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The paper discusses the problem of determinizing finite-state automata containing large numbers
of �-moves. Experiments with finite-state approximations of natural language grammars often
give rise to very large automata with a very large number of �-moves. The paper identifies and
compares a number of subset construction algorithms that treat �-moves. Experiments have been
performed which indicate that the algorithms differ considerably in practice, both with respect
to the size of the resulting deterministic automaton, and with respect to practical efficiency.
Furthermore, the experiments suggest that the average number of �-moves per state can be used
to predict which algorithm is likely to be the fastest for a given input automaton.

1. Introduction

1.1 Finite-State Language Processing
An important problem in computational linguistics is posed by the fact that the gram-
mars typically hypothesized by linguists are unattractive from the point of view of
computation. For instance, the number of steps required to analyze a sentence of n
words is n3 for context-free grammars. For certain linguistically more attractive gram-
matical formalisms it can be shown that no upper bound to the number of steps
required to find an analysis can be given. The human language user, however, seems
to process in linear time; humans understand longer sentences with no noticeable
delay. This implies that neither context-free grammars nor more powerful grammati-
cal formalisms are likely models for human language processing. An important issue
therefore is how the linearity of processing by humans can be accounted for.

A potential solution to this problem concerns the possibility of approximating
an underlying general and abstract grammar by techniques of a much simpler sort.
The idea that a competence grammar might be approximated by finite-state means
goes back to early work by Chomsky (Chomsky 1963, 1964). There are essentially
three observations that motivate the view that the processing of natural language is
finite-state:

1. humans have a finite (small, limited, fixed) amount of memory available
for language processing

2. humans have problems with certain grammatical constructions, such as
center-embedding, which are impossible to describe by finite-state means
(Miller and Chomsky 1963)

3. humans process natural language very efficiently (in linear time)
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1.2 Finite-State Approximation and �-Moves
In experimenting with finite-state approximation techniques for context-free and more
powerful grammatical formalisms (such as the techniques presented in Black [1989],
Pereira and Wright [1991, 1997], Rood [1996], Grimley-Evans [1997], Nederhof [1997,
1998], and Johnson [1998]), we have found that the resulting automata often are ex-
tremely large. Moreover, the automata contain many �-moves (jumps). And finally, if
such automata are determinized then the resulting automata are often smaller. It turns
out that a straightforward implementation of the subset construction determinization
algorithm performs badly for such inputs. In this paper we consider a number of
variants of the subset construction algorithm that differ in their treatment of �-moves.

Although we have observed that finite-state approximation techniques typically
yield automata with large numbers of �-moves, this is obviously not a necessity. Instead
of trying to improve upon determinization techniques for such automata, it might be
more fruitful to try to improve these approximation techniques in such a way that
more compact automata are produced.1 However, because research into finite-state
approximation is still of an exploratory and experimental nature, it can be argued
that more robust determinization algorithms do still have a role to play: it can be
expected that approximation techniques are much easier to define and implement if
the resulting automaton is allowed to be nondeterministic and to contain �-moves.

Note furthermore that even if our primary motivation is in finite-state approxima-
tion, the problem of determinizing finite-state automata with �-moves may be relevant
in other areas of language research as well.

1.3 Subset Construction and �-Moves
The experiments were performed using the FSA Utilities. The FSA Utilities toolbox
(van Noord 1997, 1999; Gerdemann and van Noord 1999; van Noord and Gerde-
mann 1999) is a collection of tools to manipulate regular expressions, finite-state
automata, and finite-state transducers. Manipulations include determinization, min-
imization, composition, complementation, intersection, Kleene closure, etc. Various
visualization tools are available to browse finite-state automata. The toolbox is imple-
mented in SICStus Prolog, and is available free of charge under Gnu General Public
License via anonymous ftp at ftp://ftp.let.rug.nl/pub/vannoord/Fsa/, and via the
web at http://www.let.rug.nl/˜vannoord/Fsa/. At the time of our initial experiments
with finite-state approximation, an old version of the toolbox was used, which ran
into memory problems for some of these automata. For this reason, the subset con-
struction algorithm has been reimplemented, paying special attention to the treatment
of �-moves. Three variants of the subset construction algorithm are identified, which
differ in the way �-moves are treated:

per graph The most obvious and straightforward approach is sequential in the
following sense: Firstly, an equivalent automaton without �-moves is con-
structed for the input. To do this, the transitive closure of the graph consist-
ing of all �-moves is computed. Secondly, the resulting automaton is then
treated by a subset construction algorithm for �-free automata. Different
variants of per graph can be identified, depending on the implementation
of the �-removal step.

1 Indeed, a later implementation by Nederhof avoids construction of the complete nondetermistic
automaton by minimizing subautomata before they are embedded into larger subautomata.
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per state For each state that occurs in a subset produced during subset construc-
tion, compute the states that are reachable using �-moves. The results of
this computation can be memorized, or computed for each state in a pre-
processing step. This is the approach mentioned briefly in Johnson and
Wood (1997).2

per subset For each subset Q of states that arises during subset construction, com-
pute Q0 � Q, which extends Q with all states that are reachable from any
member of Q using �-moves. Such an algorithm is described in Aho, Sethi,
and Ullman (1986).

The motivation for this paper is the knowledge gleaned from experience, that the
first approach turns out to be impractical for automata with very large numbers of
�-moves. An integration of the subset construction algorithm with the computation of
�-reachable states performs much better in practice for such automata.

Section 2 presents a short statement of the problem (how to determinize a given
finite-state automaton), and a subset construction algorithm that solves this problem in
the absence of �-moves. Section 3 defines a number of subset construction algorithms
that differ with respect to the treatment of �-moves. Most aspects of the algorithms are
not new and have been described elsewhere, and/or were incorporated in previous
implementations; a comparison of the different algorithms had not been performed
previously. We provide a comparison with respect to the size of the resulting determin-
istic automaton (in Section 3) and practical efficiency (in Section 4). Section 4 provides
experimental results both for randomly generated automata and for automata gen-
erated by approximation algorithms. Our implementations of the various algorithms
are also compared with AT&T’s FSM utilities (Mohri, Pereira, and Riley 1998), to es-
tablish that the experimental differences we find between the algorithms are truly
caused by differences in the algorithm (as opposed to accidental implementation de-
tails).

2. Subset Construction

2.1 Problem Statement
Let a finite-state machine M be specified by a tuple (Q,�, �, S, F) where Q is a finite
set of states, � is a finite alphabet, and � is a function from Q � (� [ f�g) ! 2Q.
Furthermore, S � Q is a set of start states and F � Q is a set of final states.3

Let �-move be the relation f(qi, qj)jqj 2 �(qi, �)g. �-reachable is the reflexive and
transitive closure of �-move. Let �-CLOSURE: 2Q ! 2Q be a function defined as:

�-CLOSURE(Q0) = fqjq0 2 Q0, (q0, q) 2 �-reachableg

Furthermore, we write �-CLOSURE�1(Q0) for the set fqjq0 2 Q0, (q, q0) 2 �-reachableg.

2 According to Derick Wood (p. c.), this approach has been implemented in several systems, including
Howard Johnson’s INR system.

3 Note that a set of start states is required, rather than a single start state. Many operations on automata
can be defined somewhat more elegantly in this way (including per grapht discussed below). Obviously,
for deterministic automata this set should be a singleton set.
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funct subset construction((Q,�, �, S, F))
index transitions(); Trans := ;; Finals := ;; States := ;;
Start := epsilon closure(S)
add(Start)
while there is an unmarked subset T 2 States do

mark(T)
foreach (a, U) 2 instructions(T) do

U := epsilon closure(U)
Trans[T, a] := fUg
add(U)
od

od
return (States,�, Trans, fStartg, Finals)

end

proc add(U) Reachable-state-set Maintenance
if U =2 States

then add U unmarked to States
if U \ F then Finals := Finals [ fUg fi

fi
end

funct instructions(P) Instruction Computation
return merge(

S
p2P transitions(p))

end

funct epsilon closure(U) variant 1: No �-moves
return U

end

Figure 1
Subset construction algorithm.

For any given finite-state automaton M = (Q,�, �, S, F), there is an equivalent de-
terministic automaton M0 = (2Q,�, �0, fQ0g, F0). F0 is the set of all states in 2Q containing
a final state of M, i.e., the set of subsets fQi 2 2Qjq 2 Qi, q 2 Fg. M0 has a single start
state Q0, which is the epsilon closure of the start states of M, i.e., Q0 = �-CLOSURE(S).
Finally,

�
0(fq1, q2, : : : , qig, a) = �-CLOSURE(�(q1, a) [ �(q2, a) [ : : : [ �(qi, a))

An algorithm that computes M0 for a given M will only need to take into account
states in 2Q that are reachable from the start state Q0. This is the reason that for many
input automata the algorithm does not need to treat all subsets of states (but note that
there are automata for which all subsets are relevant, and hence exponential behavior
cannot be avoided in general).

Consider the subset construction algorithm in Figure 1. The algorithm maintains
a set of subsets States. Each subset can be either marked or unmarked (to indicate
whether the subset has been treated by the algorithm); the set of unmarked sub-
sets is sometimes referred to as the agenda. The algorithm takes such an unmarked
subset T and computes all transitions leaving T. This computation is performed by
the function instructions and is called instruction computation by Johnson and Wood
(1997).

64

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/26/1/61/1797489/089120100561638.pdf by guest on 07 Septem
ber 2023



van Noord Epsilon Moves in Subset Construction

The function index transitions constructs the function transitions: Q ! ��2Q, which
returns for a given state p the set of pairs (s, T) representing the transitions leaving p.
Furthermore, the function merge takes such a set of pairs and merges all pairs with the
same first element (by taking the union of the corresponding second elements). For
example:

merge(f(a, f1, 2, 4g), (b, f2, 4g), (a, f3, 4g), (b, f5, 6g)g)
= f(a, f1, 2, 3, 4g), (b, f2, 4, 5, 6g)g

The procedure add is responsible for “reachable-state-set maintenance,” by en-
suring that target subsets are added to the set of subsets if these subsets were not
encountered before. Moreover, if such a new subset contains a final state, then this
subset is added to the set of final states.

3. Variants for �-Moves

The algorithm presented in the previous section does not treat �-moves. In this section,
possible extensions of the algorithm are identified to treat �-moves.

3.1 Per Graph
In the per graph variant, two steps can be identified. In the first step, efree, an equiva-
lent �-free automaton is constructed. In the second step this �-free automaton is deter-
minized using the subset construction algorithm. The advantage of this approach is
that the subset construction algorithm can remain simple because the input automaton
is �-free.

An algorithm for efree is described for instance in Hopcroft and Ullman (1979, 26–
27). The main ingredient of efree is the construction of the function �-CLOSURE, which
can be computed using a standard transitive closure algorithm for directed graphs:
this algorithm is applied to the directed graph consisting of all �-moves of M. Such
an algorithm can be found in several textbooks (see, for instance, Cormen, Leiserson,
and Rivest [1990]).

For a given finite-state automaton M = (Q,�, �, S, F), efree computes M0 =

(Q,�, �0, S0, F0), where S0 = �-CLOSURE(S), F0 = �-CLOSURE�1(F), and �
0(p, a) =

fqjq0 2 �(p0, a), p0 2 �-CLOSURE�1(p), q 2 �-CLOSURE(q0)g. Instead of using �-CLOSURE
on both the source and target side of a transition, efree can be optimized in two different
ways by using �-CLOSURE only on one side:

� efreet: M0 = (Q,�, �0, S0, F), where S0 = �-CLOSURE(S), and
�
0(p, a) = fqjq0 2 �(p, a), q 2 �-CLOSURE(q0)g.

� efrees: M0 = (Q,�, �0, S, F0), where F0 = �-CLOSURE�1(F), and
�
0(p, a) = fqjq 2 �(p0, a), p0 2 �-CLOSURE�1(p)g.

Although the variants appear very similar, there are some differences. Firstly, efreet

might introduce states that are not coaccessible: states from which no path exists to a
final state; in contrast, efrees might introduce states that are not accessible: states from
which no path exists from the start state. A straightforward modification of both algo-
rithms is possible to ensure that these states are not present in the output. Thus efreet,c

65

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/26/1/61/1797489/089120100561638.pdf by guest on 07 Septem
ber 2023



Computational Linguistics Volume 26, Number 1

Figure 2
Illustration of the difference in size between two variants of efree. (1) is the input automaton.
The result of efreet is given in (2); (3) is the result of efrees. (4) and (5) are the result of applying
the subset construction to the result of efreet and efrees, respectively.

ensures that all states in the resulting automaton are co-accessible; efrees,a ensures that
all states in the resulting automaton are accessible. As a consequence, the size of the
determinized machine is in general smaller if efreet,c is employed, because states that
were not co-accessible (in the input) are removed (this is therefore an additional ben-
efit of efreet,c; the fact that efrees,a removes accessible states has no effect on the size of
the determinized machine because the subset construction algorithm already ensures
accessibility anyway).

Secondly, it turns out that applying efreet in combination with the subset construc-
tion algorithm generally produces smaller automata than efrees (even if we ignore the
benefit of ensuring co-accessibility). An example is presented in Figure 2. The differ-
ences can be quite significant, as illustrated in Figure 3.

Below we will write per graphX to indicate the nonintegrated algorithm based on
efreeX

:

3.2 Per Subset and Per State
Next, we discuss two variants (per subset and per state) in which the treatment of �-
moves is integrated with the subset construction algorithm. We will show later that
such an integrated approach is in practice often more efficient than the per graph ap-
proach if there are many �-moves. The per subset and per state approaches are also
more suitable for a lazy implementation of the subset construction algorithm (in such
a lazy implementation, subsets are only computed with respect to a given input
string).

The per subset and the per state algorithms use a simplified variant of the transitive
closure algorithm for graphs. Instead of computing the transitive closure of a given
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Figure 3
Difference in sizes of deterministic automata constructed with either efrees or efreet, for
randomly generated input automata consisting of 100 states, 15 symbols, and various numbers
of transitions and jumps (cf. Section 4). Note that all states in the input are co-accessible; the
difference in size is due solely to the effect illustrated in Figure 2.

funct closure(T)
D := ;
foreach t 2 T do add t unmarked to D od
while there is an unmarked state t 2 D do

mark(t)
foreach q 2 �(t, �) do

if q =2 D then add q unmarked to D fi
od

od
return D

end

Figure 4
Epsilon closure algorithm.

graph, this algorithm only computes the closure for a given set of states. Such an
algorithm is given in Figure 4.

In both of the two integrated approaches, the subset construction algorithm is ini-
tialized with an agenda containing a single subset that is the �-CLOSURE of the set of
start states of the input; furthermore, the way in which new transitions are computed
also takes the effect of �-moves into account. Both differences are accounted for by an
alternative definition of the epsilon closure function.

The approach in which the transitive closure is computed for one state at a time
is defined by the following definition of the epsilon closure function. Note that we
make sure that the transitive closure computation is only performed once for each
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input state, by memorizing the closure function; the full computation is memorized
as well.4

funct epsilon closure(U) variant 2: per state
return memo(

S
u2U memo(closure(fug)))

end

In the case of the per subset approach, the closure algorithm is applied to each
subset. We also memorize the closure function, in order to ensure that the closure
computation is performed only once for each subset. This can be useful, since the
same subset can be generated many times during subset construction. The definition
simply is:

funct epsilon closure(U) variant 3: per subset
return memo(closure(U))

end

The motivation for the per state variant is the insight that in this case the closure
algorithm is called at most jQj times. In contrast, in the per subset approach the transi-
tive closure algorithm may need to be called 2jQj times. On the other hand, in the per
state approach some overhead must be accepted for computing the union of the results
for each state. Moreover, in practice, the number of subsets is often much smaller than
2jQj. In some cases, the number of reachable subsets is smaller than the number of
states encountered in those subsets.

3.3 Implementation
In order to implement the algorithms efficiently in Prolog, it is important to use ef-
ficient data structures. In particular, we use an implementation of (non-updatable)
arrays based on the N+K trees of O’Keefe (1990, 142–145) with N = 95 and K = 32.
On top of this data structure, a hash array is implemented using the SICStus library
predicate term hash/4, which constructs a key for a given term. In such hashes, a
value in the underlying array is a partial list of key-value pairs; thus collisions are
resolved by chaining. This provides efficient access in practice, although such ar-
rays are quite memory-intensive: care must be taken to ensure that the deterministic
algorithms indeed are implemented without introducing choice-points during run-
time.

4. Experiments

Two sets of experiments have been performed. In the first set of experiments, random
automata are generated according to a number of criteria based on Leslie (1995). In
the second set of experiments, results are provided for a number of (much larger)
automata that surfaced during actual development work on finite-state approximation
techniques.5

Random Automata. Here, we report on a number of experiments for randomly gener-
ated automata. Following Leslie (1995), the absolute transition density of an automaton

4 This is an improvement over the algorithm given in a preliminary version of this paper (van Noord
1998).

5 All the automata used in the experiments are freely available from
http://www.let.rug.nl/˜vannoord/Fsa/.
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is defined as the number of transitions divided by the square of the number of states
multiplied by the number of symbols (i.e., the number of transitions divided by the
maximum number of “possible” transitions, or, in other words, the probability that a
possible transition in fact exists). Deterministic transition density is the number of tran-
sitions divided by the number of states multiplied by the number of symbols (i.e., the
ratio of the number of transitions and the maximum number of “possible” transitions
in a deterministic machine).

In both of these definitions, the number of transitions should be understood as
the number of nonduplicate transitions that do not lead to a sink state. A sink state
is a state from which there exists no sequence of transitions to a final state. In the
randomly generated automata, states are accessible and co-accessible by construction;
sink states and associated transitions are not represented.

Leslie (1995) shows that deterministic transition density is a reliable measure for
the difficulty of subset construction. Exponential blow-up can be expected for input
automata with deterministic transition density of around 2.6 He concludes (page 66):

randomly generated automata exhibit the maximum execution time,
and the maximum number of states, at an approximate deterministic
density of 2. Most of the area under the curve occurs within 0.5 and
2.5 deterministic density—this is the area in which subset construction
is expensive.

Conjecture. For a given NFA, we can compute the expected num-
bers of states and transitions in the corresponding DFA, produced by
subset construction, from the deterministic density of the NFA. In ad-
dition, this functional relationship gives rise to a Poisson-like curve
with its peak approximately at a deterministic density of 2.

A number of automata were generated randomly, according to the number of
states, symbols, and transitions. For the first experiment, automata were generated
consisting of 15 symbols, 25 states, and various densities (and no �-moves). The results
are summarized in Figure 5. CPU-time was measured on a HP 9000/785 machine
running HP-UX 10.20. Note that our timings do not include the start-up of the Prolog
engine, nor the time required for garbage collection.

In order to establish that the differences we obtain later are genuinely due to
differences in the underlying algorithm, and not due to “accidental” implementation
details, we have compared our implementation with the determinizer of AT&T’s FSM
utilities (Mohri, Pereira, and Riley 1998). For automata without �-moves, we establish
that FSM normally is faster: for automata with very small transition densities, FSM is
up to four times as fast; for automata with larger densities, the results are similar.

A new concept called absolute jump density is introduced to specify the number
of �-moves. It is defined as the number of �-moves divided by the square of the
number of states (i.e., the probability that an �-move exists for a given pair of states).
Furthermore, deterministic jump density is the number of �-moves divided by the
number of states (i.e., the average number of �-moves that leave a given state). In
order to measure the differences between the three implementations, a number of
automata have been generated consisting of 15 states and 15 symbols, using various

6 Leslie uses the terms absolute density and deterministic density.
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Figure 5
Deterministic transition density versus CPU-time in msec. The input automata have 25 states,
15 symbols, and no �-moves. fsa represents the CPU-time required by our FSA6
implementation; fsm represents the CPU-time required by AT&T’s FSM library; states
represents the sum of the number of states of the input and output automata.

transition densities between 0.01 and 0.3 (for larger densities, the automata tend to
collapse to an automaton for ��). For each of these transition densities, deterministic
jump densities were chosen in the range 0 to 2.5 (again, for larger values, the automata
tend to collapse). In Figures 6 to 9, the outcomes of these experiments are summarized
by listing the average amount of CPU-time required per deterministic jump density
(for each of the algorithms), using automata with 15, 20, 25, and 100 states, respectively.
Thus, every dot represents the average for determinizing a number of different input
automata with various absolute transition densities and the same deterministic jump
density.

The striking aspect of these experiments is that the integrated per subset and per
state variants are much more efficient for larger deterministic jump densities. The per
grapht is typically the fastest algorithm of the nonintegrated versions. However, in these
experiments all states in the input are co-accessible by construction; and moreover, all
states in the input are final states. Therefore, the advantages of the per grapht,c algorithm
could not be observed here.

The turning point is a deterministic jump density of around 0.8: for smaller densi-
ties the per grapht is typically slightly faster; for larger densities the per state algorithm
is much faster. For densities beyond 1.5, the per subset algorithm tends to perform bet-
ter than the per state algorithm. Interestingly, this generalization is supported by the
experiments on automata generated by approximation techniques (although the re-
sults for randomly generated automata are more consistent than the results for “real”
examples).
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Figure 6
Average amount of CPU-time versus jump density for each of the algorithms, and FSM. Input
automata have 15 states. Absolute transition densities: 0.01-0.3.
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Figure 7
Average amount of CPU-time versus jump density for each of the algorithms, and FSM. Input
automata have 20 states. Absolute transition densities: 0.01-0.3.
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Figure 8
Average amount of CPU-time versus deterministic jump density for each of the algorithms,
and FSM. Input automata have 25 states. Absolute transition densities: 0.01-0.3.
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Figure 9
Average amount of CPU-time versus deterministic jump density for each of the algorithms,
and FSM. Input automata have 100 states. Absolute transition densities: 0.001-0.0035.
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Comparison with the FSM Library. We also provide the results for AT&T’s FSM library.
FSM is designed to treat weighted automata for very general weight sets. The initial
implementation of the library consisted of an on-the-fly computation of the epsilon
closures combined with determinization. This was abandoned for two reasons: it could
not be generalized to the case of general weight sets, and it was not outputting the
intermediate epsilon-removed machine (which might be of interest in itself). In the
current version, �-moves must be removed before determinization is possible. This
mechanism thus is comparable to our per graph variant. Apparently, FSM employs
an algorithm equivalent to our per graphs,a. The resulting determinized machines are
generally larger than the machines produced by our integrated variants and the vari-
ants that incorporate �-moves on the target side of transitions. The timings below are
obtained for the pipe

fsmrmepsilon | fsmdeterminize

This is somewhat unfair, since this includes the time to write and read the intermediate
machine. Even so, it is interesting to note that the FSM library is a constant factor faster
than our per graphs,a; for larger numbers of jumps the per state and per subset variants
consistently beat the FSM library.

Experiment: Automata Generated by Approximation Algorithms. The automata used in the
previous experiments were randomly generated. However, it may well be that in
practice the automata that are to be treated by the algorithm have typical properties
not reflected in this test data. For this reason, results are presented for a number of
automata that were generated using approximation techniques for context-free gram-
mars; in particular, for automata created by Nederhof, using the technique described
in Nederhof (1997), and a small number of automata created using the technique
of Pereira and Wright (1997) (as implemented by Nederhof). We have restricted our
attention to automata with at least 1,000 states in the input.

The automata typically contain lots of jumps. Moreover, the number of states of
the resulting automaton is often smaller than the number of states in the input automa-
ton. Results are given in Tables 1 and 2. One of the most striking examples is the ygrim
automaton consisting of 3,382 states and 9,124 jumps. For this example, the per graph
implementations ran out of memory (after a long time), whereas the implementation
of the per subset algorithm produced the determinized automaton (containing only 9
states) within a single CPU-second. The FSM implementation took much longer for
this example (whereas for many of the other examples it is faster than our implemen-
tations). Note that this example has the highest ratio of number of jumps to number
of states. This confirms the observation that the per subset algorithm performs better
on inputs with a high deterministic jump density.

5. Conclusion

We have discussed a number of variants of the subset construction algorithm for deter-
minizing finite automata containing �-moves. The experiments support the following
conclusions:

� The integrated variants per subset and per state work much better for
automata containing a large number of �-moves. The per subset variant
tends to improve upon the per state algorithm if the number of �-moves
increases even further.

73

D
ow

nloaded from
 http://direct.m

it.edu/coli/article-pdf/26/1/61/1797489/089120100561638.pdf by guest on 07 Septem
ber 2023



Computational Linguistics Volume 26, Number 1

Table 1
The automata generated by approximation algorithms. The table lists the number of states,
transitions, and jumps of the input automaton, and the number of states of the determinized
machine using the efrees, efreet, and the efreet,c variants, respectively.

Input Output

Id # of States # of Transitions # of Jumps # of States

per graphs per grapht per grapht,c

per graphs,a per subset
FSM per state

g14 1,048 403 1,272 137 137 131
ovis4.n 1,424 2,210 517 164 133 107

g13 1,441 1,006 1,272 337 337 329
rene2 1,800 2,597 96 846 844 844

ovis9.p 1,868 2,791 2,688 2,478 2,478 1,386
ygrim 3,382 5,422 9,124 9 9 9

ygrim.p 48,062 63,704 109,296 702 702 702
java19 54,369 28,333 51,018 1,971 1,971 1,855
java16 64,210 43,935 41,305 3,186 3,186 3,078
zovis3 88,156 78,895 68,093 5,174 5,154 4,182
zovis2 89,832 80,400 69,377 6,561 6,541 5,309

Table 2
Results for automata generated by approximation algorithms. The dashes in the
table indicate that the corresponding algorithm ran out of memory (after a long
period of time) for that particular example.

CPU-time (sec)

grapht grapht,c graphs graphs,a subset state FSM

g14 0.4 0.4 0.3 0.3 0.4 0.2 0.1
ovis4.n 0.9 1.1 0.8 1.0 0.7 0.6 0.6

g13 0.9 0.8 0.6 0.6 1.2 0.7 0.2
rene2 0.2 0.3 0.2 0.2 0.2 0.2 0.1

ovis9.p 36.6 16.0 16.9 17.0 25.2 20.8 21.9
ygrim - - - - 0.9 21.0 512.1

ygrim.p - - - - 562.1 - 4512.4
java19 55.5 67.4 52.6 45.0 25.8 19.0 3.8
java16 30.0 45.8 35.0 29.9 11.3 12.1 3.0
zovis3 741.1 557.5 - 407.4 358.4 302.5 325.6
zovis2 909.2 627.2 - 496.0 454.4 369.4 392.1

� We have identified four different variants of the per graph algorithm. In
our experiments, the per grapht is the algorithm of choice for automata
containing few �-moves, because it is faster than the other algorithms,
and because it produces smaller automata than the per graphs and per
graphs,a variants.

� The per grapht,c variant is an interesting alternative in that it produces the
smallest results. This variant should be used if the input automaton is
expected to contain many non-co-accessible states.
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� Automata produced by finite-state approximation techniques tend to
contain many �-moves. We found that for these automata the differences
in speed between the various algorithms can be enormous. The per subset
and per state algorithms are good candidates for this application.

We have attempted to characterize the expected efficiency of the various algorithms
in terms of the number of jumps and the number of states in the input automaton. It
is quite conceivable that other simple properties of the input automaton can be used
even more effectively for this purpose. One reviewer suggests using the number of
strongly �-connected components (the strongly connected components of the graph of
all �-moves) for this purpose. We leave this and other possibilities to a future occasion.
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