. R. Lakin & P. Šulc (Eds.), 27th International Conference on DNA Computing
and Molecular Programming (DNA 27) (Vol. 205, pages 1:1–1:20). Schloss Dagstuhl/Leibniz-Zentrum für
Informatik. https://doi.org/10.4230/LIPIcs.DNA.27.1

Lopez, R., Wang, R., & Seelig, G. (2018). A molecular multi-gene classifier for disease diagnostics. Nature
Chemistry, 10, 746–754. https://doi.org/10.1038/s41557-018-0056-1, PubMed: 29713032

Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

Napp, N. E., & Adams, R. P. (2013). Message passing inference with chemical reaction networks. In C. J. C.
Burges, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in Neural Information
Processing Systems (Vol. 26, pp. 2247–2255). Curran Associates.

Poole, W., Ortiz-Muñoz, A., Behera, A., Jones, N. S., Ouldridge, T. E., Winfree, E., & Gopalkrishnan, M.
(2017). Chemical Boltzmann machines. In R. Brijder & L. Qian (Eds.), Proceedings of the 23rd International

Artificial Life Volume 29, Number 3 333

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1016/j.cub.2019.10.059
https://pubmed.ncbi.nlm.nih.gov/31813604
https://doi.org/10.1098/rsif.2008.0344
https://pubmed.ncbi.nlm.nih.gov/18835803
https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.1378322
https://doi.org/10.1007/978-3-319-01928-4_6
https://doi.org/10.1038/nnano.2015.278
https://pubmed.ncbi.nlm.nih.gov/26689378
https://doi.org/10.3758/BF03209695
https://doi.org/10.1021/ja500619w
https://pubmed.ncbi.nlm.nih.gov/24716858
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1098/rsif.2014.0902
https://doi.org/10.1098/rsif.2014.0902
https://pubmed.ncbi.nlm.nih.gov/25401175
https://doi.org/10.1021/acssynbio.0c00050
https://pubmed.ncbi.nlm.nih.gov/32589838
https://doi.org/10.1021/acssynbio.6b00009
https://pubmed.ncbi.nlm.nih.gov/27111037
https://doi.org/10.1093/bioinformatics/btr543
https://doi.org/10.1093/bioinformatics/btr543
https://pubmed.ncbi.nlm.nih.gov/21984756
https://doi.org/10.4230/LIPIcs.DNA.27.1
https://doi.org/10.1038/s41557-018-0056-1
https://pubmed.ncbi.nlm.nih.gov/29713032

M. R. Lakin Neural Network Leaning via Backpropagation

Conference on DNA Computing and Molecular Programming (Lecture Notes in Computer Science, Vol. 10467,
pp. 210–231). Springer. https://doi.org/10.1007/978-3-319-66799-7_14

Prokup, A., Hemphill, J., & Deiters, A. (2012). DNA computation: A photochemically controlled AND gate.
Journal of the American Chemical Society, 134(8), 3810–3815. https://doi.org/10.1021/ja210050s, PubMed:
22239155

Qian, L., & Winfree, E. (2011a). Scaling up digital circuit computation with DNA strand displacement
cascades. Science, 332(6034), 1196–1201. https://doi.org/10.1126/science.1200520, PubMed: 21636773

Qian, L., & Winfree, E. (2011b). A simple DNA gate motif for synthesizing large-scale circuits.
Journal of the Royal Society Interface, 8(62), 1281–1297. https://doi.org/10.1098/rsif.2010.0729,
PubMed: 21296792

Qian, L., Winfree, E., & Bruck, J. (2011). Neural network computation with DNA strand displacement
cascades. Nature, 475(7356), 368–372. https://doi.org/10.1038/nature10262, PubMed: 21776082

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating
errors. Nature, 323, 533–536. https://doi.org/10.1038/323533a0

Sanft, K. R., Wu, S., Roh, M., Fu, J., Lim, R. K., & Petzold, L. R. (2011). StochKit2: Software for discrete
stochastic simulation of biochemical systems with events. Bioinformatics, 27(17), 2457–2458. https://doi.org
/10.1093/bioinformatics/btr401, PubMed: 21727139

Seelig, G., Soloveichik, D., Zhang, D. Y., & Winfree, E. (2006). Enzyme-free nucleic acid logic circuits. Science,
314(5805), 1585–1588. https://doi.org/10.1126/science.1132493, PubMed: 17158324

Simons, T., & Lee, D. J. (2019). A review of binarized neural networks. Electronics, 8(6), 661. https://doi.org
/10.3390/electronics8060661

Soloveichik, D., Seelig, G., & Winfree, E. (2010). DNA as a universal substrate for chemical kinetics.
Proceedings of the National Academy of Sciences of the United States of America, 107(12), 5393–5398. https://doi
.org/10.1073/pnas.0909380107, PubMed: 20203007

Thubagere, A. J., Li, W., Johnson, R. F., Chen, Z., Doroudi, S., Lee, Y. L., Izatt, G., Wittman, S., Srinivas, N.,
Woods, D., Winfree, E., & Qian, L. (2017). A cargo-sorting DNA robot. Science, 357(6356), eaan6558.
https://doi.org/10.1126/science.aan6558, PubMed: 28912216

Thubagere, A. J., Thachuk, C., Berleant, J., Johnson, R. F., Ardelean, D. A., Cherry, K. M., & Qian, L. (2017).
Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified
components. Nature Communications, 8, 14373. https://doi.org/10.1038/ncomms14373, PubMed:
28230154

Vasić, M., Chalk, C., Khurshid, S., & Soloveichik, D. (2020). Deep molecular programming: A natural
implementation of binary-weight ReLU neural networks. In Proceedings of ICML 2020 (pp. 9701–9711).
PMLR.

Vasić, Marko., Chalk, C., Luchsinger, A., Khurshid, S., & Soloveichik, D. (2022). Programming and training
rate-independent chemical reaction networks. Proceedings of the National Academy of Sciences of the United States
of America, 119(24), e2111552119. https://doi.org/10.1073/pnas.2111552119, PubMed: 35679345

Vasić, M., Soloveichik, D., & Khurshid, S. (2020a). CRN++: Molecular programming language. Natural
Computing, 19, 391–407. https://doi.org/10.1007/s11047-019-09775-1

Vasić, M., Soloveichik, D., & Khurshid, S. (2020b). CRNs exposed: A method for the systematic exploration
of chemical reaction networks. In C. Geary & M. J. Patitz (Eds.), 26th International Conference on DNA
Computing and Molecular Programming (DNA 26) (Vol. 174, pp. 4:1–4:25). Schloss
Dagstuhl/Leibniz-Zentrum für Informatik.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,
Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., ... SciPy 1.0 Contributors. (2020). SciPy 1.0:
Fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261–272. https://doi.org
/10.1038/s41592-019-0686-2, PubMed: 32015543

Wood, D. C. (1988). Habituation in Stentor : A response-dependent process. Journal of Neuroscience, 8(7),
2248–2253. https://doi.org/10.1523/JNEUROSCI.08-07-02248.1988, PubMed: 3249222

Yordanov, B., Kim, J., Petersen, R. L., Shudy, A., Kulkarni, V. V., & Phillips, A. (2014). Computational design
of nucleic acid feedback control circuits. ACS Synthetic Biology, 3(8), 600–616. https://doi.org/10.1021
/sb400169s, PubMed: 25061797

334 Artificial Life Volume 29, Number 3

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1007/978-3-319-66799-7_14
https://doi.org/10.1021/ja210050s
https://pubmed.ncbi.nlm.nih.gov/22239155
https://doi.org/10.1126/science.1200520
https://pubmed.ncbi.nlm.nih.gov/21636773
https://doi.org/10.1098/rsif.2010.0729
https://pubmed.ncbi.nlm.nih.gov/21296792
https://doi.org/10.1038/nature10262
https://pubmed.ncbi.nlm.nih.gov/21776082
https://doi.org/10.1038/323533a0
https://doi.org/10.1093/bioinformatics/btr401
https://doi.org/10.1093/bioinformatics/btr401
https://pubmed.ncbi.nlm.nih.gov/21727139
https://doi.org/10.1126/science.1132493
https://pubmed.ncbi.nlm.nih.gov/17158324
https://doi.org/10.3390/electronics8060661
https://doi.org/10.3390/electronics8060661
https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1073/pnas.0909380107
https://pubmed.ncbi.nlm.nih.gov/20203007
https://doi.org/10.1126/science.aan6558
https://pubmed.ncbi.nlm.nih.gov/28912216
https://doi.org/10.1038/ncomms14373
https://pubmed.ncbi.nlm.nih.gov/28230154
https://doi.org/10.1073/pnas.2111552119
https://pubmed.ncbi.nlm.nih.gov/35679345
https://doi.org/10.1007/s11047-019-09775-1
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://pubmed.ncbi.nlm.nih.gov/32015543
https://doi.org/10.1523/JNEUROSCI.08-07-02248.1988
https://pubmed.ncbi.nlm.nih.gov/3249222
https://doi.org/10.1021/sb400169s
https://doi.org/10.1021/sb400169s
https://pubmed.ncbi.nlm.nih.gov/25061797

M. R. Lakin Neural Network Leaning via Backpropagation

Zhang, C., Zhao, Y., Xu, X., Xu, R., Li, H., Teng, X., Du, Y., Miao, Y., Lin, H.-C., & Han, D. (2020). Cancer
diagnosis with DNA molecular computation. Nature Nanotechnology, 15(8), 709–715. https://doi.org/10
.1038/s41565-020-0699-0, PubMed: 32451504

Zhang, D. Y., & Seelig, G. (2011). Dynamic DNA nanotechnology using strand-displacement reactions.
Nature Chemistry, 3(2), 103–113. https://doi.org/10.1038/nchem.957, PubMed: 21258382

Zhang, J. X., Yordanov, B., Gaunt, A., Wang, M. X., Dai, P., Chen, Y.-J., Zhang, K., Fang, J. Z., Dalchau, N.,
Li, J., Phillips, A., & Zhang, D. Y. (2021). A deep learning model for predicting next-generation
sequencing depth from DNA sequence. Nature Communications, 12(1), 4387. https://doi.org/10.1038
/s41467-021-24497-8, PubMed: 34282137

Artificial Life Volume 29, Number 3 335

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/29/3/308/2154262/artl_a_00405.pdf by guest on 07 Septem
ber 2023

https://doi.org/10.1038/s41565-020-0699-0
https://doi.org/10.1038/s41565-020-0699-0
https://pubmed.ncbi.nlm.nih.gov/32451504
https://doi.org/10.1038/nchem.957
https://pubmed.ncbi.nlm.nih.gov/21258382
https://doi.org/10.1038/s41467-021-24497-8
https://doi.org/10.1038/s41467-021-24497-8
https://pubmed.ncbi.nlm.nih.gov/34282137

	Introduction
	Related Work
	Chemical Reaction Networks
	Results
	Neural Network Structure and Definition
	Derivations of Loss Derivatives
	Designing a CRN to Directly Compute the Loss Derivatives
	Simulation Methodology
	Learning Simulation Results

	Discussion
	CRN Learning Performance
	Learning CRN Design Considerations
	Future Directions for Work on Learning CRNs
	Future Directions for Work on the ProBioSim Simulator

	Conclusions

