Operazioni dell'Associazione per la Linguistica Computazionale, vol. 5, pag. 441–454, 2017. Redattore di azioni: Marco Kuhlmann.
Lotto di invio: 4/2017; Pubblicato 11/2017.
2017 Associazione per la Linguistica Computazionale. Distribuito sotto CC-BY 4.0 licenza.
C
(cid:13)
ParsingwithTraces:AnO(n4)AlgorithmandaStructuralRepresentationJonathanK.KummerfeldandDanKleinComputerScienceDivisionUniversityofCalifornia,BerkeleyBerkeley,CA94720,USA{jkk,klein}@cs.berkeley.eduAbstractGeneraltreebankanalysesaregraphstruc-tured,butparsersaretypicallyrestrictedtotreestructuresforefficiencyandmodelingrea-sons.Weproposeanewrepresentationandalgorithmforaclassofgraphstructuresthatisflexibleenoughtocoveralmostalltreebankstructures,whilestilladmittingefficientlearn-ingandinference.Inparticular,weconsiderdirected,acyclic,one-endpoint-crossinggraphstructures,whichcovermostlong-distancedislocation,sharedargumentation,andsimilartree-violatinglinguisticphenomena.Wede-scribehowtoconvertphrasestructureparses,includingtraces,toournewrepresentationinareversiblemanner.Ourdynamicprogramuniquelydecomposesstructures,issoundandcomplete,andcovers97.3%ofthePennEn-glishTreebank.Wealsoimplementaproof-of-conceptparserthatrecoversarangeofnullelementsandtracetypes.1IntroductionManysyntacticrepresentationsusegraphsand/ordiscontinuousstructures,suchastracesinGovern-mentandBindingtheoryandf-structureinLexi-calFunctionalGrammar(Chomsky1981;KaplanandBresnan1982).SentencesinthePennTree-bank(PTB,Marcusetal.1993)haveacoreprojec-tivetreestructureandtraceedgesthatrepresentcon-trolstructures,wh-movementandmore.However,mostparsersandthestandardevaluationmetricig-noretheseedgesandallnullelements.Byleavingoutpartsofthestructure,theyfailtoprovidekeyrelationstodownstreamtaskssuchasquestionan-swering.Whiletherehasbeenworkoncapturingsomepartsofthisextrastructure,ithasgenerallyei-therbeenthroughpost-processingontrees(Johnson2002;Jijkoun2003;Campbell2004;LevyandMan-ning2004;Gabbardetal.2006)orhasonlycapturedalimitedsetofphenomenaviagrammaraugmenta-tion(Collins1997;DienesandDubey2003;Schmid2006;Caietal.2011).Weproposeanewgeneral-purposeparsingalgo-rithmthatcanefficientlysearchoverawiderangeofsyntacticphenomena.Ouralgorithmextendsanon-projectivetreeparsingalgorithm(Pitleretal.2013;Pitler2014)tographstructures,withimprove-mentstoavoidderivationalambiguitywhilemain-taininganO(n4)runtime.Ouralgorithmalsoin-cludesanoptionalextensiontoensureparsescontainadirectedprojectivetreeofnon-traceedges.Ouralgorithmcannotapplydirectlytocon-stituencyparses–itrequireslexicalizedstructuressimilartodependencyparses.Weextendandim-provepreviousworkonlexicalizedconstituentrep-resentations(Shenetal.2007;Carrerasetal.2008;HayashiandNagata2016)tohandletraces.Inthisform,tracescancreateproblematicstructuressuchasdirectedcycles,butweshowhowcarefulchoiceofheadrulescanminimizesuchissues.Weimplementaproof-of-conceptparser,scor-ing88.1ontreesinsection23and70.6ontraces.Together,ourrepresentationandalgorithmcover97.3%ofsentences,farabovethecoverageofpro-jectivetreeparsers(43.9%).2BackgroundThisworkbuildsontwoareas:non-projectivetreeparsing,andparsingwithnullelements.Non-projectivityisimportantinsyntaxforrep-
l
D
o
w
N
o
UN
D
e
D
F
R
o
M
H
T
T
P
:
/
/
D
io
R
e
C
T
.
M
io
T
.
e
D
tu
/
T
UN
C
l
/
l
UN
R
T
io
C
e
–
P
D
F
/
D
o
io
/
.
1
0
1
1
6
2
/
T
l
UN
C
_
UN
_
0
0
0
7
2
1
5
6
7
5
3
3
/
/
T
l
UN
C
_
UN
_
0
0
0
7
2
P
D
.
F
B
sì
G
tu
e
S
T
T
o
N
0
8
S
e
P
e
M
B
e
R
2
0
2
3
442
resentingmanystructures,butinferenceoverthespaceofallnon-projectivegraphsisintractable.For-tunately,inpracticealmostallparsesarecoveredbywell-definedsubsetsofthisspace.Fordepen-dencyparsing,recentworkhasdefinedalgorithmsforinferencewithinvarioussubspaces(G´omez-Rodr´ıguezandNivre2010;Pitleretal.2013).Webuilduponthesealgorithmsandadaptthemtocon-stituencyparsing.Forconstituencyparsing,arangeofformalismshavebeendevelopedthataremildly-contextsensitive,suchasCCG(Steedman2000),LFG(KaplanandBresnan1982),andLTAG(JoshiandSchabes1997).Concurrentlywiththiswork,Caoetal.(2017)alsoproposedagraphversionofPitleretal.(2013)’sOne-EndpointCrossing(1-EC)algorithm.How-ever,Cao’salgorithmdoesnotconsiderthedirec-tionofedges1andsoitcouldproducecycles,orgraphswithmultiplerootnodes.Theiralgorithmalsohasspuriousambiguity,withmultiplederiva-tionsofthesameparsestructurepermitted.OneadvantageoftheiralgorithmisthatbyintroducinganewitemtypeitcanhandlesomecasesoftheLocked-Chainwedefinebelow(specifically,whenNiseven),thoughinpractisetheyalsorestricttheiralgorithmtoignoresuchcases.Theyalsoshowthattheclassofgraphstheygeneratecorrespondstothe1-ECpagenumber-2space,apropertythatappliestothisworkaswell2.ParsingwithNullElementsinthePTBhastakentwogeneralapproaches.ThefirstbroadlyeffectivesystemwasJohnson(2002),whichpost-processedtheoutputofaparser,insertingextraelements.Thiswaseffectiveforsometypesofstructure,suchasnullcomplementizers,buthaddifficultywithlongdistancedependencies.Theothercommonapproachhasbeentothreadatracethroughthetreestruc-tureonthenon-terminalsymbols.Collins(1997)’sthirdmodelusedthisapproachtorecoverwh-traces,whileCaietal.(2011)usedittorecovernullpro-nouns,andothershaveuseditforarangeofmove-menttypes(DienesandDubey2003;Schmid2006).Theseapproacheshavethedisadvantagethateach1Toproducedirectededges,theirparsertreatsthedirectionaspartoftheedgelabel.2Thisisatopologicalspacewithtwohalf-planessharingaboundary.Alledgesaredrawnononeofthetwohalf-planesandeachhalf-planecontainsnocrossings.additionaltracedramaticallyexpandsthegrammar.OurrepresentationissimilartoLTAG-Spinal(Shenetal.2007)buthastheadvantagethatitcanbeconvertedbackintothePTBrepresentation.HayashiandNagata(2016)alsoincorporatednullelementsintoaspinalstructurebutdidnotincludearepresentationofco-indexation.Inrelatedwork,dependencyparsershavebeenusedtoassistincon-stituencyparsing,withvaryingdegreesofrepresen-tationdesign,butonlyfortrees(Hall,Nivre,andNilsson2007;HallandNivre2008;Fern´andez-Gonz´alezandMartins2015;Kongetal.2015).KatoandMatsubara(2016)describedanewap-proach,modifyingatransition-basedparsertore-covernullelementsandtraces,withstrongresults,butusingheuristicstodeterminetracereferents.3AlgorithmOuralgorithmisadynamicprogram,similaratahighleveltoCKY(Kasami1966;Younger1967;Cocke1969).Thestatesofourdynamicprogram(items)representpartialparses.UsuallyinCKY,itemsaredefinedascoveringthenwordsinasen-tence,startingandendingatthespacesbetweenwords.WefollowEisner(1996),definingitemsascoveringthen−1spacesinasentence,startingandendingonwords,asshowninFigure1.Thismeansthatweprocesseachword’sleftandrightdepen-dentsseparately,thencombinethetwohalves.Weusethreetypesofitems:(1)asingleedge,linkingtwowords,(2)acontinuousspan,goingfromonewordtoanother,representingalledgeslinkingpairsofwordswithinthespan,(3)aspan(asdefinedin2)plusanadditionalwordoutsidethespan,enablingtheinclusionofedgesbetweenthatwordandwordsinthespan.WithintheCKYframework,thekeytodefiningouralgorithmisasetofrulesthatspecifywhichitemsareallowedtocombine.Fromabottom-upperspective,aparseisbuiltinaseriesofsteps,whichcomeinthreetypes:(1)addinganedgetoanitem,(2)combiningtwoitemsthathavenon-overlappingadjacentspanstoproduceanewitemwithalargerspan,(3)combiningthreeitems,similarlyto(2).Esempio:Tobuildintuitionforthealgorithm,wewilldescribethederivationinFigure1.Note,itemsub-types(IO,X,andN)aredefinedbelow,andin-
l
D
o
w
N
o
UN
D
e
D
F
R
o
M
H
T
T
P
:
/
/
D
io
R
e
C
T
.
M
io
T
.
e
D
tu
/
T
UN
C
l
/
l
UN
R
T
io
C
e
–
P
D
F
/
D
o
io
/
.
1
0
1
1
6
2
/
T
l
UN
C
_
UN
_
0
0
0
7
2
1
5
6
7
5
3
3
/
/
T
l
UN
C
_
UN
_
0
0
0
7
2
P
D
.
F
B
sì
G
tu
e
S
T
T
o
N
0
8
S
e
P
e
M
B
e
R
2
0
2
3
443
ROOTWelikerunning.I0,1I1,2I2,3I3,4(1)I1,2I2,3X3,4,2(2)X1,2,3(3)N0,2,3(4)N0,2,3(5)I0,4(6)Figure1:Anexamplederivationusingourgraphparsingdeductionrules.cludedhereforcompleteness.(1)Weinitializewithspansofwidthone,goingbe-tweenadjacentwords,e.g.betweenROOTandWe.∅7→I0,1(2)Edgescanbeintroducedinexactlytwoways,eitherbylinkingthetwoendsofaspan,e.g.like–running,orbylinkingoneendofaspanwithawordoutsidethespan,e.g.like–.(whichinthiscaseformsanewitemthathasaspanandanexternalword).I2,3∧like–running7→I2,3I3,4∧like–.7→X3,4,2(3)Weaddasecondedgetooneoftheitems.I1,2∧running–We7→X1,2,3(4)NowthatalltheedgestoWehavebeenadded,thetwoitemseithersideofitarecombinedtoformanitemthatcoversit.I0,1∧X1,2,37→N0,2,3(5)Weaddanedge,creatingacrossingbecauseWeisanargumentofawordtotherightoflike.N0,2,3∧ROOT–like7→N0,2,3(7)Weuseaternaryruletocombinethreeadjacentitems.Intheprocesswecreateanothercrossing.N0,2,3∧I2,3∧X3,4,27→I0,63.1AlgorithmdefinitionNotationVerticesarep,q,etc.Continuousrangesare[pq],[pq),(pq],O(pq),wherethebracketsindi-cateinclusion,[],orexclusion,(),ofeachendpoint.Aspan[pq]andvertexothatarepartofthesameitemare[pq.o].Twoverticesandanarrowindicateanedge,~pq.Twoverticeswithoutanarrowareanedgeineitherdirection,pq.Rangesand/orverticesconnectedbyadashdefineasetofedges,e.g.thesetofedgesbetweenoand(pq)iso–(pq)(insomeplaceswewillalsousethistorefertoanedgefromtheset,ratherthanthewholeset).Ifthereisapathfromptoq,qisreachablefromp.ItemTypesAsshowninFigure1,ouritemsstartandendonwords,fullycoveringthespacesinbe-tween.Earlierwedescribedthreeitemtypes:anedge,aspan,andaspanplusanexternalvertex.HerewedefinespansmorepreciselyasI,anddividethespanplusanexternalpointcaseintofivetypesdifferinginthetypeofedgecrossingtheycontain:pqI,IntervalAspanforwhichtherearenoedgessr:r∈(pq)ands/∈[pq].oX,ExtervalAnintervalandeitheroporoq,whereo/∈[pq].B,BothAspanandvertex[pq.o],forwhichtherearenoedgessr:r∈(pq)ands/∈[pq]∪o.Edgeso–[pq]maybecrossedbypq,p–(pq)orq–(pq),andatleastonecrossingofthesecondandthirdtypesoccurs.Edgeso–(pq)maynotbecrossedby(pq)–(pq)edges.L,LeftSameasB,buto–(pq)edgesmayonlycrossp–(pq]edges.R,RightSymmetricwithL.N,NeitherAnintervalandavertex[pq.o],withatleastoneo–(pq)edge,whichcanbecrossedbypq,butnoother[pq]–[pq]edges.ItemsarefurtherspecifiedasdescribedinAlg.1.Mostimportantly,foreachpairofo,P,andqinanitem,therulesspecifywhetheroneisaparentoftheother,andiftheyaredirectlylinkedbyanedge.ForanitemHwithspan[ij],definecovered(H)COME(ij),anddefinevisible(H)COME{io,j}.Whenanexternalvertexxispresent,itisinvisible(H).Calltheunionofmultiplesuchsetscovered(F,G,H),andvisible(F,G,H).DeductionRulesTomakethedeductionrulesmanageable,weusetemplatestodefinesomecon-straintsexplicitly,andthenusecodetogeneratetherules.Duringrulegeneration,weautomaticallyap-plyadditionalconstraintstopreventrulesthatwouldleaveawordinthemiddleofaspanwithoutaparentorthatwouldformacycle(provenpossiblebelow).Algorithm1presentstheexplicitconstraints.Onceexpanded,thesegiverulesthatspecifyallpropertiesforeachitem(generaltype,externalvertexposition
l
D
o
w
N
o
UN
D
e
D
F
R
o
M
H
T
T
P
:
/
/
D
io
R
e
C
T
.
M
io
T
.
e
D
tu
/
T
UN
C
l
/
l
UN
R
T
io
C
e
–
P
D
F
/
D
o
io
/
.
1
0
1
1
6
2
/
T
l
UN
C
_
UN
_
0
0
0
7
2
1
5
6
7
5
3
3
/
/
T
l
UN
C
_
UN
_
0
0
0
7
2
P
D
.
F
B
sì
G
tu
e
S
T
T
o
N
0
8
S
e
P
e
M
B
e
R
2
0
2
3
444
Algorithm1DynamicprogramforLock-Free,One-EndpointCrossing,Directed,Acyclicgraphparsing.AddingEdges:Consideraspan[lr]andvertexx/∈[lr].EdgesbetweenlandrcanbeaddedtoitemsI,N,l,R,andB(makingˆLandˆNinthosecases).EdgesbetweenlandxcanbeaddedtoitemsI(forminganX),R,andN.EdgesbetweenrandxcanbeaddedtoitemsI(forminganX),l,andN.Thel–redgecannotbeaddedafteranotheredge,andNitemscannotgetbothl–xandr–xedges.CombiningItems:Intherulesbelowthefollowingnotationisused:ForthisexplanationitemsareT[lrcrlclr]andT[lrxcrlcxlclrcxrclxcrx].Tisthetypeofitem.Multiplelettersindicateanyofthosetypesareallowed.Forthenextthreetypesofnotation,ifanitemdoesnothaveamark,eitheroptionisvalid.˙TandT:indicatethenumberofedgesbetweentheexternalvertexandthespan:oneormorethanonerespectively.·TandT·indicatethepositionoftheexternalvertexrelativetotheitem’sspan(leftorrightrespectively).ˆTindicatesforNandLthat∀p∈(ij)∃rs:i≤r
N>3,withedges
{(0,N−1),(1,N)}∪{(io,i+2)∀i∈[0,N−2]}.Definition3.AgraphisLock-FreeifitdoesnotcontainedgesthatformaLocked-Chain.Notethatinpractice,mostparsestructuressatisfy1-EC,andtheLocked-Chainstructuredoesnotoc-curinthePTBwhenusingourheadrules.Theorem1.ForthespaceofLock-FreeOne-EndpointCrossinggraphs,thealgorithmissound,completeandgivesuniquedecompositions.l
D
o
w
N
o
UN
D
e
D
F
R
o
M
H
T
T
P
:
/
/
D
io
R
e
C
T
.
M
io
T
.
e
D
tu
/
T
UN
C
l
/
l
UN
R
T
io
C
e
–
P
D
F
/
D
o
io
/
.
1
0
1
1
6
2
/
T
l
UN
C
_
UN
_
0
0
0
7
2
1
5
6
7
5
3
3
/
/
T
l
UN
C
_
UN
_
0
0
0
7
2
P
D
.
F
B
sì
G
tu
e
S
T
T
o
N
0
8
S
e
P
e
M
B
e
R
2
0
2
3
445
OurproofisverysimilarinstyleandstructuretoPitleretal.(2013).Thegeneralapproachistoconsiderthesetofstructuresanitemcouldrepre-sent,anddividethemintocasesbasedonpropertiesoftheinternalstructure.Wethenshowhoweachcasecanbedecomposedintoitems,takingcaretoensureallthepropertiesthatdefinedthecasearesatisfied.Uniquenessfollowsfromhavingnoam-biguityinhowagivenstructurecouldbedecom-posed.Completenessandsoundnessfollowfromthefactthatourrulesapplyequallywellineitherdirec-tion,andsoourtop-downdecompositionimpliesabottom-upformation.Togiveintuitionfortheproof,weshowthederivationofonerulebelow.Thecom-pleteproofcanbefoundinKummerfeld(2016).Wedonotincludeithereduetolackofspace.WedoprovidethecompletesetofruletemplatesinAlgorithm1,andintheproofofLemma2weshowthatthecaseinwhichanitemcannotbede-composedoccursifandonlyifthegraphcontainsaLocked-Chain.Toempiricallycheckourrulegener-ationcode,wecheckedthatourparseruniquelyde-composesall1-ECparsesinthePTBandisunabletodecomposetherest.Notethatbyusingsubsetsofourrules,wecanrestrictthespaceofstructureswegenerate,givingparsingalgorithmsforprojectiveDAGs,projectivetrees(Eisner1996),or1-ECtrees(Pitleretal.2013).Versionsofthesespaceswithundirectededgescouldalsobeeasilyhandledwiththesameapproach.pqstDerivationofrule(4)inAlgorithm1:Thisruleap-pliestointervalswiththesub-structureshown,andwithnoparentinthisitemforp.Theyhaveatleastonep–(pq)edge(otherwiserule1applies).Thelongestp–(pq)edge,ps,iscrossed(otherwiserule2applies).LetCbethesetof(ps)–(sq)edges(note:thesecrossps).EitheralloftheedgesinChaveacommonendpointt∈(sq),orif|C|=1lettbetheendpointin(sq)(otherwiserule6or7applies).LetDbethesetofs–(tq)edges.|D|>0(otherwiserule3or5applies).Wewillbreakthisintothreeitems.First,(st)–(tq]edgeswouldviolatethe1-ECpropertyand(st)–[ps)edgesdonotexistbyconstruction.Therefore,themiddleitemisanInterval[st],theleftitemis[ps.t],andtherightitemis[tq.s](since|C|>0and|D|>0).Theleftitemcanbeeither0123N−3N−2N−1N……Figure2:VisualizationofLocked-Chainstructures.Note,theuseof0toNdoesnotimplythismustspantheentiresentence,thesenumbersarejustforconvenienceinthedefinition.anNorR,butnotanLorBbecausethatwouldviolatethe1-ECpropertyfortheCedges.TherightitemcanbeanX,l,orN,butnotanRorBbecausethatwouldviolatethe1-ECpropertyfortheDedges.Wewillrequireedgepstobepresentinthefirstitem,andnotallowpt.Toavoidaspuriousambiguity,wealsopreventthefirstorthirditemsfromhavingst(whichcouldotherwiseoccurinanyofthethreeitems).Nowwehavebrokendowntheoriginalitemintovalidsub-items,andwehaveensuredthatthosesub-itemscontainallofthestructureusedtodefinethecaseinauniqueway.NowwewillfurthercharacterizethenatureoftheLock-Freerestrictiontothespaceofgraphs.Lemma1.NoedgeinaLocked-Chainina1-ECgraphiscrossedbyedgesthatarenotpartofit.Proof.First,notethat:Pt((0,N−1))=N,Pt((1,N))=0,and{Pt((io,i+2))=i+1∀i∈[0,N−2]}Calltheset{(io,i+2)∀i∈[0,N−2]},thechain.ConsideranedgeethatcrossesanedgefinaLocked-Chain.Leteinbetheendofethatisbe-tweenthetwoendsoff,andeoutbetheotherend.Oneofe’sendpointsisatPt(F),andPt(e)isanendpointoff.Therearethreecases:(io)f=(1,N).Here,eout=Pt(F)=0,andein∈(1,N).Forallverticesv∈(1,N)thereisanedgeginthechainsuchthatvisbetweentheendpointsofg.Therefore,ewillcrosssuchanedgeg.Tosatisfythe1-ECproperty,gmustshareanendpointwithf,whichmeansgiseither(1,3)O(N−2,N).Inthefirstcase,the1-ECpropertyforcese=(0,2),andintheseconde=(0,N−1),bothofwhicharepartoftheLocked-Chain.(ii)f=(0,N−1),symmetricalwith(io).(iii)f=(io,i+2),forsomei∈[0,N−2].Here,ein=Pt(F)=i+1.Wecanassumeedoesnotcross(0,N−1)O(1,N),asthosecasesarecoveredby(io).Asin(io),emustcrossanotheredgeinthechain,andthatedgemustshareanendpointwithf.
l
D
o
w
N
o
UN
D
e
D
F
R
o
M
H
T
T
P
:
/
/
D
io
R
e
C
T
.
M
io
T
.
e
D
tu
/
T
UN
C
l
/
l
UN
R
T
io
C
e
–
P
D
F
/
D
o
io
/
.
1
0
1
1
6
2
/
T
l
UN
C
_
UN
_
0
0
0
7
2
1
5
6
7
5
3
3
/
/
T
l
UN
C
_
UN
_
0
0
0
7
2
P
D
.
F
B
sì
G
tu
e
S
T
T
o
N
0
8
S
e
P
e
M
B
e
R
2
0
2
3
446
Thisforcesetobeeither(i−1,i+1)O(i+1,i+3)(excludingoneorbothiftheycross(0,N−1)O(1,N)),whicharebothintheLocked-Chain.Ourrulesdefineauniquewaytodecomposeal-mostanyitemintoasetofotheritems.Theexcep-tionisB,whichinsomecasescannotbedividedintotwoitems(i.e.hasnovalidbinarydivision).Lemma2.AB[ij.x]hasnovalidbinarydivisionifandonlyifthegraphhasaLocked-Chain.Proof.ConsiderthekandlthatgivethelongestikandljedgesinaBwithnovalidbinarydivision(atleastoneedgeofeachtypemustexistbydefinition).Novertexin(ik)O(jl)isavalidsplitpoint,astheywouldallrequireoneoftheitemstohavetwoexternalvertices.Now,considerp∈[kj].Ifthereisnoedgel1r1,wherei≤l1
j>N),E(io<0∧j≥N).Itemsofthelastthreetypeswouldbedividedbyourrulesintosmalleritems,oneofwhichcontainsthewholeLocked-Chain.ThefirsttwoareBsofthetypediscussedabove.NowwewillprovethatourcodetogeneraterulesfromthetemplatescanguaranteeaDAGisformed.Lemma3.ForanyitemH,∀v∈covered(H)∃u∈visible(H):visreachablefromu.Proof.Thisistrueforinitialitemsbecausecovered(H)=∅.Toapplyinduction,consideraddingedgesandcombingitems.Thelemmaclearlyremainstruewhenaddinganedge.Considercom-biningitemsE,F,GtoformH[ij.x],andas-sumethelemmaistrueforE,F,andG(thebi-narycaseissimilar).Sinceallverticesarereach-ablefromvisible(E,F,G),weonlyneedtoensurethat∀v∈visible(E,F,G)∃u∈visible(H):visreachablefromu.Theconnectivitybetweenallpairs{(u,v)|u∈visible(H),v∈visible(E,F,G)}canbeinferredfromtheitemdefinitions,andsothisrequirementcanbeenforcedinrulegeneration.Lemma4.Thefinalitemisadirectedacyclicgraph.Proof.First,consideracyclicity.Initialitemsdonotcontainanyedgesandsocannotcontainacycle.Forinduction,therearetwocases:(i)AddinganEdge~pqtoanitemH:AssumethatHdoesnotcontainanycycles.~pqwillcreateacycleifandonlyifpisreachablefromq.Byconstruction,pandq∈visible(H),andsotheitemdefinitioncontainswhetherpisreachablefromq.(ii)CombiningItems:Assumethatinisolation,noneoftheitemsbeingcombinedcontaincycles.Therefore,acycleinthecombineditemmustbecomposedofpathsinmultipleitems.Apathinoneitemcanonlycontinueinanotheritembypassingthroughavisiblevertex.Therefore,acyclewouldhavetobeformedbyasetofpathsbetweenvisiblevertices.Buttheconnectivityofeverypairofvisibleverticesisspecifiedintheitemdefinitions.Inbothcases,rulesthatcreateacyclecanbeex-cludedduringrulegeneration.Byinduction,theitemsconstructedbyouralgo-rithmdonotcontaincycles.TogetherwithLemma3andthefinalitemdefinition,thismeansthefinalstructureisanacyclicgraphwithallverticesreach-ablefromvertexn.Next,wewillshowtwopropertiesthatgiveintu-itionforthealgorithm.Specifically,wewillprovewhichrulesaddedgesthatarecrossedinthefinalderivation.Lemma5.AnedgeijaddedtoI[ij]isnotcrossed.Proof.First,wewillshowthreepropertiesofanypairofitemsinaderivation(using[ij.x]and[kl.y]).
l
D
o
w
n
o
a
d
e
d
f
r
o
m
h
t
t
p
:
/
/
d
i
r
e
c
t
.
m
i
t
.
e
d
u
/
t
a
c
l
/
l
a
r
t
i
c
e
-
p
d
f
/
d
o
i
/
.
1
0
1
1
6
2
/
t
l
a
c
_
a
_
0
0
0
7
2
1
5
6
7
5
3
3
/
/
t
l
a
c
_
a
_
0
0
0
7
2
p
d
.
f
b
y
g
u
e
s
t
t
o
n
0
8
S
e
p
e
m
b
e
r
2
0
2
3
447
(1)Itisimpossibleforeitheri
Scarica il pdf