Transacciones de la Asociación de Lingüística Computacional, 1 (2013) 99–110. Editor de acciones: Chris Callison Burch.
Submitted 12/2012; Publicado 5/2013. C
(cid:13)
2013 Asociación de Lingüística Computacional.
UsingPivot-BasedParaphrasingandSentimentProfilestoImproveaSubjectivityLexiconforEssayDataBeataBeigmanKlebanov,NitinMadnani,JillBursteinEducationalTestingService660RosedaleRoad,Princeton,NJ08541,USA{bbeigmanklebanov,nmadnani,jburstein@ets.org}AbstractWedemonstrateamethodofimprovingaseedsentimentlexicondevelopedonessaydatabyusingapivot-basedparaphrasingsystemforlexicalexpansioncoupledwithsentimentpro-fileenrichmentusingcrowdsourcing.Profileenrichmentaloneyieldsupto15%improve-mentintheaccuracyoftheseedlexiconon3-waysentence-levelsentimentpolarityclassifi-cationofessaydata.Usinglexicalexpansioninadditiontosentimentprofilesprovidesafurther7%improvementinperformance.Ad-ditionalexperimentsshowthattheproposedmethodisalsoeffectivewithothersubjectivitylexiconsandinadifferentdomainofapplica-tion(productreviews).1IntroductionInalmostanysub-fieldofcomputationallinguistics,creationofworkingsystemsstartswithaninvest-mentinmanually-generatedormanually-annotateddataforcomputationalexploration.Insubjectivityandsentimentanalysis,annotationoftrainingandtestingdataandconstructionofsubjectivitylexiconshavebeenthelociofcostlylaborinvestment.Manysubjectivitylexiconsarementionedintheliterature.Thetwolargemanually-builtlexiconsforEnglish–theGeneralInquirer(Stoneetal.,1966)andthelexiconprovidedwiththeOpinion-Finderdistribution(WiebeandRiloff,2005)–areavailableforresearchandeducationonly1andun-derGNUGPLlicensethatdisallowstheirincor-porationintoproprietarymaterials,2respectively.1http://www.wjh.harvard.edu/inquirer/j11/manual/2http://www.gnu.org/copyleft/gpl.htmlThosewishingtointegratesentimentanalysisintoproducts,alongwiththosestudyingsubjectivityinlanguagesotherthanEnglish,orforspecificdo-mainssuchasfinance,orforparticulargenressuchasMySpacecomments,reportedconstructionoflexicons(Taboadaetal.,2011;LoughranandMcDonald,2011;Thelwalletal.,2010;RaoandRavichandran,2009;JijkounandHofmann,2009;PitelandGrefenstette,2008;Mihalceaetal.,2007).Inthispaper,weaddressthestepofexpandingasmall-scale,manually-builtsubjectivitylexicon(aseedlexicon,typicallyforadomainorlanguageinquestion)intoamuchlargerbutnoisierlexi-conusinganautomaticprocedure.Wepresentanovelexpansionmethodusingastate-of-the-artparaphrasingsystem.Theexpansionyieldsa4-foldincreaseinlexiconsize;todavía,theexpansionaloneisinsufficientinordertoimproveperformanceonsentence-levelsentimentpolarityclassification.Inthispaperwetestthefollowinghypothesis.Wesuggestthattheeffectivenessoftheexpansionishamperedby(1)introductionofopposite-polarityitems,suchasintroducingresoluteasanexpansionofforceful,orremarkableasanexpansionofpecu-liar;(2)introductionofweaklypolar,neutral,oram-biguouswordsasexpansionsofpolarseedwords,suchasgeneratingconcernasanexpansionofanx-ietyorfutureasanexpansionofaftermath;3(3)in-abilitytodistinguishbetweenstrongerorclear-cutversusweakerorambiguoussentimentandtomakeadifferentialuseofthose.Weaddressitems(1)y(2)byenrichingthelexi-conwithsentimentprofiles(section3),andpropose3Table2andFigure1providesupporttotheseassessments.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
100
awayofeffectivelyutilizingthisinformationforthesentence-levelsentimentpolarityclassificationtask(sections5and6).Profile-enrichmentaloneyieldsupto15%increaseinperformancefortheseedlexiconwhenusingdifferentmachinelearningalgorithms;paraphraser-basedexpansionwithsen-timentprofilesimprovesperformancebyanaddi-tional7%.Overall,weobserveanimprovementofupto25%inclassificationaccuracyovertheseedlexiconwithoutprofiles.Insection7,wepresentcomparativeevaluations,demonstratingthecompetitivenessoftheexpandedandprofile-enrichedlexicon,aswellastheeffective-nessoftheexpansionandenrichmentparadigmpre-sentedherefordifferentsubjectivitylexicons,dif-ferentlexicalexpansionmethods,andinadifferentdomainofapplication(productreviews).2BuildingSubjectivityLexiconsThegoalofoursentimentanalysisprojectistoallowfortheidentificationofsentimentinsentencesthatappearinessayresponsestoavarietyoftasksde-signedtotestEnglishproficiencyinbothnative-andnon-native-speakerpopulationsinastandardizedas-sessmentaswellasinaninstructionalsettings.Inordertoallowforthefutureuseofthesentimentanalyzerinaproprietoryproductandtoensureitsfittothetest-takeressaydomain,webeganourworkwiththeconstructionofaseedlexiconrelyingonourmaterials(section2.1).Wethenusedastatisti-calparaphrasingsystemtoexpandtheseedlexicon(section2.2).2.1SeedLexiconInordertoinformtheprocessoflexiconconstruc-tion,werandomlysampled5,000essaysfromacor-pusofabout100,000essayscontainingwritingsam-plesacrossmanytopics.Essayswereresponsestoseveraldifferentwritingassignments,includinggraduateschoolentranceexams,non-nativeEnglishspeakerproficiencyexams,andprofessionallicen-sureexams.Ourseedlexiconisacombinationof(1)positiveandnegativesentimentwordsmanuallyselectedfromafulllistofwordtypesinthesedata,y(2)wordsmarkedinasmall-scaleannotationofasampleofsentencesfromthesedataforallposi-tiveandnegativewords.Amoredetaileddescrip-tionoftheconstructionofseedlexiconcanbefoundinBeigmanKlebanovetal(2012).Theseedlexi-concontains749singlewords,406positiveand343negative.2.2ExpandedLexiconWeusedapivot-basedlexicalandphrasalpara-phrasegenerationsystem(MadnaniandDorr,2013).Theparaphraserimplementsthepivot-basedmethodasdescribedbyBannardandCallison-Burch(2005)withseveraladditionalfilteringmechanismstoin-creasetheprecisionoftheextractedpairs.Thepivot-basedmethodutilizestheinherentmonolin-gualsemanticknowledgefrombilingualcorpora:WefirstidentifyphrasalcorrespondencesbetweenEnglishandagivenforeignlanguageF,thenmapfromEnglishtoEnglishbyfollowingtranslationunitsfromEnglishtotheotherlanguageandback.Forexample,ifthetwoEnglishphrasese1ande2bothcorrespondtothesameforeignphrasef,thentheymaybeconsideredtobeparaphrasesofeachotherwiththefollowingprobability:pag(e1|e2)≈p(e1|F)pag(F|e2)IfthereareseveralpivotphrasesthatlinkthetwoEnglishphrases,thentheyareallusedincomputingtheprobability:pag(e1|e2)≈Xf0p(e1|f0)pag(f0|e2)SeedExpansionSeedExpansionabuseexploitationcostlyonerousaccusereproachdangerousunsafeanxietydisquietimprovereinforceconflictcrisisinvaluablepreciousTable1:Examplesofparaphraserexpansions.SomeexamplesofexpansionsgeneratedbytheparaphraserareshowninTable1.MoredetailsaboutthiskindofapproachcanbefoundinBan-nardandCallison-Burch(2005).WeusetheFrench-Englishparallelcorpus(approximately1.2millionsentences)fromthecorpusofEuropeanparliamen-taryproceedings(Koehn,2005)asthedataonwhichpivotingisperformedtoextracttheparaphrases.However,thebaseparaphrasesystemissusceptible
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
101
tolargeamountsofnoiseduetotheimperfectbilin-gualwordalignments.Therefore,weimplementad-ditionalheuristicsinordertominimizethenum-berofnoisyparaphrasepairs(MadnaniandDorr,2013).Forexample,onesuchheuristicfiltersoutpairswhereafunctionwordmayhavebeeninferredasaparaphraseofacontentword.Forthelexiconexpansionexperimentreportedhere,weusethetop15single-wordparaphrasesforeverywordfromtheseedlexicon,excludingmorphologicalvariantsoftheseedword.Thisprocessresultsinanexpandedlexiconof2,994differentwords,1,666positiveand1,761negative(433wordsareinboththepositiveandthenegativelists).Theexpandedlexiconin-cludestheseedlexicon.3InducingsentimentprofilesLetγwbethesentimentprofileofthewordw.γw=(pposw,pnegw,pneuw)(1)whereΣi∈{posición,neg,neu}piw=1.Thus,asentimentprofileofawordisessentiallya3-sidedcoin,cor-respondingtoitsprobabilityofcomingoutpositive,negative,andneutral,respectively.3.1EstimatingsentimentprofilesOurgoalistoestimatetheprofileusingoutcomesofmultipletrialsasfollows.Foreveryword,apersonisshownthewordandaskedwhetheritispositive,negative,orneutral.Aperson’sdecisionismodeledasflippingthecoincorrespondingtotheword,andrecordingtheoutcome–positive,negative,orneu-tral.WerunN=20suchtrialsforeverywordintheexpandedlexiconusingtheCrowdFlowercrowd-sourcingsite,4foratotalcostof$800.Weusemaxi-mumlikelihoodestimateofsentimentprofile:ˆpiw=niw(2)whereniwistheproportionofNtrialsonthewordwthatfellincelli∈{posición,neg,neu}.Table2showssomeestimatedprofiles.FollowingGoodman(1965)andQuesenberryandHurst(1964),wecalculateconfidenceintervalsfortheparameterspiw:(ˆpiw)−=(B+2niw−T)/(2(N+B))(3)4www.crowdflower.comWordˆpposwˆpneuwˆpnegwforceful00.150.85resolute0.80.150.05peculiar0.050.150.8remarkable100anxiety001concern0.250.40.35absurd001laughable0.50.050.45deadly001fateful0.250.450.3consequence0.050.150.8outcome0.150.850Table2:Examplesofestimatedsentimentprofiles.Wordsingrayareexpansionsgeneratedfromwordsintheprecedingrow;notethedifferenceintheprofiles.(ˆpiw)+=(B+2niw+T)/(2(N+B))(4)whereT=qB[B+4niw(N−niw)/norte])(5)Forconfidenceαthatallpiw,i∈{posición,neg,neu}aresimultaneouslywithintheirrespectiveintervals,thevalueofBisdeterminedastheupperα/3×100thpercentileoftheχ2distributionwithonedegreeoffreedom.Weuseα=0.1,resultinginB=4.55.Theresultingintervalisabout0.2aroundtheestimatedvaluewhenˆpiwiscloseto0.5,andsomewhatnar-rowerforˆpiwcloserto0or1.Wewillusethisinfor-mationwheninducingfeaturesfromtheprofiles.3.2SentimentdistributionsofthelexiconsTheestimatedsentimentprofilesperwordallowustovisualizethedistributionsofthetwolexicons.InFigure1,weplotthenumberofentriesinthelexi-conasafunctionofthedifferenceinpositiveandnegativepartsoftheprofile,in0.2-widebins.Thus,awordwwouldbeinthesecond-leftmostbinif−0.8<(ˆpposw−ˆpnegw)<−0.6.Whiletheexpansionprocessmorethandoublesthenumberofwordsinthehighestbinsforboththepositiveandthenegativepolarity,itclearlyintroducesalargenumberofwordsinthelow-andmediumbinsintothelexicon.Itisinthissensethattheexpansionprocessisnoisy;appa-rently,seedwordswithclearandstrongpolarity l D o w n o a d e d f r o m h t t p : / / d i r mi C t . metro i t . mi d tu / t a C yo / yo a r t i C mi - pag d F / d oh i / . 1 0 1 1 6 2 / t yo a C _ a _ 0 0 2 1 3 1 5 6 6 6 2 5 / / t yo a C _ a _ 0 0 2 1 3 pag d . F b y gramo tu mi s t t oh norte 0 7 S mi pag mi metro b mi r 2 0 2 3 102 1020040060080010001200−1.0−0.50.00.51.02.2020040060080010001200−1.0−0.50.00.51.03.2020040060080010001200−1.0−0.50.00.51.04.2.1020040060080010001200−1.0−0.50.00.51.05.2020040060080010001200−1.0−0.50.00.51.06.2020040060080010001200−1.0−0.50.00.51.07.2.1020040060080010001200−1.0−0.50.00.51.08.2020040060080010001200−1.0−0.50.00.51.09.2.1020040060080010001200−1.0−0.50.00.51.010.2.1020040060080010001200−1.0−0.50.00.51.011.2.1020040060080010001200−1.0−0.50.00.51.012.2.1020040060080010001200−1.0−0.50.00.51.013.2020040060080010001200−1.0−0.50.00.51.014.2.1020040060080010001200−1.0−0.50.00.51.01020040060080010001200−1.0−0.50.00.51.02.2020040060080010001200−1.0−0.50.00.51.03.2020040060080010001200−1.0−0.50.00.51.04.2.1020040060080010001200−1.0−0.50.00.51.05.2020040060080010001200−1.0−0.50.00.51.06.2020040060080010001200−1.0−0.50.00.51.07.2.1020040060080010001200−1.0−0.50.00.51.08.2020040060080010001200−1.0−0.50.00.51.09.2.1020040060080010001200−1.0−0.50.00.51.010.2.1020040060080010001200−1.0−0.50.00.51.011.2.1020040060080010001200−1.0−0.50.00.51.012.2.1020040060080010001200−1.0−0.50.00.51.013.2020040060080010001200−1.0−0.50.00.51.014.2.1020040060080010001200−1.0−0.50.00.51.0Figure1:Sentimentdistributionsfortheseed(izquierda)andtheexpanded(bien)lexicons.areoftenexpandedintolowintensity,neutral,orambiguousones,asinpairslikeabsurd/laughable,deadly/fateful,anxiety/concernshowninTable2.4RelatedWorkThemostpopularseedexpansionmethodsdiscussedintheliteraturearebasedonWordNet(Molinero,1995)oranotherlexicographicresource,ondis-tributionalsimilaritywiththeseeds,oronamix-turethereof(Cruzetal.,2011;Baccianellaetal.,2010;Velikovichetal.,2010;Qiuetal.,2009;Mo-hammadetal.,2009;EsuliandSebastiani,2006;KimandHovy,2004;AndreevskaiaandBergler,2006;HuandLiu,2004;KanayamaandNasukawa,2006;StrapparavaandValitutti,2004;Kampsetal.,2004;Takamuraetal.,2005;TurneyandLittman,2003;HatzivassiloglouandMcKeown,1997).Theparaphrase-basedexpansionmethodisinthedis-tributionalsimilaritycamp;wealsoexperimentedwithWordNet-basedexpansionasdescibedinsec-tion7.2.Thetaskofassigningsentimentprofilestowordsinasentimentlexiconhasbeenaddressedinthelite-rature.SentiWordNetassignsprofilestoallwordsinWordNetbasedonapropagationalgorithmfromasmallseedsetmanuallyannotatedbyasmallnum-berofjudges(Baccianellaetal.,2010;Cerinietal.,2007).AndreevskaiaandBergler(2006)usegraphpropagationalgorithmsonWordNettoassigncen-tralityscoresinpositiveandnegativecategories;asimilarapproachbasedonweb-scaleco-occurrencegraphsisdiscussedinVelikovichetal(2010).Thel-walletal(2010)manuallyannotatedasetofwordsforstrengthofsentimentandusedmachinelearningtofine-tuneit.Taboadaetal(2011)producedanexpertannotationoftheirlexiconwithstrengthofsentiment.SubasicandHuettner(2001)manuallybuiltanaffectlexiconwithintensities.WiebeandRiloff(2005)classifedlexiconentriesintoweaklyandstronglysubjective,basedontheirrelativefre-quencyofappearanceinsubjectiveversusobjectivecontextsinalargeannotateddataset.Oursentimentprofilesarebestthoughtofasrelativelyfine-grainedpriorsforthesentimentex-pressedbyagivenwordout-of-context.Thesere-flectamixtureofstrengthofsentiment(ˆpposgood>ˆpposdecent),contextualambiguity(concerncanbein-terpretedassimilartoworryortocare,asin“Herconditionwascausingconcern”versus“Heshowedgenuineconcernforher”),anddominanceofapo-larconnotation(abandonisˆpneg=1;ithasanegativeovertoneeveniftheactualsenseisnotthatofdesertbutofvacate,asin“Youmustabandonyouroffice”).Tothebestofourknowledge,thispaperpresentsthefirstattempttointegratejudgementsobtainedthroughcrowdsourcingonalargescaleintoasen-timentlexicon,showingtheeffectivenessofthislexicon-enrichmentprocedureforasentimentclas-sificationtask.5Usingprofilesforsentence-levelsentimentpolarityclassificationToevaluatetheusefulnessofthelexicons,weusethemtogeneratefeaturesformachinelearningsys-tems,andcompareperformanceon3-waysentence-levelsentimentpolarityclassification.Toensurero-bustnessoftheobservedtrends,weexperimentwithanumberofmachinelearningalgorithms:SVMLinearandRBF,Na¨ıveBayes,LogisticRegression(usingWEKA(Halletal.,2009)),andc5.0DecisionTrees(Quinlan,1993).55.1DataWegeneratedthedatafortrainingandtestingthemachinelearningsystemsasfollows.Weusedour5availablefromhttp://rulequest.com/
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
103
poolof100,000essaystosampleasecond,non-overlappingsetof5,000essays,sothatnoessayusedforlexicondevelopmentappearsinthisset.Fromtheseessays,werandomlysampled550sen-tences,andsubmittedthemtosentimentpolarityan-notationbytwoexperiencedresearchassistants;50double-annotatedsentencedshowedκ=0.8.TESTsetcontainsthe43agreeddouble-annotatedsen-tences,andadditional238sampledfromthe500single-annotatedsentences,281sentenceintotal.ThecategorydistributionintheTESTsetis46.6%neutral,32.4%positivo,and21%negative.TheTRAINsetcontainstheremainingsentences,pluspositive,negative,andneutralsentencesanno-tatedduringlexicondevelopment,forthetotalof1,631sentences.ThecategorydistributioninTRAINis39%neutral,35%positivo,26%negative.5.2FromlexiconstofeaturesOurgoalistoevaluatetheimpactofsentimentpro-filesonsentence-levelsentimentpolarityclassifica-tionfortheseedandtheexpandedlexicons,whilealsolookingforthemosteffectivewaystorepresentthisinformationformachinelearners.Weimplementtwobaselinesystems.Onepro-videsthemachinelearnerwiththemostdetailedin-formationcontainedinalexicon:BL-fullhas2fea-turesforeverylexiconword,takingthevalues(1,0)forpositivematchinasentence,(0,1)–fornegative,(1,1)forawordinbothpositiveandnegativepartsofthelexicon,y(0,0)otherwise.Thesecondbaselineprovidesthemachinelearnerwithonlysummaryinformationabouttheoverallsentimentofthesentence.BL-sumusesonly2fea-tures:(1)thetotalcountofpositivewordsinthesentence;(2)thetotalcountofnegativewordsinthesentence,accordingtothegivenlexicon.Forthesentiment-enrichedruns,weconstructanumberofrepresentations:Int-full,Int-sum,Int-bin,andInt-c.Int-fullandInt-sumareparalleltotherespectivebaselinesystems.Int-fullrepresentseachlexiconwordas2featurescorrespondingtotheword’sestimatedˆpposwandˆpnegw,providingthemostdetailedinformationtothemachinelearner.IntheInt-sumcondition,weuseˆpposwandˆpnegwforeverywordtoinduce2features:(1)thesumofpositiveprobabilitiesofallwordsinthesentence;(2)thesumofnegativeprobabilitiesforallwordsinthesentence,accordingtothegivenlexicon.ForInt-binruns,weusebinsofthesizeof0.2–halfofthemaximalconfidenceinterval–togrouptogetherwordswithcloseestimates.Weproduce10features.Forpositivebins,the5featurescountthenumberofwordsinthesentencethatfallinbini,1≤i≤5,respectively,thatis,wordswith0.2(i−1)<ˆpposw≤0.2i.Bin1alsoincludeswordswithˆpposw=0,sincethesecannotbedistinguishedwithhighconfidencefromˆpposw=0.1.Notethatwedonotprovideascale,wemerelyrepresentdifferentrangeswithdifferentfeatures.Thisshouldallowthemachinelearnerstheflexibilitytoweightthediffe-rentbinsdifferentlywheninducingclassifiers.TheInt-cconditionrepresentsacoarse-grainedsetting.Weproduce4features,twoforeachpola-rity:(1)thenumberofwordssuchthat0≤ˆpposw<0.4;(2)thenumberofwordssuchthat0.4≤ˆpposw≤1;similarityforthenegativepolarity.Table3summarizesconditionsandfeatures.Cond.#FFeatureDescriptionBL-full2|L|(1Lpos∩S(w),1Lneg∩S(w))BL-sum2f1=|{w:w∈Lpos∩S}|f2=|{w:w∈Lneg∩S}|Int-full2|L|(ˆpposw,ˆpnegw)∀w∈AInt-sum2(Σw∈Aˆpposw,Σw∈Aˆpnegw)Int-bin10f1=|{w∈A:0≤ˆpposw≤0.2}|...f10=|{w∈A:0.8<ˆpnegw≤1}|Int-c4f1=|{w∈A:0≤ˆpposw<0.4}|...f4=|{w∈A:0.4≤ˆpnegw≤1}|Table3:Descriptionofconditions.Column2showsthenumberoffeatures.Incolumn3:1isanindicatorfunc-tion;Lisalexicon;Lposisthepartofthelexiconcon-tainingpositivewords(samewithnegatives);Sisasen-tenceforwhichafeaturevectorisbuilt;A=L∩S.Forallw∈L−Sinthe-fullconditions,wisrepresentedwith(0,0).6ResultsTable4showsclassificationaccuraciesfor5ma-chinelearningsystemsacross6conditions,fortheseedandtheexpandedlexicons.LetBLdenotethebest-performingbaseline(BL- yo D oh w norte oh a d mi d F r oh metro h t t pag : / / d i r mi C t . metro i t . mi d tu / t a C yo / yo a r t i C mi - pag d F / d oh i / . 1 0 1 1 6 2 / t yo a C _ a _ 0 0 2 1 3 1 5 6 6 6 2 5 / / t yo a C _ a _ 0 0 2 1 3 pag d . F b y gramo tu mi s t t oh norte 0 7 S mi pag mi metro b mi r 2 0 2 3 104 MachineConditionSeedExpandedLearner–Majority0.4660.466c5.0BL-full0.4410.498BL-sum0.5120.480Int-full0.4410.498Int-sum0.5660.616Int-bin0.5870.641Int-c0.5300.577SVMBL-full0.4660.466RBFBL-sum0.5270.495Int-full0.4660.466Int-sum0.5480.601Int-bin0.5730.644Int-c0.5300.562SVMBL-full0.5840.566LinearBL-sum0.5090.502Int-full0.5800.609Int-sum0.6010.580Int-bin0.5730.630Int-c0.5690.569LogisticBL-full0.5450.509RegressionBL-sum0.5450.509Int-full0.5340.502Int-sum0.5550.584Int-bin0.5840.616Int-c0.5450.577Na¨ıveBL-full0.5980.584BayesBL-sum0.5090.473Int-full0.5980.580Int-sum0.5450.605Int-bin0.5590.626Int-c0.5370.601Table4:ClassificationaccuraciesonTESTset.Majo-ritybaselinecorrespondstoclassifyingallsentencesasneutral.Thebestperformanceisboldfaced.LetBLstandforthebest-performingbaseline(BL-fullorBL-sum)foracombinationofmachinelearnerandlexicon.WeuseWilcoxonSigned-Ranktest,reportingthenum-berofsignedranks(norte)andthesumofsignedranks(W.).Statisticallysignificantresultsatp=0.05are:Int-sum>BL(N=10,W=43);Int-bin>BL(N=10,W=48);Int-bin>Int-sum(N=10,W=43);Int-bin>Int-full(N=10,W=47);Int-sum>Int-full(N=10,W=37);Int-bin>Int-c(N=10,W=55);Int-sum>Int-c(N=10,W=55);Ex-panded>SeedunderIntcondition(includesInt-full,Int-sum,Int-bin,Int-c)(N=18,W=152,z=3.3).DifferencesbetweenInt-full,Int-c,andBLarenotsignificant.fullorBL-sum)foracombinationofmachinelearnerandlexicon.Theresultsshowthat(1)Int-bin>Int-sum>BL=Int-c=Int-full;(2)Ex-panded>SeedunderIntcondition.Allinequalitiesarestatisticallysignificantatp=0.05(seecaptionofTable4fordetails).Primero,boththeseedandtheexpandedlexiconsbenefitfromprofileenrichment,a pesar de,aspre-dicted,theexpandedlexiconyieldslargergainsduetoitsmorevariedprofiles:Theseedlexicongainsupto15%inaccuracy(c5.0BL-sumvsInt-bin),whiletheexpandedlexicongainsupto30%,asSVMRBFscoresgoupfrom0.495to0.644.Second,observethatprofilingallowstheex-pandedlexicontoleverageitsimprovedcoverage:Whileitisinferiortothebestbaselinerunwiththeseedlexiconforallsystems,itsucceedsinimpro-vingtheseedlexiconaccuraciesby5%-12%acrossthedifferentsystemsfortheInt-binruns.Thebestrunoftheexpandedlexicon(Int-binforSVMRBF)improvesuponthebestrunoftheseedlexicon(Int-sumforSVM-linear)by7%,demonstratingthesuc-cessoftheparaphraser-basedexpansiononcepro-filesaretakenintoaccount.Overall,comparingthebestbaselinefortheseedlexiconwithInt-bincon-ditionoftheexpandedlexicon,weobserveanim-provementbetween5%(0.598to0.626forNa¨ıveBayes)and25%(0.512to0.641forc5.0),provingtheeffectivinessoftheparaphrase-basedexpansionwithprofileenrichmentparadigm.Third,representingprofilesusing10bins(Int-bin)providesasmallbutconsistentimprovementoverthesummaryrepresentation(Int-sum)thatsumspositivityandnegativityofthesentiment-bearingwordsinasentence,overacoarse-grainedrepresen-tation(Int-c),aswellasoverthefull-informationrepresentation(Int-full).EvenNa¨ıveBayesandSVMlinear,knowntoworkwellwithlargefeaturesets,showbetterperformanceintheInt-bincon-ditionfortheexpandedlexicon.Theresultsindi-catethatanintermediatedegreeofdetail–betweensummary-onlyandcoarse-grainedrepresentationontheonehandandfull-informationrepresentationontheother–isthebestchoiceinoursetting.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
105
7ComparativeEvaluationsInthissection,wepresentcomparativeevaluationsoftheworkpresentedinthispaperwithrespecttorelatedwork.Thissectionshowsthattheparaphraseexpansion+profileenrichmentsolutionproposedinthispaperiseffectiveforourtaskbeyondoff-the-shelfsolutions,andthatitseffectivenessgeneralizestosentimentanalysisinadifferentdomain.Wealsoshowthatprofileenrichmentcanbeeffectivelycou-pledwithothermethodsoflexicalexpansion,al-thoughtheparaphraser-basedexpansionreceivesalargerboostinperformancefromprofileenrichmentthanthealternativeexpansionmethodsweconsider.Insection7.1,wedemonstratethattheparaphrase-basedexpansionandprofileenrich-mentyieldsuperiorperformanceonourdatarelativetostate-of-artsubjectivitylexicons–Opin-ionFinder,GeneralInquirer,andSentiWordNet.Insection7.2,weshowthatprofileenrichmentcanbeeffectivelycoupledwithothermethodsoflexicalexpansion,suchasaWordNet-basedexpansionandanexpansionthatutilizesLin’sdistributionalthesaurus.However,wefindthattheparaphraser-basedexpansionbenefitsthemostfromprofileenrichment,andattainsbetterperformanceonourdatathanthealterantiveexpansionmethods.Insection7.3,weshowthattheparaphrase-basedexpansionandprofileenrichmentparadigmiseffectiveforothersubjecitivylexiconsonotherdata.Weuseadatasetofproductreviewsannotatedforsentence-levelpositivityandnegativityasnewdataforevaluation(HuandLiu,2004).WeusesubsetsofOpinionFinder,GeneralInquirer,andsentimentlexiconfromHuandLiu(2004).Wedemonstratethatparaphrase-basedexpansionandprofileenrichmentimprovetheaccuracyofsentimentclassificationofproductreviewsforeverylexiconandmachinelearnercombination;themagnitudeofimprovementis5%onaverage.7.1CompetitivenessoftheExpandedLexiconHadwebeenabletousetheOpinionFinderortheGeneralInquirerlexicons(OFLandGIL)as-is,howwouldtheresultshavecomparedtothoseattainedusingourlexicons?Weperformedthebaselinerunswithbothlexicons;OFLaccuracieswere0.544-0.594acrossmachinelearningsystems,GIL’s–0.491-0.584(seeGILcolumninTable5).WealsoexperimentedwithusingtheweaksubjandstrongsubjlabelsinOFLassomewhatparalleldistinctionstotheonespresentedhere(seesec-tion4–RelatedWork–foramoredetaileddiscus-sion).Weused(1,0,0)profileforstrongpositives,(0.3,0,0.7)forweakpositives,(0,1,0)forstrongneg-atives,y(0,0.3,0.7)forweaknegatives,andranallthefeaturerepresentationsdiscussedinsection5.2.Table5columnOFLshowsthebestrunforeverymachinelearningsystem,acrossthedifferentfeaturerepresentations,andchoosingthebetterperformingrunbetweenvanillaOFLandtheversionenrichedwithweak/strongdistinctions.MachineSeedOFLGILSWNExp.LearnerBLc5.00.5120.5980.4910.5160.641SVM-RBF0.5270.5940.4950.5200.644SVM-lin.0.5840.5940.5800.5690.630Log.Reg.0.5450.5980.5410.5370.616Na¨ıveB.0.5980.5730.5840.5870.626Table5:Performanceofdifferentlexiconsonessaydatausingvariousmachinelearningsystems.Foreachsys-temandlexicon,thebestperformanceacrosstheapplica-blefeaturerepresentationsfromsection5.2andthevari-ants(seetext)isshown.SeedBLcolumnshowsthebestbaselineperformanceofourseedlexicon–beforepara-phraserexpansionandprofileenrichmentwereapplied.Exp.columnshowstheperformanceofInt-binfeaturerepresentationfortheexpandedlexiconafterprofileen-richment.Additionally,weexperimentedwithSentiWord-Net(Baccianellaetal.,2010).SentiWordNetisaresourceforopinionminingbuiltontopofWord-Net,whichassignseachsynsetinWordNetascoretriplet(positivo,negative,andobjective),indicatingthestrengthofeachofthesethreepropertiesforthewordsinthesynset.TheSentiWordNetannotationswereautomaticallygenerated,startingwithasetofmanuallylabeledsynsets.Currently,SentiWordNetincludesanautomaticannotationforallthesynsetsinWordNet,totalingmorethan100,000words.Itisthereforethelargest-scalelexiconwithintensityinformationthatiscurrentlyavailable.SinceSentiWordNetassignsscorestosynsetsandsinceourdataisnotsense-tagged,weinducedSen-
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
106
tiWordNetscoresinthefollowingways.Wepart-of-speechtaggedourtrainandtestdatausingStan-fordtagger(Toutanovaetal.,2003).Entonces,wetooktheSentiWordNetscoresforthetopsenseforthegivenpart-of-speech(SWN-1).Inadifferentvari-ant,wetookaweightedaverageofthescoresforthedifferentsenses,usingtheweightingalgorithmpro-videdonSentiWordNetwebsite6(SWN-2).Table5columnSWNshowsthebestperformancefiguresbetweenSWN-1andSWN-2,acrossthefeaturerep-resentationsinsection5.2.ThecomparativeresultsinTable5clearlyshowthatwhileourvanillaseedlexiconperformscom-parablytooff-the-shelflexiconsonourdata,theparaphraser-expandedlexiconwithsentitmentpro-filesoutperformsOpinionFinder,GeneralInquirer,andSentiWordNet.7.2SentimentProfileEnrichmentwithOtherLexicalExpansionMethodsWepresentedanovellexiconexpansionmethodusingaparaphrasingsystem.Wealsoexperimentedwithmorestandardmethods,usingWordNetanddistributionalsimilarity(BeigmanKlebanovetal.,2012;EsuliandSebastiani,2006;KimandHovy,2004;AndreevskaiaandBergler,2006;HuandLiu,2004;KanayamaandNasukawa,2006;StrapparavaandValitutti,2004;Kampsetal.,2004;Takamuraetal.,2005;TurneyandLittman,2003;Hatzivas-siloglouandMcKeown,1997).Específicamente,weim-plementedaWordNet(Molinero,1995)basedexpan-sionthatusesthe3mostfrequentsynonymsofthetopsenseoftheseedword(WN-e).Wealsoimple-mentedamethodbasedondistributionalsimilarity:UsingLin’sproximity-basedthesaurus(lin,1998)trainedonourin-houseessaydataaswellasonwell-formednewswiretexts,wetookallwordswiththeproximityscore>1.80toanyoftheseedlexiconwords(Lin-e).Justliketheparaphraserlexicon,bothperformworsethantheseedlexiconin9outof10baselineruns(BL-sumandBl-fullconditionsforthe5machinelearners).Totesttheeffectofprofileenrichment,allwordsinWN-eandLin-eunderwentprofileestimationasdescribedinsection3.1,yieldinglexiconsWN-e-pandLin-e-p,respectively.Figure2showsthedistri-6http://sentiwordnet.isti.cnr.it/,under“Samplecode.”1020040060080010001200−1.0−0.50.00.51.02.2020040060080010001200−1.0−0.50.00.51.03.2020040060080010001200−1.0−0.50.00.51.04.2.1020040060080010001200−1.0−0.50.00.51.05.2020040060080010001200−1.0−0.50.00.51.06.2020040060080010001200−1.0−0.50.00.51.07.2.1020040060080010001200−1.0−0.50.00.51.08.2020040060080010001200−1.0−0.50.00.51.09.2.1020040060080010001200−1.0−0.50.00.51.010.2.1020040060080010001200−1.0−0.50.00.51.011.2.1020040060080010001200−1.0−0.50.00.51.012.2.1020040060080010001200−1.0−0.50.00.51.013.2020040060080010001200−1.0−0.50.00.51.014.2.1020040060080010001200−1.0−0.50.00.51.0Figure2:SentimentprofiledistributionsforLin-e-p(izquierda)andWN-e-p(bien)lexicons.butions.WN-e-pandLin-e-pexhibitsimilartrendstothoseoftheparaphraser.SubstitutingWN-e-pforExpandeddatainTable4,wefindthesamere-lationshipsbetweenthedifferentfeaturesets:Int-bin>Int-sum>Int-full=BL.ForLin-e-p,Int-sumde-teriorates:Int-bin>Int-sum=Int-full=BL.Forthe20runsintheIntcondition,Paraphraser>WN-e-p>Lin-e-p.7Notethatthisisalsotheorderoflexi-consizes:Lin-eisthemostconservativeexpan-sion(1,907palabras),WN-eisthesecondwith2,527words,andthelexiconexpandedusingparaphrasingisthelargestwith2,994words.Table6showstheperformanceofLin-e-p,WN-e-p,andoftheEx-pandedlexiconfromTable4usingtheInt-binfea-turerepresentation.Theaveragerelativeimprove-mentsoverthebestbaselinerangebetween6.6%to14.6%forthedifferentexpansionmethods.Profileinductionappearstobeapowerfullexiconclean-upprocedurethatworksespeciallywellwithmoreaggressiveandthuspotentiallynoisierexpan-sions:Themachinelearnersdepresslow-intensityandambiguousexpansions,therebyallowingtheeffectiveutilizationoftheimprovedcoverageofsentiment-bearingvocabulary.7.3EffectivenessoftheParaphraseExpansionwithProfileEnrichmentParadigminaDifferentDomainInordertocheckwhethertheparaphrase-basedex-pasionandprofileenrichmentparadigmdiscussedinthispapergeneralizestoothersubjectivitylexicons7All>aresignficantatp=0.05usingWilcoxontest.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
107
MachineSeedLin-e-pWN-e-pExp.LearnerBLc5.00.5120.5840.6160.641SVM-RBF0.5270.5980.6010.644SVM-lin.0.5840.5770.5690.630Log.Reg.0.5450.5870.5800.616Na¨ıveB.0.5980.5910.6230.626Av.Gain0.0660.0850.146Table6:PerformanceofWordNet-based,Lin-based,andParaphraser-basedexpansionswithprofileenrichmentintheInt-bincondition.SeedBLcolumnshowsthebestbaselineperformanceoftheseedlexicon–beforeexpan-sionandprofileenrichmentwereapplied.ThelastlineshowstheaveragerelativegainoverthebestbaselinecalculatedasAGlex=Σm∈MLexm−SeedBLmSeedBLm,whereM={c5.0,SVM-RBF,SVM-linear,LogisticRegres-sion,Na¨ıveBayes},andlex∈{Lin-e-p,Wn-e-p,Exp}.anddomainsofapplication,weexperimentedwithaproductreviewsdataset(HuandLiu,2004)andadditionallexiconsasfollows.7.3.1LexiconsWeusetheOpinionFinderandGeneralInquirerlexicons(OFLandGIL)asbefore,aswellasthelexiconofpositiveandnegativesentimentandopinionwordsavailablealongwith(HuandLiu,2004)productreviewsdataset–HL.8Sinceeachoftheselexiconscontainsmorethan3,000words,enrichmentofthefulllexiconswithprofilesisbeyondthefinancialscopeofourproject.Wethereforerestricteachofthelexiconstothesizeoftheiroverlapwithourseedlexicon(see2.1);theoverlapshavebetween415and467words.Thesere-strictedlexiconsareourinitiallexiconsforthenewexperimentthatparalleltheroleoftheseedlexiconintheexperimentsonessaydata.Foreachofthe3initiallexiconsL,L∈{OFL,GIL,HL},wefollowtheparaphrase-basedexpan-sionasdescribedinsection2.2.Thisresultsinabout4.5-foldexpansionofeachlexicon,thenewlexi-consL-e,L∈{OFL,GIL,HL},numberingbetween2,015and2,167words.Boththeinitialandtheex-pandedlexiconsnowundergoprofileenrichmentasdescribedinsection3.1,producinglexiconsL-pand8http://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html#lexiconL-e-p,L∈{OFL,GIL,HL}.7.3.2DataWeusethedatasetfromHuandLiu(2004)9thatcontainsreviewsof5productsfromamazon.com:twodigitalcameras,aDVDplayer,anMP3player,andacellularphone.Thereviewsareannotatedatsentencelevelwithalabelthatdesrcibesthepar-ticularfeaturethatisthesubjectofthepositiveornegativeevaluationandthepolarityandextentoftheevaluation.Forexample,thesentence“Thephonebookisveryuser-friendlyandthespeaker-phoneisexcellent”islabeledasPHONEBOOK[+2],SPEAKERPHONE[+2],whilethesentence“Iamboredwiththesilverlook”islabeledLOOK[−1].Weusedallsentencesthatwerelabeledwithanumeri-calscoreforatleastonefeature,removingasmallnumberofsentenceslabeledwithbothpositiveandnegativescoresfordifferentfeatures.10Weusedthesignofthenumericalscoretolabelthesentencesaspositiveornegative.Theresultingdatasetconsistsof1,695sentences,1,061positiveand634nega-tive;accuracyforamajoritybaselineonthisdatasetis0.626.Ourexperimentsonthisdatasetaredoneusing5-foldcross-validation.7.3.3ResultsTable7showsclassificationaccuraciesfortheproductreviewdatausingdifferentlexiconsandma-chinelearners.Weobservethatthecombinationofparaphrase-basedexpansionandprofileenrichment(L-e-pcolumninthetable)resultedinanimprovedperformanceovertheinitiallexicon(Lcolumninthetable)inallcases,withtheaveragegainof5%inaccuracy.Furthermore,thecontributionsoftheexpansionandtheprofileenrichmentarecomplementary,sincetheircombinationperformsbetterthaneachiniso-lation.Wenotethatprofileenrichmentalonefortheinitiallexicondidnotyieldanimprovement.Thiscanbeexplainedbythefactthattheinitiallexiconsarehighlypolar,soprofilesprovidelittleadditionalinformation:Thepercentageofwordswithˆppos≥0.8orˆpneg≥0.8is84%,86%and91%forGIL,9http://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html#datasets,thelinkunder“CustomerReviewDatasets(5products)”10suchas“Theheadsetthatcomeswiththephonehasgoodsoundvolumebutithurtstheearslikeyoucannotimagine!"
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
108
MachineLexiconVariantLearnerLL-pL-eL-e-pL=OFL∩Seed,|l|=467,|L-e|=2,167c5.00.6630.6700.6910.704SVM-RBF0.6680.6760.6930.714SVM-lin.0.6750.6700.6880.696Log.Reg.0.6660.6580.6930.698Na¨ıveB.0.6680.6680.6860.695L=GIL∩Seed,|l|=415,|L-e|=2,015c5.00.6440.6580.6630.686SVM-RBF0.6500.6650.6530.683SVM-lin.0.6650.6650.6770.681Log.Reg.0.6640.6580.6780.694Na¨ıveB.0.6690.6660.6780.703L=HL∩Seed,|l|=434,|L-e|=2,054c5.00.6760.6750.6890.706SVM-RBF0.6730.6740.7000.713SVM-lin.0.6760.6640.7030.710Log.Reg.0.6680.6610.7030.699Na¨ıveB.0.6680.6720.6970.697Table7:Accuraciesonproductreviewdata.Foreachma-chinelearnerandlexicon,thebestbaselineperformanceisshownasLfortheinitiallexiconandasL-efortheparaphrase-expandedlexicon.L-pandL-e-pshowtheperformanceofInt-binfeaturesetontheprofile-enrichedinitialandparaphrase-expandedlexicons,respectively.ThethreeinitiallexiconsLareOpinionFinder(OFL),GeneralInquirer(GIL),y(HuandLiu,2004)(HL),eachintersectedwithourseedlexicon.Sizesoftheintialandexpandedlexiconsareprovided.OFL,andHL-derivedlexicons,respectively.Incon-trast,fortheexpandedlexicons,thesepercentagesare51%,53%,and56%;theselexiconsbenefitfromprofileenrichment.8ConclusionsWedemonstratedamethodofimprovingaseedsen-timentlexiconbyusingapivot-basedparaphrasingsystemforlexicalexpansionandsentimentprofileenrichmentusingcrowdsourcing.Profileenrich-mentaloneyieldedupto15%improvementintheperformanceoftheseedlexicononthetaskof3-waysentence-levelsentimentpolarityclassificationoftest-takeressaydata.Whilethelexicalexpansiononitsownfailedtoimproveupontheperformanceoftheseedlexicon,itbecamemuchmoreeffectiveontopofsentimentprofiles,generatinga7%perfor-manceboostoverthebestprofile-enrichedrunwiththeseedlexicon.Overall,paraphrase-basedexpan-sioncoupledwithprofileenrichmentyieldsanupto25%improvementinaccuracy.Additionally,weshowedthatourparaphrase-expandedandprofile-enrichedlexiconperformssignificantlybetteronourdatathanoff-the-shelfsubjectivitylexicons,a saber,OpinionFinder,Gen-eralInquirer,andSentiWordNet.Furthermore,ourresultssuggestthatparaphrase-basedexpansionde-rivesmorebenefitfromprofilesthantwocompetingexpansionmechanismsbasedonWordNetandonLin’sdistributionalthesaurus.Finally,wedemonstratedtheeffectivenessoftheparaphraser-basedexpansionwithprofileenrich-mentparadigmonadifferentdataset.WeusedHuandLiu(2004)productreviewdatawithsentence-levelsentimentpolaritylabels.Paraphrase-basedexpansionwithprofileenrichmentyieldedanim-provedperformanceacrossalllexiconsandmachinelearningalgorithmswetried,withanaverageim-provementrateof5%inclassificationaccuracy.Recentliteraturearguesthatsentimentpolarityisapropertyofwordsenses,ratherthanofwords(Gyamfietal.,2009;SuandMarkert,2008;WiebeandMihalcea,2006),althoughDragutetal(2012)successfullyoperatewith“mostlynegative”and“mostlypositive”wordsbasedonthepolaritydistri-butionsofwordsenses.Weplantoaddressinfutureworksensedisambiguationforwordsthathavemul-tiplesenseswithverydifferentsentiment,suchasstress,aseitheranxiety(negative)oremphasis(neu-tral).ReferencesAlinaAndreevskaiaandSabineBergler.2006.MiningWordNetforafuzzysentiment:Sentimenttagextrac-tionofWordNetglosses.InProceedingsofEACL,pages209–216,Trento,Italy.StefanoBaccianella,andreaesuli,andFabrizioSebas-tiani.2010.SENTIWORDNET3.0:AnEnhancedLexicalResourceforSentimentAnalysisandOpinionMining.InProceedingsofLREC,pages2200–2204,Malta.ColinBannardandChrisCallison-Burch.2005.Para-phrasingwithbilingualparallelcorpora.InProceed-ingsofACL,pages597–604,AnnArbor,MI.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
109
BeataBeigmanKlebanov,JillBurstein,NitinMadnani,AdamFaulkner,andJoelTetreault.2012.Build-ingsentimentlexicon(s)fromscratchforessaydata.InProceedingsofthe13thInternationalConferenceonIntelligentTextProcessingandComputationalLin-guistics(CICLing),NewDelhi,India,March.S.Cerini,V.Compagnoni,A.Demontis,M.Formentelli,andG.Gandini.2007.Micro-WNOp:Agoldstan-dardfortheevaluationofautomaticallycompiledlexi-calresourcesforopinionmining.InAndreaSanso,editor,Languageresourcesandlinguistictheory:Ty-pology,secondlanguageacquisition,pages200–210.FrancoAngeliEditore,Milano,IT.Ferm´ınL.Cruz,Jos´eA.Troyano,F.JavierOrtega,andFernandoEnr´ıquez.2011.Automaticexpansionoffeature-levelopinionlexicons.InProceedingsofthe2ndWorkshoponComputationalApproachestoSubjectivityandSentimentAnalysis,pages125–131,Portland,Oregón,June.EduardDragut,HongWang,ClementYu,PrasadSistla,andWeiyiMeng.2012.Polarityconsistencycheck-ingforsentimentdictionaries.InProceedingsofthe50thAnnualMeetingoftheAssociationforCompu-tationalLinguistics(Volume1:LongPapers),pages997–1005,JejuIsland,Korea,July.AssociationforComputationalLinguistics.AndreaEsuliandFabrizioSebastiani.2006.Determin-ingtermsubjectivityandtermorientationforopinionmining.InProceedingsofEACL,pages193–200,Trento,Italy.LeoA.Goodman.1965.OnSimultaneousConfidenceIntervalsforMultinomialProportions.Technometrics,7(2):247–254.YawGyamfi,JanyceWiebe,RadaMihalcea,andCemAkkaya.2009.Integratingknowledgeforsubjectivitysenselabeling.InProceedingsofNAACL,pages10–18,Boulder,CO.MarkHall,EibeFrank,GeoffreyHolmes,BernhardPfahringer,PeterReutemann,andIanH.Witten.2009.TheWEKADataMiningSoftware:AnUpdate.SIGKDDExplorations,11.VasileiosHatzivassiloglouandKathleenMcKeown.1997.Predictingthesemanticorientationofadjec-tives.InProceedingsofACL,pages174–181,Madrid,Spain.MinqingHuandBingLiu.2004.Miningandsummarizingcustomerreviews.InProceedingsofACMSIGKDDInternationalConferenceonKnowl-edgeDiscoveryandDataMining,pages168–177,Seattle,WA.ValentinJijkounandKatjaHofmann.2009.Gener-atingaNon-EnglishSubjectivityLexicon:RelationsThatMatter.InProceedingsofEACL,pages398–405,Athens,Greece.JaapKamps,MaartenMarx,RobertMokken,andMaartendeRijke.2004.UsingWordNettomeasuresemanticorientationofadjectives.InProceedingsofLREC,pages1115–1118,Lisbon,Portugal.HiroshiKanayamaandTetsuyaNasukawa.2006.FullyautomaticLexiconExpansionforDomain-orientedSentimentAnalysis.InProceedingsofEMNLP,pages355–363,Syndey,Australia.Soo-MinKimandEdwardHovy.2004.Determiningthesentimentofopinions.InProceedingsofCOLING,pages1367–1373,Geneva,Switzerland.PhilipKoehn.2005.EUROPARL:AParallelcorpusforStatisticalMachineTranslation.InProceedingsoftheMachineTranslationSummit.DekangLin.1998.Automaticretrievalandclusteringofsimilarwords.InProceedingsofACL,pages768–774,Montreal,Canada.TimLoughranandBillMcDonald.2011.WhenisaLi-abilitynotaLiability?TextualAnalysis,Dictionaries,and10-Ks.JournalofFinance,66:35–65.NitinMadnaniandBonnieDorr.2013.GeneratingTar-getedParaphrasesforImprovedTranslation.ACMTransactionsonIntelligentSystemsandTechnology,toappear.RadaMihalcea,CarmenBanea,andJanyceWiebe.2007.Learningmultilingualsubjectivelanguageviacross-lingualprojections.InProceedingsofACL,pages976–983,Prague,CzechRepublic.GeorgeMiller.1995.WordNet:Alexicaldatabase.CommunicationsoftheACM,38:39–41.SaifMohammad,CodyDunne,andBonnieDorr.2009.Generatinghigh-coveragesemanticorientationlexi-consfromovertlymarkedwordsandathesaurus.InProceedingsofEMNLP,pages599–608,Singapore,August.GuillaumePitelandGregoryGrefenstette.2008.Semi-automaticbuildingmethodforamultidimensionalaf-fectdictionaryforanewlanguage.InProceedingsofLREC,Marrakech,Morocco.GuangQiu,BingLiu,JiajunBu,andChunChen.2009.Expandingdomainsentimentlexiconthroughdoublepropagation.InProceedingsofthe21stinternationaljontconferenceonArtificalintelligence,IJCAI’09,pages1199–1204.C.QuesenberryandD.Hurst.1964.Largesamplesi-multaneousconfidenceintervalsformultinomialpro-portions.Technometrics,6:191–195.J.R.Quinlan.1993.C4.5:Programsformachinelear-ning.MorganKaufmannPublishers.DelipRaoandDeepakRavichandran.2009.Semi-supervisedpolaritylexiconinduction.InProceedingsofEACL,pages675–682,Athens.
yo
D
oh
w
norte
oh
a
d
mi
d
F
r
oh
metro
h
t
t
pag
:
/
/
d
i
r
mi
C
t
.
metro
i
t
.
mi
d
tu
/
t
a
C
yo
/
yo
a
r
t
i
C
mi
–
pag
d
F
/
d
oh
i
/
.
1
0
1
1
6
2
/
t
yo
a
C
_
a
_
0
0
2
1
3
1
5
6
6
6
2
5
/
/
t
yo
a
C
_
a
_
0
0
2
1
3
pag
d
.
F
b
y
gramo
tu
mi
s
t
t
oh
norte
0
7
S
mi
pag
mi
metro
b
mi
r
2
0
2
3
110
PhilipStone,DexterDunphy,MarshallSmith,andDanielOgilvie.1966.TheGeneralInquirer:AComputerApproachtoContentAnalysis.MITPress.CarloStrapparavaandAlessandroValitutti.2004.WordNet-affect:anaffectiveextensionofWordNet.InProceedingsofLREC,pages1083–1086,Lisbon,Portugal.FangzhongSuandKatjaMarkert.2008.ElicitingSubjectivityandPolarityJudgementsonWordSenses.InProceedingsofCOLING,pages825–832,Manch-ester,UK.P.SubasicandA.Huettner.2001.Affectanalysisoftextusingfuzzysemantictyping.IEEETransactionsonFuzzySystems,9(4).MaiteTaboada,JulianBrooke,MilanTofiloski,Kim-berlyVoll,andManfredStede.2011.Lexicon-BasedMethodforSentimentAnalysis.ComputationalLin-guistics,37(2):267–307.HiroyaTakamura,TakashiInui,andManabuOkumura.2005.Extractingsemanticorientationofwordsusingspinmodel.InProceedingsofACL,pages133–140,AnnArbor,MI.MikeThelwall,KevanBuckley,GeorgiosPaltoglou,DiCai,andArvidKappas.2010.Sentimentstrengthdetectioninshortinformaltext.JournaloftheAmer-icanSocietyforInformationScienceandTechnology,61(12):2544–2558.KristinaToutanova,DanKlein,ChristopherManning,andYoramSinger.2003.Feature-RichPart-of-SpeechTaggingwithaCyclicDependencyNetwork.InProceedingsofHLT-NAACL,pages252–259.PeterTurneyandMichaelLittman.2003.Measuringpraiseandcriticism:Inferenceofsemanticorientationfromassociation.ACMTransactionsonInformationSystems,21(4):315346.LeonidVelikovich,SashaBlair-Goldensohn,KerryHan-nan,andRyanMcDonald.2010.TheviabilityofWeb-derivedpolaritylexicons.InProceedingsofNAACL,pages777–785,LosAngeles,CA.JanyceWiebeandRadaMihalcea.2006.Wordsenseandsubjectivity.InProceedingsofACL,pages1065–1072,Sydney,Australia.JanyceWiebeandEllenRiloff.2005.Creatingsubjec-tiveandobjectivesentenceclassifiersfromunanno-tatedtexts.InProceedingsofCICLING(invitedpa-per),pages486–497,MexicoCity.
Descargar PDF