Reproducibility in Computational Linguistics:

Reproducibility in Computational Linguistics:
Are We Willing to Share?

Martijn Wieling
University of Groningen
Center for Language and
Cognition Groningen
wieling@gmail.com

Josine Rawee
Master’s student
University of Groningen
Center for Language and
Cognition Groningen
josine@rawee.nl

Gertjan van Noord
University of Groningen
Center for Language and
Cognition Groningen
g.j.m.van.noord@rug.nl

l

D
o
w
N
o
UN
D
e
D

F
R
o
M
H

T
T

P

:
/
/

D
io
R
e
C
T
.

M

io
T
.

e
D
tu
/
C
o

l
io
/

l

UN
R
T
io
C
e

P
D

F
/

/

/

/

4
4
4
6
4
1
1
8
0
9
9
0
1
/
C
o

This study focuses on an essential precondition for reproducibility in computational linguistics:
the willingness of authors to share relevant source code and data. Ten years after Ted Pedersen’s
influential “Last Words” contribution in Computational Linguistics, we investigate to what
extent researchers in computational linguistics are willing and able to share their data and code.
We surveyed all 395 full papers presented at the 2011 E 2016 ACL Annual Meetings, E
identified whether links to data and code were provided. If working links were not provided,
authors were requested to provide this information. Although data were often available, code was
shared less often. When working links to code or data were not provided in the paper, authors
provided the code in about one third of cases. For a selection of ten papers, we attempted to
reproduce the results using the provided data and code. We were able to reproduce the results
approximately for six papers. For only a single paper did we obtain the exact same results. Nostro
findings show that even though the situation appears to have improved comparing 2016 A 2011,
empiricism in computational linguistics still largely remains a matter of faith. Nevertheless, we
are somewhat optimistic about the future. Ensuring reproducibility is not only important for the
field as a whole, but also seems worthwhile for individual researchers: The median citation count
for studies with working links to the source code is higher.

l
io

_
UN
_
0
0
3
3
0
P
D

.

F

B

G
tu
e
S
T

T

o
N
0
7
S
e
P
e
M
B
e
R
2
0
2
3

Invio ricevuto: 14 May 2018; accepted for publication: 1 Luglio 2018.

doi:10.1162/coli a 00330

© 2018 Associazione per la Linguistica Computazionale
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internazionale
(CC BY-NC-ND 4.0) licenza

Linguistica computazionale

Volume 44, Numero 4

1. introduzione

Reproducibility1 of experimental research results has become an important topic in the
scientific debate across many disciplines. There now even is a Wikipedia page on the
topic entitled “Replication Crisis,”2 with a description of some of the most worrying
results and links to the relevant studies. In a survey conducted by Nature in 2016,
more than half of over 1,500 participating scientists claim that there is a “significant
reproducibility crisis.”3

For computational linguistics, one might initially be optimistic about reproduc-
ibility, given that we mostly work with relatively “static” data sets and computer
programs—rather than, for instance, with human participants or chemical substances.
Yet, Pedersen (2008) points out in a very recognizable “Last Words” contribution in
Computational Linguistics that it is often impossible to obtain the relevent data and
software. Our study, ten years later, investigates whether this basic prerequisite for
reproducibility is now in a better state.

Reproducing the outcome of an experiment is often difficult because there are
many details that influence the outcome, and more often than not those details are not
properly documented. Observations about reproducibility difficulties have been made
frequently in the past. Bikel (2004), for instance, attempted to reproduce the parsing
results of Collins (1999) but initially did not obtain nearly the same results. Bikel then
continued to show that implementing Collins’ model using only the published details
caused an 11% increase in relative error over Collins’ own published results.

Fokkens et al. (2013) report on two failed reproduction efforts. Their results indicate
that even if data and code are available, reproduction is far from trivial, and they
provide a careful analysis of why reproduction is difficult. They show that many details
(including pre-processing, the experimental set-up, versioning, system output, E
system variations) are important in reproducing the exact results of published research.
In most cases, such details are not documented in the publication, nor elsewhere. Their
results are the more striking because one of the co-authors of that study was the original
author of the paper documenting the experiments that the authors set out to reproduce.
It is clear, Perciò, that in computational linguistics reproducibility cannot be
taken for granted either—as is also illustrated by recent initiatives, such as the IJCAI
workshop on replicability and reproduciblity in NLP in 2015, the set-up of a dedicated
LREC workshop series “4Real” with workshops in 2016 E 2018, and the introduction
of a special section of Language Resources and Evaluation (Branco et al. 2017).

Our study extends the study of Mieskes (2017). She investigated how often studies
published at various computational linguistics conferences provided a link to the data.
She found that about 40% of the papers collected new data or changed existing data.
Only in about 65% of these papers was a link to the data provided. A total of 18% Di
these links did not appear to work.

In our study, we focus on another essential precondition for reproduction, namely,
the availability of the underlying source code. We evaluate how often data and source
code are shared. We did not only follow up on links given in the papers, but we
contacted authors of papers by e-mail with requests for their data and code as well. In

1 In line with Liberman (2015) and Barba (2018), we reject the unfortunate swap in the meaning of

reproduction and replication by Drummond (2009). Consequently, with reproduction (or reproducibility),
we denote the exact re-creation of the results reported in a publication using the same data and methods.

2 https://en.wikipedia.org/wiki/Replication_crisis.
3 https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970.

642

l

D
o
w
N
o
UN
D
e
D

F
R
o
M
H

T
T

P

:
/
/

D
io
R
e
C
T
.

M

io
T
.

e
D
tu
/
C
o

l
io
/

l

UN
R
T
io
C
e

P
D

F
/

/

/

/

4
4
4
6
4
1
1
8
0
9
9
0
1
/
C
o

l
io

_
UN
_
0
0
3
3
0
P
D

.

F

B

G
tu
e
S
T

T

o
N
0
7
S
e
P
e
M
B
e
R
2
0
2
3

Wieling, Rawee, and van Noord

Reproducibility in Computational Linguistics

aggiunta, we investigate to what extent we are able to reproduce results of ten studies
for which we were able to obtain the relevant data and software. Our study is related
to the study of Collberg, Proebsting, and Warren (2015), who investigated the fre-
quency with which they could obtain the source code and data for publications in
ACM conferences and journals, and whether the received code could be compiled. They
found that only in about one third of the cases were they able to obtain and build the
code without any special effort.

Importantly, we also evaluate (a rough indication of) the impact of each study via
the citation counts of each study. Specifically, we assess whether there are observable
differences in impact when comparing papers whose authors share their code directly
(cioè., via a link in the paper) versus those that do not. Because we establish that papers
that provide links to the code are typically somewhat more often cited than papers
that do not, we hope to provide researchers in computational linguistics with addi-
tional motivation to make their source code available.

2. Methods

2.1 Obtaining Data and Source Code

The goal of this study is to assess the availability of the underlying data and source
code of computational linguistics studies that were presented at two ACL conferences.
We selected all full papers from the 2011 E 2016 ACL Annual Meetings (in Portland
and Berlin), enabling us to compare the willingness and ability to share data for older
(cioè., Sopra 6 years ago at the time our study was conducted) versus more recent studies
(cioè., Di 1 year ago at the time our study was conducted).

Our procedure was as follows. For all 2011 E 2016 ACL full papers, we manu-
ally assessed whether data and/or software (cioè., source code) was used, modified, O
created. For each paper, we subsequently registered whether links to data and/or the
software were made available.4 If data and/or source code were used and not made
available, we contacted the first author of the study with a request for the data and/or
source code (depending on what was missing).

Given that we wanted to obtain a realistic estimate of the number of authors who
were willing to provide their data and/or source code, we constructed the e-mail text
(included in the supplementary material, see Section 4) in such a way that the recipients
had the impression that their specific study would be reproduced. Although this is
not completely fair to the authors (since we only reproduced a small sample), simply
asking them about their willingness to provide the data and/or source code without
actually asking them to send the files would have resulted in overly optimistic results.5
Inoltre, we explicitly indicated in the e-mail that one of the senders was a past
president of the ACL. Given that the request for source code and/or data came from
an established member of the ACL community, it is likely that our request was not
dismissed easily. We will return to this point in the Discussion.

The first e-mail was sent on 9 settembre 2017 to the first author of each study for
which data and/or source code was not available. If the e-mail address (extracted from
the paper) no longer existed, we tried to obtain the current e-mail address via a Google

4 Data were also registered as being available if it could be obtained for a fee, such as data sets provided by

the Linguistic Data Consortium.

5 This is exemplified by the fact that over a dozen authors replied to us indicating that they would provide

us with the files before the deadline, but failed to do so.

643

l

D
o
w
N
o
UN
D
e
D

F
R
o
M
H

T
T

P

:
/
/

D
io
R
e
C
T
.

M

io
T
.

e
D
tu
/
C
o

l
io
/

l

UN
R
T
io
C
e

P
D

F
/

/

/

/

4
4
4
6
4
1
1
8
0
9
9
0
1
/
C
o

l
io

_
UN
_
0
0
3
3
0
P
D

.

F

B

G
tu
e
S
T

T

o
N
0
7
S
e
P
e
M
B
e
R
2
0
2
3

Linguistica computazionale

Volume 44, Numero 4

search. In the very few cases where this did not work, we sent the e-mail to another
author of the paper. If the author did not send the data and/or source code (nor replied
that it was not possible to send the requested information), we sent a second and final
e-mail on 24 ottobre 2017. In contrast to the first e-mail, this second e-mail was sent to
all authors of the paper, and the deadline for sending the information was extended to
19 novembre 2017.

A slightly different procedure was used for those authors who provided links in the
paper to their source code and/or data that were no longer accessible. In that case we
immediately contacted all authors with a request (similar to the other e-mail) to send
us the updated link to the data and/or source code within two weeks. As these authors
had already made this information available earlier, we only sent a single e-mail and no
reminder.

Finalmente, for each of the 395 papers in this study, we obtained citation counts from

Google Scholar on 10 Marzo 2018.

2.2 Reproducing Results from Selected Studies

After having obtained the underlying data and/or code, we attempted to reproduce the
results of a random selection of five studies from 2011 (Nakov and Ng 2011; Lui,
Lin, and Alani 2011; Sauper, Haghighi, and Barzilay 2011; Liang, Jordan, and Klein
2011; Branavan, Silver, and Barzilay 2011) and a random6 selection of five studies from
2016 (Coavoux and Crabb´e 2016; Gao et al. 2016; Hu et al. 2016; Nicolai and Kondrak
2016; Tian, Okazaki, and Inui 2016) for which the data and source code was provided,
either through links in the paper, or to us after our request.

Our approach to reproduce these results was as follows: We used the information
provided in the paper and accompanying the source code to reproduce the results. If we
were not able to run the source code, or if our results deviated from the results of the
authors, we contacted the authors to see if they were able to help. Note that this should
only be seen as a minimal reproduction effort: We limited the amount of human (non
CPU) time spent on reproducing each study to a total of 8 hours. The results obtained
within this time limit were compared with the original results of the aforementioned
studies. The second author (a Language and Communication Technologies Erasmus
Mundus Master student) conducted the replication using a regular laptop.

3. Results

3.1 Availability of Data and/or Source Code

The distribution of the links that were available and the responses of the authors we
contacted is shown in Table 1. Whereas most of the data were already provided or
uniquely specified in the paper (cioè., links worked in 64% E 79% of cases for 2011
E 2016, rispettivamente), this was not the same for the source code (provided in 19% E
36% of cases, rispettivamente). After having contacted the authors, and including that data
and source code as well (cioè., providing the updated link or sending the data and/or
source code), these percentages increased to 76% E 86% for the data availability,
E 33% E 59% for the source code availability. When contacting the authors, IL

6 The study of Nicolai and Kondrak (2016) was included as the authors explicitly asked if we could include

them in the experimentation process.

644

l

D
o
w
N
o
UN
D
e
D

F
R
o
M
H

T
T

P

:
/
/

D
io
R
e
C
T
.

M

io
T
.

e
D
tu
/
C
o

l
io
/

l

UN
R
T
io
C
e

P
D

F
/

/

/

/

4
4
4
6
4
1
1
8
0
9
9
0
1
/
C
o

l
io

_
UN
_
0
0
3
3
0
P
D

.

F

B

G
tu
e
S
T

T

o
N
0
7
S
e
P
e
M
B
e
R
2
0
2
3

Wieling, Rawee, and van Noord

Reproducibility in Computational Linguistics

Tavolo 1
Distribution of data and code availability in both 2011 E 2016.

2011: dati

2016: dati

2011: code

2016: code

Data / code available
working link in paper
link sent
repaired link sent
Data / code unavailable
sharing impossible
no reply
good intentions
link down

Total
No data/code used

Total nr. of papers

116
98
11
7
37
19
17
0
1

153
11

164

75.8% 196
64.1% 179
15
7.2%
2
4.6%
31
24.2%
14
12.4%
12
11.1%
2
0.0%
3
0.7%

86.3%
78.9%
6.6%
0.9%
13.7%
6.2%
5.3%
0.9%
1.3%

48
27
17
4
97
46
43
5
3

33.1% 131
80
18.6%
50
11.7%
1
2.8%
90
66.9%
42
31.7%
32
29.7%
12
3.4%
4
2.0%

100% 227
4

100% 145
19

100% 221
10

59.3%
36.2%
22.6%
0.5%
40.7%
19.0%
14.5%
5.4%
1.8%

100%

231

164

231

most frequent response type was that sharing was impossible due to (Per esempio,)
having moved to another institute or company and not having access to the data, being
prohibited from sharing source code that used proprietory company tools, or having
lost the data or source code. The second-most frequent type we observed was the
absence of action. In those cases, we did not receive any reply to our e-mails. The third-
most frequent response type was authors with good intentions, who replied that they
were going to send the requested data and/or code, but did not end up doing so. In only
a very few cases (1–2%), the link to the source code and/or data was not provided anew,
if they were initially present in the paper and no longer working. The total percentage of
available data and/or source code is informative, but another important measure is how
often the source code and/or data were provided when it had to be requested (cioè., IL
sum of the sent and repaired link sent frequencies in the appropriate column in Table 1
as a proportion of the sum of these two frequencies and the number of papers in the
corresponding column for which data or code was unavailable). Unfortunately, these
percentages are rather low, con 32.7% for requested 2011 dati, 35.4% for requested 2016
dati, 17.8% for requested 2011 source code, E 36.2% for requested 2016 source code.
In sum, if data and/or source code were not referenced through a link to a repository in
the paper, authors will most likely not (be able to) supply this information.

Nevertheless, there is a clear improvement between 2011 E 2016. The number
of papers containing a working link to source code almost doubled. Ovviamente, IL
improvement can be explained at least partly by observing that it is much easier to
share recent data and source code, rather than older data and code from 5 years ago.

Subsequently, another important question is, if we get access to the data and/or
code, how likely is it that the results reported therein are reproducible? The following
subsection attempts to provide a tentative answer to this question.

3.2 Reproducibility of Selected Studies

For the 2011 papers we selected, we were only able to reproduce the results of a single
study (Liang, Jordan, and Klein 2011) perfectly (time invested: 4 hours). For the study
of He, Lin, and Alani (2011), we were able to reproduce the results almost (but not

645

l

D
o
w
N
o
UN
D
e
D

F
R
o
M
H

T
T

P

:
/
/

D
io
R
e
C
T
.

M

io
T
.

e
D
tu
/
C
o

l
io
/

l

UN
R
T
io
C
e

P
D

F
/

/

/

/

4
4
4
6
4
1
1
8
0
9
9
0
1
/
C
o

l
io

_
UN
_
0
0
3
3
0
P
D

.

F

B

G
tu
e
S
T

T

o
N
0
7
S
e
P
e
M
B
e
R
2
0
2
3

Linguistica computazionale

Volume 44, Numero 4

abbastanza) perfectly: Their reported performance was 94.98%, whereas the performance
we obtained was 94.8% (using the same version of the underlying MAchine Learning
for LanguagE Toolkit the authors used). È interessante notare, the performance was reduced
A 83.3% when the most recent version of the MALLET toolkit was used (which was
also noted by the authors). We were not able to reproduce any results for the three
remaining 2011 studies we selected (Branavan, Silver, and Barzilay 2011; Nakov and Ng
2011; Sauper, Haghighi, and Barzilay 2011).

The results are better for the 2016 papers we selected. For the paper of Coavoux
and Crabb´e (2016), we were able to reproduce (within 5.5 hours) most of the results
exactly as reported. There was only a single value out of ten that we were not able to
compute. For the study of Gao et al. (2016), the reproduction results (obtained within
2 hours) were also similar. On the basis of all data, two accuracy scores out of four
were identical, and the other two deviated by 0.7 E 1.1 points. The results for the
corresponding baseline deviated by 0.3 E 1.0 points. The results regarding indi-
vidual verbs (cioè., subsets of all data) were much more variable, with deviations of up to
16.7 points. Tuttavia, this was caused by the smaller sample sizes (ranging from 6 A 58).
For the study of Hu et al. (2016) we obtained results (within 3.5 hours) that were (almost)
identical to those reported in the paper (cioè., 88.8 E 89.1 versus 88.8 E 89.3 reported
in the paper). The models used by Nicolai and Kondrak (2016) took a long time to train
and for this reason we were only able to validate two accuracy values (out of nine). Both
values we obtained (taking 8 hours to compute) were similar, but not identical to those
reported in the paper (reported performance: 98.5 E 82.3, our performance: 94.8 E
80.8). Finalmente, we were able to reproduce (within 3.5 hours) most of the results reported
by Tian, Okazaki, and Inui (2016). Four out of six performance values were reproduced
exactly, the remaining two performance values we checked only differed slightly (0.41
E 81.2% compared to the reproduced values of 0.42 E 81.1%, rispettivamente).

In sum, we were only able to reproduce the identical results of a single study
(Liang, Jordan, and Klein 2011). Of course some variability may be expected, due to
(Per esempio) randomness in the procedure. If we are a bit more flexible and ignore the
single value we were not able to compute during the reproduction of Coavoux and
Crabb´e (2016) and the small sample results of Gao et al. (2016), and also ignore de-
viations for reproduced results of up to 2 percentage points, then two 2011 studies
(Liang, Jordan, and Klein 2011; Lui, Lin, and Alani 2011) and four 2016 studies (Coavoux
and Crabb´e 2016; Gao et al. 2016; Hu et al. 2016; Tian, Okazaki, and Inui 2016) were
reproduced successfully.

3.3 Citation Analysis

To see if there is a tangible benefit for authors to share the source code underlying their
paper, we contrasted the number of citations for the papers that provided the code
through a link in the paper to those that did not. Comparing the citation counts for
the papers from 2011 showed a non-significant (p > 0.05) higher mean citation count
for the studies that did not provide the source code compared with those that did
provide the source code: T(117.74) = −0.78, p = 0.44, msc = 71, mno-sc = 84. Note that
the higher mean for the studies that did not provide the link to the code is caused by
12 highly cited papers. Excluding these outliers (and the single outlier from the 2011
papers that did provide a link to the code) yields the opposite pattern, with a significant
higher mean citation count for the 2011 papers providing the source code than those
that did not: T(52.19) = 2.13, p = 0.04, msc = 62, mno-sc = 44. For 2016, we observe a
significant difference, with a higher citation count for the papers providing the source

646

l

D
o
w
N
o
UN
D
e
D

F
R
o
M
H

T
T

P

:
/
/

D
io
R
e
C
T
.

M

io
T
.

e
D
tu
/
C
o

l
io
/

l

UN
R
T
io
C
e

P
D

F
/

/

/

/

4
4
4
6
4
1
1
8
0
9
9
0
1
/
C
o

l
io

_
UN
_
0
0
3
3
0
P
D

.

F

B

G
tu
e
S
T

T

o
N
0
7
S
e
P
e
M
B
e
R
2
0
2
3

Wieling, Rawee, and van Noord

Reproducibility in Computational Linguistics

code than those that did not: T(115.12) = 2.1, p = 0.04, msc = 27, mno-sc = 15. Excluding
the outliers (9 papers providing the source code, 15 papers that did not provide the
source code) strengthened this effect: T(94.68 = 3.7, P < 0.001, msc = 14.3, mno-sc = 7.3). Papers providing the source code had a mean citation count almost double that of the papers that did not provide the source code. Even though the t-test is highly robust to deviations from normality (Zar 1999, pages 127–129), we also analyzed the results using (quasi-)Poisson regression. This supplementary analysis supported the findings resulting from the t-test: when ana- lyzing all data including outliers, the difference between the 2011 papers providing a link to the underlying source code versus those which did not was not significant (p = 0.58). For the 2016 papers, the difference was significant (p = 0.01). When exclud- ing the outliers, the differences were significant for both 2011 and 2016 (all p’s < 0.04). Given that citation counts are highly skewed, we also compared the medians (that are influenced less by outliers). For 2011, the median citation count for the papers that provided a link to the source code was 60, whereas it was only 30 for those that did not provide a link to the source code underlying the paper. Despite the large dif- ference in medians, this difference was not significant (Mann-Whitney U test: p = 0.15). For the papers published in 2016, the median citation count for the papers providing a link to the source code was 8, whereas it was 6 for those which did not. As with the t-test, this difference was significant (Mann-Whitney U test: p = 0.005). When excluding the outliers, the median group differences were significant for both years (all p’s < 0.02). In sum, papers that provided a link to the source code were more often cited than those that did not. Although this may suggest that providing a link to the source code results in a greater uptake of the paper, this relationship is not necessarily causal. Even though providing the source code may make it easier for other authors to build upon the approach of the other authors, it is also possible that authors who provide links to the source code may have spent more time carefully planning and working on the paper, thereby increasing the quality of the work and thus the uptake by the community. 4. Discussion In this article we have assessed how often data and/or source code is provided in order to enable a reproducibility study. Although data are often available, source code is made available less often. Fortunately, there is a clear improvement from 2011 to 2016, with the percentage of papers providing a (working) link to the source code approximately doubling (from 18.6% to 36.2%). Unfortunately, requesting the source code (if it was not already provided) is unlikely to be successful, as only about a third of the requests was (or could be) granted. It is likely that the (relatively low) success of our requests is an upper bound. The reason for this is that we signed our e-mails requesting the data and/or source code with the name of an established member of the ACL community (a past ACL president). Finally, even if the source code and data are available, there is no guarantee that the results are reproducible. On the basis of five studies selected from 2011 and five studies from 2016, we found that at most 60% of the studies were reproducible when not enforcing an exact reproduction. If an exact reproduction was required, then only a single study (from 2011) was reproducible. Approaches such as providing a virtual (e.g., Docker) image with all software, source code, and data, or using CodaLab worksheets as done by Liang, Jordan, and Klein (2011) might prove to be worthwhile in order to ensure a more effortless reproduction. 647 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 4 4 6 4 1 1 8 0 9 9 0 1 / c o l i _ a _ 0 0 3 3 0 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Computational Linguistics Volume 44, Number 4 We would like to end with the following recommendation of Pedersen (2008, page 470) made ten years ago, but remaining relevant today: [Another course of action] is to accept (and in fact insist) that highly detailed empirical studies must be reproducible to be credible, and that it is unreasonable to expect that reproducibility be possible based on the description provided in a publication. Thus, releasing software that makes it easy to reproduce and modify experiments should be an essential part of the publication process, to the point where we might one day only accept for publication articles that are accompanied by working software that allows for immediate and reliable reproduction of results. Because we established that papers that provide links to the code are typically more often cited than papers that do not, we hope to provide researchers in computational linguistics with additional motivation to make their source code available in future publications. Acknowledgments We thank all authors who took the effort to respond to our request for their data and code. The (anonymized) count data, the reproduced values for the ten studies, listings of the reasons for replication failure, the R code used for the statistical analyses (including box plots), and the e-mail text requesting the data and code can be downloaded at http://www.let.rug.nl/ wieling/CL-repro/repro.xlsx. References Barba, Lorena A. 2018. Terminologies for reproducible research. arXiv preprint arXiv:1802.03311. Bikel, Daniel M. 2004. Intricacies of Collins’ parsing model. Computational Linguistics, 30(4):479–511. Branavan, S. R. K., David Silver, and Regina Barzilay. 2011. Learning to win by reading manuals in a Monte-Carlo framework. In Proceedings of the 49th Annual Meeting of the ACL, pages 268–277, Portland, OR. Branco, Ant ´onio, Kevin Bretonnel Cohen, Piek Vossen, Nancy Ide, and Nicoletta Calzolari. 2017. Replicability and reproducibility of research results for human language technology: Introducing an LRE special section. Language Resources and Evaluation, 51(1):1–5. Coavoux, Maximin and Benoit Crabb´e. 2016. Neural greedy constituent parsing with dynamic oracles. In Proceedings of the 54th Annual Meeting of the ACL, pages 172–182, Berlin. Collberg, Christian, Todd Proebsting, and Alex M. Warren. 2015. Repeatability 648 and benefaction in computer systems research. Technical report. http:// reproducibility.cs.arizona.edu/. Collins, Michael. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania. Drummond, Chris. 2009. Replicability is not reproducibility: Nor is it good science. In Proceedings of the Twenty-Sixth International Conference on Machine Learning: Workshop on Evaluation Methods for Machine Learning IV, Montreal. Fokkens, Antske, Marieke Erp, Marten Postma, Ted Pedersen, Piek Vossen, and Nuno Freire. 2013. Offspring from reproduction problems: What replication failure teaches us. In Proceedings of the 51st Annual Meeting of the ACL, volume 1, pages 1691–1701, Sofia. Gao, Qiaozi, Malcolm Doering, Shaohua Yang, and Joyce Chai. 2016. Physical causality of action verbs in grounded language understanding. In Proceedings of the 54th Annual Meeting of the ACL, pages 1814–1824, Berlin. He, Yulan, Chenghua Lin, and Harith Alani. 2011. Automatically extracting polarity-bearing topics for cross-domain sentiment classification. In Proceedings of the 49th Annual Meeting of the ACL, pages 123–131, Portland, OR. Hu, Zhiting, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. 2016. Harnessing deep neural networks with logic rules. In Proceedings of the 54th Annual Meeting of the ACL, pages 2410–2420, Berlin. Liang, Percy, Michael I. Jordan, and Dan Klein. 2011. Learning dependency-based compositional semantics. In Proceedings of the 49th Annual Meeting of the ACL, pages 590–599, Portland, OR. l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 4 4 6 4 1 1 8 0 9 9 0 1 / c o l i _ a _ 0 0 3 3 0 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 Wieling, Rawee, and van Noord Reproducibility in Computational Linguistics Liberman, Mark. 2015. Replicability vs. reproducibility—or is it the other way around? Language Log, 31 October; http://languagelog.ldc.upenn.edu/ nll/?p=21956. Mieskes, Margot. 2017. A quantitative study of data in the NLP community. In Proceedings of the First ACL Workshop on Ethics in Natural Language Processing, pages 23–29, Valencia. Nakov, Preslav and Hwee Tou Ng. 2011. Translating from morphologically complex languages: A paraphrase-based approach. In Proceedings of the 49th Annual Meeting of the ACL, pages 1298–1307, Portland, OR. Nicolai, Garrett and Grzegorz Kondrak. 2016. Leveraging inflection tables for stemming and lemmatization. In Proceedings of the 54th Annual Meeting of the ACL, pages 1138–1147, Berlin. Pedersen, Ted. 2008. Empiricism is not a matter of faith. Computational Linguistics, 34(3):465–470. Sauper, Christina, Aria Haghighi, and Regina Barzilay. 2011. Content models with attitude. In Proceedings of the 49th Annual Meeting of the ACL, pages 350–358, Portland, OR. Tian, Ran, Naoaki Okazaki, and Kentaro Inui. 2016. Learning semantically and additively compositional distributional representations. In Proceedings of the 54th Annual Meeting of the ACL, pages 1277–1287, Berlin. Zar, Jerrold H. 1999. Biostatistical Analysis. Prentice Hall, Upper Saddle River, NJ. l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 4 4 6 4 1 1 8 0 9 9 0 1 / c o l i _ a _ 0 0 3 3 0 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 649 l D o w n o a d e d f r o m h t t p : / / d i r e c t . m i t . e d u / c o l i / l a r t i c e - p d f / / / / 4 4 4 6 4 1 1 8 0 9 9 0 1 / c o l i _ a _ 0 0 3 3 0 p d . f b y g u e s t t o n 0 7 S e p e m b e r 2 0 2 3 650
Scarica il pdf