
Self-Replication in
Neural Networks

Abstract A key element of biological structures is self-replication.
Neural networks are the prime structure used for the emergent
construction of complex behavior in computers. We analyze how
various network types lend themselves to self-replication.
Backpropagation turns out to be the natural way to navigate the
space of network weights and allows non-trivial self-replicators to
arise naturally. We perform an in-depth analysis to show the
self-replicators’ robustness to noise. We then introduce artificial
chemistry environments consisting of several neural networks and
examine their emergent behavior. In extension to this work’s
previous version (Gabor et al., 2019), we provide an extensive
analysis of the occurrence of fixpoint weight configurations within
the weight space and an approximation of their respective
attractor basins.
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1 Introduction

Dawkins (1976) stressed the importance of self-replication to the origin of life. He argued that
proto-RNA was able to copy its molecule structure within a soup of randomly interacting elements.
This allowed it to reach a stability in concentration that could not be maintained by any other kind
of structure. As the story goes, life evolved more or less as an elaborate means to maintain the
copying of structural information.

Since the early days of computing, the recreation of biological structures has been a target of
research, starting from the early formulation of an evolutionary process by Turing (1950) and in-
cluding famous examples like Box (1957), Gardner (1970), or Dorigo and Di Caro (1999). Also
see the overviews given by Koza (1994) or Bäck et al. (1997). Although also conceived very early,
(Minsky & Papert, 1972; Rosenblatt, 1958), neural networks have only rather recently found broad
practical application for advanced tasks like image recognition (Krizhevsky et al., 2012), speech
recognition (Hinton et al., 2012), or strategic game playing (Silver et al., 2017). The variety of uses
shows that neural networks are a powerful tool of abstraction for various domains. However, in
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all these cases neural networks are used with a certain intent, i.e., equipped with an extrinsic goal
function. Through backpropagation, the distance of the network’s output to the goal function can
be systematically minimized, making the network match the goal to an increasing extent.

The wide variety of application domains shows the power of neural networks as a functional ab-
straction. For other functional abstractions, such as expressions in the λ-calculus (Church, 1932)
or a variety of assembler-like instruction sets and automata (Dittrich et al., 2001; Görnerup &
Crutchfield, 2008), it is known that, when a population of random instances of said functional
abstractions is set up and allowed to interact, self-replicators arise naturally (see Fontana & Buss,
1996, or Dittrich & Banzhaf, 1998, respectively). For neural networks, Chang and Lipson (2018)
have shown that self-application (i.e., constructing new neural networks by applying neural networks
to other neural networks) may lead to the formation of a self-replicating structure, albeit a rather
trivial instance of one. In this article, we (a) repeat these results for a broader range of neural network
architectures and (b) extend the interaction model by the notion of self-training, which yields lots of
non-trivial fixpoints. We then (c) subject these fixpoints to various degrees of noise and analyze their
behavior, shedding light on how fixpoints occur within the network weight space. The examined
setup allows us to (d) construct an artificial chemistry setup using neural networks as individuals that
(under certain circumstances, of course) reliably produces a variety of non-trivial self-replicators.

This article is an extended version of the article originally published by Gabor et al. (2019) with
the substantial addition of contribution (c) as described above. The additional content can be found
mainly in the new section 3.3, Weight Space Analysis, including Figures 7–10, and the final exper-
iment described in section 3.5, including Figure 14. This article is structured as follows: We first
describe all formal definitions of our approach and then provide a series of experiments examining
the behavior of self-replicating networks; among the latter, we first discuss experiments on single
independent neural networks and then continue with experiments on soups consisting of multiple
interacting networks. After that, we briefly discuss related work and provide a conclusion.

2 Approach

We provide a brief introduction to how neural networks function, then we proceed to discuss how
to apply neural networks to other neural networks and how to train neural networks using other
neural networks.

2.1 Basics
Neural networks are most commonly made from layers of neurons that are connected to adjacent
layers of neurons. What all neurons have in common is the base functionality of receiving input
values (in the form of a matrix or vector), applying weights and biases (given as the network’s
parameters), and computing output values via a specific activation function (given as part of the
network’s architecture). Note that while neural networks originated as a model of biological neurons,
they cannot accurately fulfill that role with respect to modern knowledge about biological neurons
and instead serve as general function approximators in machine learning.

The most basic form of a feedforward network is a single-layer perceptron, consisting of many
fully connected cells that provide a transformation of the input based on their learned parameters.
Mathematically, each cell in such a network is described by a function

y = f (
∑

i
wixi + b)

where xi is the value produced by the i-th input cell, wi is the weight assigned to that connection,
b is a cell-specific bias, f is the activation function, and y is the cell’s output.

The recurrent neural network (RNN) structure allows cells to retain some information throughout
multiple executions: The result of the evaluation step t is passed to the evaluation at step t + 1 as
vector ht+1. A recurrent cell’s activation at every timestep t is ht = f (Wxt + Wht−1) where W are
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the network weights (Chung et al., 2014). This allows for more powerful models when processing
sequential inputs.

A neural network thus defines a function N : Rp → R
q for input length p and output length q.

For an input vector x ∈ R
p we write the computation of the corresponding output vector y ∈ R

q as
y = N (x). A neural network N is usually given by (a) its architecture, i.e., the types of neurons used,
their activation function, and their topology and connections, as well as (b) its parameters, i.e., the
weights assigned to the connections. Whenever the architecture of a neural network is fixed, we can
define a neural network by its parameters �N ∈ R

r. Note that r =def | �N | depends on the amount of
internal connection and hidden layers, but as all inputs and all outputs must be connected somehow
to other cells in the network it always holds that r > p and r > q.

2.2 Application
In the course of this work, we are interested in having neural networks that can be applied to
other neural networks (and can output other neural networks). It is evident that if we want neural
networks to self-replicate, we need to enable them to output an encoding of a neural network
containing at least as many weights as they contain themselves. We discuss multiple approaches to
do so but first introduce a general notation covering all the approaches: We write O = N � M
to mean that O is the neural network that is generated as the output of the neural network N
when given the neural network M as input. When M and O are sufficiently smaller than N , i.e.,
if | �M| � | �N | and | �O| � | �N |, then we can simply define the output network O via its weights�O = N ( �M). However, these conditions obviously do not allow for self-replication. Thus, we
introduce several reductions that allow us to define the application operator � differently and open
it up for self-replication. Note that for these definitions, we assume that M and O have the same
architecture and that the application of N keeps the size of the input network, i.e., M : Rp → R

p

for some p and | �M| = |�O| = p.

Reduction 1 (Weightwise Application). We define N : R4 → R fixed. Let �M = 〈vi〉0≤i<| �M|. We
then set

�O = 〈wi〉0≤i<| �O|

where wi = N (vi, l(i), c(i), p(i))

and l(i) is the number of the layer of the weight i, c(i) is the number of the cell that the weight
i leads into, and p(i) is the positional number of weight i among the weights of its cell. We use �O to define
O = N M.

Note that l, c, p depend purely on the networks’ architectures and the index of the weight i, not
on the value of the weight vi. Theoretically, we could pass on i to the network directly, but it seemed
more reasonable to provide the network with the most semantically rich information we have. Also
note that we normalize l, c, p : N →[ 0; 1] ⊂ R, i.e., the positional values are encoded by real numbers
between 0 and 1 as is common for inputs to neural networks.

Intuitively, weightwise application calls N on every single weight of M and provides the
weight’s value and some information on where in the network the weight lives. N then outputs a
new value for that respective weight. After calling N for | �M| = |�O| times, we have a new output
net O. This approach is most similar to the one used by Chang and Lipson (2018).

Reduction 2 (Aggregating Application). Let agga : Ra → R be an aggregator function taking in an arbi-
trary number of parameters a. Let deagga : R → R

a be a de-aggregating function returning an arbitrary number
of outputs a. Let �M = 〈vi〉0≤i<| �M|. Let

M ↓agg
b = 〈aggai

(vi, . . . , vi+ai−1)〉0≤i<b
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where ai = �| �M|
b 
 for i < b − 1 and ai = �| �M|

b 
 + (| �M| mod b) for i = b − 1. Let

〈wi〉0≤i<b ↑deagg
b = deagga0

(w0) ++ . . . ++ deaggab−1
(wb−1)

where ai is defined as above and ++ is tuple concatenation. We define N : Rb → R
b for a fixed b. We then set:

�O = N (M ↓agg
b ) ↑deagg

b

We use �O to define O = N �agg M given fixed functions agg, deagg.
For our experiments, we use the average for aggregation

agga(v0, . . . , va−1) =
a−1∑

i=0

vi

a

and use a trivial de-aggregation function as defined by:

deagga(w) = (w, . . . , w)︸ ︷︷ ︸
a times

Intuitively, the aggregating application simply reduces the number of weight parameters to a
fixed number b by aggregating sub-lists of the weight list into single values. Those single values
are then passed to the network and its ouput values are copied to all previously aggregated
weights. A lot of different aggregation and de-aggregation functions could be thought of; how-
ever, early tests with variants introducing more randomness or different topologies showed no
differences in results. Thus, we focus on the simple instantiation of the aggregation application as
given above.

Reduction 3 (Recurrent Application). We define N : R × R
H → R × R

H as a recurrent neural network
with a hidden state h ∈ R

H for some H ∈ N. Let �M = 〈vi〉0≤i<| �M|. We then set

�O = 〈wi〉0≤i<| �O|

where wi is given via

(wi, hi+1) = N (vi, hi)

where h0 = 0. We use �O to define O = N �rnn M.
Since RNNs are able to process input sequences of arbitrary length, the recurrent application

technically just needs to define N as an RNN and simply apply it to the weights of another network.
Even though this reduction appears most simple and natural, the explosion of gradients within larger
RNNs means that after a series of applications they are very prone to diverge to very large output
values if not sufficiently controlled, which we will show later in the experiment section of this
article. We reckon that an extension to RNNs (making them accessible to self-replication) should
be possible; however, since vanilla RNNs are not so fit for self-replication, we leave this extension
to future work.

We can use these several types of reductions for application to build a mathematical model of
self-replication in neural networks.
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Definition 1 (Self-Application). Given a neural network N . Let � be a suitable application reduction. We
call the neural network N ′ = N � N the self-application of N .

Definition 2 (Fixpoint, Self-Replication). Given a neural network N . Let � be a suitable application
reduction. We call N a fixpoint with respect to � iff N = N � N , i.e., iff N is its own self-application. We also
say that N is able to self-replicate.

Since network weights are real-valued and are the result of many computations, checking for the
equality N = N � N is not entirely trivial. We thus relax the fixpoint property a bit.

Definition 3 (ε-Fixpoint). Given a neural network N with weights �N = 〈vi〉0≤i<| �N |. Let � be a suit-
able application reduction. Let ε ∈ R be the error margin of the fixpoint property. Let N ′ = N � N be the
self-application of N with weights �N ′ = 〈wi〉0≤i<| �N ′|. We call N an ε-fixpoint or a fixpoint up to ε iff for all
i it holds that |wi − vi| < ε.

2.3 Training
As stated above, neural networks are commonly used in conjunction with backpropagation, which
can adjust their weights to a desired configuration. We assume that we have a set of input vectors
x0, . . . , xn and a corresponding set of desired output vectors y0, . . . , yn. We want our neural network
N to represent the relation between these sets. Thus, the loss for a single sample (xi, yi) is defined
as |N (xi) − yi|. Minimizing the loss of a neural network is called training. We use the stochastic
gradient descent (SGD) optimizer to apply gradient updates or rather weight changes to minimize
the loss for a given sample (xi, yi), which results in an updated network N ′ = N �(xi, yi). We
call �the training operator. For sets of sample points x = x0, . . . , xn and y = y0, . . . , yn, we also
write N �x, y as shorthand for N �(x0, y0) �. . . �(xn, yn).

We argue that training neural networks is another natural way of evolving them (as is applica-
tion). Thus, we also want to train a neural network with another neural network as input and output
data.1 Of course, we again need to use reduction on said other neural networks. In short we write:

Reduction 4 (Weightwise Training). Given neural networks M,N with �M = 〈vi〉0≤i≤n for some n. We
write N ′ = N M iff

N ′ = N �〈(vi, l(i), c(i), p(i))〉0≤i≤n, 〈(vi)〉0≤i≤n

where l, c, p are defined as in Reduction 1.

Reduction 5 (Aggregating Training). Given neural networks M,N . Given a suitable aggregator function
agg and aggregated size b. We write N ′ = N �agg M iff

N ′ = N �(M ↓agg
b ,M ↓agg

b )

where the ↓ operation is defined as in Reduction 2.

Reduction 6 (Recurrent Training). Given neural networks M,N . We write N ′ = N �rnn M iff

N ′ = N �( �M, �M)

where N is trained on a sequence �M by being applied one by one recurrently.

1 For the scope of this article, we train neural networks only with (a reduction of) themselves as input. We extend that approach to a
“train on other” operator in Gabor, Illium, et al. (2021).
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Intuitively, these training reductions transform the input network M to a smaller representation
(as do the application reductions, cf. Reductions 1–3) and then train the network N to accurately
reproduce that representation.

Note that usually, when training a neural network, we derive training samples from a large data
set or generate them automatically. In this case, we can use these training reductions to define the
notion of self-training:

Definition 4 (Self-Training). Given a neural network N . Let �be a suitable training reduction. We call the
network N ′ = N �N the result of self-training N .

We can apply self-training for many consecutive steps; however, in contrast to usual training in
neural networks, the samples made available for training only depend on the network’s own weights
and introduce no randomness or additional coverage of the search space beyond their own (mostly
pre-determined) evolution via self-training.

3 Experiments

We define three types of experiments: First, we test the two distinct approaches to self-replication
based on application of neural networks to other neural networks and training using backpropa-
gation on self-generated limited training points, respectively. Lastly, we show a strong connection
between both approaches.

Note that for the sake of simplicity, we fixed all network architectures in the following experi-
ments to only include two hidden layers with two cells each. Although evaluations were run with
various activation functions, all plots show linear activation since we observed no qualitative differ-
ence between various activations. Similarly, bias was set to 0 in all plotted instances.

3.1 Self-Application
When subjecting a randomly initialized neural network N to repeated self-application with respect
to the weightwise application , the weight vector �N tends to converge to the all-zero vector
0 = 〈0〉| �M|. This was already indicated by Chang and Lipson (2018) for a very similar reduction
approach. This effect probably stems from a phenomenon observed by Schoenholz et al. (2017):
Randomly initialized neural networks tend to map their inputs to output values closer to 0. Figure 1
shows that the same effect also occurs for the aggregating reduction �agg as it depicts the journey
of several neural networks through the space of weight vectors.2 Very few steps of self-application
suffice to draw all neural networks to the principle component analysis (PCA) coordinates (X = 0,
Y = 0), which in fact correspond to the weight vector 0.

The same plot for the weightwise application looks rather similar. Figure 2 shows the
resulting networks after several steps of self-application for all types of application reductions. Here,
we discern five observations: A neural network N is (a) divergent iff at any point in time any of its
weights assumed the value ∞ or −∞. Once this has happened, there is no returning from it. If the
network assumes (b) the ε-fixpoint given by the weight vector 0, i.e., all its weights are sufficiently
close to 0, we call the network a zero fixpoint. Note that for all experiments we set ε = 10−5. If
the network’s weights resemble (c) any other ε-fixpoint, we call it a non-zero, non-trivial, or simply
other fixpoint. At this stage, we also checked for (d) second-order fixpoints, i.e., networks N fulfilling
the weaker property N = N � N � N . However, we never found any such networks.3 Anything
else falls into the category (e) other. Note that Figure 2 shows that no non-zero fixpoints are found

2 To be able to plot highly dimensional weight vectors on paper, we derive the two principle components of the observed weight
vectors using standard PCA and plot the weight vector as a point in that two-dimensional space. We use this technique for all
such figures.

3 This remains true throughout all experiments presented in this article and by Gabor, Illium, et al. (2021). We discuss this again as an
important target for future work.
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Figure 1. 10 independent runs of self-application with respect to the aggregating reduction �agg. 10 neural networks N :
R

4 → R
4 with two hidden layers with two cells each were initialized randomly and then subjected to 4 self-applications

each. The figure shows two perspectives on the same three-dimensional graph. The 20 weights in total per network
were visualized in a two-dimensional space based on the transformed bases X and Y derived via principle component
analysis (PCA). All networks converge on (X = 0, Y = 0), which corresponds to the weight vector 0.

Figure 2. 50 independent runs of self-application each with respect to all three different types of reduction. We show
an analysis of the networks (which were initialized randomly) after 100 steps of self-application.

for any reduction and that recurrent neural networks are most prone to diverge during repeated
self-application.

We also checked for the chance to just randomly generate a neural network which happens to
be a fixpoint. However, among 100,000 randomly generated nets for each type of reduction, we did
not find a single fixpoint. Thus, we can clearly attribute the attraction towards 0 to self-application.
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Figure 3. The robustness of known, perfectly constructed fixpoint I with respect to the weightwise application .
The x axis shows the range of noise that the known fixpoint’s weights were subjected to. The y axis shows for how
many steps of self-application the network was still regarded as a 10−5-fixpoint (green) and after how many steps of
self-application the network was regarded as diverged (blue).

For the weightwise application , it is rather easy to construct a non-zero fixpoint by hand:
For a network I , we set all leftmost weights per layer to 1 and all other weights to 0, thus imple-
menting the identity function on the first value within the inputs of I , which is the original weight.
I thus clearly fulfills the fixpoint property. This allows us to test if the non-zero fixpoints form an
attractor in the weight space like the zero fixpoint does: We added small amounts of noise to all
weights of I and then subjected the resulting network J to several steps of self-application, check-
ing if �J would remain stable around �I or verge, i.e., either converge towards 0 or diverge towards
infinite weights. However, even adding just a maximum of 10−9 noise to each weight eventually
caused all networks to verge. Figure 3 shows the experiment for various amounts of noise. Adding
less noise unsurprisingly causes the network to fulfill the ε-fixpoint property longer and to verge
later. There still is a possibility that the network fulfills the fixpoint property again when converging
to 0 (but we did not count that as remaining robust in any way).

Thus, while self-application on its own shows a stable intent to approach the fixpoint 0, it does
not seem capable of creating any other fixpoints.

3.2 Self-Training
Subjecting randomly generated neural networks to self-training with respect to the weightwise train-
ing reduction yields results as shown in Figure 4. All networks evolve for a few steps of
self-training, then their weights remain constant. Note that each network approaches a different
point in the weight space. Most interestingly, these points are fixpoints, even though we only apply
self-training, and fixpoints are defined using self-application. Moreover, all of these fixpoints are
non-zero.

Figure 5 shows an analysis for all types of training reductions: While RNNs still tend to diverge a
lot, aggregating networks converge towards weights that do not represent a fixpoint. However, the
weightwise networks converge to non-trivial fixpoints with utmost reliability.

Now that we are able to easily “grow natural fixpoints” using weightwise training , we
can examine these trained (not constructed) fixpoints as well. We repeat the experiment presented
in Figure 3 by taking such a trained fixpoint and subjecting it to noise to check its robustness.
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Figure 4. 10 independent runs of self-training with respect to the weightwise training reduction . 10 neural
networks N : R4 → R with two hidden layers with two cells each were initialized randomly and then subjected to
200 steps of self-training each. The figure shows two perspectives on the same three-dimensional graph. The 20 weights
in total per network were visualized in a two-dimensional space based on the transformed bases X and Y derived via
PCA. All networks converge to different fixpoints with non-zero weights.

Figure 5. 50 independent runs of self-training each with respect to all three different types of training reduction. We
show an analysis of the networks (which were initialized randomly) after 1,000 steps of self-training.

The results are shown in Figure 6 and look somewhat similar to Figure 3. However, even when
subjected to only very small amounts of noise, the network can uphold its fixpoint property for
only a much more limited number of steps. This can be explained by the fact that we stop training
the original network once it reaches fixpoint property and thus even without noise it will not work
perfectly but lose its fixpoint property after a certain number of applications. However, it will still
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Figure 6. The robustness of a 10−5-fixpoint generated via self-training with respect to the weightwise application .
The x axis shows the range of noise that the trained fixpoint’s weights were subjected to. The y axis shows for how
many steps of self-application the network was still regarded as a 10−5-fixpoint (green) and after how many steps of
self-application the network was regarded as diverged (blue).

reliably remain a fixpoint for at least a few applications when subjected to noise levels below the
ε = 10−5 threshold.

3.3 Weight Space Analysis
Experiments as shown in Figure 4 also tell us that by using weightwise training we can train
a fixpoint by starting with basically any randomly initialized neural network if we apply enough
iterations of . However, it is far from the case that every weight configuration fulfills the
fixpoint property. Instead, the trajectories as they are shown in Figure 4 appear to be headed to
a specific point within the (PCA-transformed) weight space. However, fixpoints are not especially
rare either since no two (fully) randomly generated networks in our experiments ended up evolving
(via self-training) into the same fixpoint.

It remains an open question how exactly fixpoints are placed within the weight space and what
influences their occurrence. However, we can give a preliminary analysis. Instead of generating
random initial weight configurations, we implement a “noisy cloning” mechanism: We start with a
fixpoint that was trained for 2,500 steps of weightwise training and subject the fixpoint to
random noise at various levels,4 thus generating new networks to work with that remain (according
to the noise level) somewhat close to the original network within the weight space. We call the
original network the parent and the networks generated from its random variation its children. So far,
this setup is (bar the longer training times) identical to the setup used to generate Figure 6. Now,
however, we give the children networks a chance to evolve on their own by training them again for
2,500 steps of weightwise training . Figure 7 shows the respective trajectories for one parent:
We can see that the noisy cloning process scatters the children throughout the vicinity of the parent
within the (PCA-transformed) weight space, as shown by the sharp changes in the trajectories at

4 To be more exact, given a noise level ζ we substitute each weight wi within the neural network N , 0 ≤ i < | �N |, with w′
i := wi + z · ζ

where z is chosen randomly and uniformly from the interval [ −1.0; 1.0].
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Figure 7. 10 children that are generated via noisy cloning with a noise level of 10−2 from a single ε-fixpoint parent (blue
line starting from the plot’s base) after 2,500 training steps using . Children are then trained again for 2,500
steps using . The figure shows two perspectives on the same three-dimensional graph. The 20 weights in total
per network were visualized in a two-dimensional space based on the transformed bases X and Y derived via PCA. All
children reach ε-fixpoint status again.

2,500 training steps. When self-training kicks in again, the children lock in to a new fixpoint. While
all of these children regain ε-fixpoint status again, none of them evolve back to the parent’s position.
Some, however, travel remarkable distances towards the parent’s original position.

This intuition gained from just looking at the PCA-transformed trajectories can be verified. To
do so, we conduct the experiment shown in Figure 7 for more parents (and thus more children)
and various different noise levels. The results are shown in Figure 8. We can see that for high levels
of noise, most notably noise greater than 10−6, every single child trains towards a fixpoint that is
closer to its parent’s position than the child’s original position was. Thus, despite the application of
random noise via noisy cloning, children retain some attraction to the parent’s position in weight
space. It should be noted, however, that basically every child also stops at some fixpoint between
its starting position (after noise application) and its parent’s position and does not “go all the way”
back to its parent’s position in weight space.

This behavior changes drastically at noise level 10−7 and below. At very low noise levels, children
are much more prone to evolve to fixpoint in a direction that actually points away from their parents.
It should be noted that the distance they travel to do so remains rather constant even when the noise
level decreases drastically. Figure 8 shows that even when only disturbed by noise at a noise level of
10−11, a child can still travel at least a distance of 4 · 10−8 or more than 40 times the distance of the
initial disturbance. Such distances are never traveled at higher noise levels.

From the experiments shown in Figure 8 we can conclude that at small scales new fixpoints are
more likely found by traveling comparatively large distances, while at large scales a certain attraction
to a fixpoint position (that is somehow retained through noisy cloning) leads to finding lots of
intermediate fixpoints easily. But where does the obvious border between small and large scales
come from? To provide a preliminary answer, we analyze the fixpoint quality of the parents and
children, i.e., the error margin ε up to which they still count as an ε-fixpoint. Figure 9 shows that
after 2,500 steps of self-training, almost all networks could be counted as 10−6-fixpoints, some even
as 10−7-fixpoints, reaching much lower error margins than our usual ε = 10−5 threshold. As a side
note, we verify that children after another 2,500 steps of training are able to reach basically the same
noise level their parents did, regardless of how much noise we applied when cloning them.
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Figure 8. The effect of self-training using after noisy cloning. For various noise levels ranging from 10−1 to 10−10

we train 5 parents for 2,500 steps (making sure all of them reach ε-fixpoint status) and produce 10 children per parent
via noisy cloning with the respective noise level. We leave out all diverging children. (a) Left-side boxplots and points
show the children’s distance to their respective parent (i.e., their weights’ Manhattan distance to the parent’s weights
in weight space) directly after being generated via noisy cloning. Right-side boxplots and points show the children’s
distance to their respective parent after being trained for 2,500 timesteps. We categorize the children’s evolution
between these two points as either approaching when the distance decreases (blue), distancing when the distance
increases (orange), or stationary when its stays exactly the same up to common floating point precision (green). (b)
This plot shows the same data and sums up the occurrence of each of these three categories per noise level.

As now we know how good our networks actually are, we may suspect that the 10−7 noise level
they reach in training (cf. Figure 9) may be the border at which we see them change their behavior
when finding fixpoints from positions nearby to a parent fixpoint (cf. Figure 8). Future work will
have to examine how that border shifts for training step amounts changing from the 2,500 we
applied here. We suspect that these plots might show a certain compartmentalization of the weight
space with regard to fixpoints at lower scales. When there are no more fixpoints in between child
and original parent, this would explain why training for fixpoint status may pull the child away from
its parent and towards a far out fixpoint at low scales. High scales might then be so filled with
fixpoints that there always is a fixpoint to find that is closer to the original parent.

To gain a little bit more insight into that phenomenon, we construct another experiment. We
generate parents via self-training and explore the lines in 20-dimensional weight space between
them by generating children and looking at the fixpoint they tend to train to. Figure 10 agrees with
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Figure 9. Prediction loss for the fixpoint networks of the experiment shown in Figure 8. Parents are trained from
random initial weights in 2,500 steps of self-training using . Children are generated using noisy cloning with the
respective noise level from a parent and then trained for 2,500 steps of self-training using . A prediction loss
of δ means that children would still count as an ε-fixpoint for all ε ≥ δ. The lower blue dashed line shows δ = 10−7,
while the upper blue dashed line shows δ = 10−6.

Figure 10. Weight space between two fixpoints. For 10 parent fixpoints generated via self-training with for
2,500 steps from randomly initialized weight configurations, we explore the 45 lines between them. For each line, we
generate 25 children at equal distance to each other across the line. We then train the children to fixpoint status
using . The x axis shows each child’s normalized distance to the starting point of the line, with a distance of 0.0
meaning that it is at the same position as the first parent and a distance of 1.0 meaning that it is at the same position as
the second parent. The y axis shows the child’s normalized distance to the original starting point of the line after the
child has been trained to fixpoint status again. The color of the points shows the length of the line, i.e., the absolute
distance between the two parents compared to the longest line length occurring in our experiment. The dotted black
line in the plot illustrates the diagonal for orientation.

our previous results here: Children of parents who are far apart (dark colors) approach their first
parent when they are on the first half of the line and distance themselves from their first parent (as
they approach their second parent) when they are on the second half of the line. Children whose
parents were closer together (light colors) show a slight tendency for the inverse effect, i.e., they (on
some occasions) slightly increase their distance to the parent they were generated closer to. As that
effect is much less pronounced, they form an almost straight line in Figure 10.
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Figure 11. Evaluation of a mixed setting of self-application and self-training. For each type of reduction, 20 neural
networks were generated at random and then subjected to 4 steps of self-application. In between those steps,
0, 50, . . . , 500 steps of self-training were executed (see the x axis). The y axis shows the average ratio of fixpoints
(both zero and non-zero) found out of all runs, where a value of 1 means that all runs resulted in a fixpoint.

3.4 Mixed Setting
In order to elaborate on the opportunities of interaction between self-application and self-training,
we construct an experiment where the two appear in alternation. The results are shown in Figure 11:
While aggregating networks reach the zero fixpoint so fast via self-application that self-training is
not able to add anything to that, weightwise networks need at least 200–300 steps of self-training
between each self-application to converge to fixpoints as reliably.

3.5 Soups
As we have discussed several means of neural networks interacting with themselves, it seems a
reasonable next step to open up these interactions and build a population of mutually interacting
networks. A suitable combination of a population of individuals and various interactions is called
soup and works like an artificial chemistry system (cf. Dittrich et al., 2001). This means that a soup
evolves over a fixed number of epochs. At every epoch, several different interaction operators can
be applied to networks in the population with a certain chance, resulting in new networks and thus
a changed population.

Interaction 1 (Self-Train). Applied to every single network N for a number of steps A, self-training substitutes
its weights with N ′ = N �N . . . �N︸ ︷︷ ︸

A times

.

Interaction 2 (Attack). Applied to two random networks M,N at a chance α, attacking substitutes the weights
of the attacked network M with the weights given via M′ = N � M.

Intuitively, attacking applies the function represented by the network N to another network M.
Self-training remains basically unchanged from the non-soup scenario and provides a background
evolution to every network in the population, even when it is not involved in any attack.

Figure 12 shows the evolution of a soup employing self-training and attacking. The networks start
out randomly placed in the weight space and self-train towards fixpoints in the beginning. The big
jumps in the networks’ trajectories stem from being attacked by other networks; self-training then
leads them to new fixpoints. Note that as self-training causes the networks to converge towards
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Figure 12. Run of one soup consisting of 20 neural networks using the weightwise reductions and .
The 20 neural networks N : R4 → R with two hidden layers with two cells each were initialized randomly and then
evolved for 100 epochs. Per epoch, every network had a chance of 0.1 to attack another network and was subjected
to 30 steps of self-training. This setup allowed for emergent behavior of the network forming a cluster at a region
of all non-zero fixpoints. The figure shows two perspectives on the same three-dimensional graph. The 20 weights
in total per network were visualized in a two-dimensional space based on the transformed bases X and Y derived
via PCA.

fixpoints, the impact of near-fixpoint networks’ attacks becomes less and less prominent. Most
interestingly though, almost all attacks seem to drive the attacked networks towards the main cluster
of the soup, where most networks gather in the end. This not only shows emergent behavior as the
networks form a group as a cluster of fixpoints somewhere in the weight space (neither at the center
of mass from the initial population nor anywhere near 0), but also can be interpreted as a clear
instance of (self-)replication within the networks of this soup.

In Figure 13, we further evaluate the impact of parameter A in Interaction 1 for both weightwise
and aggregating neural networks. (As recurrent networks already did not show sufficient compati-
bility with application, we omit these results.) More self-training manages to stabilize the weightwise
networks’ ability to find non-zero fixpoints. Still, even in a soup setting, aggregating networks con-
verge to 0 to a strong degree.

Last, we repeat our experiments with noisy cloning (cf. Figure 7) in a setting with a soup, i.e., we
take several parents, generate children in their vicinity using noisy cloning as described above, and
then let all the parents and children evolve as soup (instead of training them individually). Figure 14
shows the soup’s evolution. What we can notice here is that even though we open up the networks
to attacking, all children tend to stick together and we see no real influence between the soups. This,
of course, is also due to the fact that (as their parents are fixpoints) the children are also already
pretty close to fixpoint status and their attacks probably do not do real damage, even when paired
with networks from the other cluster.

4 Related Work

There is some research on generating neural networks using other neural networks (cf., e.g.,
Deutsch, 2018; Schmidhuber, 1992; Stanley et al., 2009). However, without any suitable reduction
operations, these approaches cannot be used to produce self-replicating structures.
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Figure 13. Evaluation of the impact of the number of training steps per epoch on a soup consisting of 10 neural networks
using the weightwise application or the aggregating application �agg. Averaged over 10 runs. Per epoch, every
network had a chance of 0.1 to attack another network and was subjected to a fixed number of steps of self-training
(see the x axis). The y axis shows the average number of (zero or non-zero) fixpoints present in the final population
of the soup.

Figure 14. Two parent networks are trained to fixpoint status using 1,500 steps of self-training with . Then they
generate 25 children each via noisy cloning. All 52 networks are then evolved for 3,000 timesteps of self-training (90%
chance) or attacking (10% chance). The left plot shows all networks’ evolution; the right plot zooms in on one of the
clusters to give a better intuition of its internal structure. The 20 weights in total per network were visualized in a
two-dimensional space based on the transformed bases X and Y derived via PCA.

Our results on self-application agree with Chang and Lipson (2018) on the weightwise reduction.
We extended the experiments with several means of reduction and managed to find non-trivial,
non-zero fixpoints up to a very low error ε by introducing our weightwise reduction in combina-
tion with our notion of self-training. We augmented the approach by studying the combination of
self-application and self-training. However, the inclusion of auxiliary fitness functions has not been
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considered in this article and we refer to Gabor, Illium, et al. (2021) for auxiliary fitness in a soup
context.

The idea to generate fixpoints via repeated self-application is based on Fontana and Buss (1996),
who showed the emergence of fixpoints from having random expressions in the λ-calculus interact.
They, too, construct an artificial chemistry system based on their functional abstraction and see
complex structures of fixpoints arise. Unfortunately, we did not observe higher-order fixpoints as
they did for λ-expressions, which should be considered an important direction of future research on
neural network soups. Possible connections between λ-fixpoints or larger organizational structures
in general and fixpoints in neural networks may still be explored (Larkin & Stocks, 2004).

Görnerup and Crutchfield (2008) provide additional insight into the evolution of complex-
ity within soups: They choose so called ε-machines, i.e., finite-memory communication channels
(Crutchfield & Görnerup, 2006), for function approximators because there exists a well-defined
metric for their individual complexity (which cannot exist for λ-expressions, for example). Since
neural networks are likewise finite-memory structures, one could imagine applying a similar metric
in our case. However, providing such a metric on single neural networks is still a task for future
research. Furthermore, various differences in the construction of the soups between this article and
Görnerup and Crutchfield (2008) (most notably the constant addition of newly generated particles
in Görnerup & Crutchfield, 2008) require further analysis before more parallels can be drawn.

In general, a vast amount of research is dedicated to artificial chemistry systems, utilizing very
different representations for the particles in the soup: Dittrich et al. (2001) and Matsumaru et al.
(2005) provide excellent overviews, to which we refer for the sake of brevity.

5 Conclusion

We have presented various reduction operations without any claim of completeness. Interesting
reduction possibilities like extracting the main frequencies of the weight vector using a Fourier
transformation or fine-tuning RNNs for this scenario are still to be tested to the full extent. Most
importantly, all settings, architectures, and parameters of the neural networks we constructed still
allow for more thorough exploration and evaluation in future work.

We have also performed some exploration of the distribution of fixpoints within the weight
space by generating lots of non-trivial fixpoints using our setup of self-training. In this extended
version of the article, we added experiments that analyze the neighborhood of given fixpoints by
adding noise at various scales. We have gained some insight into a compartmentalization of the
weight space with respect to fixpoints. Future work still needs to examine how this compartment
effect arises and can be influenced by original training accuracy or other factors.

Having multiple neural networks interact directly with each other’s weights within a soup has
been one of the more outlandish ideas of this article, as pointed out by Chang (2021) referring
to the original (non-extended) version. Accordingly, observing these soups exert some emergent
behavior (cf. Figure 12) has been one of the most fascinating aspects of this line of research. While
we evaluated some parameters, there exist many different ways to evolve such a soup and many
different interactions whose effects are yet to be explored. We introduce new interactions like learn,
which substitutes the weights of the learning network M with the weights given via M′ = M �
N , in Gabor, Illium, et al. (2021), where we also discuss more involved patterns of soup behavior.

It should also be noted that for now, we do not track any relationships between particles beyond
their spontaneous, random, and rather short-lived pairing for some interactions. Future work might
introduce a topology between particles (that might or might not be influenced by the particles’
position within the weight space) or might keep track of genealogical relationships (similarly to
Gabor, Phan, & Linnhoff-Popien, 2021) and might thus discern between horizontal and vertical
inheritance of information, for example.

Eventually, we think that the dynamics of a soup might open up neural networks to a new kind
of learning by not (only) applying a goal function (and its respective loss) directly but by simply
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guiding a soup a certain way, perhaps achieving more diversity and robustness in the solutions
reached (cf., e.g., Gabor et al., 2018; Prokopenko, 2013). Future work will show if methods learned
from these settings can be integrated into common machine learning. To this end, soups (or
self-replicating particles in general) must be integrated with the standard machine learning frame-
work (including extrinsic reward functions) and most importantly must be able to learn complex
tasks as a group.
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